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Introduction

Problems involving vibrations or oscillations occur frequently in physics :

http://en.wikipedia.org/wiki/Kelvin-Helmholtz.instability
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Simple harmonic motion : periodic functions

» particle P moves at constant angular velocity w around a circle of radius A

> at the same time, let particle Q move up and down along the segment RS
such that yo = yp Vt

Let 6 = 0 at t = 0. Then the angle theta is given by

o(t)y=wt
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» particle P moves at constant angular velocity w around a circle of radius A
> at the same time, let particle Q move up and down along the segment RS
such that yg = yp Vt
Let 6 = 0 at t = 0. Then the angle theta is given by

o(t)y=wt
and the y coordinates of both P and Q :
y(t) = Asin0 = Asin(wt)



Simple harmonic motion : periodic functions

> particle P moves at constant angular velocity w around a circle of radius A

> at the same time, let particle Q move up and down along the segment RS
such that yo = yp Vt

Let 6 = 0 at t = 0. Then the angle theta is given by
o(t)y=wt
and the y coordinates of both P and Q :
y(t) = Asin0 = Asin(wt)

The back and forth motion of Q is called
If we think of P moving in a complex plane, then

zp = x + iy = Acos(wt) + iAsin(wt) = Ae™"

The is the time for one complete oscillation, that is 27 /w



Simple harmonic motion : periodic functions (2)

By definition, the function f(x) is periodic if
f(x+ P) = f(x)

for every x. The number P is the period.
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» Example 1 : The period of f(x) = sinx is 2.



Simple harmonic motion : periodic functions (2)

By definition, the function f(x) is if
f(x+ P) = f(x)

for every x. The number P is the period.

» Example 1 : The period of f(x) = sinx is 2.

» Example 2 : The period of f(x) = sin2nx is 1, since

sin(2m(x 4 1)) = sin(2wx 4 27) = sin 27x



Simple harmonic motion : periodic functions (2)

By definition, the function f(x) is if
f(x+ P) = f(x)

for every x. The number P is the period.

» Example 1 : The period of f(x) = sinx is 2.

» Example 2 : The period of f(x) = sin2nx is 1, since

sin(2m(x 4 1)) = sin(2wx 4 27) = sin 27x

» Example 3 : The period of f(x) = cos(wx/I) is 2/, since

cos(m(x + 21)/1) = cos(wx /I 4+ 27) = cos(nx/I)



Simple harmonic motion : periodic functions (2)

By definition, the function f(x) is if
f(x+ P) = f(x)

for every x. The number P is the period.

» Example 1 : The period of f(x) = sinx is 2.

» Example 2 : The period of f(x) = sin2nx is 1, since

sin(2m(x 4 1)) = sin(2wx 4 27) = sin 27x

» Example 3 : The period of f(x) = cos(wx/I) is 2/, since

cos(m(x + 21)/1) = cos(wx /I 4+ 27) = cos(nx/I)

In general, the period of sin 2"% is T.



Simple harmonic motion : periodic functions (3)
The (vertical) motion of Q is given by
y(t) = Asin(wt)

Its velocity is simply

v(t) = %y(t) — Awcos(wt)



Simple harmonic motion : periodic functions (3)
The (vertical) motion of Q is given by
y(t) = Asin(wt)

Its velocity is simply

v(t) = %y(t) — Awcos(wt)

(position)

7 (velocity)



Applications of Fourier series (1)

Jean Baptiste Joseph Fourier (1768-1830)

French mathematician and physicist best known for initiating the investigation
of Fourier series and their applications to problems of heat transfer and
vibrations.

The Fourier transform and Fourier's law are also named in his honour. Fourier
is also generally credited with the discovery of the greenhouse effect.



Applications of Fourier series (2) - Soundwaves

' | wavelength | wavelength |
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Figure 1 condensation rarefaction

In physics, sound is a vibration that propagates as a typically audible
mechanical wave of pressure and displacement, through a medium such as air
or water.
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— real-life signals are a complicated combination of periodic functions.



single guitar string waveform (1)

Sample Editor: Acoustic Guitar_03

Definition
Audiowarp
VariAudio
Hitpoints
Range

Process.

BT—a—-]




single guitar string waveform (2)

Sample Editor: Acoustic Guitar_03

Sinatwre | Algorfthm

120.00 4/4 | élastique Pro - Time

Definition
Audiowarp
VariAudio
Hitpoints
Range

Process.

