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FEM in 1D
A simple 1D grid

I domain Ω of length Lx

I 1D grid, nnx nodes, nelx elements
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FEM in 1D
Zoom on one element
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FEM in 1D
From the strong form to the weak form

I We start with the 1D diffusion equation
(no advection, no heat sources)

ρCp
∂T
∂t

=
∂

∂x

(
k
∂T
∂x

)
I This is the strong form of the ODE to solve.
I I multiply this equation by a function f (x) and integrate it over Ω:∫

Ω

f (x)ρCp
∂T
∂t

dx =

∫
Ω

f (x)
∂

∂x

(
k
∂T
∂x

)
dx
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FEM in 1D
From the strong form to the weak form

I I integrate the r.h.s. by parts (
∫

uv ′ = [uv ]−
∫

u′v ):∫
Ω

f (x)
∂

∂x

(
k
∂T
∂x

)
dx =

[
f (x)k

∂T
∂x

]
∂Ω

−
∫

Ω

∂f
∂x

k
∂T
∂x

dx

I Assuming there is no heat flux prescribed on the boundary (i.e.
qx = −k∂T/∂x = 0 ), then:∫

Ω

f (x)
∂

∂x

(
k
∂T
∂x

)
dx = −

∫
Ω

∂f
∂x

k
∂T
∂x

dx
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FEM in 1D
From the strong form to the weak form

We then obtain the weak form of the diffusion equation in 1D:∫
Ω

f (x)ρCp
∂T
∂t

dx +

∫
Ω

∂f
∂x

k
∂T
∂x

dx = 0

We then use the additive property of the integral:∫
Ω

· · · =
∑
elts

∫
Ωe

. . .

so that

∑
elts


∫

Ωe

f (x)ρCp
∂T
∂t

dx︸ ︷︷ ︸
Λe

f

+

∫
Ωe

∂f
∂x

k
∂T
∂x

dx︸ ︷︷ ︸
Υe

f

 = 0
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FEM in 1D
Shape functions

T (x) = αTk + βTk+1 x ∈ [xk , xk+1]

= Nk (x)Tk + Nk+1(x)Tk+1

Example:

T (x) =
xk+1 − x

hx︸ ︷︷ ︸
Nk (x)

Tk +
x − xk

hx︸ ︷︷ ︸
Nk+1(x)

Tk+1

I x = xk yields T (xk ) = Tk
I x = xk+1 yields T (xk+1) = Tk+1
I x = x1/2 = (xk + xk+1)/2 yields T (x1/2) = (Tk + Tk+1)/2

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D
.

Let us go back to

∑
elts


∫

Ωe

f (x)ρCp
∂T
∂t

dx︸ ︷︷ ︸
Λe

f

+

∫
Ωe

∂f
∂x

k
∂T
∂x

dx︸ ︷︷ ︸
Υe

f

 = 0

and compute Λe
f and Υe

f separately.
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FEM in 1D
.

Λe
f =

∫ xk+1

xk

f (x)ρCpṪ (x)dx

=

∫ xk+1

xk

f (x)ρCp [Nk (x)Ṫk + Nk+1(x)Ṫk+1] dx

=

∫ xk+1

xk

f (x)ρCpNk (x)Ṫk dx +

∫ xk+1

xk

f (x)ρCpNk+1(x)Ṫk+1dx

=

(∫ xk+1

xk

f (x)ρCpNk (x)dx
)

Ṫk +

(∫ xk+1

xk

f (x)ρCpNk+1(x)dx
)

Ṫk+1

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D
.

I Taking f (x) = Nk (x) and omitting ’(x)’ in the rhs:

ΛNk =

(∫ xk+1

xk

ρCpNk Nk dx
)

Ṫk +

(∫ xk+1

xk

ρCpNk Nk+1dx
)

Ṫk+1

I Taking f (x) = Nk+1(x) and omitting ’(x)’ in the rhs:

ΛNk+1 =

(∫ xk+1

xk

ρCpNk+1Nk dx
)

Ṫk +

(∫ xk+1

xk

ρCpNk+1Nk+1dx
)

Ṫk+1

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D
.

