
Numerical Geodynamics Modelling
(there is no free lunch)

C. Thieulot (c.thieulot@uu.nl)

March 2014

Kinematical description (1)

Lagrangian → the mesh deforms

→ Finite Element method

Kinematical description (2)

Eulerian → the mesh does not deform

→ Finite Difference Method, Finite Element Method
Gerya & Yuen, PEPI, 2007, Braun et al, PEPI, 2008, Jadamec & Billen, JGR, 2012

Kinematical description (2)

phd student Bram hillebrand

Kinematical description (3)

Arbitrary Lagrangian-Eulerian → the mesh somewhat deforms

→ Finite Element method
Fullsack, GJI 1995, Thieulot, PEPI 2011

Kinematical description (3)

Arbitrary Lagrangian-Eulerian → the mesh somewhat deforms

Allken et al, JGR 2011, G3 2012

Free surface (1)

At the surface of the Earth, the air layer exerts no stress on the crust → free
surface.

There are three essential features needed to properly model free surfaces:

I A scheme is needed to describe the shape and location of a surface,

I An algorithm is required to evolve the shape and location with time

I Free-surface boundary conditions must be applied at the surface.

If no (true) free surface: no topography, no loading, no erosion/sedimentation

I Lagrangian formulation (or ALE): no special requirement

I Eulerian formulation: the mesh cannot conform to the Earth’s surface
→ we need to model the air too.

Free surface (1)

At the surface of the Earth, the air layer exerts no stress on the crust → free
surface.
There are three essential features needed to properly model free surfaces:

I A scheme is needed to describe the shape and location of a surface,

I An algorithm is required to evolve the shape and location with time

I Free-surface boundary conditions must be applied at the surface.

If no (true) free surface: no topography, no loading, no erosion/sedimentation

I Lagrangian formulation (or ALE): no special requirement

I Eulerian formulation: the mesh cannot conform to the Earth’s surface
→ we need to model the air too.

Free surface (1)

At the surface of the Earth, the air layer exerts no stress on the crust → free
surface.
There are three essential features needed to properly model free surfaces:

I A scheme is needed to describe the shape and location of a surface,

I An algorithm is required to evolve the shape and location with time

I Free-surface boundary conditions must be applied at the surface.

If no (true) free surface: no topography, no loading, no erosion/sedimentation

I Lagrangian formulation (or ALE): no special requirement

I Eulerian formulation: the mesh cannot conform to the Earth’s surface
→ we need to model the air too.

Free surface (1)

At the surface of the Earth, the air layer exerts no stress on the crust → free
surface.
There are three essential features needed to properly model free surfaces:

I A scheme is needed to describe the shape and location of a surface,

I An algorithm is required to evolve the shape and location with time

I Free-surface boundary conditions must be applied at the surface.

If no (true) free surface: no topography, no loading, no erosion/sedimentation

I Lagrangian formulation (or ALE): no special requirement

I Eulerian formulation: the mesh cannot conform to the Earth’s surface
→ we need to model the air too.

Free surface (2) - Sticky air

I This method requires the addition of a fluid layer in the model domain.

I pb: air viscosity < 10−5Pa.s vs mantle viscosity ∼ 1021Pa.s

I air is replaced by a proxy, i.e. a fluid with low density and a sufficiently
small viscosity.

I typically, µair = 1017−18Pa.s.

µair = 1018Pa.s ?

Free surface (2) - Sticky air

I This method requires the addition of a fluid layer in the model domain.

I pb: air viscosity < 10−5Pa.s vs mantle viscosity ∼ 1021Pa.s

I air is replaced by a proxy, i.e. a fluid with low density and a sufficiently
small viscosity.

I typically, µair = 1017−18Pa.s.

µair = 1018Pa.s ?

Free surface (3) - Sticky air

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

m
ax

. t
op

og
ra

ph
y

time (kyr)

µ=1020

µ=1019

µ=1018

µ=1017

µ=1016

analytical

Crameri et al, GJI 189, 2012

Free surface (4) - stabilisation

Let’s relax ... and what about drunken sailors ?

∆ρ = 100kg/m3, 500× 500km, sinusoidal amplitude=5km

dt small dt large

⇒ Need for stabilisation !

Free surface (4) - stabilisation

Let’s relax ... and what about drunken sailors ?
∆ρ = 100kg/m3, 500× 500km, sinusoidal amplitude=5km

dt small dt large

⇒ Need for stabilisation !

