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Motivation

2.2. 2D model setup and numerical method

We consider a 2D model domain of 2400 km by 400 km, with
an initially horizontally layered lithosphere and underlying man-
tle (see Fig. 1A). The oceanic crust is subdivided into a 4 km thick
upper and an 8 km thick lower crust (see Table 52 for employed
material parameters). The thickness of the underlying lithosphere
is defined by the 1200 “C isotherm. The initial temperature field of
the model is computed numerically by solving the heat diffusion
equation in 1D for a half space cooling model, taking into account
radioactive heating. To create a thermal heterogeneity at time
zero and horizontal coordinate 0 km, the model is divided in two
subdomains (left and right) with the right subdomain having a
5 Ma younger thermal age ). The resulting temperature jump is
smoothed with an arctan-like interpolant from —200 to 200 km.

The model domain is discretized using quadrilateral elements
with quadratic shape functions for velocity and temperature and
discontinuous linear shape functions for pressure (Q-P_,, Cuvelier
et al., 1986). Between —500 and 500 km width and depths less
than 250 km, node spacing is 2 km in both x- and z-direction.
Qutside this region, node spacing increases by 2% per element
until a maximum spacing of 20 km is reached. To solve Eqs. (1)- (8)
on this grid, we use the finite element code MILAMIN_VEP (e.g.
Crameri and Kaus, 2010; Kaus, 2010). It employs the finite
element method and uses an efficient matrix-assembly method
(Dabrowski et al., 2008). This code has been benchmarked vs.
analytical solutions as well as vs. other numerical codes (e.g.
Kaus, 2010). Advection of properties (composition, temperature,

3 DISCRETIZATION AND SOLVERS

The Rhea code is custom written in C. It uses the Message Passing
Interface to implement distributed parallelism. For the discretization
of the temperature, velocity and the pressure in (1)—~(3), we use (tri-
)linear finite elements on locally refined hexahedral meshes. These
meshes are adapted to resolve features of the velocity, pressure or
viscosity fields. Practical challenges, as well as the technical details
required for parallel adaptive simulations, are discussed in Section
4. In this section, we focus on the discretization and on the solvers
used in Rhea. Because of the large size of the matrices that result
from the discretization, linear system cannot be solved using direct
factorization-based solvers but have to be solved using iterative
solution algorithms.

3.1 Variational formulation of Stokes equations

The finite element discretization is based on the weak form of the
system of partial differential equations derived from (1) and (2) by
multiplication with admissible test functions v and ¢ (omitting the
di ials dx, etc. for brevity),

stress etc.) is done by deforming the L mesh.
is applied every 30 timesteps and 2.7 million (initially randomly
distributed) markers are used to transfer properties from the old
to the new mesh. During remeshing, nodal properties are inter-
polated to the markers using the element shape functions and
then interpolated back to the new mesh. To avoid numerical
instabilities, we employ a lower and an upper viscosity cutoff of
10" Pas and 10%° Pas respectively, as well as the free surface
stabilization algorithm (Kaus et al., 2010).

The energy equation is solved with isothermal top and bottom
boundaries (273 and 1600 K respectively) and flux-free side
boundaries. The mechanical boundary conditions are free surface

Thielmann et al, EPSL 359, 2012

/[V-(pl—/i(Vll+Vll7))—ﬂ-v:0 forall v, (4a)

Q

/(v ‘u)g =0 forall q, (4b)
o

and integration by parts which yields

A(u,v)+ B(v, p)+ E(p,u,v) = F(v)  forallv, (5a)

Burstedde et al, GJI 192, 2013



What does Numerical geodynamics modelling mean 7

» Modelling: the process of solving physical problems by appropriate
simplification of reality.

> A computer simulation is a simulation, run on a single computer, or a
network of computers, to reproduce behavior of a system. (Wikipedia)
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Why numerical simulation ?

> because experiments are sometimes impossible
(life cycle of galaxies, weather forecast, terror attacks)

> because experiments are sometimes not welcome
(avalanches, nuclear tests, medicine)

> because experiments are sometimes very costly and-time consuming
(protein folding, material sciences)

> because experiments are sometimes more expensive
(aerodynamics, crash test)

> because it's fun.
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> plume dynamics

van Hunen & Zhong, GRL 30, 2003, Ueda et al, PEPI 171, 2008, Tosi and Yuen, EPSL 312, 2011 Tan et al, G3 12, 2011
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The Main Elements of Simulation

Physical Mathematical Simulation Prediction
‘ System ‘:>‘ Model ‘ :>‘ —> ‘
‘ Validation ‘ ‘ Verification ‘

‘ idation: Do we solve the right mathematical model? ‘

‘ Verification: Do we solve the mathematical model correctly? ‘

1. construction of a mathematical model for corresponding physical problems
with appropriate assumptions. (ODE's, PDE’s)

2. development of an appropriate numerical model or approximation to the
mathematical model. The numerical model usually needs to be carefully
calibrated and validated against pre-existing data and analytical results
(Error analysis)

3. theoretical modeling is actual implementation of the numerical model to
obtain solutions.

