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Chapter 1

Introduction

chapter1.tex

1.1 Philosophy

philosophy.tex

This document was written with my students in mind, i.e. 3rd and 4th year Geology/Geophysics
students at Utrecht University. I have chosen to use as little jargon as possible unless it is a term
that is commonly found in the geodynamics literature (methods paper as well as application papers).
There is no mathematical proof of any theorem that may be mentioned but I will try to refer to the
appropriate sources, i.e. generic Numerical Analysic, Finite Element and Linear Algebra books. If
you find that this books lacks references to Sobolev spaces, Hilbert spaces, and other spaces, this
book is just not for you.

The codes I provide here are by no means optimised as I have chosen code readability over code
efficiency. I have also chosen to avoid resorting to multiple code files or even functions in order to
favour a sequential reading of the codes. These codes are not designed to form the basis of a real life
application: Existing open source highly optimised codes shoud be preferred, such as Aspect [732,
560], CitcomS [1414, 1412], LAMEM [683], PTATIN [848, 845], PYLITH [1], ... (see Appendix ??).

Concerning figures I have consciously decided not to place them inside figure LATEXenvironments
since it does not allow for complete control over where they end up. Instead they are inserted when
they are needed in the text.

All kinds of feedback is welcome on the text (grammar, typos, ...), on the text, the equations or on
the code(s). You will have my eternal gratitude if you wish to contribute an example, a benchmark,
a cookbook.

All the python scripts and tex files are freely available at

https://github.com/cedrict/fieldstone

This document is available at:

https://cedrict.github.io/

Disclaimer: there are many things in this huge document I probably do not fully understand, or
that I am simply wrong about. I sometimes write open questions in the text about such things. My
commitment is to revisit this document time and time again, until it is 99% correct. This is not a
book, it has not been edited by anybody. It is not perfect in any way. I nevertheless hope it will be
useful to many in the long run.
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1.2 ambition & motivation

motivation.tex

I wish to provide the community with:

� a ginormous bibliography data base - simply search the pdf for keywords. The LATEX bib file1

is also available next to the manual.tex file on github;

� a go-to document for anybody who wants to know more about a particular topic in computa-
tional geodynamics;

� a useful teaching tool for researchers, teachers, students and PhD students alike;

� small, readable, educative codes.

1.3 Acknowledgements

acknowledgments.tex

I have benefitted from many discussions, lectures, tutorials, coffee machine discussions, debugging
sessions, conference poster sessions, etc ... over the years. I wish to name these instrumental people in
particular and in alphabetic order: Wolfgang Bangerth, Jean Braun, Taco Broerse, Rens Elbertsen,
Philippe Fullsack, Menno Fraters, Anne Glerum, Timo Heister, Dave May, Robert Myhill, John
Naliboff, E. Gerry Puckett, Melchior Schuh-Senlis, Michael Tetley, Lukas van de Wiel, Arie van den
Berg, Eric van den Hoogen, Tom Weir, and the whole Aspect family/team.

1.4 About the author

I have BSc in mathematics, and an MSc diploma in physics (with a specialization in musical acous-
tics [329]). I did my PhD at the university of Groningen (The Netherlands) titled Thermodynami-
cally consistent fluid particle modelling of phase separating mixtures2. Although half of the thesis
deals with the re-derivation of the Navier-Stokes equations for such systems[382], the second half is
concerned with the implementation of these equations with the Smoothed Particle Hydrodynamics
method [1264, 1265, 1263].

I then taught physics and programming at the University of Rennes (France) for a year, after
which I did a 2-year post-doc with Prof. J. Braun3 in the Geosciences department. I then did a
4-year post-doc with prof. R. Huismans4 at the University of Bergen (Norway), followed by a 3-year
post-doc with profs. T. Torsvik and W. Spakman at the Utrecht University (The Netherlands). Since
June 2015 I am assistant professor there in the ’Mantle dynamics & theoretical geophysics’ group.

