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FEM in 1D
A simple 1D grid

I domain Ω of length Lx

I 1D grid, nnx nodes, nelx elements
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FEM in 1D
Zoom on one element
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FEM in 1D
From the strong form to the weak form

I We start with the 1D advection-diffusion equation

ρcp

(
∂T
∂t

+ u
∂T
∂x

)
=

∂

∂x

(
k
∂T
∂x

)
+ H

I This is the strong form of the ODE to solve.
I I multiply this equation by a function f (x) and integrate it over Ω:∫

Ω

f (x)ρcp
∂T
∂t

dx+

∫
Ω

f (x)ρcpu
∂T
∂x

dx =

∫
Ω

f (x)
∂

∂x

(
k
∂T
∂x

)
dx+

∫
Ω

f (x)Hdx
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FEM in 1D
From the strong form to the weak form

I I integrate the r.h.s. by parts:∫
Ω

f (x)
∂

∂x

(
k
∂T
∂x

)
dx =

[
f (x)k

∂T
∂x

]
∂Ω

−
∫

Ω

∂f
∂x

k
∂T
∂x

dx

I Assuming there is no heat flux prescribed on the boundary (i.e.
qx = −k∂T/∂x = 0 ), then:∫

Ω

f (x)
∂

∂x

(
k
∂T
∂x

)
dx = −

∫
Ω

∂f
∂x

k
∂T
∂x

dx
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FEM in 1D
From the strong form to the weak form

We then obtain the weak form of the diffusion equation in 1D:∫
Ω

f (x)ρcp
∂T
∂t

dx +

∫
Ω

f (x)ρcpu
∂T
∂x

dx +

∫
Ω

∂f
∂x

k
∂T
∂x

dx =

∫
Ω

f (x)Hdx

We then use the additive property of the integral:∫
Ω

· · · =
∑
elts

∫
Ωe

. . .

so that

∑
elts


∫

Ωe

fρcp
∂T
∂t

dx︸ ︷︷ ︸
Λe

f

+

∫
Ωe

fρcpu
∂T
∂x

dx︸ ︷︷ ︸
Σe

f

+

∫
Ωe

∂f
∂x

k
∂T
∂x

dx︸ ︷︷ ︸
Υe

f

−
∫

Ωe

fHdx︸ ︷︷ ︸
Ωe

f

 = 0
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FEM in 1D
Shape functions

In the element, we have seen that the temperature can be written:

T (x) = Nk (x)Tk + Nk+1(x)Tk+1

In the previous presentation we have computed Λe
f and Υe

f . Let us
now turn to Σe

f and Ωe
f .
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FEM in 1D
.

Σe
f =

∫ xk+1

xk

f (x)ρcpu
∂T
∂x

dx

=

∫ xk+1

xk

f (x)ρcpu
∂[Nk (x)Tk + Nk+1(x)Tk+1]

∂x
dx

=

∫ xk+1

xk

f (x)ρcpu
∂Nk

∂x
Tk dx +

∫ xk+1

xk

f (x)ρcpu
∂Nk+1

∂x
Tk+1dx

=

(∫ xk+1

xk

f (x)ρcpu
∂Nk

∂x
dx
)

Tk +

(∫ xk+1

xk

f (x)ρcpu
∂Nk+1

∂x
dx
)

Tk+1
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FEM in 1D
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FEM in 1D
.

Σe
f =

∫ xk+1

xk

f (x)ρcpu
∂T
∂x

dx

=

∫ xk+1

xk

f (x)ρcpu
∂[Nk (x)Tk + Nk+1(x)Tk+1]

∂x
dx

=

∫ xk+1

xk

f (x)ρcpu
∂Nk

∂x
Tk dx +

∫ xk+1

xk

f (x)ρcpu
∂Nk+1

∂x
Tk+1dx

=

(∫ xk+1

xk

f (x)ρcpu
∂Nk

∂x
dx
)

Tk +

(∫ xk+1

xk

f (x)ρcpu
∂Nk+1

∂x
dx
)

Tk+1

C. Thieulot | FEM for the 1D advection-diffusion equation



9

FEM in 1D
.

I Taking f (x) = Nk (x) and omitting ’(x)’ in the rhs:

ΣNk =

(∫ xk+1

xk

ρcpuNk
∂Nk

∂x
dx
)

Tk +

(∫ xk+1

xk

ρcpuNk
∂Nk+1

∂x
dx
)

Tk+1

I Taking f (x) = Nk+1(x) and omitting ’(x)’ in the rhs:

ΣNk+1 =

(∫ xk+1

xk

ρcpuNk+1
∂Nk

∂x
dx
)

Tk +

(∫ xk+1

xk

ρcpuNk+1
∂Nk+1

∂x
dx
)

Tk+1
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FEM in 1D
.

 ΣNk

ΣNk+1

=


∫ xk+1

xk
ρcpuNk

∂Nk
∂x dx

∫ xk+1

xk
ρcpuNk

∂Nk+1
∂x dx∫ xk+1

xk
ρcpuNk+1

∂Nk
∂x dx

∫ xk+1

xk
ρcpuNk+1

∂Nk+1
∂x dx

·
 Tk

Tk+1


or,

 ΣNk

ΣNk+1

=

∫ xk+1

xk

ρcpu

 Nk
∂Nk
∂x Nk

∂Nk+1
∂x

Nk+1
∂Nk
∂x Nk+1

∂Nk+1
∂x

dx

·
 Tk

Tk+1


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FEM in 1D
.