Free surface (4) - stabilisation

Let’s relax ... and what about drunken sailors ?
∆ρ = 100kg/m3, 500× 500km, sinusoidal amplitude=5km

dt small dt large

⇒ Need for stabilisation !

Free surface (5) - stabilisation

-300

-275

-250

-225

-200

-175

-150

-125

-100

-75

-50

-25

 0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

de
vi

at
io

n
(m

)

time (Myr)

dt=1000yr
dt=3900yr

dt=3,900yr (stab.)
dt=10,000yr (stab.)
dt=50,000yr (stab.)

Kaus et al, PEPI 181, 2010, Duretz, Gcubed, 2011, Quinquis et al, Tectonophysics 497, 2011

2D vs 3D

Earth is 3D. Why are 99% of all modelling papers 2D ?

2D 3D ratio

grid 100x100 100x100x100
nodes 104 106

dofs 3× 104 4× 106 > 100
memory solver < 10Mb ∼ 100Gb > 105

solve time ∼ 1s 1h > 1000
tracers 52 × 104 53 × 106 500

⇒ 100-fold increase in memory and computational time
↪→ optimised code, dedicated methods, parallelism, ...

2D vs 3D

Earth is 3D. Why are 99% of all modelling papers 2D ?
2D 3D ratio

grid 100x100 100x100x100
nodes 104 106

dofs 3× 104 4× 106 > 100
memory solver < 10Mb ∼ 100Gb > 105

solve time ∼ 1s 1h > 1000
tracers 52 × 104 53 × 106 500

⇒ 100-fold increase in memory and computational time
↪→ optimised code, dedicated methods, parallelism, ...

2D vs 3D

Jadamec & Billen, 2012: The mesh contains 960 x 648 x 160 elements in the
longitudinal, latitudinal, and radial directions, respectively. Models were run
using 360 processors on Lonestar, a Linux cluster, for approximately 48 hours
per job in models with the composite viscosity and for less time in models with
the Newtonian only viscosity.

The increasing incorporation of high performance computing and massive data
sets into scientific research has led to the need for high fidelity tools to analyze
and interpret the information. [...] Immersive 3D visualization facilities provide
one approach to fill this gap in the workflow [...]. The open source software
3DVisualizer was used in the Keck Center for Active Visualization in the Earth
Sciences (KeckCAVES) for rapid inspection and interactive exploration of the
3D plate boundary geometry and thermal structure output.

Li et al, EPSL 2013: The Cartesian spatial domain is resolved by 501x341x165
grid points with the resolution of 2x2km in the x-y plane and 4 km in the
along-strike z-direction. The lithological structure of the model is represented
by a dense grid of about 330 million randomly distributed markers used for
advecting various material properties and temperatures.

2D vs 3D

Jadamec & Billen, 2012: The mesh contains 960 x 648 x 160 elements in the
longitudinal, latitudinal, and radial directions, respectively. Models were run
using 360 processors on Lonestar, a Linux cluster, for approximately 48 hours
per job in models with the composite viscosity and for less time in models with
the Newtonian only viscosity.
The increasing incorporation of high performance computing and massive data
sets into scientific research has led to the need for high fidelity tools to analyze
and interpret the information. [...] Immersive 3D visualization facilities provide
one approach to fill this gap in the workflow [...]. The open source software
3DVisualizer was used in the Keck Center for Active Visualization in the Earth
Sciences (KeckCAVES) for rapid inspection and interactive exploration of the
3D plate boundary geometry and thermal structure output.

Li et al, EPSL 2013: The Cartesian spatial domain is resolved by 501x341x165
grid points with the resolution of 2x2km in the x-y plane and 4 km in the
along-strike z-direction. The lithological structure of the model is represented
by a dense grid of about 330 million randomly distributed markers used for
advecting various material properties and temperatures.

2D vs 3D

Jadamec & Billen, 2012: The mesh contains 960 x 648 x 160 elements in the
longitudinal, latitudinal, and radial directions, respectively. Models were run
using 360 processors on Lonestar, a Linux cluster, for approximately 48 hours
per job in models with the composite viscosity and for less time in models with
the Newtonian only viscosity.
The increasing incorporation of high performance computing and massive data
sets into scientific research has led to the need for high fidelity tools to analyze
and interpret the information. [...] Immersive 3D visualization facilities provide
one approach to fill this gap in the workflow [...]. The open source software
3DVisualizer was used in the Keck Center for Active Visualization in the Earth
Sciences (KeckCAVES) for rapid inspection and interactive exploration of the
3D plate boundary geometry and thermal structure output.

