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A simple 1D grid

nnx=8
nelx=7

Y

Y

» domain 2 of length Ly
» 1D grid, nnx nodes, nelx elements
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Zoom on one element

Xk X Xk+1
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From the strong form to the weak form

» We start with the 1D diffusion equation
(no advection, no heat sources)

oT 0 oT
PCo 5t = ox <kdx>

» This is the strong form of the ODE to solve.
» | multiply this equation by a function f(x) and integrate it over Q:

oT ' 0 oT
/Q f(x)pCpde = /Q f(x)a—x <k8x> dx

C. Thieulot | FEM for the 1D diffusion equation



FEMin 1D

From the strong form to the weak form

> | integrate the r.h.s. by parts ([ uv’ = [uv] — [U'v):

| #x ax( )d_{()kgﬂ %ikg—;(rd

» Assuming there is no heat flux prescribed on the boundary (i.e.
gx = —koT/ox =0), then:

" of 0T
[ #00 (KGg ) ox=— [ Sk iaox
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From the strong form to the weak form

We then obtain the weak form of the diffusion equation in 1D:

' oT “of 0T
f(X)pCp—dx + —k—d =0

We then use the additive property of the integral:

o=k

elts

so that

L/fp%md+/éu@y .

f

e/ts
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Shape functions

T(x) = aTk+ BTk X € [Xk, Xk41]
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Shape functions

T(x) = aTk+ BTk X € [Xk, Xk41]
= Ne(X) Tk + Ni1(X) Tt
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Shape functions

T(x) = aTk+ BTk X € [Xk, Xk41]
= Ne(X) Tk + Ni1(X) Tt
Example:
Xkt — X X — X
T(x) = o] Tk + « Tk
hy hy
Nik(x) Nici1(x)
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Shape functions

T(x) = aTk+ BTk X € [Xk, Xk41]
= Ne(X) Tk + Ni1(X) Tt
Example:
Xkt — X X — X
T(x) = o] Tk + « Tk
hy hy
Nik(x) Nici1(x)

> x = x, yields T(xx) = Tk
> X = Xguq yields T(Xkr1) = Tk
> X = X172 = (Xk + Xk+1)/2 ylelds T(X1/2) = (Tk + Tk+1)/2



Let us go back to

of OT

TF

elts

and compute A? and T¢ separately.
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Xk+1 . Xk+1 .
= / f(X)pCka(X)deX+/ f(x)pCpNii1(x) Tkiqdx
Xk Xk

_ ( / f(x)pCka(x)dx) T+ < /X f(x)pCkaH(x)dx) Teor
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» Taking f(x) = Nk(x) and omitting ’(x)" in the rhs:

Xk-+1 . Xk-+1 .
/\Nk = </ pCkadeX> Tk + (/ pCkaNk+1dX) Tk+1
Xk Xk
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» Taking f(x) = Nk(x) and omitting ’(x)" in the rhs:

xk“ . Xk-+1 .
pCkadeX> Tk + (/ pCkaNk+1dX) Tk+1
Xk
» Taking f(x) = Nk.1(x) and omitting ’(x)’ in the rhs:

* Xk+1 . " Xk+1 .
/\NKM = (/ pCka+1deX> Tk+</ ,()Cka+1Nk+1dX> Tk+1
X) X)

J xx J Xk
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( Aw, ) St NkpCoNidx [ NipCpNicy 1 dx ( Tk )

f):(ﬂ Nk+1PCkadX f;}(fﬂ Nk+1,0CpNK+1dX

ANiss X Thit

or,
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/\Nk+1

( Aw, ) St NkpCoNidx [ NipCpNicy 1 dx ( Tk )

fx)r” Ny 1pCpNidx fx);k“ N 1pCpNi1dx Ties1

X1 NNy NNy Ti
/ pCp ax| -
7 X Ny iNk Nip 1Ny Thet1
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Finally, we can define the vectors

and

so that

AN Xkt . I
= ( NTpCdeX> - T
Xk

/\Nk+1
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Back to the diffusion term:

5% 1
T = / afkade
Xk

ox Ix
o O(NK(X) T+ Nyt () Tier)
= —k ax
x  OX ox

k

B A9F N AOf  ONK
f— (/Xk axkaxdx) Tk + (/Xk 87 OX dX Tk+1
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» Taking f(x) = Nk(x)