 ΛNk

ΛNk+1

 =


∫ xk+1

xk
NkρCpNk dx

∫ xk+1

xk
NkρCpNk+1dx∫ xk+1

xk
Nk+1ρCpNk dx

∫ xk+1

xk
Nk+1ρCpNk+1dx

·
 Ṫk

Ṫk+1


or,

 ΛNk

ΛNk+1

 =

∫ xk+1

xk

ρCp

 Nk Nk Nk Nk+1

Nk+1Nk Nk+1Nk+1

dx

 ·
 Ṫk

Ṫk+1


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FEM in 1D
.

 ΛNk

ΛNk+1

 =


∫ xk+1

xk
NkρCpNk dx

∫ xk+1

xk
NkρCpNk+1dx∫ xk+1

xk
Nk+1ρCpNk dx

∫ xk+1

xk
Nk+1ρCpNk+1dx

·
 Ṫk

Ṫk+1


or, ΛNk

ΛNk+1

 =

∫ xk+1

xk

ρCp

 Nk Nk Nk Nk+1

Nk+1Nk Nk+1Nk+1

dx

 ·
 Ṫk

Ṫk+1


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FEM in 1D
.

Finally, we can define the vectors

~NT =

 Nk (x)

Nk+1(x)


and

~T e =

 Tk

Tk+1

 ~̇T e =

 Ṫk

Ṫk+1


so that  ΛNk

ΛNk+1

 =

(∫ xk+1

xk

~NTρCp~Ndx
)
· ~̇T e

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

Back to the diffusion term:

Υe
f =

∫ xk+1

xk

∂f
∂x

k
∂T
∂x

dx

=

∫ xk+1

xk

∂f
∂x

k
∂(Nk (x)Tk + Nk+1(x)Tk+1)

∂x
dx

=

(∫ xk+1

xk

∂f
∂x

k
∂Nk

∂x
dx

)
Tk +

(∫ xk+1

xk

∂f
∂x

k
∂Nk+1

∂x
dx

)
Tk+1

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

I Taking f (x) = Nk (x)

ΥNk =

(∫ xk+1

xk

k
∂Nk

∂x
∂Nk

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂Nk

∂x
∂Nk+1

∂x
dx

)
Tk+1

I Taking f (x) = Nk+1(x)

ΥNk+1 =

(∫ xk+1

xk

k
∂Nk+1

∂x
∂Nk

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂Nk+1

∂x
∂Nk+1

∂x
dx

)
Tk+1

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

I Taking f (x) = Nk (x)

ΥNk =

(∫ xk+1

xk

k
∂Nk

∂x
∂Nk

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂Nk

∂x
∂Nk+1

∂x
dx

)
Tk+1

I Taking f (x) = Nk+1(x)

ΥNk+1 =

(∫ xk+1

xk

k
∂Nk+1

∂x
∂Nk

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂Nk+1

∂x
∂Nk+1

∂x
dx

)
Tk+1
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FEM in 1D

 ΥNk

ΥNk+1

 =


∫ xk+1

xk

∂Nk
∂x k ∂Nk

∂x dx
∫ xk+1

xk

∂Nk
∂x k ∂Nk+1

∂x dx

∫ xk+1

xk

∂Nk+1
∂x k ∂Nk

∂x dx
∫ xk+1

xk

∂Nk+1
∂x k ∂Nk+1

∂x dx

·
 Tk

Tk+1



or, ΥNk

ΥNk+1

 =

∫ xk+1

xk

k

 ∂Nk
∂x

∂Nk
∂x

∂Nk
∂x

∂Nk+1
∂x

∂Nk+1
∂x

∂Nk
∂x

∂Nk+1
∂x

∂Nk+1
∂x

dx

 ·
 Tk

Tk+1


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FEM in 1D

 ΥNk

ΥNk+1

 =


∫ xk+1

xk

∂Nk
∂x k ∂Nk

∂x dx
∫ xk+1

xk

∂Nk
∂x k ∂Nk+1

∂x dx

∫ xk+1

xk

∂Nk+1
∂x k ∂Nk

∂x dx
∫ xk+1

xk

∂Nk+1
∂x k ∂Nk+1

∂x dx

·
 Tk

Tk+1


or, ΥNk

ΥNk+1

 =

∫ xk+1

xk

k

 ∂Nk
∂x

∂Nk
∂x

∂Nk
∂x

∂Nk+1
∂x

∂Nk+1
∂x

∂Nk
∂x

∂Nk+1
∂x

∂Nk+1
∂x

dx

 ·
 Tk

Tk+1


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FEM in 1D

Finally, we can define the vector

~BT =

 ∂Nk
∂x

∂Nk+1
∂x


so that  ΥNk

ΥNk+1

 =

(∫ xk+1

xk

~BT k~Bdx
)
· ~T e

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

The weak form discretised over 1 element becomes(∫ xk+1

xk

~NTρCp~Ndx
)

