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Introduction

REINES

» many methods in geodynamics (FEM, FDM, FVM, Spectral, ...)
» many languages (C, C++, fortran, python, matlab, ...)

» research codes based on pre-existing libraries
» writing one’s own code is fun but
» modularise & test for robustness
strive for portability
comment
use structures
optimise
visualise
benchmark

VYyVYYVYY
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Introduction

Sources

ALIK ISMAIL-ZADEH AND PAUL TACKLEY

INTRODUCTION TO

Numerical Geodynamic Computational Methods for

Modelling sl GEODYNAMICS

TARAS GERYA

» Becker and Kaus
https://earth.usc.edu/ becker/Geodynamics557 . pdf

» Spiegelman
http://www.ldeo.columbia.edu/ "mspieg/mmm/course.pdf

The content of this presentation is mostly based on Becker & Kaus.
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Finite Difference Method basics

Philosophy

The solution of PDEs by means of FD is based on approximating
derivatives of continuous functions, i.e. the actual partial differential
equation, by discretized versions of the derivatives based on discrete
points of the functions of interest.

t

T

—

dx
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Finite Difference Method basics

Finite differences and Taylor series expansions

» Suppose we have a function f(x), which is continuous and
differentiable over the range of interest.

> Let’s also assume we know the value f(xp) and all the derivatives
at x = xp.

» The forward Taylor-series expansion for f(xo + h), away from the
point xo by a small amount h gives

of n? o2f h" o"f

F(xo+h) = F(x0)+ho (Xo)+ 57 75 (Xo)++ - 52 (X0)+O(H™T)

» We can express the first derivative of f by rearranging

of v _ X+ h) —fx) h &

a( 0) h *QW(XO)*
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Finite Difference Method basics

Finite differences and Taylor series expansions

» If we now only compute the first term of this equation as an
approximation:
of fiot — 1
ax =
where functions f; = f(x;) are evaluated at discretely spaced x;
with x;.1 = Xx; + h, where the node spacing, or resolution, his
assumed constant.

» O(h?) indicates that the full solution would require additional
terms of order h?, h%, and so on. O is called the truncation error:
if the distance h is made smaller and smaller, the (numerical
approximation) error decreases o h? in this case.

» The forward FD derivative as expressed above is called first
order accurate, and this means that very small h is required for
an accurate solution.

+ O(h?)
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Finite Difference Method basics

Finite differences and Taylor series expansions

» We can also expand the Taylor series backward

of h? 92f
» The backward FD derivative then writes:

of  \ h—fiy
axX) ="

+ O(H?)
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Finite Difference Method basics

Finite differences and Taylor series expansions

Introducing the notations:

. N2
f’:d—f and f”:df

dx ox?
we can derive higher order derivatives:

f{ o f/ fi+2—f/‘-1 o fi+1—f/‘ f o 2f + f
1 i+1 i h h i+2 i+1 i 2
h h h h? +0O(r)
which is the first order accurate, forward difference approximation
for second order derivatives around x;. 1.
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Finite Difference Method basics

Finite differences and Taylor series expansions

» Alternatively, we can form the average of the first order accurate
forward and backward schemes, and dividing by two.

» The result is the central difference approximation, second
order accurate of the first derivative

- fit1 ;hﬁ—1 +O(H)
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Finite Difference Method basics

Finite differences and Taylor series expansions

» By adding the taylor expansions (with +h and —h) a second
order accurate approximation of the second derivative is
obtained

f; 1 — 2f; + f',1
il == + O(h°)
» Another way to arrive at the same expression:
! _fi+1_fi f/ _fl'_fl'f1
i+1/2= T p i-1/2= "
f— fl'/+1/2 - fi/—1/2 o fi+1 - 2f/ + fi71
b h - h?
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Finite Difference Method basics

Derivatives with variable coefficients

Note that derivatives with of the following form
0 of
ax (o)
where k is a function of space, should be formed as follows
0 of
— (k==
ox ( 8x>
where ki1 /> is evaluated between the points to maintain the second

order accuracy.