1https://github.com/cedrict/fieldstone/blob/master/biblio_geosciences.bib
2http://cedricthieulot.net/thesis.html
3https://www.gfz-potsdam.de/en/staff/jean-braun/
4https://folk.uib.no/huismans/
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1.5 Essential/relevant literature

[455] [456] [626] [341]

[74] [75] [1140] [907]

[1172] [746] [935]

� Numerical modeling of Earth Systems by Thorsten W. Becker and Boris J. P. Kaus,
http://www-udc.ig.utexas.edu/external/becker/teaching-557.html

� Myths & Methods in Modeling by M. Spiegelman,
https://www.ldeo.columbia.edu/~mspieg/mmm/

� Computational Science I by Matthew G. Knepley,
https://cse.buffalo.edu/~knepley/classes/caam519/Syllabus.html

� Introduction to Numerical Methods for Variational Problems by Hans Petter Langtangen and
Kent-Andre Mardal,
https://hplgit.github.io/fem-book/doc/pub/book/pdf/fem-book-4print.pdf

1.6 Installing packages

install.tex
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Python

If numpy, scipy or matplotlib are not installed on your machine, here is how you can install them:

sudo apt install python3-numpy

sudo apt install python3-scipy

To install the umfpack solver (check?):

pip install --upgrade scikit-umfpack --user

If you need to install pip:

sudo apt install python3-pip

Julia

In order to have vim supporting the Julia language, do

git clone git@github.com:JuliaEditorSupport/julia-vim.git

and copy the content of the julia-vim folder in the .vim folder. That’s it.

LaTeX

To install siunitx package:

sudo apt -y install texlive-science

To install additional fonts:

sudo apt-get install texlive-fonts-extra

To install biber package:

sudo apt install biber

1.7 What is a (real) fieldstone?

whatisafieldstone.tex

Taken from https://en.wikipedia.org/wiki/Fieldstone

Simply put, it is a stone collected from the surface of fields where it occurs naturally. It also stands
for the bad acronym: finite element deformation of stones which echoes the primary application of
these codes: geodynamic modelling.

20

https://en.wikipedia.org/wiki/Fieldstone


1.8 Why the Finite Element method?

why.tex

The Finite Element Method (FEM) is by no means the only method to solve PDEs in geodynam-
ics, nor it is necessarily always the best one. Other methods are employed very successfully, such as
the Finite Difference Method (FDM), the Finite Volume Method (FVM), and to a lesser extent the
Discrete Element Method (DEM) [1235, 360, 361, 430, 647], the Lattice-Boltzmann method [601],
the Rigid Element Method [752], or the Element Free Galerkin Method (EFGM) [530]. I have been
using FEM since 2008 and I do not have real experience to speak of in FVM or FDM (except for
chapter 11) so I concentrate in this book on what I know best.

1.9 Notations

notations.tex

Scalars such as temperature, density, pressure, etc ... are simply obtained in LATEX by using the
math mode, e.g. T , ρ, p. Although it is common to lump vectors and matrices/tensors together by
using bold fonts, I have decided in the interest of clarity to distinguish between those: vectors are
denoted by an arrow atop the quantity, e.g. ν⃗, g⃗, while matrices and tensors are in bold M , σ, etc
...

Also I use the · notation between two vectors to denote a dot product u⃗ · v⃗ = uivi or a matrix-
vector multiplication M · a⃗ = Mijaj. If there is no · between vectors, it means that the result

a⃗⃗b = aibj is a matrix (it is a dyadic product5). Case in point, ∇⃗ · ν⃗ is the velocity divergence while

∇⃗ν⃗ is the velocity gradient tensor.

1.10 Colour maps for visualisation

colorscale.tex

In an attempt to homogenise the figures obtained with ParaView, I have decided to use a fixed
colour scale for each field throughout this document. These colour scales were obtained from https:

//peterkovesi.com/projects/colourmaps and are Perceptually Uniform Colour Maps [727].

5https://en.wikipedia.org/wiki/Dyadics
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Field colour code

Velocity/displacement CET-D01A

Pressure CET-L17

Velocity divergence CET-L01

Density CET-D03

Strain rate CET-R2

Viscosity CET-R3

Temperature CET-D09

stress CET-L18

Spin tensor CET-R1

Composition field CET-CBD1

Gravity acceleration vik

Gravity potential roma
Vorticity CET-L12
Stream function CET-D02

vik and roma are available at http://www.fabiocrameri.ch/colourmaps.php. See also Crameri
et al. (2020) for a discussion about the misuse of colour is science communication.

