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Motivation

Thielmann et al, EPSL 359, 2012 Burstedde et al, GJI 192, 2013



What does Numerical geodynamics modelling mean ?

I Modelling: the process of solving physical problems by appropriate
simplification of reality.

I A computer simulation is a simulation, run on a single computer, or a
network of computers, to reproduce behavior of a system. (Wikipedia)



Why numerical simulation ?

I because experiments are sometimes impossible
(life cycle of galaxies, weather forecast, terror attacks)

I because experiments are sometimes not welcome
(avalanches, nuclear tests, medicine)

I because experiments are sometimes very costly and-time consuming
(protein folding, material sciences)

I because experiments are sometimes more expensive
(aerodynamics, crash test)

I because it’s fun.
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What can we do ? what is it useful for ?

I Mantle convection
Trompert & Hansen, Phys. Fluids 10, 1998, Tackley, PEPI 171, 2008, Tosi et al, PEPI 217, 2013

I Subduction
Upton, Tectonics 22, 2003, Billen, Annu. Rev. Earth Planet. Sci. 2008 + 1 million other papers

I Orogenesis
Beaumont et al, JGR 105, 2000, Gerbault et al, PEPI 177, 2009, Capitanio, Nature Comm. 480, 2011

I Salt tectonics
Poliakov et al, Tectonophys. 226, 1993, Albertz and Beaumont, Tectonics 29, 2010, Gradmann & Beaumont, Tectonics 31, 2012

I Delamination/instabilities
Schott, Tectonophysics 296, 1998, van Wijk, Geology 38, 2010

I Extensional systems
Huismans et al, JGR 110, 2005, Allken et al, Basin Research 25, 2013,

I Magma transport
Yamato et al, Tectonophysics 526, 2012

I Whole planet evolution
de Vries et al, EPSL 292, 2010,

I plume dynamics
van Hunen & Zhong, GRL 30, 2003, Ueda et al, PEPI 171, 2008, Tosi and Yuen, EPSL 312, 2011 Tan et al, G3 12, 2011
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The Main Elements of Simulation

1. construction of a mathematical model for corresponding physical problems
with appropriate assumptions. (ODE’s, PDE’s)

2. development of an appropriate numerical model or approximation to the
mathematical model. The numerical model usually needs to be carefully
calibrated and validated against pre-existing data and analytical results
(Error analysis)

3. theoretical modeling is actual implementation of the numerical model to
obtain solutions.

4. interpretation of the numerical results in graphics, charts, tables, or other
convenient forms, to support engineering design and operation.
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Overview of methods

There are many methods actually used in the community:

I Finite Differences Method (FDM)

I Finite Element Method (FEM)

I Finite Volume Method (FVM)

I Spectral methods

I Streamline methods



The Finite Differences Method (1)

The derivative of a function f at a point x is defined by the limit

f ′(x) = lim
h→0

f (x + h)− f (x)

h
' f (x + dx)− f (x)

dx



The Finite Differences Method (2)

∂f

∂x
=

∆f

∆x
=

f (x + h)− f (x − h)

2h

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

( ∂f
∂x

)(x+h) − ( ∂f
∂x

)(x−h)

2h
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The Finite Differences Method (3)

I I wish to solve the PDE dT
dx

= 1 on the segment [0 : L].

I Obviously, the solution is of the type T (x) = C where C is a constant

I I therefore need one boundary condition, say T (x = 0) = TA

The following relationships then hold:

T (x = x1) = TA

T2 − T1

x2 − x1
= 1

T3 − T2

x3 − x2
= 1

T4 − T3

x4 − x3
= 1

T5 − T4

x5 − x4
= 1



The Finite Differences Method (4)

I Let us take x2 − x1 = x3 − x2 = x4 − x3 = x5 − x4 = dx = L/(n − 1)

I the previous equations can be rewritten

T1 = TA

T2 − T1 = dx

T3 − T2 = dx

T4 − T3 = dx

T5 − T4 = dx

or, 
1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1




T1

T1

T3

T4

T5

 =


TA

dx
dx
dx
dx



I I need to solve a linear system of the type: A · X = B

I more points → better precision → bigger matrix !
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The Finite Differences Method (5)

In two-dimensions ? ∆T ? ∇ · v ?

I The red-dot patterns are called stencils.



The Finite Difference Method (6)

Gerya & Yuen, PEPI 140, 2003; PEPI 163, 2007, Gerya, J. of Geodyn. 52, 2011, Malatesta, Nature Comm. 2013



The Finite Element Method (1)



The Finite Element Method (2) - Resources



The Finite Element Method (3) - Basic principles



The Finite Element Method (4) - Basic principles

Each element :


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ·


T1

T2

T3

T4

 =


b1

b2

b3

b4





The Finite Element Method (6) - Basic principles

4 elements, 9 nodes

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .


·



T1

T2

T3

T4

T5

T6

T7

T8

T9


=



.

.

.

.

.

.

.

.

.





The Finite Element Method (7) - Basic principles



The Finite Element Method (8) - Basic principles

I Let us consider the following grid:

I There are 4x3 nodes and 3x2 elements.

I Heat transport equation: 1 degree of freedom (=unknown) at each node.
→ matrix size N=4x3x1=12

I Stokes equation: 2+1 (u, v , p) dofs per node.
→ matrix size N=4x3x1=36

Stokes matrix always larger than temperature matrix !
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The Finite Element Method (8) - Basic principles

Nodes only coupled with their nearest neighbours → sparse matrix.

small grid large grid



The Finite Element Method (9) - Elements



The Finite Element Method (10) - Meshing

Meshing is can be complex and time consuming, especially in 3D



The Finite Element Method (11) - Meshing

Master student Casper Pranger. ”Numerical modelling of the Banda Arcs
instantaneous subduction dynamics.”



The Finite Element Method (12) - Meshing



The Finite Element Method (12) - Meshing



The Finite Element Method (12) - Meshing



Other methods ?

Discrete Element Method (DEM)

Extension fracture propagation India-Asia collision
Virgo et al, JGR 118, 2013,



Other methods ?

Smoothed Particle Hydrodynamics (SPH)

http://geonumerics.mit.edu/Technologies.aspx, Das & Cleary, Theoretical and Applied Fracture Mechanics 53, 2010



Resources



Parallelism (1) - Motivation

A simple example: we want ro run a simulation of the whole Earth mantle with
a constant resolution of 5km.

Vmantle =
4

3
π(R3

out − R3
in) ' 1012km3

Vcell = 125km3

Number of cells needed:

Ncell =
Vmantle

Vcell
= 8× 109

Matrix size is approx. 3-4 times the number of cells:

N ' 25× 109

Using between 9 and 125 markers per cell,

Nmarkers ≥ 1010

⇒ Very large memory footprint & extremely long computational times.
⇒ Only way to overcome this: using supercomputers with many processors and
large memory capacities.



Parallelism (1) - Motivation

A simple example: we want ro run a simulation of the whole Earth mantle with
a constant resolution of 5km.

Vmantle =
4

3
π(R3

out − R3
in) ' 1012km3

Vcell = 125km3

Number of cells needed:

Ncell =
Vmantle

Vcell
= 8× 109

Matrix size is approx. 3-4 times the number of cells:

N ' 25× 109

Using between 9 and 125 markers per cell,

Nmarkers ≥ 1010

⇒ Very large memory footprint & extremely long computational times.
⇒ Only way to overcome this: using supercomputers with many processors and
large memory capacities.



Parallelism (1) - Motivation

A simple example: we want ro run a simulation of the whole Earth mantle with
a constant resolution of 5km.

Vmantle =
4

3
π(R3

out − R3
in) ' 1012km3

Vcell = 125km3

Number of cells needed:

Ncell =
Vmantle

Vcell
= 8× 109

Matrix size is approx. 3-4 times the number of cells:

N ' 25× 109

Using between 9 and 125 markers per cell,

Nmarkers ≥ 1010

⇒ Very large memory footprint & extremely long computational times.

⇒ Only way to overcome this: using supercomputers with many processors and
large memory capacities.



Parallelism (1) - Motivation

A simple example: we want ro run a simulation of the whole Earth mantle with
a constant resolution of 5km.

Vmantle =
4

3
π(R3

out − R3
in) ' 1012km3

Vcell = 125km3

Number of cells needed:

Ncell =
Vmantle

Vcell
= 8× 109

Matrix size is approx. 3-4 times the number of cells:

N ' 25× 109

Using between 9 and 125 markers per cell,

Nmarkers ≥ 1010

⇒ Very large memory footprint & extremely long computational times.
⇒ Only way to overcome this: using supercomputers with many processors and
large memory capacities.



Parallelism (2)

I Shared memory

I Distributed memory
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Parallelism - Programming paradigms

I OpenMP (1997, Open Multi-Processing) is an API that supports
multi-platform shared memory multiprocessing programming in C, C++,
and Fortran, on most processor architectures and operating systems,
including Solaris, AIX, HP-UX, GNU/Linux, Mac OS X, and Windows
platforms.

I It consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior.



Parallelism - Programming paradigms

I MPI (1994, Message Passing Interface) is a standardized and portable
message-passing system designed by a group of researchers from academia
and industry to function on a wide variety of parallel computers.

