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What follows is valid for ;1 =constant !
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The Stokes egs

Mass conservation equation for incompressible fluids:
V.-v=0
Momentum conservation equation

~Vp+V-s=pg with s=2ué=pu(Vv+vv')

Op 0Sxx , 0Sy
8xJr ox - ay
Op 0sy  0Syy
oy = ox - dy = P9y

= pGx
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The Stokes egs

Mass conservation equation for incompressible fluids:
V.-v=0
Momentum conservation equation

~Vp+V-s=pg with s=2ué=pu(Vv+vv')

Op  OSxx | 0Syy
“ox T ox ay _ P9x
_Op | Osy | Osyy
oy = ox - dy = P9y

or,
op Oéxx B
“ox T ok 0 y ~ PO
op Oéxy B
"oy + 24 O +2u—== ()y = pgy
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The Stokes egs

X-component

In 2D, we first explicitely write

. _ Ou . _1[(ou ov . ov
= Bx =35

C. Thieulot | Introduction to FDM



The Stokes egs

X-component

In 2D, we first explicitely write

w1 (ou v v
= Bx =2\ \ay " ax W oy
Then 5 .
P Exx
—= 4 2u =
ox T ox dy = P9x
becomes
_@ + 2 02 + @ + ﬂ .
ax " Foaxe TH\ Gy Taxay ) ~ P 9x
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The Stokes egs

X-component

In 2D, we first explicitely write

_ou o tfou oy v
= Bx =2\ \ay " ax W oy
Then 5 . Y
P J€xx Exy
—— +2 2 =
Ox + 20 Ox + 20 Dy P9x
becomes
_@ + 2 @ + @ + ﬂ —
ax " “Haxa TH\ay2 Taxay ) T P9
Using V - v = 0 to obtain §¥ = — 5~ we arrive at
_op (Pu Puy
ax M\ oxe T ayz) T P9
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The Stokes egs

X, y-component in 2D

op(Pu Puy_
ox ox2 ' 9y? PGx
N AN
oy ox2 ' 9y? P9y
along with
v,
ox oy
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The Stokes egs

X, y-component in 2D

These are then the two coupled equations we need to solve

X ox2 " 9y?
N AN
oy ox2 ' 9y? P9y
along with
ou v _,
ox oy

2D/3D stencils for Laplacian
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Num. solutions of the Stokes eqgs

Grids & stencils

Non-staggered 2D grid

1D grid

2D grid

"%,V Bpm

Fig. 7.5 Example of a non-staggered 2D numerical grid.

Half-staggered 2D grid

1T

L] L] [ ] y

3D grid

basic nodes additional nodes
" Vy,Vy,p, 1M e P

Fig. 7.6 Example of a half-staggered 2D numerical grid.

From Gerya, 2010
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Num. solutions of the Stokes eqgs

Grids & stencils

» Fully staggered grids are applied in 2D and consist of a
combination of several types of nodal points having different
geometrical positions.
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Num. solutions of the Stokes eqgs

Grids & stencils

» Fully staggered grids are applied in 2D and consist of a
combination of several types of nodal points having different

geometrical positions.
» Different variables are then defined at different nodal points.

C. Thieulot | Introduction to FDM



Num. solutions of the Stokes eqgs

Grids & stencils

» Fully staggered grids are applied in 2D and consist of a
combination of several types of nodal points having different
geometrical positions.

» Different variables are then defined at different nodal points.
» Different equations are also formulated at different nodal points.
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Num. solutions of the Stokes eqgs

Grids & stencils

» Fully staggered grids are applied in 2D and consist of a
combination of several types of nodal points having different
geometrical positions.

» Different variables are then defined at different nodal points.
» Different equations are also formulated at different nodal points.

» Despite the apparent geometrical complexity, fully staggered
grids are the most convenient choice for thermomechanical
numerical problems with variable viscosity when finite differences
are used for solving the Stokes and temperature equations.
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Num. solutions of the Stokes eqgs

Grids & stencils

m horizontal velocity u
. L] ° L] L] L L4 m vertical velocity v

® pressure p

m density, viscosity

Example of a fully staggered 2D numerical grid
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Num. solutions of the Stokes eqgs

Continuity equation

For incompressible flow:

ou ov
Vv=_+-—=0
ox Oy
Vn
L
n~North
s~South
u, m N U w~West
e~East
i
Vs
Ue — Uy  Vp— Vs -0

he " h

C. Thieulot | Introduction to FDM



Num. solutions of the Stokes eqgs
2D staggered grid, x-direction

m horizontal velocity u
ku_w ku_e . .
w 0w W ® o W = vertical velocity v

Tku_s
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Num. solutions of the Stokes eqs