1.11 How my bibliography works

mybib.tex

There is a single (large) bibliography file for this document:

biblio geosciences.bib

If the paper is a single-author paper, say by Garfield6, published in 19787, its code in my bibliog-
raphy file is garf78 (i.e. the first four letters of the name, followed by the two digits of the publication
year).

If the paper was written by two authors, say Garfield and Odie, in 1987, its code will be gaod87,
i.e. the first two letters of the first author followed by the two first letters of the second author
followed by two digits.

If the paper was written by three or more authors, say Garfield, Odie, John and Irene in 2003,
its code will be gaoj03, i.e. the first two letters of the first author followed by the first letter of the
second author, the first letter of the third author and the year.

If multiple papers are published the same year by the same authors, I simply append a,b,c... to
the above rules.

6This is just an example
7May be not, after all, since Garfield the cat was born in 1978
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Remark. Dutch names such as ’van Hunen’ or ’van den Berg’ are classified under letter ’v’, not ’h’
or ’d’ nor ’b’.

1.12 Youtube resources

youtube.tex

� https://youtu.be/aLJMDn_2-d8 [10min]

� https://youtu.be/j2_dJY_mIys [10min] Smarter Every Day channel

� https://youtu.be/X4zd4Qpsbs8 [2min] Reversible Stokes flow (cylinder + dye)

� https://youtu.be/wzcVT0oZJkg [12min] (Boring Through The Earth’s Crust)

� https://youtu.be/GHjopp47vvQ [18min] Understanding the Finite Element Method
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� https://youtu.be/aPuLqiXci14 [35min] Plate Tectonics: Linking Surface Geology to Earth’s
Deep Interior by Clint Conrad

� https://youtu.be/olbSuf6EGPM [1h30] Models of mantle convection by Clint Conrad

� https://youtu.be/aTQ-1Vpncjw [1h30]Mantle flow for the present day by Clint Conrad

� https://youtu.be/OG5qDon-3_w [54min] Mantle flow for Earth history by Clint Conrad

� https://youtu.be/4UAdEwbGKiM [24min] 50 years of plate tectonics. But what is the driving
force? by Clint Conrad

� https://www.esa.int/Applications/Observing_the_Earth/GOCE/Gravity_mission_still_

unearthing_hidden_secrets [3min] GOCE helps create new model of crust and upper mantle

� https://youtu.be/_5q8hzF9VVE [12min] Continental drift (Wegener theory)

� https://youtu.be/ZTRu620bIsE [12min] Plate tectonics

� https://youtu.be/V_zsD8vXyik [5min] Heat tranfer

� https://youtu.be/q65O3qA0-n4 [4min] What is sea level? (geoid)

1.13 How to download a single stone

Say you wish to only download a single python program, for example stone 3. You then go to
https://github.com/cedrict/fieldstone and click on python codes, then on fieldstone 03

and then on stone.py.
Then click on Raw:

And then copy the address in the address bar:

Finally, in the terminal of your Linux/Apple computer type

wget https://raw.githubusercontent.com/cedrict/fieldstone/master/python_codes/fieldstone_03/stone.py
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1.14 Oldies but goodies

oldies.tex

I hereunder show a few figures taken from early-ish geodynamics FEM papers.

Model a boudinage structure - Stephansson and Berner [1208] (1971)
Crustal Structure from Surface Load Tilts - Beaumont and Lambert

[62] (1972)

Mantle convection in a square domain - Sato and Thompson [1114] (1976)

Mantle convection in a rectangular domain - Lux, Davies, and Thomas [817] (1979)

Finite element modelling of lithosphere deformation: the Zagros

collision orogeny - Bird [91] (1978)

Thermal regimes, mantle diapirs and crustal stresses of continental

rifts - Bridwell and Potzick [152] (1981)
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Numerical models of subduction and forearc deformation - Tharp [1252] (1985)

Three-Dimensional Treatment of Convective Flow in the Earth’s Mantle -

Baumgardner [57] (1985)

Lithospheric necking: a dynamic model for rift morphology - Zuber,

Parmentier, and Fletcher [1443] (1986)

Plate boundary forces at subduction zones and trench-arc compression -

Bott, Waghorn, and Whittaker [117] (1989)

Relation between flank uplifts and the breakup unconformity at rifted

continental margins - Braun and Beaumont [141] (1989)
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Mechanics of graben formation in crustal rocks -