I The standard defines the syntax and semantics of a core of library routines
useful to a wide range of users writing portable message-passing programs
in Fortran or the C programming language.

I There are several well-tested and efficient implementations of MPI,
including some that are free or in the public domain.



Parallelism - coding

You can write a code, and then parallelise it.

But you shouldn’t.
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Parallelism - Domain decomposition

An example of domain decomposition for a 3D convection problem in a
spherical shell.

Isocontours of the temperature field. Partitioning of the domain onto 512 proc.

The mesh has 1,424,176 cells. The solution has approximately 54 million
unknowns (39 million vel., 1.7 million press., and 13 million temp.)

Kronbichler et al, GJI 191, 2012



Parallelism - Amdahl’s law

The speedup of a program using multiple processors in parallel computing
is limited by the time needed for the sequential fraction of the program.

Suppose 70% of a program can be sped up if parallelized and run on multiple
CPUs instead of one. If α is the fraction of a calculation that is sequential, and
1− α is the fraction that can be parallelized, the maximum speedup that can
be achieved by using P processors is given according to Amdahl’s Law:

1

α + 1−α
P

Using 4 processors: speedup=2.105
Using 8 processors: speedup=2.581
Using 1000 processors: speedup' 3.33
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Parallelism - Scaling

I I am running a big task on many processors.

I It goes faster than on one processor !

I How can I characterise parallel performance ?

I How well does the performance scale with the used ressources ?

I Does it make sense to use more ressources ?

⇒ Let’s talk about scaling and scalability.
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Parallelism - Scaling

In high performance computing there are two common notions of scalability:

I The first is strong scaling, which is defined as how the solution time varies
with the number of processors for a fixed total problem size.

I The second is weak scaling, which is defined as how the solution time
varies with the number of processors for a fixed problem size per processor.

Thieulot, PEPI 188, 2011, Kronbichler et al, GJI 191, 2012
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Parallelism - Tools of the trade (1)

I Tablet

I Laptop

I Desktop

I Super Desktop/Server

I Beowulf

I Supercomputer



Parallelism - Tools of the trade (2)

(Super) Desktop computer

I 2.7 Ghz 12-core

I 64Gb RAM memory

I 1Tb flash drive

I ideal for development & running



Parallelism - Tools of the trade (3)

A Beowulf cluster is a computer cluster of what are normally identical,
commodity-grade computers networked into a small local area network with
libraries and programs installed which allow processing to be shared among
them.
The result is a high-performance parallel computing cluster from inexpensive
personal computer hardware.



Parallelism - Tools of the trade (3)

Supercomputers. (www.top500.org)

∼ 300, 000 cores, 710Gb RAM,
peak performance > 20 petaflops, i.e. 20,000 trillion calculations per second.



Parallelism - Tools of the trade (4)



Adaptive Mesh Refinement (1)

Solid earth dynamics are governed by processes that occur over a wide range of
time and length scales.

Examples:

I Plate tectonics: large-scale motion of plates over Myrs and length 1000’s
of kilometres and seismic processes that occur at timescales of minutes
and less over lengths scales generally under 100km.

I Upwellings associated with mantle convection: wide range of length scales
with large super plumes 1000s of kilometres across with small plumes
detaching from their periphery that have thermal and mechanical
boundary layers 100s of meters in thickness

I Thermochemical transport processes in the mantle where chemical
boundaries can be sharp over submeter length scales.

⇒ How can we capture these phenomena with current computing capacities ?
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Adaptive Mesh Refinement (2)

I A uniform discretization of the mantle at for instance 1km resolution
would result in meshes with nearly 1012 elements, which is far beyond the
capacity of the largest available supercomputers.

I An alternative is to employ adaptive mesh refinement (AMR) and
coarsening methods that can reduce the number of unknowns drastically
by placing resolution only where needed.

I Unfortunately, the added complexity of AMR methods can also impose
significant overhead, in particular on highly parallel computing systems,
because of the need for frequent readaptation and repartitioning of the
mesh over the course of the simulation.
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Adaptive Mesh Refinement (3)

Burstedde et al, GJI 192, 2013
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Burstedde et al, GJI 192, 2013
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Alisic et al, JGR 117, 2012
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Braun et al, PEPI 171, 2008, Thieulot et al, JGR 113, 2008



Adaptive Mesh Refinement (3)

Davies et al, G3 12, 2011, May et al, J. of Geodyn. 70, 2013



Adaptive Mesh Refinement (3)

AMR+Finite Differences !
Gerya, G3 14, 2013



Adaptive Mesh Refinement (3)

Glerum et al, 2014, In Prep.