XkA1 Xk+1
ONk ONi ON ON, 1
Tr, = kO Ok o ) T, Nk Okt e ) 7,
N (/Xk ox Ox dx) k+</x ox  ox X | Theys

k
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» Taking f(x) = Nk(x)

XkA1 Xk+1
ONk ONi ON ON, 1
Ty, = k% Nk ) 7, Ok Ot g ) 1
N (/Xk ox Ox dx) k+</x ax ox ) Ter

k

» Taking f(x) = Nii1(x)

k1 v .
o aNk+1 aNk aNk+1 de+1
TN(/ “Tox ox X) Tk*(/ Tox Tox &) T

J Xy
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k1 K1 ;
X ON g ONK X ON g ONgers
TNk (/Xk ox k ox dx ./xk ox k ox dx Tk
T X N1 g N XU AN g N Tk
+1
et ka ox k 2% dx ka 2% k ox dx
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k1 K1 ;
X ONg g ONg X0 ON g ONKy
TNk (/Xk ox k ox dx ./xk ox k ox dx Tk
Th X N1 g N XU AN g N Tk
L +1
et ka ox k ox dX ka ox k 2% ax
or,
IN, ONg ONy ONy 4
ka1 INk ONg ONg
T X ox ox ox  Ox Tk
TNkH Xk ONir1 ONg  ONkyt ONges

ox  Ox ox ox Tk +1
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Finally, we can define the vector

ONi
éT _ ox
(I)Nk 1
ox
so that
TNk Xkt .
= < / BTdex> . Te
TNkH Xk
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The weak form discretised over 1 element becomes

Xk+1 N s, X1, 5 . 5
< / NTpCdeX) Te + ( / BTdex) Te=0
Xk Xk

me Kg

or,
Me-T°+KS T°=0

or,
oTe U
Me.Z— +KS. T =
ot 0
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Appendix A. FEM formulation of equations

The Galerkin finite element equation corresponding to Eq. (12)
(Ku+K) - v=B
with

K,:/n’ D, -BdQ
o

K ,/x’ D, -Bd2
o

B/N‘pgdﬂ

A
200 110
ulo 2 of ¥ 110
001 001

and where N is the vector of shape functions, and B is the matrix of
spatial derivatives of the shape functions.

The finite element equation corresponding to the heat transfer
eq

1)

K, :/(N')Tprpv BdQ
A

3 hitp:fwww.becs.unino]
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B'kBdQ
F= / N'Hd2

where T is the vector of the nodal temperatures.
In the case where advection dominates over diffusion, the stan-

dard Galerkin approach ofthe advection term leads to problematic

oscillations, and cheme is

wind Petrov-Galerkin (SUPG) method is therefore implemented,

which translates in the modified N* term in Eq. (A1):

(N) =N +10.B

where 7 a dimensionless parameter. The case 7 =0 is equivalent to

the Bubnov-Galerkin method. The choice of the parameter 7 in the

context of FEM stabilisation schemes is discussed in Tezduyar and

Osawa (2000) and is calculated as follows:

‘with often r=1or r=1/2 and

LT
‘where h is a measure of the element size and 0 is related to the time
discretisation scheme (6= 1/2 in this case as it corresponds to the
implemented mid-point implicit scheme, see for instance Braun
(2003). In order to illustrate the beneficial aspect of the SUPG
scheme, let us look at the standard problem of the one-dimensional
advection of a scalar field containing a steep front (diffusion and
source terms are null). In Fig. 19 is shown the analytical initial sca-
lar field. It is a challenging benchmark as the numerical treatment
of the advection of such a discontinuity often leads to non-negligi-
ble oscillations. The unit segment is discretised by means of 50 ele-
ments, over which a unit velocity field is prescribed. The time step
is chosen so that dt = 0.1hlv| = 0.002. The discontinuity is initially
placed at x=1/4 and after 250 time steps, it is expected to ha
reached the position x = 3/4.