Melosh and Williams Jr [863] (1989)

Stresses and plate boundary forces associated with subduction plate margins - [1353]

(1992)

Temperature field in subduction zones - Davies and Stevenson [317] (1992)

3D numerical modeling of compressional orogenies: Thrust geometry

and oblique convergence - Braun [139] (1993)

Crustal-scale compressional orogens - Beaumont and Quinlan [63]

(1994)
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Modeling of pull-apart basins - Katzman, Brink, and Lin [677] (1995) Plume-lithosphere interaction - Ribe and Christensen [1065] (1994)

3D numerical modeling of detachment of subducted lithosphere -

Yoshioka and Wortel [1390] (1995) 3D dynamical model of continental rift propagation and margin

plateau formation - Dunbar and Sawyer [351] (1996)

Model geometry, boundary conditions and 3-D finite element mesh used in the calculations. The circles denote a free-slip condition. The arrow denotes the

velocity applied in some calculations to the southern boundary of the Tyrrhenian domain to simulate the motion of the African plate. The springs represent

the buoyant restoring force applied at the surface - Negredo, Sabadini, Bianco, and Fernandez [932] (1999)

Relevant Literature: Gartling [437] (1978), Anderson and Bridwell [21] (1980), Melosh and
Raefsky [862] (1980), Bridwell and Anderson [151] (1980), England [374] (1982), Tharp [1252] (1985),
Schubert and Anderson [1141] (1985), England and Houseman [375] (1986), Moretti and Froidevaux
[905] (1986), Zuber and Parmentier [1442] (1986), Bott, Waghorn, and Whittaker [117] (1989).
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Chapter 2

Physics and a bit of mathematics

chapter3.tex

2.1 Some maths

maths.tex

2.1.1 About vectors

Remark. In this document I have chosen to (when possible) use the notation a⃗ to denote a vector
and a to denote a tensor/matrix. More often than not the same notation a is used for both in the
literature.

In mathematics, physics and engineering, a Euclidean vector or simply a vector is a geometric
object that has magnitude (or length) and direction. Many algebraic operations on real numbers
such as addition, subtraction, multiplication, and negation have close analogues for vectors.

Let v⃗ be a vector in 3D space. Its Euclidean norm (or magnitude) is given in a coordinate-free
way by

|v⃗| :=
√
v⃗ · v⃗

This definition makes use of the dot product, see next section. The Euclidean norm is also called
the L2−norm, or 2−norm. It is also sometimes noted || · ||2.

In Cartesian coordinates the vector v⃗ is given by

v⃗ =

 vx
vy
vz

 = vxe⃗x + vye⃗y + vz e⃗z with e⃗x =

 1
0
0

 e⃗y =

 0
1
0

 e⃗z =

 0
0
1


Its norm then simply writes

|v⃗| =
√
v2x + v2y + v2z

A unit vector is any vector with a length of one. A vector of arbitrary length can be divided by
its length to create a unit vector. If a⃗ is a vector, the corresponding unit vector is often denoted

e⃗a =
a⃗

|⃗a|
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2.1.2 dot products, cross products and dyadic products

The dot product (or sometimes called inner product, or even scalar product) of two vectors is

denoted by a⃗ · b⃗ and is defined as:
a⃗ · b⃗ = |⃗a| |⃗b| cos θ

where θ is the measure of the angle between a⃗ and b.
FIGURE

In Cartesian coordinates the dot product can also be defined as the sum of the products of the
components of each vector as

a⃗ · b⃗ = axbx + ayby + azbz

The dot product can also be interpreted as an answer to the question “how similar are vectors a⃗ and
b⃗ in magnitude and direction?” Indeed, if a⃗ = b⃗ then θ = 0 and cos θ = 1, while if a⃗ is perpendicular
to b⃗, then θ = π/2, cos θ = 0 and a⃗ · b⃗ = 0.