Li et al, EPSL 2013: The Cartesian spatial domain is resolved by 501x341x165
grid points with the resolution of 2x2km in the x-y plane and 4 km in the
along-strike z-direction. The lithological structure of the model is represented
by a dense grid of about 330 million randomly distributed markers used for
advecting various material properties and temperatures.

Boundary conditions (1)

I Free slip (flow tangential to boundary) Jadamed & billen, JGR, 2012, Leng & Gurnis, 2011

I No-slip (no flow along the boundary)

I kinematical (precribed velocity) Gurnis et al, Gcubed, 2004

I stress (prescribed stress)

I Open boundaries are implemented by constraining zero tangential velocity
on the boundary and by imposing a lithostatic pressure condition for the
normal stress on the boundary Chertova et al, 2012.

Your model is only as good as the boundary conditions you apply.

Boundary conditions (2) - Open Boundary conditions

−∇p +∇(2µε̇) = ρg p = plith + δp

free slip side walls open b.c. side walls

Boundary conditions (3) - Open Boundary conditions

Chertova et al, Solid Earth 3, 2012

Boundary conditions (4) - In/Outflow

Leng & Gurnis, 2011 Gurnis et al, 2004

Eulerian computational domain + incompressible flow:
⇒ inflow must balance outflow !

Boundary conditions (4) - In/Outflow

Leng & Gurnis, 2011 Gurnis et al, 2004

Eulerian computational domain + incompressible flow:
⇒ inflow must balance outflow !

The art of benchmarking (1)

I ASPECT > 500,000 lines

I ELEFANT > 100,000 lines

I Complex codes are made of multiple algorithms interacting with each
other:
Solving Stokes Eq + Solving Temp. Eq. + Advecting material + Phase
change + brittle-ductile transition +Surface processes + ...

You need to thoroughly test your code.

This process is called benchmarking

The art of benchmarking (1)

I ASPECT > 500,000 lines

I ELEFANT > 100,000 lines

I Complex codes are made of multiple algorithms interacting with each
other:
Solving Stokes Eq + Solving Temp. Eq. + Advecting material + Phase
change + brittle-ductile transition +Surface processes + ...

You need to thoroughly test your code.

This process is called benchmarking

The art of benchmarking (1)

I ASPECT > 500,000 lines

I ELEFANT > 100,000 lines

I Complex codes are made of multiple algorithms interacting with each
other:
Solving Stokes Eq + Solving Temp. Eq. + Advecting material + Phase
change + brittle-ductile transition +Surface processes + ...

You need to thoroughly test your code.

This process is called benchmarking

The art of benchmarking (2)

You have two options

1. Run a simulation to which there is an analytical solution and compare the
outcome of your code with the analytical solution.

2. Run the same simulation on a variety of codes (preferably using different
techniques) and compare outcome.

Since (1) is not always possible, (2) is widely used:
”A comparison of numerical surface topography calculations: an evaluation of the sticky air method”, Crameri et al, GJI 189, 2012

”A community benchmark for 2-D Cartesian compressible convection in the Earths mantle”, King et al, GJI 180, 2010

”A comparison of methods for the modeling of thermochemical convection”, van Keken, JGR 102, 1997

”The numerical sandbox: comparison of model results for a shortening and an extension experiment”, Buiter et al, 2006

”3D convection at infinite Prandtl number in Cartseian geometry - a benchmark comparison”, Busse et al, 1993

”A two- and three-dimensional numerical comparison study of slab detachment”, C. thieulot et al, 2014 ?

”A benchmark comparison of spontaneous subduction modelsTowards a free surface”, H. Schmeling et al, PEPI 2008

The art of benchmarking (2)

You have two options

1. Run a simulation to which there is an analytical solution and compare the
outcome of your code with the analytical solution.

2. Run the same simulation on a variety of codes (preferably using different
techniques) and compare outcome.

Since (1) is not always possible, (2) is widely used:
”A comparison of numerical surface topography calculations: an evaluation of the sticky air method”, Crameri et al, GJI 189, 2012

”A community benchmark for 2-D Cartesian compressible convection in the Earths mantle”, King et al, GJI 180, 2010

”A comparison of methods for the modeling of thermochemical convection”, van Keken, JGR 102, 1997

”The numerical sandbox: comparison of model results for a shortening and an extension experiment”, Buiter et al, 2006

”3D convection at infinite Prandtl number in Cartseian geometry - a benchmark comparison”, Busse et al, 1993

”A two- and three-dimensional numerical comparison study of slab detachment”, C. thieulot et al, 2014 ?

