
Department of Theoretical Geophysics & Mantle Dynamics
University of Utrecht, The Netherlands

Computational Geodynamics
FDM & the Stokes equation

Cedric Thieulot
c.thieulot@uu.nl

May 18, 2016



1

Content

Introduction

Numerical solutions of the momentum and continuity equations

Results

C. Thieulot | Introduction to FDM



2

What follows is valid for µ =constant !
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The Stokes eqs

Mass conservation equation for incompressible fluids:

∇ · v = 0

Momentum conservation equation

−∇p +∇ · s = ρg with s = 2µε̇ = µ(∇v +∇vT )

−∂p
∂x

+
∂sxx

∂x
+
∂sxy

∂y
= ρgx

−∂p
∂y

+
∂sxy

∂x
+
∂syy

∂y
= ρgy

or,

−∂p
∂x

+ 2µ
∂ε̇xx

∂x
+ 2µ

∂ε̇xy

∂y
= ρgx

−∂p
∂y

+ 2µ
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The Stokes eqs
x-component

In 2D, we first explicitely write

ε̇xx =
∂u
∂x

ε̇xy =
1
2

(
∂u
∂y

+
∂v
∂x

)
ε̇yy =

∂v
∂y

Then
−∂p
∂x

+ 2µ
∂ε̇xx

∂x
+ 2µ

∂ε̇xy

∂y
= ρgx

becomes

−∂p
∂x

+ 2µ
∂2u
∂x2 + µ

(
∂2u
∂y2 +

∂2v
∂x∂y

)
= ρgx

Using ∇ · v = 0 to obtain ∂u
∂x = −∂v

∂y we arrive at

−∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
= ρgx
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The Stokes eqs
x , y -component in 2D

These are then the two coupled equations we need to solve

−∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
= ρgx

−∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
= ρgy

along with
∂u
∂x

+
∂v
∂y

= 0

2D/3D stencils for Laplacian

C. Thieulot | Introduction to FDM



5

The Stokes eqs
x , y -component in 2D

These are then the two coupled equations we need to solve

−∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
= ρgx

−∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2

)
= ρgy

along with
∂u
∂x

+
∂v
∂y

= 0

2D/3D stencils for Laplacian

C. Thieulot | Introduction to FDM



6

Num. solutions of the Stokes eqs
Grids & stencils

From Gerya, 2010
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Num. solutions of the Stokes eqs
Grids & stencils

I Fully staggered grids are applied in 2D and consist of a
combination of several types of nodal points having different
geometrical positions.

I Different variables are then defined at different nodal points.
I Different equations are also formulated at different nodal points.
I Despite the apparent geometrical complexity, fully staggered

grids are the most convenient choice for thermomechanical
numerical problems with variable viscosity when finite differences
are used for solving the Stokes and temperature equations.
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Num. solutions of the Stokes eqs
Grids & stencils

Example of a fully staggered 2D numerical grid
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Num. solutions of the Stokes eqs
Continuity equation

For incompressible flow:

∇ · v =
∂u
∂x

+
∂v
∂y

= 0

ue − uw

hx
+

vn − vs

hy
= 0
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Num. solutions of the Stokes eqs
2D staggered grid, x-direction
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Num. solutions of the Stokes eqs
2D staggered grid, x-direction

−∂p
∂x

∣∣∣∣
ku

= −
pkp_e − pkp_w

hx

µ
∂2u
∂x2

∣∣∣∣
ku

= µ
uku_e − 2uku + uku_w

h2
x

µ
∂2u
∂y2

∣∣∣∣
ku

= µ
uku_n − 2uku + uku_s

h2
y

ρgx |ku =
ρkb_n + ρkb_s

2
gx

C. Thieulot | Introduction to FDM



12

Num. solutions of the Stokes eqs
2D staggered grid, y-direction

I Similar expressions can be written for the z−component of the
momentum equation.

