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Introduction

From the strong form to the weak form

Discretisation
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A simple 1D grid

nnx=8
nelx=7

Y

Y

» domain Q of length L,
» 1D grid, nnx nodes, nelx elements
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Zoom on one element
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From the strong form to the weak form

» We start with the 1D advection-diffusion equation

o dT+ oT\ _ o kaT L H
PeeCar T %ax ) T ax M ax
» This is the strong form of the ODE to solve.
» | multiply this equation by a function f(x) and integrate it over Q:

/Qf( )pcpatdx+/f pcp dx /f <8T>d +/f X)Hdx
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From the strong form to the weak form

» | integrate the r.h.s. by parts:

| #x dx( )d_{()kgﬂ gkgd

» Assuming there is no heat flux prescribed on the boundary (i.e.
gx = —koT/ox =0), then:

Cof OT
o0 (ko5 ) ox=— [ Sk iax
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From the strong form to the weak form

We then obtain the weak form of the diffusion equation in 1D:

/f )PCo—+ dx+/f pcpu d + d—fka—rd —/Qf(x)de

We then use the additive property of the integral:

=k

elts

so that

elts

of oT
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Shape functions
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In the element, we have seen that the temperature can be written:

T(x) = Ni(X) Tic + N1 (X) Tis1
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Shape functions

In the element, we have seen that the temperature can be written:

T(x) = Ni(X) Tic + N1 (X) Tis1

In the previous presentation we have computed A7 and T7. Let us
now turn to X and Qf.
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Xk+1 T
Yy = / f(x)pcpud—dx

Xk ox
Xk+1 ‘

_ / f(x)pcpud[N"(X) Tk +8yk+1(X) Thei] dx
Xk
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Xk+1 oT
Y? = / X)pCpU XdX

: /X”‘ AN T+ Nia () Thea]

ox

Xk+1 N Xk+1 IN
= / X)pCpU dex+/ f(x)pcpudaﬁ Tk1dx
Xk X X

k
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Xk+1
Y? = / pCp dX
_ /X”‘ Nk( ) T+ Niwt () Tien]
= X
ox
XK+1 Xk+1 - N
= / X)pCpU dex+/ f(x)pcpudaﬁ Tki1dx
Xk
Xk+1 : Xk+1
- </ X)pColl oN dx> Tk + </ f(x)pcpu i k“ dx) Thit
Xk
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» Taking f(x) = Ni(x) and omitting ’(x)’ in the rhs:

- Xk+1 ONK Xk+1 a/\/k+1
ZNk = (/Xk pC'DUNkade) Tk—|-</xk pCpUNk Ox dX> Tk+1
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» Taking f(x) = Ni(x) and omitting ’(x)’ in the rhs:

- Xk+1 ONK Xk+1 a/\/k+1
ZNk = (/Xk pC'DUNkade) Tk—|-</xk pCpUNk Ox dX> Tk+1

» Taking f(x) = Ni;1(x) and omitting ’(x)’ in the rhs:

" Xk+1 aN " Xk41 3N
/ pCpUNk+1 0)(kdx) TkJr(/ pCpUNk_H ki dX> Tk

(r Xk Xk aX

szm
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PNy

k

X1 ON X1 ONi1
Lo peouNGEdx [T pCpuNK =5 dx T

ZN,M fx;m pCpUNk+1 Ny k dix fx;m pCpUNk+1 k+1 dx Tk+1 )

or,
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Xk ONy Xk41 ONK4

TN, Lo peouNGEdx [T pCpuNK =5 dx T

ZN,M fx;m pCpUNk+1 Ny k dix fx;m pCpUNk+1 k+1 dx Tk+1 )
or,
ON ON,

Ly, X1 Nk k Nk# Tk
Y /Xk N, . 4 N« ONj1 T,

Ny k+19x Ix k+1
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Finally, we have already defined the vectors

N (x) o Ti
NT = B"=| T® =
Nii1(x) % Tiei1

so that
k * XK1
= ( NTpCpquX) . T®
Ty, 1 Xe
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Prove that

-1/2 1/2
-1/2 1/2
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Let us now look at the source term:

» Taking f(x) = Ni(x)

