
Programming and Modelling
(week 37)

C. Thieulot

Institute of Earth Sciences

September 2017



Instructions



Common mistakes

do loops

integer :: i,n

do i=1,n

...

end do



good habit

Formatting the source code makes a difference ...



terminology



write

write(*,*) ’And she’s buying a stairway to heaven’

write(6,*) ’And she’s buying a stairway to heaven’

⇒ do the same thing

write(1937,*) ’Another one bites the dust’,i,sqrt(x)

⇒ writes text and numbers in file associated to unit 1937



write

write(*,*) ’And she’s buying a stairway to heaven’

write(6,*) ’And she’s buying a stairway to heaven’

⇒ do the same thing

write(1937,*) ’Another one bites the dust’,i,sqrt(x)

⇒ writes text and numbers in file associated to unit 1937



write

write(*,*) ’And she’s buying a stairway to heaven’

write(6,*) ’And she’s buying a stairway to heaven’

⇒ do the same thing

write(1937,*) ’Another one bites the dust’,i,sqrt(x)

⇒ writes text and numbers in file associated to unit 1937



write

write(*,*) ’And she’s buying a stairway to heaven’

write(6,*) ’And she’s buying a stairway to heaven’

⇒ do the same thing

write(1937,*) ’Another one bites the dust’,i,sqrt(x)

⇒ writes text and numbers in file associated to unit 1937



formatting



fun facts (1)

Computers evaluate the right-hand side of an equation and put the
result in the left hand side:

I x=y+1 means that x receives the value y+1

I Careful: x=x+1 means that x+1 is first computed and its value
stored in the variable x (thereby replacing the old previous
value)



fun facts (2)

I Some languages distinguish between upper case and lower
case.

I Fortran does not. All these lines are equivalent:
integer imax

INTEGER IMAX

INTEGER imax

integer IMAX

InTeGeR ImaX

...



fun facts (2)

I Some languages distinguish between upper case and lower
case.

I Fortran does not. All these lines are equivalent:
integer imax

INTEGER IMAX

INTEGER imax

integer IMAX

InTeGeR ImaX

...



the executable

Fortran is a programming language (not a software)

gfortran is the compiler which translates the fortran code you
wrote into a binary code.

If you compile a fortran file myprogram.f90 as follows:
> gfortran myprogram.f90

the compiler generates an executable, which default name is a.out

You can name the executable as follows:
> gfortran myprogram.f90 -o myprogramexec

To run the program, you then type:
> ./myprogramexec



the executable

Fortran is a programming language (not a software)

gfortran is the compiler which translates the fortran code you
wrote into a binary code.

If you compile a fortran file myprogram.f90 as follows:
> gfortran myprogram.f90

the compiler generates an executable, which default name is a.out

You can name the executable as follows:
> gfortran myprogram.f90 -o myprogramexec

To run the program, you then type:
> ./myprogramexec



the executable

Fortran is a programming language (not a software)

gfortran is the compiler which translates the fortran code you
wrote into a binary code.

If you compile a fortran file myprogram.f90 as follows:
> gfortran myprogram.f90

the compiler generates an executable, which default name is a.out

You can name the executable as follows:
> gfortran myprogram.f90 -o myprogramexec

To run the program, you then type:
> ./myprogramexec



the executable

Fortran is a programming language (not a software)

gfortran is the compiler which translates the fortran code you
wrote into a binary code.

If you compile a fortran file myprogram.f90 as follows:
> gfortran myprogram.f90

the compiler generates an executable, which default name is a.out

You can name the executable as follows:
> gfortran myprogram.f90 -o myprogramexec

To run the program, you then type:
> ./myprogramexec



the executable

Fortran is a programming language (not a software)

gfortran is the compiler which translates the fortran code you
wrote into a binary code.

If you compile a fortran file myprogram.f90 as follows:
> gfortran myprogram.f90

the compiler generates an executable, which default name is a.out

You can name the executable as follows:
> gfortran myprogram.f90 -o myprogramexec

To run the program, you then type:
> ./myprogramexec



arrays

integer tableau(15)

integer tableau(5,3)



array conformance

real, dimension(15) :: A

real, dimension(5,3) :: B

real, dimension(5,3) :: C

real, dimension(5,3) :: D

I C=D is valid:

I B=A is not valid:



Integer arithmetics (1)

Let us start with:



Integer arithmetics (1)

Let us start with:



Integer arithmetics (2)



Integer arithmetics (2)



Integer arithmetics (2)

(−1)n
n(n + 1)

2n + 1

√
2n2 − n + 7

translates into
integer :: n

real :: x

x=(-1.)**n * n*(n+1.)/(2.*n+1.)*sqrt(2.*n**2-n+7.)



Mathematical operations

I addition +

I substraction -

I multiplication *

I division /

I exponentiation **

I trigonometric functions:
cos,sin,tan,acos,asin,atan,...

I other functions: sqrt,exp,log,log10,...



shell commands

I mkdir (make directory)

I ls -l (list and display files in columns)

I rm (remove)

I mv (move a file, or rename it)

I pwd (print working directory)

I more (opens the file one screen at a time)

I cp (copy)



file structure



Example:

Use a do-loop construction to compute n!

1! = 1
2! = 1× 2 = 2
3! = 1× 2× 3 = 6
4! = 1× 2× 3× 4 = 24
5! = 1× 2× 3× 4× 5 = 120
etc ...



Example:

Use a do-loop construction to compute n!

1! = 1
2! = 1× 2 = 2
3! = 1× 2× 3 = 6
4! = 1× 2× 3× 4 = 24
5! = 1× 2× 3× 4× 5 = 120
etc ...







triangles & Co.

Write a program to accept the coordinates of three points and
report back whether this points define an equilateral, isosceles, or
scalene triangle.

(do three points always define a triangle ?)



Mathematical ’magic’

If you take a positive integer, halve it if it is even of triple it and
add one if it is odd, and repeat, then you will ultimately obtain one.

Write a program to illustrate this.