Note: If k has strong jumps from one grid point to another that are not aligned with the grid-nodes, most second-order methods will show

ki fii—f . fi—fi_1
_ i+1/27h . i—1/27p +O(h3)

i

first order accuracy at best.
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Finite Difference Method basics

Stencils

2D stencil 3D stencil

Stencils for the finite difference Laplacian operator, i.e., the geometric
arrangement of points involved in calculating this discrete Laplacian.
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Solving the 1D heat equation

Explicit approach

» Consider the one-dimensional, transient (i.e. time-dependent)
heat conduction equation without heat generating sources

Pe ot = ax \" ax

where p is density, ¢, heat capacity, k thermal conductivity, T
temperature, x distance, and f time.

» If the thermal conductivity, density and heat capacity are
constant over the model domain, the equation can be simplified
to a diffusion equation:

or _ T
ot~ "ox2
where x = k/pc;, is the heat diffusivity.
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Solving the 1D heat equation

Explicit approach

» The derivative of temperature w.r.t. time can be approximated
with a forward finite difference approximation as
oT B Tin+1 o Tin B Tin+1 o Tin
ottt —n St

» nrepresents the temperature at the current time step whereas
n+ 1 represents the new (future) temperature. The subscript /
refers to the location.

» Both nand i are integers; n varies from 1 to nstep (total number
of time steps) and i varies from 1 to nnx (total number of grid
points in x-direction).

» The spatial derivative is replaced by a central FD approximation

PT _ Thy —2T7 4 T7,
ox? h?
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Solving the 1D heat equation

Explicit approach

» We obtain 1
-7 _ HT/’L 2T+ 717,
ot h?
and finally
Thy 2T+ 77,

1 i+1
T =T+ ot
» Because the temperature at the current time step nis known, we

can compute the new temperature without solving any additional
equations.

» Such a scheme is an explicit finite difference method and was
made possible by the choice to evaluate the temporal derivative
with forward differences.
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Solving the 1D heat equation

Explicit approach

» In order to solve this equation we need to
> prescribe an initial temperature field

» prescribe boundary conditions ( Ty cannot be computed by means
of the above equation !)

» We know that this numerical scheme will converge to the exact
solution for small h and 5t because it has been shown to be
consistent - that its discretization process can be reversed,
through a Taylor series expansion, to recover the governing
partial differential equation - and because it is stable for certain
values of h and §t: any spontaneous perturbations in the solution
(such as round-off error) will either be bounded or will decay.
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Solving the 1D heat equation

Explicit approach

» The main drawback of the explicit approach is that stable
solutions are obtained only when

2k0t
— <

0< 2 <1

or,
h2
<
6t_'2ﬁ

» If this condition is not satisfied, the solution becomes unstable,
starts to wildly oscillate and ultimately 'blows up’.

» The stability condition means that the maximum time step needs
to be smaller than the time it takes for an anomaly to diffuse
across the grid (nodal) spacing h.

» The explicit solution is an example of a conditionally stable
method that only leads to well behaved solutions if a criterion like
the one above is satisfied.
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Solving the 1D heat equation

Implicit approach

» An alternative approach is an implicit finite difference scheme,
where the spatial derivatives of the Laplacian are evaluated (at
least partially) at the new time step.

» The simplest implicit discretization of the 1D heat transport
equation is

T Ty TR 2T e Ty
=K

ot h?

It is a fully implicit scheme where the time derivative is taken
backward.
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Solving the 1D heat equation

Explicit vs implicit approach

boundary nodes boundary nodes
A « v S B o« v 8

i+ FLnt LnHT i+ g+
C J
i-1.n in i+1.n pe . o -ln_lgin otln o .

time time

(ﬂ
5
=
-
=

o —Ax— L N —Ax—p o
= space . space .
Explicit FD discretisation Implicit FD discretisation
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Solving the 1D heat equation

Implicit approach

» Let us define
rot

h2
» The previous equation can be rearranged as follows:

ST+ (1+28) T/ — sTH = T7

» Note that in this case we no longer have an explicit relationship

for T, 7" and T/1}". Instead, we have to solve a linear

system of equations, which is discussed further below.