Qn, = / Ni(x)H(x)dx

k
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Let us now look at the source term:

» Taking f(x) = Ni(x)

Qn, = / Ni(x)H(x)dx

k

» Taking f(x) = Ngy1(x)
k1

X
= [ N (0H(x)x
J Xy
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Q. [ Nier () H(x) dx
or,
oo )1 Caonen )
= / ax
Qs e Nici1(x)H(x)
so that
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The weak form discretised over 1 element becomes

Xk+1 ; Xk+1
< NTpcdeX) T® + ( NT,OCpquX> .T®

Xk Xk

me Kg
Xk+1 Xk+1
+ ( / BTdex> Te = ( NTH(x)dx>
Xk Xk
K¢ Fe
or,
Me - T¢+ (K§+ KE)- T® = F°
or,
oTe
Mme . Bt +(KS+K§) - T®=F°
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Appendix A. FEM formulation of equations

The Galerkin finite element equation corresponding to Eq. (12)
(Ku+K) - v=B
with

K,:/n’ D, -BdQ
o

K ,/x’ D, -Bde
o

B/N‘pgdﬂ

A
200 110
ulo 2 of ¥ 110
001 001

and where N is the vector of shape functions, and B is the matrix of
spatial derivatives of the shape functions.

The finite element equation corresponding to the heat transfer
eq

1)

K= [®)perw-BiR
A
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usion equation

where T is the vector of the nodal temperatures.

In the case where advection dominates over diffusion, the stan-
dard Galerkin approach ofthe advection term leads to problematic
oscillations, and cheme is
wind Petrov-Galerkin (SUPG) method is therefore implemented,
which translates in the modified N* term in Eq. (A1):

(N) =N +10.B

where 7 a dimensionless parameter. The case 7 =0 is equivalent to
the Bubnov-Galerkin method. The choice of the parameter 7 in the
context of FEM stabilisation schemes is discussed in Tezduyar and
Osawa (2000) and is calculated as follows:

()
T\ @) (@),
‘with often r=1 or r=1/2 and

LT
‘where h is a measure of the element size and 0 is related to the time
discretisation scheme (6= 1/2 in this case as it corresponds to the
implemented mid-point implicit scheme, see for instance Braun
(2003). In order to illustrate the beneficial aspect of the SUPG
scheme, let us look at the standard problem of the one-dimensional
advection of a scalar field containing a steep front (diffusion and
source terms are null). In Fig. 19 is shown the analytical initial sca-
lar field. It is a challenging benchmark as the numerical treatment
of the advection of such a discontinuity often leads to non-negligi-
ble oscillations. The unit segment is discretised by means of 50 ele-
ments, over which a unit velocity field is prescribed. The time step
is chosen so that de = 0.1h|v| = 0.002. The discontinuity is initially
placed at x=1/4 and after 250 time steps, it is expected to ha
reached the position x = 3/4.

In Fig. 19 are shown the advected field for various values of the
dimensionless coefficient 7= /v|/h. The Galerkin scheme (7 =0)
leads to strong oscillations, as already described by Donea and
Huerta (2003). Using Eq. (A2), one arrives to y=0.045, which
leads to a desired removal of the oscillations through a small
amount of numerical diffusion. Braun (2003) argues for a constant

Lok, o= *2)
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Mid-point algorithm

We start from .
M-T+K-T=F

Let us then write this equation at times t and t + ot :

M(t) - T(t)+ K(t)-T(t) = F(1)
M(t + 6t) - T(t +6t) + K(t 4 0t) - T(t+6t) = F(t+ 6t)
To insure numerical stability, a second order accurate, mid-point

implicit scheme (« = 0.5) is used to represent the time derivative of
temperature :

T+ o - 1) 5{3 “TW _ o4 sty+ (1 o) T

» o = 0: fully explicit scheme
» o = 1: fully implicit scheme
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Mid-point algorithm

One can multiply Eq.(1) by 1 — « and Eq. (1) by « and sum them :
(1 — a)M(t) - T(t) +(1—a)K(t)-T(t) = (1—a)F(1)

+aM(t+ dt) - T(t+ 6t) + aK(t +6t) - T(t+6t) +aF(t+ ot)
Assuming M(t) ~ M(t + 6t), and F(t) = F(t + dt), then