”A benchmark comparison of spontaneous subduction modelsTowards a free surface”, H. Schmeling et al, PEPI 2008

The art of benchmarking (2)

You have two options

1. Run a simulation to which there is an analytical solution and compare the
outcome of your code with the analytical solution.

2. Run the same simulation on a variety of codes (preferably using different
techniques) and compare outcome.

Since (1) is not always possible, (2) is widely used:
”A comparison of numerical surface topography calculations: an evaluation of the sticky air method”, Crameri et al, GJI 189, 2012

”A community benchmark for 2-D Cartesian compressible convection in the Earths mantle”, King et al, GJI 180, 2010

”A comparison of methods for the modeling of thermochemical convection”, van Keken, JGR 102, 1997

”The numerical sandbox: comparison of model results for a shortening and an extension experiment”, Buiter et al, 2006

”3D convection at infinite Prandtl number in Cartseian geometry - a benchmark comparison”, Busse et al, 1993

”A two- and three-dimensional numerical comparison study of slab detachment”, C. thieulot et al, 2014 ?

”A benchmark comparison of spontaneous subduction modelsTowards a free surface”, H. Schmeling et al, PEPI 2008

The art of benchmarking (2)

You have two options

1. Run a simulation to which there is an analytical solution and compare the
outcome of your code with the analytical solution.

2. Run the same simulation on a variety of codes (preferably using different
techniques) and compare outcome.

Since (1) is not always possible, (2) is widely used:
”A comparison of numerical surface topography calculations: an evaluation of the sticky air method”, Crameri et al, GJI 189, 2012

”A community benchmark for 2-D Cartesian compressible convection in the Earths mantle”, King et al, GJI 180, 2010

”A comparison of methods for the modeling of thermochemical convection”, van Keken, JGR 102, 1997

”The numerical sandbox: comparison of model results for a shortening and an extension experiment”, Buiter et al, 2006

”3D convection at infinite Prandtl number in Cartseian geometry - a benchmark comparison”, Busse et al, 1993

”A two- and three-dimensional numerical comparison study of slab detachment”, C. thieulot et al, 2014 ?

”A benchmark comparison of spontaneous subduction modelsTowards a free surface”, H. Schmeling et al, PEPI 2008

The art of benchmarking (2) - Example

Schmeling et al, PEPI, 2008

The art of benchmarking (2) - Example

Schmeling et al, PEPI, 2008

The art of benchmarking (2) - Example

Material tracking (1)

I The Earth consists of an upper crust, a middle crust, a lower crust, a
lithospheric mantle, an asthenospheric mantle, sediments, melts, ...
⇒ realistic setups require multiple materials.

I This is not unique to Geodynamics, but very common in CFD too.

I Multiple methods have been designed over the past decades

I marker-and-cell (MAC) , Particle-in-Cell (PIC)
McKee et al, Computers & Fluids, 2008, Gerya book

I Compositional fields
ASPECT manual, ConMan code

I Level set functions
hillebrand, subm. 2014

I Particle Level set
Braun et al, PEPI 2008, Samuel & Evonuk, C3, 2010

I Marker-Chain
van Keken et al, JGR 1997

I all kinds of hybrid methods

None is perfect, none is trivial, none is the best.

Material tracking (1)

I The Earth consists of an upper crust, a middle crust, a lower crust, a
lithospheric mantle, an asthenospheric mantle, sediments, melts, ...
⇒ realistic setups require multiple materials.

I This is not unique to Geodynamics, but very common in CFD too.

I Multiple methods have been designed over the past decades

I marker-and-cell (MAC) , Particle-in-Cell (PIC)
McKee et al, Computers & Fluids, 2008, Gerya book

I Compositional fields
ASPECT manual, ConMan code

I Level set functions
hillebrand, subm. 2014

I Particle Level set
Braun et al, PEPI 2008, Samuel & Evonuk, C3, 2010

I Marker-Chain
van Keken et al, JGR 1997

I all kinds of hybrid methods

None is perfect, none is trivial, none is the best.