B—4&—




single guitar string waveform (3)

Definition
Audiowarp
VariAudio
Hitpoints
Range

Process.

Sample Editor: Acoustic Guitar_03
Temoo.
120.00

Sianature

474

Algorithm.
élastique Pro - Time

Bl-—a—-]




guitar chord waveform (1)

Sample Editor: Acoustic Guitar_05

Sianature hm.
120.00 élastique Pro - Time

Definition
Audiowarp
VariAudio
Hitpoints
Range

Process.




guitar chord waveform (2)

Sample Editor: Acoustic Guitar_05

Temoo. Sianawre | Algorithm
120.00 44 | élastique Pro - Time

P,

Definition

—_—
Audiowarp

P
VariAudio

Hitpoints.
pr—
Range

[r————
Process

PT—a&—~




guitar chord waveform (2)

» simple oscillator/source



guitar chord waveform (2)

» simple oscillator/source

» complex source




seismograms
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seismic waves

Body Waves

— Complex source + complex medium !

N



Applications of Fourier series (2)

Question : Given a complicated signal, how can we write it as a sum of terms
(fundamental freq. + harmonics) ?
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(fundamental freq. + harmonics) ?

Expanding a function in a Fourier series then amounts to breaking it down into
its various harmonics



Applications of Fourier series (2)

Question : Given a complicated signal, how can we write it as a sum of terms
(fundamental freq. + harmonics) ?

Expanding a function in a Fourier series then amounts to breaking it down into
its various harmonics

f(t) = arsin(wit) + axsin(wat) + ...



Applications of Fourier series (2)

Question : Given a complicated signal, how can we write it as a sum of terms
(fundamental freq. + harmonics) ?

Expanding a function in a Fourier series then amounts to breaking it down into
its various harmonics

f(t) = arsin(wit) + axsin(wat) + ...

Given f(t), how do we compute a1, a2, ... and wi,wo, ... 7
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Average value of a function

> Let us look at these numbers : 1,5,11,4,7.
What is their (arithmetic) average ?



Average value of a function

> Let us look at these numbers : 1,5,11,4,7.
What is their (arithmetic) average ?

145411 +4+7

5.6
5

avrg =



Average value of a function

> Let us look at these numbers : 1,5,11,4,7.
What is their (arithmetic) average ?

1+5+11+4+47
avrg = 5 =56

» The numbers are now obtained through a function f : f(x1), f(x2), f(x3),
f(xa), f(xs). Their average is still

avrg = f(a) + f(x) + f(;@) + f(xa) + f(x5)




Average value of a function

> Let us look at these numbers : 1,5,11,4,7.
What is their (arithmetic) average ?

1454114447
: -

5.6

avrg =

» The numbers are now obtained through a function f : f(x1), f(x2), f(x3),
f(xa), f(xs). Their average is still

f(a) + () + Fs) + F(xa) + F(x5)
5

avrg =

» if there are more than 5 points :

f(x1) 4+ f(x2) + f(x3) + -+ f(xn)

avrg =



Average value of a function (2)

» Let us have
a=x1<x<x3- - <Xp-1< X, =b

The average of the function f over the interval [a, b] is given by

_fha)+ )44+ f0m) _ (F(a) +f00) +--- + f(xa))Ax
n nAx

avrg

» the average becomes more precise with n — oo, i.e. Ax — 0. In this case

1 b
avrg = E/ f(x)dx



Maths, hairstyle and history (continued)

» The symbol [ is used to denote the integral in mathematics.



Maths, hairstyle and history (continued)

» The symbol [ is used to denote the integral in mathematics.

» The notation was introduced by the German mathematician Gottfried
Wilhelm von Leibniz towards the end of the 17th century.



Maths, hairstyle and history (continued)

» The symbol [ is used to denote the integral in mathematics.

» The notation was introduced by the German mathematician Gottfried
Wilhelm von Leibniz towards the end of the 17th century.

> The symbol was based on the "long s" character, and was chosen because
Leibniz thought of the integral as an infinite sum of infinitesimal
summands.



Maths, hairstyle and history (continued)

» The symbol [ is used to denote the integral in mathematics.

» The notation was introduced by the German mathematician Gottfried
Wilhelm von Leibniz towards the end of the 17th century.