︸ ︷︷ ︸
Me

·~̇T e +

(∫ xk+1

xk

~BT k~Bdx
)

︸ ︷︷ ︸
K e

d

·~T e = ~0

or,

Me · ~̇T e + K e
d · ~T e = ~0

or,

Me · ∂
~T e

∂t
+ K e

d · ~T e = ~0

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

Thieulot, PEPI 188, 2011
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FEM in 1D

As we have seen in the context of the FD method, we use a first order
in time discretisation for the time derivative:

~̇T =
∂~T
∂t

=
~T new − ~T old

δt

Using an implicit scheme, we get

Me ·
~T new − ~T old

δt
+ K e

d · ~T new = ~0

or,

(Me + K e
d δt) · ~T new = Me · ~T old

with

Me =

∫ xk+1

xk

~NTρCp~Ndx K e
d =

∫ xk+1

xk

~BT k~Bdx

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

Let us compute M for an element:

Me =

∫ xk+1

xk

~NTρCp~Ndx

with

~NT =

 Nk (x)

Nk+1(x)

 =

 xk+1−x
hx

x−xk
hx


Then

Me =

(
M11 M12
M21 M22

)
=


∫ xk+1

xk
ρCpNk Nk dx

∫ xk+1

xk
ρCpNk Nk+1dx∫ xk+1

xk
ρCpNk+1Nk dx

∫ xk+1

xk
ρCpNk+1Nk+1dx


I need to compute 3 integrals (M12 = M21)

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

Let us look at M11:

M11 =

∫ xk+1

xk

ρCpNk (x)Nk (x)dx =

∫ xk+1

xk

ρCp
xk+1 − x

hx

xk+1 − x
hx

dx

It is customary to carry out a change of variables (mapping x → r ):

r =
2
hx

(x − xk )− 1 x =
hx

2
(1 + r) + xk

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

In what follows we assume for simplicity that ρ and Cp are constant
within each element.

M11 = ρCp

∫ xk+1

xk

xk+1 − x
hx

xk+1 − x
hx

dx =
ρCphx

8

∫ +1

−1
(1−r)(1−r)dr =

hx

3
ρCp

Similarly we arrive at

M12 = ρCp

∫ xk+1

xk

xk+1 − x
hx

x − xk

hx
dx =

ρCphx

8

∫ +1

−1
(1− r)(1 + r)dr =

hx

6
ρCp

and

M22 = ρCp

∫ xk+1

xk

x − xk

hx

x − xk

hx
dx =

ρCphx

8

∫ +1

−1
(1+r)(1+r)dr =

hx

3
ρCp

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

Finally

Me =
hx

3
ρCp

(
1 1/2

1/2 1

)

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

In the new coordinate system, the shape functions

Nk (x) =
xk+1 − x

hx
Nk+1(x) =

x − xk

hx

become
Nk (r) =

1
2

(1− r) Nk+1(r) =
1
2

(1 + r)

Also,
∂Nk

∂x
= − 1

hx

∂Nk+1

∂x
=

1
hx

so that

~BT =

 ∂Nk
∂x

∂Nk+1
∂x

 =

 − 1
hx

1
hx



C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

We here also assume that k is constant within the element:

Kd =

∫ xk+1

xk

~BT k~Bdx = k
∫ xk+1

xk

~BT ~Bdx

simply becomes

Kd = k
∫ xk+1

xk

1
h2

x

(
1 −1
−1 1

)
dx

and then

Kd =
k
hx

(
1 −1
−1 1

)

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

For each element

(Me + K e
d δt)︸ ︷︷ ︸

Ae

·~T new = Me · ~T old︸ ︷︷ ︸
~be

or,
Ae · ~T new = ~be

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D
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FEM in 1D