@ — board: matrix structure and b.c.
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Solving the 1D heat equation

Implicit approach

» The main advantage of implicit methods is that there are no
restrictions on the time step, the fully implicit scheme is
unconditionally stable.

» This does not mean that it is accurate. Taking large time steps
may result in an inaccurate solution for features with small spatial
scales.

» For any application, it is therefore always a good idea to check
the results by decreasing the time step until the solution does not
change anymore (this is called a convergence check), and to
ensure the method can deal with small and large scale features
robustly at the same time.
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Solving the 1D heat equation

Implicit approach

» Looking at

ST 4 (14 29) TP — sTPH! = 77

and dividing by —s and letting 6t — oo, we obtain:
TR 2T+ T =0

which is a central difference approximation of the steady state
solution
0°T
o =
» Therefore, the fully implicit scheme will always yield the right
equilibrium solution but may not capture small scale, transient
features.
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Solving the 1D heat equation

Implicit approach

» |t turns out that this fully implicit method is second order accurate
in space but only first order accurate in time, i.e. the error goes
as O(h3,5t).

» It is possible to write down a scheme which is second order
accurate both in time and in space (i.e. O(h?,6t%)), e.g. the
Crank-Nicolson scheme which is unconditionally stable.

» The Crank-Nicolson method is the time analog of central spatial
differences and is given by

Tn

n+1 n
T/ — T/ _ i+1

ot

eT T, | TE 2T e Ty
12 - 2

N =
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Solving the 1D heat equation

Implicit approach

Any partially implicit method is more tricky to compute as we need to
infer the future solution at time n + 1 by solution (inversion) of a
system of linear equations based on the known solution at time n.

boundary nodes
C-t - T e

i.n+1
i-1n i.n Fn
oA in-1
£ T
Tl
1« A L »
space

Crank-Nicolson stencil
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Solving the 1D heat equation

Implicit approach

The implicit approach yields a linear system of the form:
A T=b
where
» Ais a (nnxxnnx) matrix,

> bis a known vector of size nnx (the right-hand side’, or rhs)
» T the vector of unknowns.
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Solving a linear system of equations

Direct solvers

» A general strategy to solve A- X = bis then LU decomposition:
A=L-U

where L and U are lower and upper triangular matrices,
respectively, which only have zeros in the other part of the matrix.

> The solution of A- X = b can then be obtained efficiently from
L-UX=b
by solving y = L= - band then X = U~ - j because the inverse

of L and U are computationally fast to obtain. 'LU’ is often how
general matrix inversion is implemented on a computer.
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Solving a linear system of equations

Direct solvers

» For most FE/FD problems, the A matrix will be sparse and
banded.

Visualization of banded malrix

5001 ! . -,
- . 10 \%‘
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E & k3
1500 - E #,!j 30 %&
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2000 . - 1 f,"i il X%
{ b 50 ',
o6
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i bowim
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nz = 404452

sparse matrix sparse banded matrix
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Solving a linear system of equations

Direct solvers

» Special algorithms exist to exploit this feature such that the run
time is ideally dominated by the number of non-zero entries of A,
rather than the full size.

» If Ais symmetric and positive definite (i.e. X- A- X > 0, VX), we
can use the Cholesky decomposition for which U = LT and
computations are twice as fast as for the general LU case.

» For complex, 3D problems, current computational limitations
often prohibit the use of direct solvers which is why iterative
methods which do not require matrix decomposition or inversion,
are used.
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Solving a linear system of equations

Direct solvers

Do not write your own. Do not even try.