Material tracking (1)

I The Earth consists of an upper crust, a middle crust, a lower crust, a
lithospheric mantle, an asthenospheric mantle, sediments, melts, ...
⇒ realistic setups require multiple materials.

I This is not unique to Geodynamics, but very common in CFD too.

I Multiple methods have been designed over the past decades

I marker-and-cell (MAC) , Particle-in-Cell (PIC)
McKee et al, Computers & Fluids, 2008, Gerya book

I Compositional fields
ASPECT manual, ConMan code

I Level set functions
hillebrand, subm. 2014

I Particle Level set
Braun et al, PEPI 2008, Samuel & Evonuk, C3, 2010

I Marker-Chain
van Keken et al, JGR 1997

I all kinds of hybrid methods

None is perfect, none is trivial, none is the best.

Material tracking (2) - particle/marker advection

Purely Eulerian grid, particles/markers are used to track crustal and
lithospheric material.

Material tracking (3) - particle/marker advection

If average spacing between particles is ∼ 500m, free surface is known with
±250m precision.

Material tracking (3) - particle/marker advection

If average spacing between particles is ∼ 500m, free surface is known with
±250m precision.

Material tracking (4) - particle/marker advection

Task 1: ”Find in which cell/element the particle is”

Assuming a 3D simulation with 100x100x100 grid and 10 particles per cell,
doing 1000 timesteps.
→ 106 cells , 107 particles

do i=1,nb of timesteps

do j=1,nb of particles

do k=1,nb of cells

Q: is (xj,yj) inside cell k ?

end do

end do

end do

Question Q needs to be answered 1016 times ...

Do not use the force Luke ...

Material tracking (4) - particle/marker advection

Task 1: ”Find in which cell/element the particle is”

Assuming a 3D simulation with 100x100x100 grid and 10 particles per cell,
doing 1000 timesteps.
→ 106 cells , 107 particles

do i=1,nb of timesteps

do j=1,nb of particles

do k=1,nb of cells

Q: is (xj,yj) inside cell k ?

end do

end do

end do

Question Q needs to be answered 1016 times ...

Do not use the force Luke ...

Material tracking (4) - particle/marker advection

Task 1: ”Find in which cell/element the particle is”

Assuming a 3D simulation with 100x100x100 grid and 10 particles per cell,
doing 1000 timesteps.
→ 106 cells , 107 particles

do i=1,nb of timesteps

do j=1,nb of particles

do k=1,nb of cells

Q: is (xj,yj) inside cell k ?

end do

end do

end do

Question Q needs to be answered 1016 times ...

Do not use the force Luke ...

Material tracking (4) - particle/marker advection

Task 1: ”Find in which cell/element the particle is”

Assuming a 3D simulation with 100x100x100 grid and 10 particles per cell,
doing 1000 timesteps.
→ 106 cells , 107 particles

do i=1,nb of timesteps

do j=1,nb of particles

do k=1,nb of cells

Q: is (xj,yj) inside cell k ?

end do

end do

end do

Question Q needs to be answered 1016 times ...

Do not use the force Luke ...

Material tracking (5) - particle/marker advection

Task 2: ”interpolate velocity on particle”

Material tracking (5) - particle/marker advection

Task 2: ”interpolate velocity on particle”

Material tracking (6) - particle/marker advection
Task 3: ”move particle with velocity v”

Material tracking (7) - particle/marker advection
Task 3: ”move particle with velocity v”

⇒ small dt is better, but increases computational time.

Material tracking (8) - particle/marker advection

Task 3: ”move particle with velocity v”

Solvers (1)

I Most methods yield a very large linear system of equations. N ' 106 − 108

I Corresponding matrices are very sparse
(nonzero terms < 0.001% of matrix terms)

I A solver is a piece of code which solves the system as efficiently as
possible (and possibly in parallel)

→ more than 40 years of research in computer science, applied mathematics,
linear algebra, ...
→ unless it is for educational purposes, do not attempt to write your own
solver. Find one that suits your application and use it wisely.

There are two main types of solvers

I Direct

I Iterative

Solvers (1)

I Most methods yield a very large linear system of equations. N ' 106 − 108

I Corresponding matrices are very sparse
(nonzero terms < 0.001% of matrix terms)

I A solver is a piece of code which solves the system as efficiently as
possible (and possibly in parallel)

→ more than 40 years of research in computer science, applied mathematics,
linear algebra, ...

→ unless it is for educational purposes, do not attempt to write your own
solver. Find one that suits your application and use it wisely.