> The symbol was based on the "long s" character, and was chosen because
Leibniz thought of the integral as an infinite sum of infinitesimal
summands.




Average value of a function (4)

Example : The average of sin x over any integer number of periods is zero :

2
/ sin x dx = —[cos x]§" = —[cos 27 — cos0] = 0
0



Average value of a function (4)

Example : The average of sin x over any integer number of periods is zero :

2
/ sin x dx = —[cos x]§" = —[cos 27 — cos0] = 0
0

sinx dx = —[cos x|~ = —[cos(7) — cos(—m)] = —((—1) — (-1)) =0

=3.14159 334159 6.28319 9,4



Average value of a function (4)

1 /M
— cos” x dx
™ Jo

How can we compute this?



Average value of a function (4)

How can we compute this?

Let us remember :

so that

) (eix+eix)2 B 2% 4 DeXe—iX 4 g2 B Q2% 40 4 g2 B 2 cos 2x + 2
4 4 - 4



Average value of a function (4)

How can we compute this?

Let us remember :

Cosx = Cte”
o 2
so that
) X 4+ = 2 2% 4 DeXe—iX 4 g2 Q2% 40 4 g2 2 cos 2x + 2
cos” x = = = =
2 4 4 4
leading to

/ cos® x dx = / de = / E(cos(ZX) +1)dx
0 0 0



Average value of a function (4)

How can we compute this?

Let us remember :

Cosx = Cte”
o 2
so that
) X 4+ = 2 2% 4 DeXe—iX 4 g2 Q2% 40 4 g2 2 cos 2x + 2
cos” x = = = =
2 4 4 4
leading to

/ cos® x dx = / cosxt 1 / =(cos(2x) + 1)dx
0 0 2 o 2

The period of cos2x is 7 so foﬂ cos 2x dx = 0 and finally

s ™
1/ cos2xdx:l/ ldlezzl
™ Jo T Jo 2 T2 2



Fourier coefficients

Let us assume that a function f(x) of period 27 can be decomposed as follows

1
f(x) = an + a1cosx + axcos2x + azcos3x + ...

+ bisinx 4+ bysin2x + bssin3x 4+ ...

anp = L f(x) cos nx dx
™) _x
1 [7 .

b, = f(x) sin nx dx

™)



Fourier coefficients (2)

One can prove that

1 U ™
g/ﬂrsinandx:%/;Wcosznxdx:%



Fourier coefficients (2)

One can prove that

%/ﬂrsinandx:%/;Wcosznxdx:%

1 ™

— sinmx cosnx dx =0
2 J_ .



Fourier coefficients (2)

One can prove that

%/ﬂrsinznxdx:%/;Wcognxdx:%

1 ™

— sinmx cosnx dx =0
2 J_ .

1 T 0 m#n
— sinmx sinnxdx =< 1/2 m=n#0
2m J_

7’ 0 m=n=20



Fourier coefficients (2

One can prove that

4 1
2:;/77rsin2nxdx:2—

/ cos® nx dx = 1
T ) . 2

)

1 s
2 J_ .
1 s
— sin mx sin nx dx =
2 J_ .

™

2 ) .

Ccos mx cos nx dx =

1/2
0

0
1/2
1

sinmx cosnx dx =0

m#n
m=n#0
m=n=0

m#n
m=n#0

m=n=20



Fourier coefficients - Example 1

Let
0, —m<x<0
“”_{1,0<x<w

1.5

b
0.5

4}
-0.5




Fourier coefficients - Example 1

an = l/ f(x) cos nx dx

L

1 /° 1 /(7
= f/ 0-cosnxdx+7/ 1 - cos nx dx
-7 0

™ ™

1 ™
= cos nx dx
™ Jo

_ 0 n#0
- 1 n=0



Fourier coefficients - Example 1

an =

/ f(x) cos nx dx

-

0 b
1
/ 0-cosnxdx+7/ 1 - cos nx dx
-7 0

T
™
/ cos nx dx
0

0 n#0
1 n=0
f(x)sin nx dx

-

™
/ sin nx dx
0

0 even n
2/nm odd n

[
e I I I et S A SR T R P



Fourier coefficients - Example 1

an = l/ f(x) cos nx dx
™

1

0 b
1
= f/ 0-cosnxdx+7/ 1 - cos nx dx
TS T Jo

1 ™
= = cos nx dx
™ Jo

_ 0 n#0
1 n=0
1 [7 .