2D staggered grid, x-direction

0| PaePos
Xl hy
N@ _— Ugy e — 2Uy + Uiy
ox? |, h2
1/@ o, Ugy n — 2Uy + Uiy s
Y2 |, h2
POl = Pxb_n Z Pxb_s o
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Num. solutions of the Stokes eqgs

2D staggered grid, y-direction

kv_n
» = »
[ o1 [ y
kv_w kb w kv kb e kv_e X
-~ X - - —
m horizontal velocity u
= vertical velocity v
[ o PS5 [
] = ]
kv_s
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Num. solutions of the Stokes eqs

2D staggered grid, y-direction

kv_n
» = »
[ o1 [ y
kv_w kb w kv kb e kv_e X
-~ X - - —
m horizontal velocity u
= vertical velocity v
[ o PS5 [
] = ]
kv_s

» Similar expressions can be written for the z—component of the
momentum equation.

» Not difficult, only careful bookkeeping
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Num. solutions of the Stokes eqs

2D staggered grid, y-direction

0P| _ _Pon P

ay kv hy

azv Vikv e — 2Vkv + Viv w
e

kv X

02‘/ View nizvkv+ Viv s
fe—s| = p—= =

ay? |, h2

Pxb_s + Prb
Pl = T 9
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Num. solutions of the Stokes egs

Boundary conditions

Mechanical boundary conditions depend on the type of numerical
problem which is studied.
The following boundary conditions are often used in geomodelling:

» free slip

no slip

free surface

fast erosion

infinity-like (external free slip, external no slip, Winkler basement)
prescribed velocity (moving boundary)

periodic

combined conditions

vV vV v v v .Y
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Num. solutions of the Stokes egs

Boundary conditions

» free slip b.c.: the normal velocity component on the boundary is
zero and the two other components do not change across the
boundary (this condition also implies zero shear strain rates and
stresses along the boundary). For example, for the boundary
orthogonal to the x axis, the free slip condition is formulated as
follows

av  ow

ox  0x

» A no slip condition requires all velocity components on the
boundary to be zero, i.e.

u=20

u=v=w=20

» A free surface condition requires both shear and normal stresses
at the boundary to be zero

s,-,-:O
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Num. solutions of the Stokes egs

Boundary conditions

» The prescribed velocity condition implies non-zero velocity at a
model boundary. When velocity is prescribed orthogonal to the
boundary (inward/outward flow), then a compensating
outward/inward velocity should be prescribed on the other model
boundary(ies) in order to insure mass conservation in the model.

[ Geochemistry 3 GURNIS ET AL.: EVOLVING FORCE BALANCE 10.1029/2003GC000681
| Geosystems

dT/dx=0 T=Tm dT/dx=0
Vi=Vx(2) or 0 Va0 Va=-Vi(2)
Vz=0 V220

Distance (km)
Figure 5. Model setup showing boundary and initial conditions. The initial temperature field is shown with 300°C

isotherms in red for Case 15 (as an example). The velocity boundary conditions are shown schematically off to the
left and the right of the domain. The depth scale is the same as the horizontal.
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Num. solutions of the Stokes egs

Boundary conditions

» Periodic boundary conditions are typically established for paired
parallel lateral boundaries of a model and prescribe that all
material properties as well as pressure and velocity fields at both
sides of each boundary are identical. From a physical point of
view, this implies that these two boundaries are open and that
flow leaving the model through one boundary immediately
re-enters through the opposite side. This condition is often used
in mantle convection modelling to simulate part of a
spherical/cylindrical shell with a convecting mantle (or mimic it, in
Cartesian coordinates).

» Combined conditions represent a mixture between several types
of boundary conditions.
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Num. solutions of the Stokes egs

Boundary conditions

» All of the described boundary conditions can be time dependent.
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Num. solutions of the Stokes egs

Boundary conditions

» All of the described boundary conditions can be time dependent.

» This could particularly imply that the physical location of the
boundary condition may be a function of time.
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Num. solutions of the Stokes egs

Boundary conditions

» All of the described boundary conditions can be time dependent.

» This could particularly imply that the physical location of the
boundary condition may be a function of time.

» Boundary conditions can also be applied inside the model.
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Num. solutions of the Stokes egs

Boundary conditions

implementation free and no slip for staggered grid p94
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Num. solutions of the Stokes eqs

Indexing of unknowns

» Another very important issue, in relation to solving the Stokes
and continuity equations on a fully staggered grid, is the indexing
(numbering) of the unknowns.
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Num. solutions of the Stokes eqs

Indexing of unknowns

» Another very important issue, in relation to solving the Stokes
and continuity equations on a fully staggered grid, is the indexing
(numbering) of the unknowns.