Code Technique Scope Contact

Serial plaforms

CHOLMOD Leftlooking SPD Davis ®

KLU Left-loking Ungym Davis o
Multifrontal Sym HSL 19
Multifrontal Sym-pat HSL i
Frontal naym HSL 20]
Mulifrontal Sym HSL 17
Right-look Unsym HSL 18]
Left/right/Maultifr.  sym, out-core Dobrian 14
Right-looking Unsym Kundort 29

SPARSPAK  Left-looking SPD, Unsym, QR Goomgeetal. 22

SPOOLES  Leftlooking Sym, Symepat, QR Asheraft 5

SuperlLT  Leftlooking SPD Ng 2,

SuperL.U Leftlooking Ungym L 12

UMFPACK __ Multifrontal Unsym Davis 10]

ared memory paraliel machines

BCSLIBEXT  Multifontal Sym, Unsym, QR
Cholesky o)
DMF Sym
MAa Sym-pat
MAS Qr
PandlLLT SPD
PARASPAR Unsym.
PARDISO Sym-pat
SPOOLES  Left-looking Sym, Sym-pat
SuiteSparseQR  Multifrontal Rankcrevealing QR
SuperLUMT  Left-looking nsym.
TAU Left/Multir. Sym, Unsym, out-core
ySMP Multifrontal PD, Unsym
[Distributed memory pardllel mackines |
Clique ‘Multifrontal Sym (no pivoting)
3 Multifrontal Sym
DSCPACK ~ Multifrontal SPD
MUMPS Multifrontal Sym, Sym-pat
PasiX Left-right looking®  SPD
: SPD upta 2

G
Sym, Sym-pat, QR Asheraft
Unsym

SuperLU_DIST
S+

ng
E Right-lookingt ~ Unym
wsMP Multifrontal SPD, Unsym Gupta

http://crd-legacy.1bl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
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Solving a linear system of equations

lterative solvers

YOUSEF SAAD

siam.

» Stationary iterative methods (Jacobi, Gauss-Seidel, SSOR)

» Krylov subspace methods (conjugate gradients (CG),
generalized minimal residual method (GMRES), biconjugate
gradient method (BiCG))
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Solving a linear system of equations

lterative solvers

A World of applied maths, computational science and linear
algebra.

"The approximating operator that appears in stationary iterative
methods can also be incorporated in Krylov subspace methods such
as GMRES (alternatively, preconditioned Krylov methods can be
considered as accelerations of stationary iterative methods), where
they become transformations of the original operator to a presumably
better conditioned one. The construction of preconditioners is a large
research area."

https://en.vikipedia.org/wiki/Iterative_method
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Solving a linear system of equations

Iterative solvers - Jacobi method

> The simplest iterative solution of A - X = b is the Jacobi method.

» If Ais decomposed as A = L + D + U then an iterative solution
for X starting from an initial guess X, can be obtained from

¥k = p-1 (5 —(L+U)- )?k)

» A sufficient (but not necessary) condition for the method to
converge is that the matrix A is strictly or irreducibly diagonally
dominant. Strict row diagonal dominance means that for each
row, the absolute value of the diagonal term is greater than the
sum of absolute values of other terms |a;i| > >_,; [aj|

Note: this algorithm will fail if one or more diagonal terms of A is nul

C. Thieulot | Introduction to FDM



Solving a linear system of equations

lterative solvers - Gauss-Seidel method

» If Ais decomposed as A= L+ D + U then an iterative solution
for X starting from an initial guess X, can be obtained from

X = (L+ D)~ (B U )?k)

» The convergence properties of the Gauss—Seidel method are
dependent on the matrix A. Namely, the procedure is known to
converge if either:

> A is symmetric positive-definite, or

» Ais strictly or irreducibly diagonally dominant.
The Gauss—Seidel method sometimes converges even if these
conditions are not satisfied.
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Solving the 2D heat equation

Explicit approach

» We now revisit the transient heat equation, this time with
sources/sinks for 2D problems:

oT o ( 0T\ o ( T
OF _ 9 (x95) L 9 (4
P 5t ax( 8x>+6y< 8y>+o

where Q is the radiogenic heat production.
» |f the heat conductivity is constant, it writes:

oT 02T 02T Q
=k — 4+ — .
ot ox2  Oy? PCp
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Solving the 2D heat equation

Explicit approach

y
A nnx=7, nny=5
i,j+1
i-1,) i i+1,)
LY
hy
i,j-1
-
-~ gl
h, X
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Solving the 2D heat equation

Explicit approach

The simplest way to discretize the last equation on a domain, e.g. a
box with width L, and height L, is to employ an FTCS (forward time,
centered space) explicit method like in 1D:

PCp

T - T . (Tin1,j27—if}+ Ty
5t

T 2T+ T, @
re r

We define s, and s, as follows:

o = Ot
T om YT m
so that
n+1 n n n n n n n Ql'r-]/(st
T = T4 sx(Tilg =270+ T ) +8y(Tjq = 2T+ T4+ C
7o)
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Solving the 2D heat equation

Explicit approach

» The scheme is stable for
_ min(hZ, h2)
- 2K

» Boundary conditions can be set the usual way. A constant
(Dirichlet) temperature on the left-hand side of the domain (at
i = 1), for example, is given by

Tij=Ter V]
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Solving the 2D heat equation

Implicit approach

If we employ a fully implicit, unconditionally stable discretization
scheme as for the 1D exercise:

T T T Tt ot T+ T+ 4 Tt

i?j+ lr} i,ltj 2 In/ + iiw’ ir,7/'f1 —2 ln/ . /'r-,7/'+1 Q",Zf

5t " h2 h2 pC,
X y P

Rearranging terms with n+ 1 on the left and terms with n on the right
hand side gives

n

Q.
n-+1 n-+1 n+1 n+1 n+1 _ Tn 5]
—=Sx T =Sy Ty + (14286428 ) Ti7 =8 T =8, i = Ti,j+picp

which yields a linear system of equations written A- T = b where A is
a (np x np) matrix.
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Solving the 2D heat equation

Explicit approach

nnx=7, nny=5
29 30 31 32 33 34 35
22 23 24 25 26 27 28
15 16 17 18 19 20 21
8 9 10 11 12 13 14
1 2 3 4 5 6 7 >

X

Numbering scheme for a 2D grid with nnx=7 and nny=5.
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Solving the 2D heat equation

Explicit approach

nnx=7, nny=5
5 10 15 20 25 30 35
4 9 14 19 24 29 34
3 8 13 18 23 28 33
2 7 12 17 22 27 32
1 6 11 16 21 26 31 >

X

Alternative numbering scheme for a 2D grid with nnx=7 and nny=5.
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Solving the 2D heat equation

Explicit approach

nnx=7, nny=5
17 20 15 34 18 23 30
4 6 12 31 5 29 3
32 1 33 14 10 28 25
2 19 27 7 22 8 35
24 16 21 11 26 13 9 >

Yet another alternative numbering scheme ...
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Solving the 2D heat equation

Explicit approach

» In 2D we need a 'function’ which associates to every (i, j) a
global index k.

» Forthefirstgrid: 1 <i<7,1<j<5sothat1 <k <35

k=(—1)xnnx+i
0?T 1 ]
ox2 aja /,T)Z((TZA —2T34+ Tya) = h?((T% — 2Tps + Tos)

Note that we now have five diagonals filled with non-zero entries
as opposed to three diagonals in the 1D case.

» More generally 1 < i < nnx,1 <j< nny so that
1 < k < np = nnx*nny
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Other topics

» nonlinear coefficients, e.g. k = k(T)

» Neumann boundary conditions (heat flux as b.c.)
» other stencils

» other schemes
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Exercises ,
Ex.1 '..'- =4
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Exercises

Ex.1

Aim: building a 1D code which computes the temperature as a
function of time
» explicit vs explicit
timestep value ?
use the provided direct solver subroutine
build your own jacobi solver subroutine
try Crank-Nicolson
add a source term Q

vvyVvyyvyy
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Exercises

Ex.2

A simple (time-dependent) analytical solution for the temperature
equation exists for the case that the initial temperature distribution is

2 2
T(Xayvt:O) - TmaxeXp |:X +y :|

o2

where Tpax is the maximum amplitude of the temperature

perturbation at (x, y) = (0,0) and ¢ its half-width. The solution is
~ Toax X2+ y?

Ty, = 1+ 4tk/o? &P |02 4tk

Program the analytical solution and compare it with the explicit and

fully implicit numerical solutions with the same initial conditions at

each time step. Comment on the accuracy of both methods for
different values of dt.
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The advection-diffusion equation

Philosophy

» So far, we mainly focused on the diffusion equation in a
non-moving domain (relevant for the case of a dike intrusion or
for a lithosphere which remains undeformed).