In Fig. 19 are shown the advected field for various values of the
dimensionless coefficient 7 =/v|/h. The Galerkin scheme (7 =0)
leads to strong oscillations, as already described by Donea and
Huerta (2003). Using Eq. (A2), one arrives to y=0.045, which
leads to a desired removal of the oscillations through a small
amount of numerical diffusion. Braun (2003) argues for a constant

Lok, o= *2)
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As we have seen in the context of the FD method, we use a first order
in time discretisation for the time derivative:

. aT Tnew _ Told
— R

ot ot
Using an implicit scheme, we get

Fnew _ Told
T T

e T T kg T =6
or,
(Me + K§5t) . Trew _ pge . Told
with
Xk+1 - - Xk+1 = N
me = NTpC,Ndx KS = BT kBdx
o d
Xk Xk
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Let us compute M for an element:

Xk+1 .
me = N pC,Ndx
Xk
with
Ni(x) o
NT f— f— ‘
Nk+1 (X) XEXXK
Then
Ve M [ pCoNkNkdx [ pCpNk N1 dlx
Me — 11 12 _
Mz Moo

X X

f);k” pCpNiy 1Ny dx f);“ pCpNi 1Ny 1dx
| need to compute 3 integrals (M2 = Msy)
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Let us look at My1:

X1 Xt X1 — X Xkt — X
My = / pCoNi(x)Nk(x)dx = / pCp ”;7 k*;) dx
X X X

k Xk

It is customary to carry out a change of variables (mapping x — r):

| " | N
I T T >
2 Xy X Xic+1
Q
&
£
| | N
T r T e
-1 +1
hy
r=—(x—xx) —1 X=—=14r)+x
hy 2
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In what follows we assume for simplicity that p and C, are constant
within each element.

X X1 — X Xiaq — X pCohy [T hy
M1 = pC, / o a dx = =P / 1—r)(1—=r)dr = =XpC
11 P p' o h)( h)( 8 J_ ( )( ) 3 P
Similarly we arrive at
X X g — X X — Xk pCohy [T hy
Mip = C/ + dx = =P 1—r(1+r)dr=->pC
12 P p' “ hX hx 8 . ( )( ) 6 P
and
ety — - Cohy [T h
Moo = pcp/ XXX Xk gy - L2 [ (ny(14r)dr = 20,
J X hy hy 8 1 3
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Finally

h 1 1)2
e_ X
Mspcp(uz 1 )
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In the new coordinate system, the shape functions

X1 — X X = Xk
Nk(X) = 7/’7)( Nk+1(X) = hX
become ] ]
N =5(1=1)  Nea(n) = 5(1+7)
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In the new coordinate system, the shape functions

Xk+1 — X X — Xk
N = — N =
k(X) h k+1(X) B
become ] ]
N =5(1=1  Nealn)=5(1+1)
Also,
ONe 1 Ny
ox hy ox hy
so that
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We here also assume that k is constant within the element:
X1 . . * Xk+1 e
Ky = / B"kBdx = k / B' Bdx
Xk Xk

simply becomes

Kd*k/‘ 1( _11>dx
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We here also assume that k is constant within the element:

X1 . . * Xk+1 e
Ky = / BTkBdx = k / BT Bdx
X Xk

k

simply becomes

Kd*k/‘ 1( _11>dx

and then
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X4 X5 X3 X4 X5
For each element
(Me + K(‘; 5t) JTnew _ e . Told
%,—/ :/
Ae be

or,
Ae . Trew _ Be
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» element 1 .

Al ( T; ) = bt
> element 2

“(r)-#
> element 3 .

o (n)e
> element 4

At ( ;: > ~ b*
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» element 1
A% T + A%Q T, = b}
Aé1 T+ Aéz To = b}l,

» element 2
{ A$1 T —|—A$2T3 = b12
A§1 To + A%Z T3 = b%

» element 3
{ A?1 T3 + A?Z Ty = b?
Ag1 T3 + Agz Ty = bg

> element 4
{ A‘h T4+ AA112 Ts = b?
AL Ty + A%, Ts = bj
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All equations can be cast into a single linear system: this is the
assembly phase.

AL A T bi
Az AptAL At Tz b; + b}
A A+ A A3, s | =] b2+b§
A Aspt Al Al Ta b + b

Az Ao Ts b;
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A--4A ; A
Ag S B S
A--AE--E ; A-H
BN TR S R I S
Ele-9 ! m-e
R R ERY NN SRR

LEER 2V A | o9

UM e

I A ' 4

matrix rhs
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The assembled matrix system also takes the form

A11 A12

Ti by

Azt Az Az T by
Asz Az Ass . | =1 b
Az As Ass T. by

Ass  Ass Ts b
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Applying b.c.

Let us assume that we wish to fix the temperature at node 2.
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Applying b.c.