b, = = f(x)sin nx dx

™

-

= l/ sin nx dx
T
f(x)—l—s—g sinx+sin3x+sin5x+
T2 w1 3 5

even n

0
0

2/nm odd n
Then




1.5

0.5




1.5




1.5}

f(x) =

+g sin x i sin 3x
T 1 3

N =




1.5

1 2 (sinx sin3x  sinbx
s




1.5

f(x)—l—l—g sinx+sin3x+sin5x+sin7x
T2 w1 3 5 7




1.5

f(x) =

+g sin x " sin 3x " sin bx " sin 7x n sin 9x
T 1 3 5 7 9

N =




1.5

n g sin x n sin 3x n sin 5x " sin 7x n sin 9x n sin11x
T 1 3 5 7 9 11

)



Dirichlet conditions

Question : now that we have a series, does it converge to the values of f(x)?

Theorem of Dirichlet : If f(x) is periodic of period 27, and if between —7 and
—+7 it is single-valued, has a finite number of minimum and maximum values,
and a finite number of discontinuities, and if [™ |f(x)|dx is finite, then the
Fourier series converge to f(x) at all the points where f(x) is continuous; at
jumps the Fourier series converges to the midpoint of the jump.



Maths, hairstyle and history (continued)

Johann Peter Gustav Lejeune Dirichlet (1805-1859), German mathematician



Dirichlet conditions (2)

&all assumptions in the theorem matter!

» consider x2 + y? = 1. In this case y is not a single-valued.



Dirichlet conditions (2)

&all assumptions in the theorem matter!

» consider x> + y? = 1. In this case y is not a single-valued.

» consider f(x) = sin(1/x)

e —

1006 1006 oot [ 0.1 X T

It has an infinit number of minima and maxima between —7 and 7



Dirichlet conditions (2)

&all assumptions in the theorem matter!

» consider x2 + y? = 1. In this case y is not a single-valued.

» consider f(x) = sin(1/x)

e —

1006 1006 oot [ 0.1 X T

It has an infinit number of minima and maxima between —7 and 7

> consider f(x) =1/x

+m +7 1
/ |f(x)|dx:2/ Zdx =2[Inx]g = o0
0o X

-



Complex form of Fourier series

Recall . .
mnx _ e—mx
sin(nx) = -

(nx) 5
We could insert this into

anp = l/ f(x) cos nx dx

s

-7

and get a series of terms of the forms e™ e

—inx



Complex form of Fourier series

Recall

sin(nx) =

We could insert this into

a,,:l/ f(x) cos nx dx b, =

s

-7

and get a series of terms of the forms e™ e

This is the complex form of the Fourier series.

s

—inx

L.

f(x)sin nx dx



Complex form of Fourier series

What if we want to find the coefficients in the complex form directly ? We
assume

+o00o
. i 0 o .
f(x)=co+ce”+cie ™ +ae™+coe ™+ = E cne"™

n=—o00



Complex form of Fourier series

What if we want to find the coefficients in the complex form directly ? We

assume
+o00o
. i 0 o .
f(x)=co+ce”+cie ™ +ae™+coe ™+ = E cne"™
n=—o00
This leads to .
1 i
= — f(x) e”"™dx

2w

-



Complex form of Fourier series - Example 1

_J 0, —m<x<0
f(X)_{ 1, 0<x<m

ER R




Complex form of Fourier series - Example 1

0, —m<x<0
f(x)_{ 1, 0<x<m

ER R

1 (" : 1T
& = f(x) e ™dx = —/ e ™dx
0

27 o 27

1 —inm
N 727rin(e 1)
0 even n,n #0
1/int  odd n

Co = 1/2




Other intervals
Let us now consider the function f(x) periodic over the interval [—/, /]. We now

have

27
f(x) = E—l—alcos i —i—agcosT—i—

+blsin7r—lx+bzsin27TTX+...