4. interpretation of the numerical results in graphics, charts, tables, or other
convenient forms, to support engineering design and operation.



Overview of methods

There are many methods actually used in the community:

Finite Differences Method (FDM)
Finite Element Method (FEM)
Finite Volume Method (FVM)
Spectral methods

v

v

v

v

Streamline methods

v



The Finite Differences Method (1)

The derivative of a function f at a point x is defined by the limit

f/(x) :Lm f(x—|—hf)1— f(x) ~ f(x+d;2— f(x)




The Finite Differences Method (2)
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df/dx ?

f(x-h) ,l, f(x+h)
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The Finite Differences Method (3)

> | wish to solve the PDE 2L = 1 on the segment [0 : L].
» Obviously, the solution is of the type T(x) = C where C is a constant

> | therefore need one boundary condition, say T(x =0) = Ta

T1 T2 T3 T4 T5

Y

The following relationships then hold:

T(XZXl):TA
T.— T _
X2 — X1
T5— T -1
X3 — X2
T-Ts
X4 — X3
Ts—Ta _

X5 — X4



The Finite Differences Method (4)
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The Finite Differences Method (4)

> Letustake xo —x1 =x3 —xo=xa —x3 =xs —xa =dx = L/(n—1)

> the previous equations can be rewritten

Tim = Ta

T2 — T1 = dx

T3 — T2 = dX

T4 — T3 = dX

T5 - T4 = dX

or,

1 0 0 0 0 T Ta
-1 1 0 0 0 T1 dx
0o -1 1 0 0 T3 = dx
0 0 -1 1 0 T4 dx
0 0 0 -1 1 Ts dx

> | need to solve a linear system of the type: A-X =B

> more points — better precision — bigger matrix !



The Finite Differences Method (5)

In two-dimensions ? AT ? V -v ?

ij+1 G
2D stencil with no
diagonal elements.

Wi

Examples of stencils with diagonal elements in 2D.

i+1j+1 i+1j+1

i+1,j+1

i
e

> The red-dot patterns are called stencils.



The Finite Difference Method (6)

A

saimonts. Serpentinized channel

Hydration front lithosphere
accretion arc magmatic back-arc region plume
oz o e

| asthenosphere
Incipient

Melting
front

Gontinental crust

Lithosphere

Asthenosphere

Gerya & Yuen, PEPI 140, 2003; PEPI 163, 2007, Gerya, J. of Geodyn. 52, 2011, Malatesta, Nature Comm. 2013



The Finite Element Method (1)

nnx X nny elements
PDEs

(strong form)

integration

over domain; weak form discretisation ; Ax=b

g A is a matrix of size NxN

N=nnx X nny X ndof
very large matrix

need a dedicated,

solve
high-performance software

solution x=A".b



The Finite Element Method (2) - Resources
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The Finite Element Method (3) - Basic principles




The Finite Element Method (4) - Basic principles

Each element :
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The Finite Element Method (6) - Basic principles

2 3

4 elements, 9 nodes

T
T2
IE
T4
Ts
Te
Tz
Ts
Ty




The Finite Element Method (7) - Basic principles

sparse 9x9 matrix

L T
[l [l

8

};

i
i
i
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The Finite Element Method (8) - Basic principles

> Let us consider the following grid:
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The Finite Element Method (8) - Basic principles

> Let us consider the following grid:

9 10 11 12
® ® ® ®

5 6 7 8
® ® L 4 ®

1 2 3 4
o | ® |

» There are 4x3 nodes and 3x2 elements.

> Heat transport equation: 1 degree of freedom (=unknown) at each node.
— matrix size N=4x3x1=12

> Stokes equation: 241 (u, v, p) dofs per node.
— matrix size N=4x3x1=36

Stokes matrix always larger than temperature matrix !



The Finite Element Method (8) - Basic principles

Nodes only coupled with their nearest neighbours — sparse matrix.