In Cartesian coordinates, we find that

v⃗ · e⃗x = (vxe⃗x + vye⃗y + vz e⃗z) · e⃗x = vx e⃗x · e⃗x︸ ︷︷ ︸
=1

+vy e⃗y · e⃗x︸ ︷︷ ︸
=0

+vz e⃗z · e⃗x︸ ︷︷ ︸
=0

= vx

In this case the interpretation of v⃗ · e⃗x could be “how much of v⃗ is in the direction e⃗x”.
The cross product (also called the vector product or outer product) of two vectors is also a

vector. It is denoted a⃗× b⃗ and defined as

c⃗ = a⃗× b⃗ = |⃗a| |⃗b| sin θ n⃗

where θ is the measure of the angle between a⃗ and b and and n⃗ is a unit vector perpendicular to
both a⃗ and b⃗ which completes a right-handed system.
FIGURE

The norm of the cross product, say |⃗c| = |⃗a× b⃗|, is actually the area of the parallelogram having

a⃗ and b⃗ as sides.
Also note that a⃗× b⃗ = −b⃗× a⃗ (think about the direction of the normal vector in each case). In

Cartesian coordinates the cross product can be written as

a⃗× b⃗ = (aybz − azby)e⃗x + (azbx − axbz)e⃗y + (axby − aybx)e⃗z

Finally, let us look at the dyadic product of two vectors a⃗ and b⃗ which denoted by a⃗ b⃗T

(juxtaposed; no symbols, multiplication signs, crosses, dots, etc...). The result is a tensor:

a⃗ =

 ax
ay
az

 , b⃗ =

 bx
by
bz

 , a⃗⃗bT =

 ax
ay
az

 (bx by bz) =

 axbx axby axbz
aybx ayby aybz
azbx azby azbz


In conclusion the dot product yields a scalar, the cross product yields a vector and the dyadic

product yields a tensor.

2.1.3 Rotation matrix

After much confusion, https://mathworld.wolfram.com/RotationMatrix.html is a source of clar-
ity: one must be careful when speaking of ’rotation matrix’. Indeed, there are two possible conven-
tions: rotation of the axes, and rotation of the object relative to fixed axes.
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We consider in R2 the matrix R that rotates a given vector v⃗ by a counterclockwise angle θ in a
fixed coordinate system. It writes

R =

(
cos θ − sin θ
sin θ cos θ

)
with v⃗′ = R · v⃗.

On the other hand, consider the matrix that rotates the coordinate system through a counter-
clockwise angle θ. The coordinates of the fixed vector v⃗ in the rotated coordinate system are now
given by a rotation matrix which is the transpose of the fixed-axis matrix and, as can be seen in
the above diagram, is equivalent to rotating the vector by a counterclockwise angle of θ relative to a
fixed set of axes, giving

R =

(
cos θ sin θ
− sin θ cos θ

)
In the following example we start from v⃗ = (2, 1). If we rotate the vector by 90◦, the rotation matrix
is given by

R =

(
0 −1
1 0

)
so that v⃗′ = (−1, 2). If we rotate the axis by 90◦, the rotation matrix is given by

R =

(
0 1
−1 0

)
and the coordinates of the resulting vector are v⃗′ = (1,−2).

(rotation matrix.tex)

x

y

v⃗ = (2, 1) θ = 90o
ro
ta
te
ve
ct
or

rotate axis system

x

y
v⃗′ = (−1, 2)

x

y

v⃗′ = (1,−2)

2.2 Units

nomenclature.tex
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Symbol meaning unit

t Time s
x, y, z Cartesian coordinates m
r, θ Polar coordinates m,-
r, θ, z Cylindrical coordinates m,-,m
r, θ, ϕ Spherical coordinates m,-,-
ν⃗ = (u, v, w) velocity vector(1) ms−1

ν⃗ = (νr,νθ,νz) velocity vector(2) ms−1

ν⃗ = (νr,νθ,νϕ) velocity vector(3) ms−1

υ⃗ = (υx,υy,υz) displacement vector m
ρ mass density kgm−3

η dynamic viscosity Pa s
λ penalty parameter Pa s
T temperature K

∇⃗ gradient operator m−1

∇⃗· divergence operator m−1

p pressure Pa
ε̇(ν⃗) strain rate tensor s−1

ε̇d(ν⃗) deviatoric strain rate tensor s−1

α thermal expansion coefficient K−1

k thermal conductivity Wm−1K−1

Cp Heat capacity at constant pressure J kg−1K−1

H intrinsic specific heat production Wkg−1

βT isothermal compressibility Pa−1

τ deviatoric stress tensor Pa
σ full stress tensor Pa
θL Lodé angle -
λ bulk modulus Pa
µ shear modulus Pa
ν Poisson ratio -
E Young’s modulus Pa

(1) Cartesian coordinates; (2) Cylindrical coordinates; (3) Spherical coordinates.