= +Z (a,,cos + bpsin niﬁ)



Other intervals

Let us now consider the function f(x) periodic over the interval [—/, /]. We now

have
f(x) = P 4 acos ™ +a cosQ——i—
T2 T T I
+blsin7r—lx+bzsin27TTX+...
nmx
_ \ bnsin )
+Z (a cos + sin ]
f(X) _ Z Cneimrx/l
with

an, = %/ X)cos—dx

/ x)sm X dx

1 _
& = — m7r><//dX

~| =

I\)

(1)



Other intervals

Example :

Cn

Co

_J 0 0<x<l
f(X)_{ 1 I<x<2l

1 /! 1 2 —_—
- . = 1 . —I1TTNX
21 J, 0-dx+ 2/// e dx

1 |:er'n7-rx//:|2l
2 | —imn/l |,
1 .
1— ™

f2i7rn( ")

0 even n,n # 0
—1/inm  odd n

N =~



Even and odd functions

» the function f(x) is even if
f(=x) = f(x)
> the function f(x) is odd if

f(=x) = —f(x)



Even and odd functions (2)

o000 X Gnuplot
10
5 i
o i
-5 i
o : :
-10 -5 0
-11,1135, -11,2530

10

f(x) = x is odd.




Even and odd functions (3)

laXaka]

X Gnuplot
100

0
-10 -5
-5,27084, 21,2734

f(x) = x> is even.



Even and odd functions (4)

O00O X Gnuplot
1000

500

]

-1000
-10

-1,531 -420, 566

f(x) = x* is odd.




Even and odd functions (5)

X/ Gnuplot

2,40283, -0,973353

f(x) = sinx is odd.




Even and odd functions (6)

X Gnuplot

-1.63352, 0, 200634

f(x) = (sinx)? is even.




Even and odd functions (6)

Any function f(x) can be decomposed as the sum of an even and an odd

function : 1 1
F(x) = 5 () + F(=x)] + 5 [F(x) = F(=x)]
Example :
DU D S -
e zi(e +e )—|—§(e — e ) = cosh x + sinh x

f(x) = cosh x f(x) = sinh x



Even and odd functions

From the definition of even and odd functions, it naturally follows :

! 0 if f(x) is odd
[, Flx)dx = { 2fol f(x)dx if f(x) is even



Even and odd functions

From the definition of even and odd functions, it naturally follows :

! 0 if f(x) is odd
[, Flx)dx = { 2fol f(x)dx if f(x) is even

proof :

> think of an integral as a signed area calculation :

> split fi, into fE,—|—f0/ and use properties of even and odd functions




Even and odd functions (2)

For even or odd functions, the coefficients a, and b, simplify :

> If f(x) is odd,
!
2, =0 bnzgff(x)sin@dx
A I
> If f(x) is even,

I
an:%/f(x)cosnllxdx b, =0
0



An application to sound (1)

| wavelength | wavelength |
| | 1

Pressure s

— — —_— —_— — —
e, e’ R

- condensation rarefaction
Figure 7




An application to sound (2)

The

essential characteristics of a musical note

The loudness of the note is measured by the magnitude of the changes in
air pressure. This is controlled by how hard a piano key is pressed or how
hard one blows on the mouthpiece of a saxophone.

The pitch of the note is the frequency of repetition of the basic pressure
pattern. More precisely, the frequency is the number of times the basic
pattern is repeated per unit of time.

> The frequencies of interest to us will be measured in cycles per second

> One cycle per second is called a hertz in honor of Heinrich Hertz.

> Human hearing is confined to frequencies that range roughly from 20 to
18,000 hertz.

The timbre of the note includes those characteristics that enable us to tell
a piano note from a violin note with the same loudness and pitch.



Maths, hairstyle and history (continued)

i

Heinrich Rudolf Hertz (1857-1894), German physicist



An application to sound (2) - guitar string spectrum

The nodes of natural harmonics are located at the following points along a
guitar’s neck.

2:1 = octave
3:1 = octave + perfect s

7:1 = 2nd ctave + harmonic Tth
B:1 = 3rd octave



An application to sound (3) - guitar string spectrum
— string played next to bridge
[ ] [/

il

oo Spectrum Analyzer - *Audio 01_04"

# s precision: 10.77Hz | EEEIM =] Min O] Active
] Frea. log Frequency (Hz) [l 3000 Hz (ST ( Close




An application to sound (4) - guitar string spectrum
string played at 12th fret (half length)

i

(2] (&) Spectrum Analyzer - "Audio 01_06"

15k
Frequency (Hz)
o a8 precision: 10.77+z  [KKCE =] Min (] Active
) Freq. log Frequency (Hz) [l 3000 Hz [SRCE (_cClose )




An application to sound (5) - guitar string spectrum

harmonic (placing a finger on the string when the string is driven)
y }

(2] (&) Spectrum Analyzer - "Audio 01_07"

& a5 precision: 10770z KIS Min () Active
[ Freq. log Frequency (Hz) |Gl 3000 Hz |SRIEYY [ Close




An application to sound (6)

> A Shepard tone, named after Roger Shepard, is a sound consisting of a
superposition of sine waves separated by octaves.