Let us assume that we wish to fix the temperature at node 2.

Then
T, =T
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Applying b.c.

Let us assume that we wish to fix the temperature at node 2.

Then
T, =T
This can be cast as
T; 0
T Tbe
( 01 0 00O ) T3 | = 0
Ta 0
Ts 0
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Applying b.c.

This replaces the second line in the previous matrix equation:

A1 A2 T, b,
o 1 o0 . b

Azz Asz Ax . =1 b

Asz Ass Ass T, by

Ass  Ass T b
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Applying b.c.

» Before applying the b.c., the assembled matrix A is symmetric.
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Applying b.c.

» Before applying the b.c., the assembled matrix A is symmetric.
» Now it is not symmetric anymore.

C. Thieulot | FEM for the 1D diffusion equation



FEMin 1D

Applying b.c.

» Before applying the b.c., the assembled matrix A is symmetric.
» Now it is not symmetric anymore.
» Some solvers require a symmetric matrix.
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Applying b.c.

» Before applying the b.c., the assembled matrix A is symmetric.
» Now it is not symmetric anymore.

» Some solvers require a symmetric matrix.

» Symmetric matrices can be stored more economically.
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Applying b.c.

» Before applying the b.c., the assembled matrix A is symmetric.
» Now it is not symmetric anymore.

» Some solvers require a symmetric matrix.

» Symmetric matrices can be stored more economically.

Can we restore symmetry ?
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Applying b.c.

» Before applying the b.c., the assembled matrix A is symmetric.
» Now it is not symmetric anymore.

» Some solvers require a symmetric matrix.

» Symmetric matrices can be stored more economically.

Can we restore symmetry ?
yes.
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Applying b.c.

» Before applying the b.c., the assembled matrix A is symmetric.
» Now it is not symmetric anymore.
» Some solvers require a symmetric matrix.
» Symmetric matrices can be stored more economically.
Can we restore symmetry ?

yes.
duh )
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Applying b.c.

A 0 T bi—Asp TP
0 1 0 . -
0 A Ax Ts | = bs—ApT
Az Asa Ags Ta be
Ass  Ass Te be

Matrix is symmetric !
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Applying b.c.

The matrix is now symmetric, but its condition number may have been
changed.
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Applying b.c.

The matrix is now symmetric, but its condition number may have been

changed.
Fix:
An 0 Ty by —Asp TP®
0 Az O Tz Ao The
U e A To | =| bo st
Az Ass Ass T, by
Ass  Ass Ts b
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Program structure

initialisation & setup {mestepping loop

loop over elements

compute M® and K, ®
build A® and b®
assemble in Aand b

apply b.c.
solve
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Exercise

The initial temperature profile is as follows:

T(x,t=0)
A
200°C
100°C
S
0 L/2 L
T(x,t=0)=200 x< L2 T(x,t=0)=100 x> L/2
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Exercise

The properties of the material are as follows:
p = 3000 k=3 Cp = 1000

Furthermore, L, = 100km.
Boundary conditions are:

T(t,x =0)=200°C  T(t,x = L) =100°C

There are nelx elements and nnx nodes. All elements are hx long.
The code will carry out nstep timesteps of length dt.
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Exercise

C. Thieulot | FEM for the 1D diffusion equation



Exercise
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Mesh connectivity

» Typically one uses a connectivity array
» Two-dimensional integer array
> icon ( # elements , # vertices per element )
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Mesh connectivity

Example

iel=1 iel=2 iel=3 iel=4 iel=5 nel=5

1 2 3 4 S

» The above mesh counts 5 elements.
» Each element is composed of 2 nodes
icon(1,1)=1

icon
ICOI’]

e}
o
S

1,2)
2,1)
2,2)
3,1)
3,2)
4,1)
4,2)
5,1)
5,2)

)
o
S

(
(
(
(
(
(
(
(
(
(

Il
[e2 3¢, &) BE NN GS IOV TN \O I \V)
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icon(10,1)
icon(10,2)
icon(10,3)=

» The above mesh counts 10 elements.
» Each element is composed of 3 nodes
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Program structure

initialisation & setup
mesh domain (fill icon array)

timestepping loop

do iel=1,nel loop over elements

- use icon array to retrieve
node # which make up iel

- compute M® and K ®

- build A® and b®

- assemble in Aand b

apply b.c.
solve
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Meshing

' [Truegrid]
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