Taken from Wikipedia1. The SI logo, produced by the BIPM (International Bureau of Weights and Measures),

showing the seven SI base units and the seven defining constants.

A quick note about units and LATEX. This document relies on the siunitx package2. For instance,
ρ = 3300 kgm−3 is obtained with

\rho = 3300~\si{\kg\per\cubic\metre}

1https://en.wikipedia.org/wiki/International_System_of_Units
2https://ctan.org/pkg/siunitx
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or

\rho = \SI{3300}{\kg\per\cubic\metre}

Note that the si command can be used outside of the math environment.

2.3 Coordinate systems

coordinate systems.tex

2.3.1 Cartesian coordinates

The unit vectors along the x, y and z axis are e⃗x, e⃗y and e⃗z respectively.

(tikz cartesian coordinates.tex)

x

y

z

e⃗y

e⃗z

e⃗x

Any vector can then be written
V⃗ = Vxe⃗x + Vye⃗y + Vz e⃗z

’How much of V⃗ is there in the x−direction’ is obtained with V⃗ · e⃗x = Vx. The gradient of a function
f is

∇⃗f = grad f =
∂f

∂x
e⃗x +

∂f

∂y
e⃗y +

∂f

∂z
e⃗z,

the divergence of a vector V⃗ is

∇⃗ · V⃗ =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

and the Laplace operator of a function f is:

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Finally the path increment is
dr⃗ = dx e⃗x + dy e⃗y + dz e⃗z

and the volume element is
dV = dx dy dz.
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2.3.2 Polar coordinates

We have r > 0 and θ = [0, 2π[, defined in the (x, y)−plane.

(tikz polar coordinates.tex)

x

y

e⃗x

e⃗y

e⃗r

e⃗θ

r
θ

The relation between the unit vector in Cartesian and Polar/Cylindrical coordinates is given by:(
e⃗r
e⃗θ

)
=

(
cos θ sin θ
− sin θ cos θ

)
·
(
e⃗x
e⃗y

)
which should be read:

e⃗r = cos θ e⃗x + sin θ e⃗y

e⃗θ = − sin θ e⃗x + cos θ e⃗y (2.1)

Obviously for θ = 0 we find e⃗r = e⃗x and e⃗θ = e⃗y, while for θ = π/2 then e⃗r = e⃗y and e⃗θ = −e⃗x.
Note that this 2 × 2 matrix is a rotation matrix3 corresponding to an angle −θ. The inverse of

this matrix always exists (we can always counter-rotate) and it then yields(
e⃗x
e⃗y

)
=

(
cos θ − sin θ
sin θ cos θ

)
·
(
e⃗r
e⃗θ

)
so that for any vector V⃗

V⃗ = Vxe⃗x + Vye⃗y

= Vx[(cos θ)e⃗r − (sin θ)e⃗θ] + Vy[(sin θ)e⃗r + (cos θ)e⃗θ]

= [Vx(cos θ) + Vy(sin θ)]e⃗r + [−Vx(sin θ) + Vy(cos θ)]e⃗θ

= Vre⃗r + Vθe⃗θ

with

Vr = Vx cos θ + Vy sin θ

Vθ = −Vx sin θ + Vy cos θ

Finally the path increment is
dr⃗ = dr e⃗r + r sin θdθ e⃗θ

and the volume element is
dV = rdr dθ.

The gradient, divergence and Laplacian formulae are given in the following section about the cylin-
drical coordinates.