There are two main types of solvers

I Direct

I Iterative

Solvers (1)

I Most methods yield a very large linear system of equations. N ' 106 − 108

I Corresponding matrices are very sparse
(nonzero terms < 0.001% of matrix terms)

I A solver is a piece of code which solves the system as efficiently as
possible (and possibly in parallel)

→ more than 40 years of research in computer science, applied mathematics,
linear algebra, ...
→ unless it is for educational purposes, do not attempt to write your own
solver. Find one that suits your application and use it wisely.

There are two main types of solvers

I Direct

I Iterative

Solvers (1)

I Most methods yield a very large linear system of equations. N ' 106 − 108

I Corresponding matrices are very sparse
(nonzero terms < 0.001% of matrix terms)

I A solver is a piece of code which solves the system as efficiently as
possible (and possibly in parallel)

→ more than 40 years of research in computer science, applied mathematics,
linear algebra, ...
→ unless it is for educational purposes, do not attempt to write your own
solver. Find one that suits your application and use it wisely.

There are two main types of solvers

I Direct

I Iterative

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Direct Methods

Pros:

I They can solve ill-conditioned matrices (robustness to ill- conditioning).

I They can reuse the factorized matrix and apply it to the solutions of
multiple right-hand sides.

I They can be used as black boxes with little or no need for tuning by users.

I They are versatile and application independent, being based on algebra
and graph theory rather than on any specific construction of the system of
equations.

I They have a high computational intensity and can execute well in
hierarchical computer memories.

Cons:

I They typically need to build the entire matrix of the system, which means
that big systems may not fit in memory and not be usable.

I Memory requirements for the storage of the numerical factor (number of
nonzeros in the Cholesky matrix) grow very fast, esp in 3D

I Same observation for the operation count.

I Their abstraction ignores/sacrifices the specifics of the problem.

I They are harder to parallelize efficiently on a large number of processors

Solvers (2) - Iterative Methods

I many many variants (CG, GMRES, Jacobi, Gauss-Seidel, ...)

I less memory consuming

I Different physics do require different iterative solver settings, depending on
the nature of the governing equation being solved.

I Contrary to direct solvers, iterative methods approach the solution
gradually, rather than in one large computational step.

I Therefore, when solving a problem with an iterative method, you can
observe the error estimate in the solution decrease with the number of
iterations.

I For well-conditioned problems, this convergence should be quite
monotonic. If you are working on problems that are not as
well-conditioned, then the convergence will be slower.

Solvers (2) - Iterative Methods

I many many variants (CG, GMRES, Jacobi, Gauss-Seidel, ...)

I less memory consuming

I Different physics do require different iterative solver settings, depending on
the nature of the governing equation being solved.

I Contrary to direct solvers, iterative methods approach the solution
gradually, rather than in one large computational step.

I Therefore, when solving a problem with an iterative method, you can
observe the error estimate in the solution decrease with the number of
iterations.

I For well-conditioned problems, this convergence should be quite
monotonic. If you are working on problems that are not as
well-conditioned, then the convergence will be slower.

Solvers (2) - Iterative Methods

I many many variants (CG, GMRES, Jacobi, Gauss-Seidel, ...)

I less memory consuming

I Different physics do require different iterative solver settings, depending on
the nature of the governing equation being solved.

I Contrary to direct solvers, iterative methods approach the solution
gradually, rather than in one large computational step.

I Therefore, when solving a problem with an iterative method, you can
observe the error estimate in the solution decrease with the number of
iterations.

I For well-conditioned problems, this convergence should be quite
monotonic. If you are working on problems that are not as
well-conditioned, then the convergence will be slower.

Solvers (2) - Iterative Methods

I many many variants (CG, GMRES, Jacobi, Gauss-Seidel, ...)

I less memory consuming

I Different physics do require different iterative solver settings, depending on
the nature of the governing equation being solved.

I Contrary to direct solvers, iterative methods approach the solution
gradually, rather than in one large computational step.

I Therefore, when solving a problem with an iterative method, you can
observe the error estimate in the solution decrease with the number of
iterations.

I For well-conditioned problems, this convergence should be quite
monotonic. If you are working on problems that are not as
well-conditioned, then the convergence will be slower.

Solvers (2) - Iterative Methods

I many many variants (CG, GMRES, Jacobi, Gauss-Seidel, ...)

I less memory consuming

I Different physics do require different iterative solver settings, depending on
the nature of the governing equation being solved.