900
800

200 300 400 500 00 700 a00 900

100

large grid

small grid



The Finite Element Method (9) - Elements

2D

Quadrilaterals

Beams Triangles
/\
-noded
F-noded
A
3-noded §-noded

d-noded

B-noded

Tetrahedrons

4-noded

10-noded

Hexahed Pentahed
s

B-noded S-n0ded
*
.

20-neded 15-noded




The Finite Element Method (10) - Meshing

Meshing is can be complex and time consuming, especially in 3D



The Finite Element Method (11) - Meshing

Master student Casper Pranger. " Numerical modelling of the Banda Arcs
instantaneous subduction dynamics.”




The Finite Element Method (12) - Meshing
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The Finite Element Method (12) - Meshing
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Other methods ?

Discrete Element Method (DEM)

Extension fracture propagation India-Asia collision

Virgo et al, JGR 118, 2013,

u]
o)
I
i
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Other methods ?

Smoothed Particle Hydrodynamics (SPH)

Rock Surface Pore Surface

http://geonumerics.mit.edu/Technologies.aspx, Das & Cleary, Theoretical and Applied Fracture Mechanics 53, 2010



Resources

ALIK ISMAIL-Z

H AND PAUL TACKLEY

Nurﬁerical Geodynamic
Modelling '

Quantitative Modeling of
Earth Surface Processes

<

*




Parallelism (1) - Motivation

A simple example: we want ro run a simulation of the whole Earth mantle with
a constant resolution of 5km.

Vmant/e = %W(Rgut - R,:f,) ~ 1012km3
Veen = 125km®
Number of cells needed:

V,
Ncell _ mantle — 8 x 109
Vcell
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Parallelism (1) - Motivation

A simple example: we want ro run a simulation of the whole Earth mantle with
a constant resolution of 5km.

Vmant/e = %W(Rgut — R,%,) ~ 1012km3

Veey = 125km®

Number of cells needed:

V,
Ncell _ mantle — 8 x 109
Vce/l

Matrix size is approx. 3-4 times the number of cells:
N ~ 25 x 10°
Using between 9 and 125 markers per cell,
Nimarkers > 10

= Very large memory footprint & extremely long computational times.
= Only way to overcome this: using supercomputers with many processors and
large memory capacities.



Parallelism (2)
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» Shared memory

—

> Distributed memory

network

‘- —.
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Parallelism - Programming paradigms

» OpenMP (1997, Open Multi-Processing) is an API that supports
multi-platform shared memory multiprocessing programming in C, C4++,
and Fortran, on most processor architectures and operating systems,
including Solaris, AIX, HP-UX, GNU/Linux, Mac OS X, and Windows
platforms.

> It consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior.

Parallel Task | Parallel Task Il Parallel Task Il

o ——

Master Thread

Parallel Task | Parallel Task Il Parallel Task Ill

Master Thread,«"-"



Parallelism - Programming paradigms

» MPI (1994, Message Passing Interface) is a standardized and portable
message-passing system designed by a group of researchers from academia
and industry to function on a wide variety of parallel computers.

» The standard defines the syntax and semantics of a core of library routines
useful to a wide range of users writing portable message-passing programs
in Fortran or the C programming language.

> There are several well-tested and efficient implementations of MPI,
including some that are free or in the public domain.
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Parallelism - coding

You can write a code, and then parallelise it.

But you shouldn't.



Parallelism - Domain decomposition

An example of domain decomposition for a 3D convection problem in a
spherical shell.

Isocontours of the temperature field. Partitioning of the domain onto 512 proc.

The mesh has 1,424,176 cells. The solution has approximately 54 million
unknowns (39 million vel., 1.7 million press., and 13 million temp.)

Kronbichler et al, GJI 191, 2012
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is limited by the time needed for the sequential fraction of the program.

Suppose 70% of a program can be sped up if parallelized and run on multiple
CPUs instead of one. If a is the fraction of a calculation that is sequential, and
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Parallelism - Amdahl’s law

The speedup of a program using multiple processors in parallel computing
is limited by the time needed for the sequential fraction of the program.

Suppose 70% of a program can be sped up if parallelized and run on multiple
CPUs instead of one. If a is the fraction of a calculation that is sequential, and
1 — « is the fraction that can be parallelized, the maximum speedup that can
be achieved by using P processors is given according to Amdahl’'s Law:

1
11—«
a+ 5
Using 4 processors: speedup=2.105

Using 8 processors: speedup=2.581
Using 1000 processors: speedup~ 3.33
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Parallelism - Scaling

> | am running a big task on many processors.

> It goes faster than on one processor !