I Not difficult, only careful bookkeeping
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Num. solutions of the Stokes eqs
2D staggered grid, y-direction

−∂p
∂y

∣∣∣∣
kv

= −
pkp_n − pkp_s

hy

µ
∂2v
∂x2

∣∣∣∣
kv

= µ
vkv_e − 2vkv + vkv_w

h2
x

µ
∂2v
∂y2

∣∣∣∣
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h2
y

ρgy |kv =
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2
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Num. solutions of the Stokes eqs
Boundary conditions

Mechanical boundary conditions depend on the type of numerical
problem which is studied.
The following boundary conditions are often used in geomodelling:

I free slip
I no slip
I free surface
I fast erosion
I infinity-like (external free slip, external no slip, Winkler basement)
I prescribed velocity (moving boundary)
I periodic
I combined conditions
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Num. solutions of the Stokes eqs
Boundary conditions

I free slip b.c.: the normal velocity component on the boundary is
zero and the two other components do not change across the
boundary (this condition also implies zero shear strain rates and
stresses along the boundary). For example, for the boundary
orthogonal to the x axis, the free slip condition is formulated as
follows

u = 0
∂v
∂x

=
∂w
∂x

= 0

I A no slip condition requires all velocity components on the
boundary to be zero, i.e.

u = v = w = 0

I A free surface condition requires both shear and normal stresses
at the boundary to be zero

sij = 0
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Num. solutions of the Stokes eqs
Boundary conditions

I The prescribed velocity condition implies non-zero velocity at a
model boundary. When velocity is prescribed orthogonal to the
boundary (inward/outward flow), then a compensating
outward/inward velocity should be prescribed on the other model
boundary(ies) in order to insure mass conservation in the model.
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Num. solutions of the Stokes eqs
Boundary conditions

I Periodic boundary conditions are typically established for paired
parallel lateral boundaries of a model and prescribe that all
material properties as well as pressure and velocity fields at both
sides of each boundary are identical. From a physical point of
view, this implies that these two boundaries are open and that
flow leaving the model through one boundary immediately
re-enters through the opposite side. This condition is often used
in mantle convection modelling to simulate part of a
spherical/cylindrical shell with a convecting mantle (or mimic it, in
Cartesian coordinates).

I Combined conditions represent a mixture between several types
of boundary conditions.
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Num. solutions of the Stokes eqs
Boundary conditions

I All of the described boundary conditions can be time dependent.

I This could particularly imply that the physical location of the
boundary condition may be a function of time.

I Boundary conditions can also be applied inside the model.
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Num. solutions of the Stokes eqs
Boundary conditions

implementation free and no slip for staggered grid p94
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Num. solutions of the Stokes eqs
Indexing of unknowns

I Another very important issue, in relation to solving the Stokes
and continuity equations on a fully staggered grid, is the indexing
(numbering) of the unknowns.

I This is particularly relevant when the system of linear equations
(global matrix) formulated with finite differences is solved with
Gaussian elimination.

I This is a somewhat boring subject but it is extremely important to
understand it properly. (Remember, 90% of the bugs in your
code are made with the indexing).

I Both the possibility of obtaining the solution and the amount of
computational work will strongly depend on the method used to
index the unknowns (p, u and v ) on the staggered grid.

I One of the (optimal?) ways of numbering is illustrated hereafter:
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Num. solutions of the Stokes eqs
A simple 6x5 grid
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Num. solutions of the Stokes eqs
A simple 6x5 grid

Background grid
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Num. solutions of the Stokes eqs
A simple 6x5 grid

Background grid + u grid
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Num. solutions of the Stokes eqs
A simple 6x5 grid

Background grid + v grid
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Num. solutions of the Stokes eqs
A simple 6x5 grid

Background grid + p grid
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Num. solutions of the Stokes eqs
Matrix structure

The discretisation of the Stokes equations by means of the FDM or
FEM yield a discrete system of equations which takes the form:(

K G
GT 0

)
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Num. solutions of the Stokes eqs
Matrix structure
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Num. solutions of the Stokes eqs
Detailed matrix structure
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Num. solutions of the Stokes eqs
Recovered matrix structure
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Num. solutions of the Stokes eqs
Matrix structure for 60x50 grid
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Results
The sinking cube
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