I Contrary to direct solvers, iterative methods approach the solution
gradually, rather than in one large computational step.

I Therefore, when solving a problem with an iterative method, you can
observe the error estimate in the solution decrease with the number of
iterations.

I For well-conditioned problems, this convergence should be quite
monotonic. If you are working on problems that are not as
well-conditioned, then the convergence will be slower.

Solvers (2) - Iterative Methods

I many many variants (CG, GMRES, Jacobi, Gauss-Seidel, ...)

I less memory consuming

I Different physics do require different iterative solver settings, depending on
the nature of the governing equation being solved.

I Contrary to direct solvers, iterative methods approach the solution
gradually, rather than in one large computational step.

I Therefore, when solving a problem with an iterative method, you can
observe the error estimate in the solution decrease with the number of
iterations.

I For well-conditioned problems, this convergence should be quite
monotonic. If you are working on problems that are not as
well-conditioned, then the convergence will be slower.

Solvers (2) - Iterative Methods

I many many variants (CG, GMRES, Jacobi, Gauss-Seidel, ...)

I less memory consuming

I Different physics do require different iterative solver settings, depending on
the nature of the governing equation being solved.

I Contrary to direct solvers, iterative methods approach the solution
gradually, rather than in one large computational step.

I Therefore, when solving a problem with an iterative method, you can
observe the error estimate in the solution decrease with the number of
iterations.

I For well-conditioned problems, this convergence should be quite
monotonic. If you are working on problems that are not as
well-conditioned, then the convergence will be slower.

Solvers (2) - an example of iterative method

The Gauss-Seidel method is an iterative technique for solving a square system
of n linear equations with unknown x:

Ax = b.

It is defined by the iteration

L∗x
(k+1) = b− Ux(k),

where the matrix A is decomposed into a lower triangular component L∗, and a
strictly upper triangular component U: A = L∗ + U

In more detail, write out A, x and b in their components:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =


x1

x2

...
xn

 , b =


b1

b2

...
bn

 .

Solvers (2) - an example of iterative method

The Gauss-Seidel method is an iterative technique for solving a square system
of n linear equations with unknown x:

Ax = b.

It is defined by the iteration

L∗x
(k+1) = b− Ux(k),

where the matrix A is decomposed into a lower triangular component L∗, and a
strictly upper triangular component U: A = L∗ + U
In more detail, write out A, x and b in their components:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =


x1

x2

...
xn

 , b =


b1

b2

...
bn

 .

Solvers (2) - an example of iterative method

The decomposition of A into its lower triangular component and its strictly
upper triangular component is given by:

A = L∗+U where L∗ =


a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann

 , U =


0 a12 · · · a1n

0 0 · · · a2n

...
...

. . .
...

0 0 · · · 0

 .
The system of linear equations may be rewritten as:

L∗x = b− Ux

The Gauss-Seidel method now solves the left hand side of this expression for x,
using previous value for x on the right hand side. Analytically, this may be
written as:

x(k+1) = L−1
∗ (b− Ux(k)).

The procedure is generally continued until the changes made by an iteration are
below some tolerance, such as a sufficiently small residual.

Solvers (2) - an example of iterative method

The decomposition of A into its lower triangular component and its strictly
upper triangular component is given by:

A = L∗+U where L∗ =


a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann

 , U =


0 a12 · · · a1n

0 0 · · · a2n

...
...

. . .
...

0 0 · · · 0

 .
The system of linear equations may be rewritten as:

L∗x = b− Ux

The Gauss-Seidel method now solves the left hand side of this expression for x,
using previous value for x on the right hand side. Analytically, this may be
written as:

x(k+1) = L−1
∗ (b− Ux(k)).

The procedure is generally continued until the changes made by an iteration are
below some tolerance, such as a sufficiently small residual.

Code structure

I One or multiple folders containing fortran/C/C++/matlab files

I Makefile/configure file

I Cookbooks

I Post-processing tools

Languages

Which code to use and where to get it ?

I from your wise and enlightened supervisor

I from a company

I from www.geodynamics.org

→ ASPECT code

I from free code sources on the internet (www.netlib.org, ...)

Which code to use and where to get it ?

I from your wise and enlightened supervisor

I from a company

I from www.geodynamics.org

→ ASPECT code

I from free code sources on the internet (www.netlib.org, ...)

Which code to use and where to get it ?