 ΣNk

ΣNk+1

=


∫ xk+1

xk
ρcpuNk

∂Nk
∂x dx

∫ xk+1

xk
ρcpuNk

∂Nk+1
∂x dx∫ xk+1

xk
ρcpuNk+1

∂Nk
∂x dx

∫ xk+1

xk
ρcpuNk+1

∂Nk+1
∂x dx

·
 Tk

Tk+1


or, ΣNk

ΣNk+1

=

∫ xk+1

xk

ρcpu

 Nk
∂Nk
∂x Nk

∂Nk+1
∂x

Nk+1
∂Nk
∂x Nk+1

∂Nk+1
∂x

dx

·
 Tk

Tk+1


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FEM in 1D
.

Finally, we have already defined the vectors

NT =

 Nk (x)

Nk+1(x)

 BT =

 ∂Nk
∂x

∂Nk+1
∂x

 T e =

 Tk

Tk+1


so that  ΣNk

ΣNk+1

 =

(∫ xk+1

xk

NTρcpuBdx
)
· T e
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FEM in 1D
.

Prove that

K e
a = ρcpu

 −1/2 1/2

−1/2 1/2


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FEM in 1D

Let us now look at the source term:

Ωe
f =

∫ xk+1

xk

f (x)H(x)dx

I Taking f (x) = Nk (x)

ΩNk =

∫ xk+1

xk

Nk (x)H(x)dx

I Taking f (x) = Nk+1(x)

ΩNk+1 =

∫ xk+1

xk

Nk+1(x)H(x)dx
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FEM in 1D

 ΩNk

ΩNk+1

 =


∫ xk+1

xk
Nk (x)H(x)dx

∫ xk+1

xk
Nk+1(x)H(x)dx



or,  ΩNk

ΩNk+1

 =

∫ xk+1

xk

 Nk (x)H(x)

Nk+1(x)H(x)

dx


so that  ΩNk

ΩNk+1

 =

(∫ xk+1

xk

NT H(x)dx

)
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FEM in 1D
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FEM in 1D

The weak form discretised over 1 element becomes(∫ xk+1

xk

NTρcpNdx
)

︸ ︷︷ ︸
Me

·Ṫ e +

(∫ xk+1

xk

NTρcpuBdx
)

︸ ︷︷ ︸
K e

a

·T e

+

(∫ xk+1

xk

BT kBdx
)

︸ ︷︷ ︸
K e

d

·T e =

(∫ xk+1

xk

NT H(x)dx
)

︸ ︷︷ ︸
F e

or,
Me · Ṫ e + (K e

d + K e
a ) · T e = F e

or,

Me · ∂T e

∂t
+ (K e

a + K e
d ) · T e = F e
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FEM in 1D

Thieulot, PEPI 188, 2011
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FEM in 1D
Mid-point algorithm

We start from
M · Ṫ + K · T = F

Let us then write this equation at times t and t + δt :

M(t) · Ṫ (t) + K (t) · T (t) = F (t)
M(t + δt) · Ṫ (t + δt) + K (t + δt) · T (t + δt) = F (t + δt)

To insure numerical stability, a second order accurate, mid-point
implicit scheme (α = 0.5) is used to represent the time derivative of
temperature :

T (t + δt) − T (t)
δt

= αṪ (t + δt) + (1 − α)Ṫ (t)

I α = 0: fully explicit scheme
I α = 1: fully implicit scheme

C. Thieulot | FEM for the 1D advection-diffusion equation
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FEM in 1D
Mid-point algorithm

One can multiply Eq.(1) by 1 − α and Eq. (1) by α and sum them :

(1 − α)M(t) · Ṫ (t) + (1 − α)K (t) · T (t) = (1 − α)F (t)
+αM(t + δt) · Ṫ (t + δt) + αK (t + δt) · T (t + δt) +αF (t + δt)

Assuming M(t) ≈ M(t + δt), and F (t) ≈ F (t + δt), then

M(t) · T (t + δt) − T (t)
δt

+ (1 − α)K (t) · T (t) = F (t)

+αK (t + δt) · T (t + δt)

and finally

[M(t) + αK (t) δt ] · T (t + δt) = [M(t) − (1 − α)K (t) δt ] · T (t) + F (t) δt
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FEM in 1D
Mid-point algorithm

Another approach (to arrive at the same result):

M · Ṫ + K · T = F

Looking at the Crank-Nicolson algorithm presented earlier, one can
write:

M · T (t + δt) − T (t)
δt

+ K · (αT (t + δt) + (1 − α)T (t)) = F

which yields

[M(t) + αK (t) δt ] · T (t + δt) = [M(t) − (1 − α)K (t) δt ] · T (t) + F (t) δt

C. Thieulot | FEM for the 1D advection-diffusion equation
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FEM in 1D
Advection stabilisation

I Advection is notoriously difficult to get right:

I It often needs to be stabilised
I A standard approach is the Streamline Upwind Petrov Galerkin

(SUPG) method.
I The advection matrix is computed as follows:

K e
a =

∫ xk+1

xk

(N?)TρcpuBdx with N? = N + τuB

C. Thieulot | FEM for the 1D advection-diffusion equation
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FEM in 1D
Advection stabilisation

Thieulot, PEPI 188, 2011
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FEM in 1D
Advection stabilisation

Prove that in the SUPG case

(K e
a )SUPG = K e

a + ρcp
τu2

hx

 1 −1

−1 1


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FEM in 1D
Exercise

Reproduce the advection example presented in Appendix A of
Thieulot, PEPI 188, 2011 (ρ = 1, cp = 1). Implement the SUPG
stabilisation and vary the value of the τ parameter. Implement the
implicit, explicit and mid-point algorithms look at their influence on the
results.

where τ = γh/v .
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