» How can | characterise parallel performance 7
» How well does the performance scale with the used ressources ?

» Does it make sense to use more ressources ?

= Let's talk about scaling and scalability.
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In high performance computing there are two common notions of scalability:

» The first is strong scaling, which is defined as how the solution time varies
with the number of processors for a fixed total problem size.

> The second is weak scaling, which is defined as how the solution time
varies with the number of processors for a fixed problem size per processor.

total = cloud advection .
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nb. cpus #DoFs

Thieulot, PEPI 188, 2011, Kronbichler et al, GJI 191, 2012
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Parallelism - Tools of the trade (2)

(Super) Desktop computer
» 2.7 Ghz 12-core

64Gb RAM memory

1Tb flash drive

ideal for development & running

v

v

v




Parallelism - Tools of the trade (3)

A Beowulf cluster is a computer cluster of what are normally identical,
commodity-grade computers networked into a small local area network with
libraries and programs installed which allow processing to be shared among
them.

The result is a high-performance parallel computing cluster from inexpensive
personal computer hardware.

o




Parallelism - Tools of the trade (3)

Supercomputers. (www.top500.org)

~ 300,000 cores, 710Gb RAM,
peak performance > 20 petaflops, i.e. 20,000 trillion calculations per second.



Parallelism - Tools of the trade (4)

Rank

e ¢ ¢ 06 0 o0 ©

Site

National Super Computer Center in
Guangzhou
China

DOE/SC/Oak Ridge National Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for Computational
Science (AICS)
Japan

DOE/SC/Argonne National Laboratory
United States

Swiss National Supercomputing Gentre
(CSCS)
Switzerland

Texas Advanced Computing Center/Univ. of
Texas
United States

Forschungszentrum Juelich (FZJ)
Germany

System

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
Xeon Phi 31S1P

NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz,
Cray Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60
GHz, Custom
1BM

K computer, SPARCE4 Viiifx 2.0GHz, Tofu
interconnect
Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz,
Custem
1BM

Piz Daint - Cray XC30, Xeon E5-2670 BC
2.600GHz, Aries interconnect , NVIDIA K20x
Cray Inc.

Stampede - PowerEdge C8220, Xeon E5-2680 8C
2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P
Dell

JUQUEEN - BlueGene/Q, Power BQC 16C
1.600GHz, Custom Interconnect
1BM

Cores

3120000

560640

1572864

705024

786432

115884

462462

458752

Rmax
(TFlopls)

33862.7

17580.0

17173.2

10510.0

8586.6

6271.0

5168.1

5008.9

Rpeak
(TFlopls)

54802.4

271125

20132.7

11280.4

10066.3

7788.8

8520.1

5872.0

Power
(kW)

17808

8209

7890

12660

3945

2325

4510

2301

IS

C

P
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Solid earth dynamics are governed by processes that occur over a wide range of
time and length scales.
Examples:

> Plate tectonics: large-scale motion of plates over Myrs and length 1000's
of kilometres and seismic processes that occur at timescales of minutes
and less over lengths scales generally under 100km.

» Upwellings associated with mantle convection: wide range of length scales
with large super plumes 1000s of kilometres across with small plumes
detaching from their periphery that have thermal and mechanical
boundary layers 100s of meters in thickness

» Thermochemical transport processes in the mantle where chemical
boundaries can be sharp over submeter length scales.

= How can we capture these phenomena with current computing capacities ?
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» A uniform discretization of the mantle at for instance 1km resolution
would result in meshes with nearly 10'? elements, which is far beyond the
capacity of the largest available supercomputers.

> An alternative is to employ adaptive mesh refinement (AMR) and
coarsening methods that can reduce the number of unknowns drastically
by placing resolution only where needed.

HEEEHED

H

» Unfortunately, the added complexity of AMR methods can also impose
significant overhead, in particular on highly parallel computing systems,
because of the need for frequent readaptation and repartitioning of the
mesh over the course of the simulation.
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Burstedde et al, GJI 192, 2013
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Alisic et al, JGR 117, 2012



Adaptive Mesh Refinement (3)

Braun et al, PEPI 171, 2008, Thieulot et al, JGR 113, 2008



Adaptive Mesh Refinement (3)

Davies et al, G3 12, 2011, May et al, J. of Geodyn. 70, 2013




Adaptive Mesh Refinement (3)

visco-plastic rocks

AMR+Finite Differences !

Gerya, G3 14, 2013

log viscosity

19 20 21 22




Adaptive Mesh Refinement (3)

Glerum et al, 2014, In Prep.



