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After three weeks of file opening, array allocating and do-looping, it is time we apply these new skills to a more
concrete geophysical problem: gravimetry. Before you proceed further, please read :

http://en.wikipedia.org/wiki/Gravity anomaly
http://en.wikipedia.org/wiki/Gravimeter

Before you start coding, read and re-read this document thoroughly. Subroutines are provided to you and should not
be modified.

Let us consider a vertical domain Lx × Ly where Lx = 1000km and Ly = 500km. This domain is discretised by
means of a grid which counts nnx× nny nodes. This grid then counts ncellx× ncelly = (nnx− 1)× (nny − 1) cells.

(1) declare in your program the nnx, nny, Lx, Ly variables and set them to (self-chosen) meaningful values.
(2) the total number of nodes is stored in np and the total number of cells in ncell. Compute np and ncell. The

horizontal spacing between nodes is sx and the vertical spacing is sy. Compute sx, sy.
(3) Create the one-dimensional arrays xgrid, ygrid to store the x− and y−coordinates of all the nodes. Write

a double do-loop to fill these arrays. (See Appendix) Use the subroutine write two columns to create the file
grid init.dat and visualise it with gnuplot (See Fig. 1).

(4) Create the one-dimensional arrays xcgrid and ycgrid which will store the coordinates of the centers of the cells.
Write another double do-loop to fill these arrays. Use the subroutine write two columns to create the file gridc init.dat
and visualise it with gnuplot (See Fig. 2).

Assume that this domain is filled with a rock type which mass density is given by ρ1 = 3000kg/m3, and that there
is a circular inclusion of another rock type (ρ2 = 3200kg/m3) at location (xci, yci) of radius rci. The density in the
system is then given by

ρ(x, y) =

{
ρ2 inside the circle
ρ1 outside the circle

We will then use an array rho to store the density of the material in each cell.
(5) allocate the array rho which contains the density of the material present in all cells. Fill the array as follows:

if the center of the cell is within the inclusion, the density of the whole cell is set to ρ2, otherwise it is set to ρ1. Use
the write three columns subroutine to output this array and visualise it with gnuplot (See Fig. 3).

Let us now assume that we place nsurf gravimeters at the surface of the model. These are placed between
coordinates x = 0 and coordinates x = Lx. We will use the arrays xsurf and ysurf to store the coordinates of these
locations.

(6) compute the spacing dx between the gravimeters as a function of nsurf and Lx
(7) allocate the xsurf and ysurf arrays and store the x− and y−coordinates of the gravimeters in them. Use the

subroutine write two columns to create the file surf init.dat.

1



(8) use gnuplot to visualise simultaneously the nodes, the cell centers and the surface points (See Fig. 4)
At any given point (xi, yi) in a 2D space, one can show that the gravity anomaly due to the presence of a circular

inclusion can be computed as follows:

g(xi, yi) = 2πG(ρ2 − ρ0)R2 yi − yc
(xi − xc)2 + (yi − yc)2

(1)

where R is the radius of the inclusion, (xc, yc) are the coordinates of the center of the inclusion, and ρ0 is a reference
density.

However, the general formula to compute the gravity anomaly at a given point (xi, yi) in space due to a density
anomaly of any shape is given by:

g(xi, yi) = 2G

∫ ∫
Ω

∆ρ(x, y)(y − yi)
(x− xi)2 + (y − yi)2

dxdy (2)

where Ω is the area of the domain on which the integration is to be carried out. Furthermore the density anomaly can
be written : ∆ρ(x, y) = ρ(x, y)− ρ0. We can then carry out the integration for each cell and sum their contributions:

g(xi, yi) = 2G

ncell∑
ic=1

∫ ∫
Ωe

(ρ(x, y)− ρ0)(y − yi)
(x− xi)2 + (y − yi)2

dxdy (3)

where Ωe is now the area of a single cell. Finally, one can assume the density to be constant within each cell so that
ρ(x, y)→ ρ(ic) and

∫ ∫
Ωe
dxdy → sx× sy and then

g(xi, yi) = 2G

ncell∑
ic=1

(ρ(ic)− ρ0)(y(ic)− yi)
(x(ic)− xi)2 + (y(ic)− yi)2

sxsy (4)

We will then use the array gsurf to store the value of the gravity anomaly measured at each gravimeter at the
surface.

(9) Allocate the array and use a double do-loop to compute the gravity anomaly at each gravimeter using the above
formula. The outer loop will concern the surface points while the inner loop will concern the gravity calculation. Use
ρ0 = 3000kg/m3 to start with.

(10) Use the write two columns subroutine to output the xsurf and gsurf arrays in the file gravity.dat
(11) We will now proceed to benchmark our calculation by plotting our results against the theoretical curve given

by equation (1). In gnuplot we enter the following:

> plot ’gravity.dat’ , 2*6.6738480e-11*pi* 50000**2 *200/( (x-500e3)**2 + (250e3)**2 ) * 2.5e5

(This is in the case where xci=500km, yci=250km). It should then look like Fig. 5.

To go further I expect all the groups to have come so far. Hereafter are listed a few more questions for groups
with time on their hands or curious students.

• explore the effect of the size of the inclusion on the gravity profile.

• explore the effect of the ρ0 value.

• explore the effect of the grid resolution.

• measure the time that is required to complete task 9 by means of the cpu time subroutine (google it). How does
this time vary with nsurf ? how does it vary when the grid resolution is doubled ?

• Assume now that ρ2 < ρ1. What does the gravity profile look like ?

• what happens when the gravimeters are no more at the surface of the Earth but in a satellite ?

• if you really can’t get enough, redo the whole exercise in 3D...
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A quick reminder about gnuplot If you wish to plot a simple 2D figure whose values are stored in a two-colum
file (ex. Figs. 1,2,4):

> plot ’file.dat’ u 1:2 w lp t ’title’

If you wish to plot a simple 3D figure whose values are stored in a two-colum file (ex. Fig. 3):

> splot ’file.dat’ u 1:2:3 w lp t ’title’

To export to the plots to a eps or pdf file, use the script given in appendix B.1 of the syllabus.

Fig1: example of a 40x20 grid (nodes)

Fig2: example of a 40x20 grid (centers of cells)
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Fig3: example of the density field for a 200x100 grid

Fig4: example of a 40x20 grid with nodes, centers of cells and gravimeters locations
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Fig5: Example of an analytical gravity profile obtained with Eq. (1) alongside measurements obtained with Eq. (4)
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Appendix

Let us assume Lx = 1.5, Ly = 1, nnx = 4, nny = 3 as shown on the figure hereunder:

In this particular case, the arrays xgrid and ygrid should look like this:

xgrid = (0, 0.5, 1.0, 1.5, 0, 0.5, 1.0, 1.5, 0, 0.5, 1.0, 1.5)

ygrid = (0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0)

Indeed, the coordinates of node 7 are xgrid(7) = 1.0 and ygrid(7) = 0.5.
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