» we now want to consider problems where material moves during
the time period under consideration and takes temperature
anomalies with it (e.g. a plume rising through a convecting
mantle).

» If the numerical grid remains fixed in the background, the hot
temperatures should be moved to different grid points at each
time step.
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The advection-diffusion equation

Formulation

» in1D

» in 2D/3D
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The advection-diffusion equation

Formulation

» in1D

» in 2D/3D

oT
pcp<at+v-VT) =V -(kVT)+Q
Since temperature variations lead to buoyancy forces, the energy
equation is coupled with the Stokes equations from which velocities v
can be computed to close the system needed for a convection
algorithm.
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The advection-diffusion equation

Formulation

» in1D

» in 2D/3D

pcp<%7t—+v-VT) =V -(kVT)+Q
Since temperature variations lead to buoyancy forces, the energy
equation is coupled with the Stokes equations from which velocities v
can be computed to close the system needed for a convection
algorithm.

The main unknowns are then (v, p, T).
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The advection-diffusion equation

"pure" advection

In the absence of diffusion (k = 0) we have to solve in 1D:

T OT
ot ox

and in 2D:
oT OT aT

+

ot 8x ay -0

» Even though the equations appear simple, it is quite tricky to
solve them accurately, more so than for the diffusion problem.

» This is particularly the case if there are large gradients in the
quantity that is to be advected.
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The advection-diffusion equation

"pure" advection

» If not done carefully, one can easily end up with strong numerical
artifacts such as wiggles (oscillatory artifacts) and numerical
diffusion (artificial smoothing of the solution).

12
ISR \|
TN
0.6 ‘
04 \ Iyt'initl - ‘&\
. analytical f
==\
0.2 \ 1=0.258 —— t\\\h‘
. AN
-0.2
0 0.2 04 0.6 0.8 1

Thieulot, pepi 188, 2011.
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The advection-diffusion equation

"pure" advection

» central difference scheme in space, and go forward in time
(FTCS scheme):

n+1 n n
T TR T

5t " 2h,

where u; is the velocity at location i.

The FTCS method is unconditionally unstable !
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The advection-diffusion equation

"pure" advection

» central difference scheme in space, and go forward in time
(FTCS scheme):

n+1 n n
T TR T

5t " 2h,

where u; is the velocity at location i.

The FTCS method is unconditionally unstable !
i.e., it blows up for any ot.
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The advection-diffusion equation

"pure" advection

» central difference scheme in space, and go forward in time
(FTCS scheme):

n+1 n n
T TR T

5t " 2h,

where u; is the velocity at location i.

The FTCS method is unconditionally unstable !

i.e., it blows up for any ot.

The instability is related to the fact that this scheme produces
negative diffusion, which is numerically unstable.
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The advection-diffusion equation

"pure" advection

» Lax method. The Lax approach consists of replacing the T, in
the time-derivative with (7!, + T/ ;)/2. The resulting equation is
T (Tha T2 TR T

St -7 2h,

» Streamline upwind scheme. A popular scheme is the so-called
(streamline) upwind approach. Here, the spatial finite difference
scheme depends on the sign of the velocity:

707" )
T+t _ (Tn1 + Tn )/ *Ui/hixli1 if v <0
! p—
ot 7—//7177—/7

—U,‘“hixf if u>0

We have replaced central with forward or backward derivatives,
depending on the flow direction.
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Exercises

Ex.3

» Program the above FTCS method
» Change the sign of the velocity.

» Change the time step and grid spacing and compute the
non-dimensional Courant number |u|dt/ hy.

» When do unstable results occur? Put differently, can you find a §
small enough to avoid blow-up?

» Program the Lax method by modifying the previous code

» Try different velocities and ¢t settings and compute the Courant
number

» |s the numerical scheme stable for all Courant numbers?

» BONUS: Program the upwind scheme method. Is the numerical
scheme stable for all Courant numbers?
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