I from your wise and enlightened supervisor

I from a company

I from www.geodynamics.org

→ ASPECT code

I from free code sources on the internet (www.netlib.org, ...)

Which code to use and where to get it ?

I from your wise and enlightened supervisor

I from a company

I from www.geodynamics.org

→ ASPECT code

I from free code sources on the internet (www.netlib.org, ...)

Which code to use and where to get it ?

I from your wise and enlightened supervisor

I from a company

I from www.geodynamics.org

→ ASPECT code

I from free code sources on the internet (www.netlib.org, ...)

Should you write your own code ?

Pros

I Easier to use than commercial/academic software

I Taylored to your application

I No copyrights problem, nor conflict of interests

I Forces you to answer all questions, make decisions, justify choices

Cons

I Wasting time redoing what many people have already done before

I You are not a computer scientist nor an applied mathematician

I Spending more time debugging (not fun) than coding (fun)

Should you write your own code ?

Pros

I Easier to use than commercial/academic software

I Taylored to your application

I No copyrights problem, nor conflict of interests

I Forces you to answer all questions, make decisions, justify choices

Cons

I Wasting time redoing what many people have already done before

I You are not a computer scientist nor an applied mathematician

I Spending more time debugging (not fun) than coding (fun)

Should you write your own code ?

Pros

I Easier to use than commercial/academic software

I Taylored to your application

I No copyrights problem, nor conflict of interests

I Forces you to answer all questions, make decisions, justify choices

Cons

I Wasting time redoing what many people have already done before

I You are not a computer scientist nor an applied mathematician

I Spending more time debugging (not fun) than coding (fun)

Should you write your own code ?

Pros

I Easier to use than commercial/academic software

I Taylored to your application

I No copyrights problem, nor conflict of interests

I Forces you to answer all questions, make decisions, justify choices

Cons

I Wasting time redoing what many people have already done before

I You are not a computer scientist nor an applied mathematician

I Spending more time debugging (not fun) than coding (fun)

Should you write your own code ?

Pros

I Easier to use than commercial/academic software

I Taylored to your application

I No copyrights problem, nor conflict of interests

I Forces you to answer all questions, make decisions, justify choices

Cons

I Wasting time redoing what many people have already done before

I You are not a computer scientist nor an applied mathematician

I Spending more time debugging (not fun) than coding (fun)

Should you write your own code ?

Pros

I Easier to use than commercial/academic software

I Taylored to your application

I No copyrights problem, nor conflict of interests

I Forces you to answer all questions, make decisions, justify choices

Cons

I Wasting time redoing what many people have already done before

I You are not a computer scientist nor an applied mathematician

I Spending more time debugging (not fun) than coding (fun)

Should you write your own code ?

Pros

I Easier to use than commercial/academic software

I Taylored to your application

I No copyrights problem, nor conflict of interests

I Forces you to answer all questions, make decisions, justify choices

Cons

I Wasting time redoing what many people have already done before

I You are not a computer scientist nor an applied mathematician

I Spending more time debugging (not fun) than coding (fun)

Using a code you did not write

I The manual (heaven or hell ?)

I You need to understand the mindset of its developer(s)

I (useful ?) Cookbooks

I do a few benchmarks

I Existing input files

I Legacy code: you inherit a code written 20 years ago by your supervisor, in
a deprecated language, and consequently modified by 5 generations of phd
students ...

Using a code you did not write

I The manual (heaven or hell ?)

I You need to understand the mindset of its developer(s)

I (useful ?) Cookbooks

I do a few benchmarks

I Existing input files

I Legacy code: you inherit a code written 20 years ago by your supervisor, in
a deprecated language, and consequently modified by 5 generations of phd
students ...

Using a code you did not write (2)

I wish I had the time to talk about

I implementation of phase change

I implementation of two phase flow

I rheologies (elasto-visco-plasticity)

I parametrisation & uncertainties

I treatment of nonlinarities

I existing competing codes in the community

I setup design

I lengthscales and timescales

Let’s read the papers and learn some more.

I wish I had the time to talk about

I implementation of phase change

I implementation of two phase flow

I rheologies (elasto-visco-plasticity)

I parametrisation & uncertainties

I treatment of nonlinarities

I existing competing codes in the community

I setup design

I lengthscales and timescales

Let’s read the papers and learn some more.

Journals

I GJI: Geophysical Journal International

I JGR: Journal of Geophysical Research

I G3: Geochemistry, Geophysics, Geosystems