T(t+0t)—T(1)

M(t) - 5t +(1—a)K(t)- T(t) = F(1)

+aK(t+ ot) - T(t+ ot)
and finally

[M(t) + aK(t) 1] - T(t + 6t) = [M(t) — (1 — @)K (t) 81] - T(t) + F(t) 6t
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Mid-point algorithm

Another approach (to arrive at the same result):

M- T+K-T=F
Looking at the Crank-Nicolson algorithm presented earlier, one can
write:
T(t+0t)— T(t)

M-
ot

+ K- (aT(t+dt)+ (1 —a)T(t) = F

which yields

[[M(t) + K (1) 3] - T(t +6t) = [M(t) — (1 — a)K(t) 1] - T(1) + F(t) ot |
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Advection stabilisation

v

Advection is notoriously difficult to get right:

It often needs to be stabilised

A standard approach is the Streamline Upwind Petrov Galerkin
(SUPG) method.

The advection matrix is computed as follows:

v

v

v

Xk+1
K = / (N*)T pc,uBdx with N*“=N+ruB
X

k
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Advection stabilisation
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Appendix A. FEM formulation of equations
The Galerkin finite element equation corresponding to Eq. (12)
(Ku+K) - v=B
with
K= / B'.D,-BdQ
o
K~ [0, -Bd0
o
B / N'pgdo
A
200 110
plo 20| pP=if1 10
001 001

and where N is the vector of shape (uncnans, and Biis the matrix of
spatial derivatives of the shape function:

‘The finite element equation currcsvundmg to the heat transfer
equation is

where

M, / N'pc;NdQ
o

K. /(N')Tprpv Bdo
A
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where T s the vector of the nodal temperatures.

In the case where advection dominates over diffusion, the stan-
dard Galekin approach ofthe advection term lads 0 problematc
oscillations, and a stabilisation scheme is needed. Ast
method 1 therefore Implemenied,
which translates in the modified N" term in Eq. (A1)

Where t a dimensionless parameter. The case 7 =0 is equivalent to
the Bubnov-Galerkin method. The choice of the parameter 7 in the
context of FEM stabilisation schemes is discussed in Tezduyar and
Osawa (2000) and is calculated as follows:

(ﬁ 11)’7(117)’) "

‘with often r=1or r=1/2 and

5 :z\Lw n=0dt, =
wh:reh is a measure of the element size and 0 is related to the time

scheme (6= 1/2 in this case as it to the
implemented [mid-point implicit scheme] see for instance Braun
(2003)). In order to illustrate the beneficial aspect of the SUPG
scheme, let us look at the standard problem of the one-dimensional
advection of a scalar field containing a steep front (diffusion and
Source terms are null). I Fig. 19 is shown the analytical initial sca-
lar field. It is a challenging benchmark as the numerical treatment
of the advection of such a discontinuity often leads to non-negligi-
ble oscillations. The unit segment is discretised by means of 50 ele-
‘ments, over which a unit velocity field is prescribed. The time step
s chosen so that dt = 0.1h/[v] = 0.002. The discontinuity s initially
placed at x=1/4 and after 250 time steps, it is expected to ha
reached the position x = 3/4,

In Fig. 19 are shown the advected field for various values of the
dimensionless coefficient 7= 7|v|/h. The Galerkin scheme (7 =0)
leads to strong oscillations, as already described by Donea and
Huerta (2003). Using Eq. (A2), one arrives to y=0.045, which
leads to a desired removal of the oscillations through a small
amount of numerical diffusion. Braun (2003) argues for a constant

e
e a2




FEMin 1D

Advection stabilisation

Prove that in the SUPG case

TUP
hy

(KZ)supc = K5 + pcp
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Exercise

Reproduce the advection example presented in Appendix A of
Thieulot, PEPI 188, 2011 (p = 1, ¢, = 1). Implement the SUPG
stabilisation and vary the value of the = parameter. Implement the
implicit, explicit and mid-point algorithms look at their influence on the
results.

T
o B

04 —
‘ galerkin R
0.045 —=—
02 \ §aMMA 0,258 —— l\\
o \
0.2
0 02 04 06 08 1

where 7 = vyh/v.
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