> When played with the base pitch of the tone moving upward or downward,
it is referred to as the Shepard scale.

» This creates the auditory illusion of a tone that continually ascends or
descends in pitch, yet which ultimately seems to get no higher or lower.

http://en.wikipedia.org/wiki/Shepard_tone



An application to sound (7) - psychoacoustics
Perceived Human Hearing

70

60 ™

40 =
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An application to sound (8) - mp3 encoding
the mp3 format uses characteristics of the human ear to design the
compression algorithm :
» There are certain sounds that the human ear cannot hear.

» There are certain sounds that the human ear hears much better than
others.

> If there are two sounds playing simultaneously, we hear the louder one but
cannot hear the softer one.



An application to sound (8) - mp3 encoding

the mp3 format uses characteristics of the human ear to design the
compression algorithm :

» There are certain sounds that the human ear cannot hear.

» There are certain sounds that the human ear hears much better than
others.

> If there are two sounds playing simultaneously, we hear the louder one but
cannot hear the softer one.

If there is a loud sound in one band,
the compression algerithm can
ignore all of the other bands.

© 2001 HowStuffWorks




An application to sound (9) - mp3 encoding

Let us look at two spectrograms of a given piece of music

B(wav file, original)

B8 (mp3 file, 128kbps)

= the mp3 encoding format is destructive.
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Parseval’'s theorem

Let f(x) be a function and its Fourier series write :

f(x) = fao—l—Zancosnx—FZb sin nx



Parseval’'s theorem

Let f(x) be a function and its Fourier series write :
1 > ad
f(x) = 530 + ; an €os Nx + ; by sin nx

Theorem : The sum (or integral) of the square of a function is equal to the sum
(or integral) of the square of its transform.

S (@) + 5 (b

n=1 n=1

N =

1
The average of [f(x)]° over a period = (530)2 +



Parseval’'s theorem

Let f(x) be a function and its Fourier series write :

1 oo o0
x) = an + Zancosnx—FZb,,sin nx
n=1 n=1

Theorem : The sum (or integral) of the square of a function is equal to the sum
(or integral) of the square of its transform.

2 Lo IR 1 - %
The average of [f(x)]° over a period = ao) 5 z:: an) 5 z::
If f(x) € C, the equality writes simply :

The average of |f(x)|* over a period = Z |cal®



Parseval’'s theorem

Let f(x) be a function and its Fourier series write :

1 oo o0
x) = an + Zancosnx—FZb,,sin nx
n=1 n=1

Theorem : The sum (or integral) of the square of a function is equal to the sum
(or integral) of the square of its transform.

1 L1 —
The average of [f(x)]° over a period = ao) 5 z:: an) 5 z:: )?
If f(x) € C, the equality writes simply :
The average of |f(x)|* over a period = Z |cal®

n—=—o00

Parseval's theorem is also called the relation.



Maths, hairstyle and history (continued)

Marc-Antoine Parseval des Chénes (1755 - 1836), French mathematician



Parseval's theorem (3)

o0
Example 1 : use Parseval's theorem with f(x) = x° to evaluate > 4
n=1

™ ™ 4
1 (F(x))%dx = 1/ xtdx = s
™

T™J_n -7

The function f(x) is even so b, = 0 Vn

™ ™ 3
ap = l/ f(x) cos(0x) dx:%/ X2dX:2%

™) -
B 1 T B 4(_1)n+1
an = f(x) cos(nx) dx = T

-

PT implies that
or* 1277\’ Z"" 4(=1)"1\?  ont Zw 1
5_(§3>+ < n? )_9—~_16’1_1n4
oo 1
= E =



Parseval's theorem (3)