I element 1

A1 ·
(

T1
T2

)
= b1

I element 2

A2 ·
(

T2
T3

)
= b2

I element 3

A3 ·
(

T3
T4

)
= b3

I element 4

A4 ·
(

T4
T5

)
= b4

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

I element 1 {
A1

11T1 + A1
12T2 = b1

x
A1

21T1 + A1
22T2 = b1

y

I element 2 {
A2

11T2 + A2
12T3 = b2

1
A2

21T2 + A2
22T3 = b2

2

I element 3 {
A3

11T3 + A3
12T4 = b3

1
A3

21T3 + A3
22T4 = b3

2

I element 4 {
A4

11T4 + A4
12T5 = b4

1
A4

21T4 + A4
22T5 = b4

2

C. Thieulot | FEM for the 1D diffusion equation
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FEM in 1D

All equations can be cast into a single linear system: this is the
assembly phase.



A1
11 A1

12

A1
21 A1

22+A2
11 A2

12

A2
21 A2

22+A3
11 A3

12

A3
21 A3

22+A4
11 A4

12

A4
21 A4

22





T1

T2

T3

T4

T5


=



b1
1

b1
2 + b2

1

b2
2 + b3

1

b3
2 + b4

1

b4
2


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FEM in 1D
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FEM in 1D

The assembled matrix system also takes the form

A11 A12

A21 A22 A23

A32 A33 A34

A43 A44 A45

A54 A55





T1

T2

T3

T4

T5


=



b1

b2

b3

b4

b5


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FEM in 1D
Applying b.c.

Let us assume that we wish to fix the temperature at node 2.

Then
T2 = T bc

This can be cast as

(
0 1 0 0 0

)


T1
T2
T3
T4
T5

 =


0

T bc

0
0
0


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FEM in 1D
Applying b.c.

This replaces the second line in the previous matrix equation:

A11 A12

0 1 0

A32 A33 A34

A43 A44 A45

A54 A55





T1

T2

T3

T4

T5


=



b1

T bc

b3

b4

b5


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FEM in 1D
Applying b.c.

I Before applying the b.c., the assembled matrix A is symmetric.

I Now it is not symmetric anymore.
I Some solvers require a symmetric matrix.
I Symmetric matrices can be stored more economically.

Can we restore symmetry ?
yes.
duh :)
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FEM in 1D
Applying b.c.



A11 0

0 1 0

0 A33 A34

A43 A44 A45

A54 A55





T1

T2

T3

T4

T5


=



b1−A12T bc

T bc

b3−A32T bc

b4

b5


Matrix is symmetric !
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FEM in 1D
Applying b.c.

The matrix is now symmetric, but its condition number may have been
changed.

Fix:



A11 0

0 A22 0

0 A33 A34

A43 A44 A45

A54 A55





T1

T2

T3

T4

T5


=



b1−A12T bc

A22T bc

b3−A32T bc

b4

b5


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FEM in 1D
Program structure
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FEM in 1D
Exercise

The initial temperature profile is as follows:

T (x , t = 0) = 200 x < Lx/2 T (x , t = 0) = 100 x ≥ Lx/2
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Exercise

The properties of the material are as follows:

ρ = 3000 k = 3 Cp = 1000

Furthermore, Lx = 100km.
Boundary conditions are:

T (t , x = 0) = 200◦C T (t , x = Lx ) = 100◦C

There are nelx elements and nnx nodes. All elements are hx long.
The code will carry out nstep timesteps of length dt.
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Exercise
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Exercise
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FEM in 1D
Mesh connectivity

I Typically one uses a connectivity array
I Two-dimensional integer array
I icon ( # elements , # vertices per element )
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FEM in 1D
Mesh connectivity

Example

I The above mesh counts 5 elements.
I Each element is composed of 2 nodes

icon(1,1)=1
icon(1,2)=2
icon(2,1)=2
icon(2,2)=3
icon(3,1)=3
icon(3,2)=4
icon(4,1)=4
icon(4,2)=5
icon(5,1)=5
icon(5,2)=6
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FEM in 1D

I The above mesh counts 10 elements.
I Each element is composed of 3 nodes
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FEM in 1D
Program structure

C. Thieulot | FEM for the 1D diffusion equation



46

FEM in 1D
Meshing
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FEM in 1D
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FEM in 1D
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