» This is particularly relevant when the system of linear equations
(global matrix) formulated with finite differences is solved with
Gaussian elimination.
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Num. solutions of the Stokes eqs

Indexing of unknowns

» Another very important issue, in relation to solving the Stokes
and continuity equations on a fully staggered grid, is the indexing
(numbering) of the unknowns.

» This is particularly relevant when the system of linear equations
(global matrix) formulated with finite differences is solved with
Gaussian elimination.

» This is a somewhat boring subject but it is extremely important to
understand it properly. (Remember, 90% of the bugs in your
code are made with the indexing).

C. Thieulot | Introduction to FDM



Num. solutions of the Stokes eqs

Indexing of unknowns

» Another very important issue, in relation to solving the Stokes
and continuity equations on a fully staggered grid, is the indexing
(numbering) of the unknowns.

» This is particularly relevant when the system of linear equations
(global matrix) formulated with finite differences is solved with
Gaussian elimination.

» This is a somewhat boring subject but it is extremely important to
understand it properly. (Remember, 90% of the bugs in your
code are made with the indexing).

» Both the possibility of obtaining the solution and the amount of
computational work will strongly depend on the method used to
index the unknowns (p, u and v) on the staggered grid.
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Num. solutions of the Stokes eqs

Indexing of unknowns

» Another very important issue, in relation to solving the Stokes
and continuity equations on a fully staggered grid, is the indexing
(numbering) of the unknowns.

» This is particularly relevant when the system of linear equations
(global matrix) formulated with finite differences is solved with
Gaussian elimination.

» This is a somewhat boring subject but it is extremely important to
understand it properly. (Remember, 90% of the bugs in your
code are made with the indexing).

» Both the possibility of obtaining the solution and the amount of
computational work will strongly depend on the method used to
index the unknowns (p, u and v) on the staggered grid.

» One of the (optimal?) ways of numbering is illustrated hereafter:
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Num. solutions of the Stokes eqs

A simple 6x5 grid

u v p

normal node. . .

veroce [ (] D
6

nnx=
nny=5

30 nodes

90 unknowns

68 real unknowns

N N ~ ~ =y = = =
N N ~ ~
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Num. solutions of the Stokes eqs

A simple 6x5 grid

Background grid
25 6

7 8 29 30
19 20 il 2 23 24
13 14 15 16 A7 18
u 8 ] 10 11 12
1 3 4 5 5
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Num. solutions of the Stokes eqs

A simple 6x5 grid

Background grid + u grid
25 26 7
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Num. solutions of the Stokes eqs

A simple 6x5 grid

Background grid + v grid
25 26 7

19 20 1 22 |23 4
13 14 15 16 17 18
7 n 8 9 m 10 n 11 12

|
N
=
:
=
-
|
v
E
o

C. Thieulot | Introduction to FDM



Num. solutions of the Stokes eqs

A simple 6x5 grid

Background grid + p grid
25 26 7

8 29 30

19 20 1 2 23 24

13 14 15 16 17 18
o | o

7 8 9 10 11 12

1 3 4 5 6
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Num. solutions of the Stokes egs

Matrix structure

The discretisation of the Stokes equations by means of the FDM or
FEM yield a discrete system of equations which takes the form:

(& c)
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Num. solutions of the Stokes egs

Matrix structure

np_u np_v np_p

np_u

np_v

—
O
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Num. solutions of the Stokes eqgs

Detailed matrix structure

. é

0
o] e

0 .
H .
B 0
0
e %
» -
=
‘., e ube
" vbe
zeros due fo bo
pressure comers
# zeroed values because of bo

[ oe o, o

£y o

L o ‘e
. oo 1
o
o | %
w . ()
o 0
o
o
oy ‘o
‘5 . e %
s o | o
S o | %s
L o %




Num. solutions of the Stokes egs

Recovered matrix structure

| L Dt A O O A

S I Y Y N N N | S I |

EI e RN P Rt RO R S PR RN
it

S Y Y L e I |

306 9 12 15 18 20 20 27 30 33 36 39 42 45 48 51 54 ST 60 63 66
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Num. solutions of the Stokes eqs
Matrix structure for 60x50 grid
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Results

The sinking cube

rho
2.000e+00

=1.75
=1.5

=1.25
1.000e+00
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Results

The sinking cube

velocity
E2 .740e-01

-0.206
20.137

Eo.ooo
0.000e+00
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Results

The sinking cube

pressure
E-4.341 e-01

-3.087
=-5.739

E-8.391
-1.104e+01
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Results

The sinking cube

divv
7.324e-14

4e-14
-2e-15

-de-14
-7.742e-14
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