Example 2 : We can use Parseval’s theorem to find the sum of an infinite series.
Let us consider the function f(x) = x of period 2 on ] — 1, 1]

o —i iTx —imx 1 2imx 1 —2imx 1 3imx 1 —3imx
f(x) = - (e e 5€ —|—2e +3e 3¢ +

Let us find the average of |f(x)|*> on [-1:1]:

+1f 2d 1 +1 2d 1
LI(X)I x—§/1x o=

By Parseval's theorem, this is equal to 3°%° |c,|* :

1 & o 1 1,1,1 1
§—§|Cn‘—ﬁ(1+1+z+z+§+§+ )
DTS U S S G

4 9 - n 6



Fourier transforms (1)

» So far, we have been expanding periodic functions in series of sines,
cosines, and complex exponentials.



Fourier transforms (1)

» So far, we have been expanding periodic functions in series of sines,
cosines, and complex exponentials.

» Question : is it possible to represent a function which is not periodic by
something analogous to Fourier series?



Fourier transforms (1)

» So far, we have been expanding periodic functions in series of sines,
cosines, and complex exponentials.

» Question : is it possible to represent a function which is not periodic by
something analogous to Fourier series?

> Question : Can we extend/modify the Fourier series to cover the case of a
continuous spectrum of frequencies ?



Fourier transforms (2) - Definitions

Remember these ?

> . 1 [t .
f(X) — Z Cne/mrx// Ch = Z I f-(X)eflm-rx//dX

The period of f(x) is 2/ and the frequencies are n/(2/).



Fourier transforms (2) - Definitions

Remember these ?

> . 1 [t .
f(X) — Z Cne/mrx// Ch = Z I f(X)eflm-rx//dX

The period of f(x) is 2/ and the frequencies are n/(2/).

Definition of

Flx) = / g(a)e™ da gl0) = o / F(x)e ™ dx
— 00 — o0

g(a) corresponds to ¢, a corresponds to n, and the integral corresponds to

the discrete sum.

g(a) is called the of f(x).

f(x) is called the inverse Fourier transform of g(«).

The Fourier integral theorem states : if a function f(x) satisfies the Dirichlet

conditions on every finite interval, and if [~ |f(x)|dx is finite, then the

definitions hereabove are correct.



Fourier transforms (2) - Fourier Sine/Cosine tansforms

We define f;(x) and gs(), a pair of fourier sine transforms representing odd
functions by the equations

fi(x) = \/g/ooo gs(@) sin(ax) da
g(a) = \/g/ooo fi(x) sin(ax) dx

We define f.(x) and g-(«), a pair of fourier cosine transforms representing even
functions by the equations

£(x) = \/g /0 ~ g(a) cos(ax) da
ge(a) = \/g/ooo f-(x) cos(ax) dx



Fourier transforms (3)

Example 1 : Let us represent a nonperiodic functions as a Fourier integral
The function
1, -1<x<1
f(x)*{ 0, |x|>1

Since the function is not periodic, it cannot be expanded in a Fourier series,
since a Fourier series always represents a periodic function. Instead we compute

g(a) 1
! ~ —i 1 —i sin «
i — f' Iax - Iax —
g(a) o /700 (x)e dx o /716 dx -
We have
o . oo . ) 2 0o .
(9= [ st [ I gnge 2 2 [T shacosax,
- oo T ™ Jo e}

since (sina)/a is an even function.



Fourier transforms (3)

Example 2 :

We have established that
2 [ sinacos ax L —l<x<1
—/ —————da= 0, x| >1
T Jo @ 1/2 x=1

Where we have used the fact that the Fourier integral represents the midpoint
of the jump in f(x) at |[x| = 1. If we let x = 0, we get

 sina T
e ==
/0 a Y72



Parseval's theorem for Fourier integrals

» Recall Parseval’s theorem for fourier series :

oo

The average of |f(x)|* over a period = Z cal®

n=—oo

> this says that the total energy is equal to the sum of the energies
associated with the various harmonics.

» Parseval's theorem for Fourier transforms writes as follows :

| let@)da = 5 [ irGoras



Fun fact

voltage
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titne

CD-quality music recording is created by sampling the sound 44,100 times per
second and storing each sample as a 16-bit binary number (twice as much for a

stereo recording).
So an hour of stereo music is equivalent to 3,600 x 44,100 x 2 = 317,520, 000

samples or 635,040,000 bytes.