3https://en.wikipedia.org/wiki/Rotation_matrix
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2.3.3 Cylindrical coordinates

Cylindrical coordinates

V⃗ = Vr e⃗r + Vθ e⃗θ + Vz e⃗z

We have

x = r cos θ

y = r sin θ

r =
√
x2 + y2

Let f(r, θ) be a function of the spatial coordinates. Its gradient is then

∇⃗f =
∂f

∂r
e⃗r +

1

r

∂f

∂θ
e⃗θ +

∂f

∂r
e⃗z

The divergence of a vector field V⃗ is

∇⃗ · V⃗ =
1

r

∂

∂r
(rVr) +

1

r

∂Vθ
∂θ

+
∂Vz
∂z

and the Laplacian of f is

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f

∂z2

Finally the path increment is
dr⃗ = dr e⃗r + r sin θdθ e⃗θ + dz e⃗z

and the volume element is
dV = rdr dθ dz

Remark. Cylindrical coordinates can also be denoted by (ρ, θ), (r, ϕ) or even (ρ, ϕ). They are some-
times called ”cylindrical polar coordinates” or ”polar cylindrical coordinates”.

The divergence of the second order tensor field S in cylindrical polar coordinates is given by

∇⃗ · S =
∂Srr
∂r

e⃗r +
∂Srθ
∂r

e⃗θ +
∂Srz
∂r

e⃗z

+
1

r

[
∂Srθ
∂θ

+ (Srr − Sθθ)
]
e⃗r +

1

r

[
∂Sθθ
∂θ

+ (Srθ + Sθr)

]
e⃗θ +

1

r

[
∂Sθz
∂θ

+ Srz

]
e⃗z

+
∂Szr
∂z

e⃗r +
∂Szθ
∂z

e⃗θ +
∂Szz
∂z

e⃗z
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In the case of polar coordinates then all quantities featuring z (or ∂z) are removed:

∇⃗ · S =
∂Srr
∂r

e⃗r +
∂Srθ
∂r

e⃗θ +
1

r

[
∂Srθ
∂θ

+ (Srr − Sθθ)
]
e⃗r +

1

r

[
∂Sθθ
∂θ

+ (Srθ + Sθr)

]
e⃗θ

=

[
∂Srr
∂r

+
1

r

∂Srθ
∂θ

+
1

r
(Srr − Sθθ)

]
e⃗r +

[
∂Srθ
∂r

+
1

r

∂Sθθ
∂θ

+
2

r
Srθ

]
e⃗θ (2.2)

where we have assumed that the tensor S is symmetric (i.e. Srθ = Sθr).

2.3.4 Spherical coordinates

On the following figure are represented the three Cartesian axis, a point and its spherical coordinates
r, θ, ϕ:

Spherical coordinates as commonly used in physics:

polar angle θ, and azimuthal angle ϕ.

In this case θ ∈ [0 : π] and ϕ ∈]− π : π] and we have the following relationships:

r =
√
x2 + y2 + z2 (2.3)

θ = arccos(z/r) (2.4)

ϕ = arctan(y/x) (2.5)

x = r sin θ cosϕ (2.6)

y = r sin θ sinϕ (2.7)

z = r cos θ (2.8)

The inverse tangent used to compute ϕ must be suitably defined, taking into account the correct
quadrant of (x, y), which is why the atan2 intrinsic function is used in FORTRAN for example.
This is often written as follows:

θ = arctan
(√

x2 + y2, z
)

(2.9)

ϕ = arctan(y, x) (2.10)

where we formally take advantage of the two argument arctan function to eliminate quadrant confu-
sion.

The path increment is expressed as:

dr⃗ = dr e⃗r + rdθ e⃗θ + r sin θdϕ e⃗ϕ (2.11)

The gradient of a function f(r, θ, ϕ) is

∇⃗f =
∂f

∂r
e⃗r +

1

r

∂f

∂θ
e⃗θ +

1

r sin θ

∂f

∂ϕ
e⃗ϕ (2.12)
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The divergence of a vector V⃗ is

∇⃗ · V⃗ =
1

r2
∂

∂r

(
r2Vr

)
+

1

r sin θ

∂

∂θ
(Vθ sin θ) +

1

r sin θ

∂Vϕ
∂ϕ

= 0 (2.13)

The Laplacian of function f is given by:

∆f = ∇⃗2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
(2.14)

In geography one uses latitude and longitude, represented hereunder:

� Latitude ∈ [−90 : 90], or ∈ [−π/2 : π/2]

� Longitude ∈]− 180 : 180], or ∈]− π : π]

Since the colatitude is the complementary angle of the latitude, i.e. the difference between 90 and
the latitude, where southern latitudes are denoted with a minus sign, θ as shown above is actually
is the colatitude. The colatitude is shown in red on the following figure:

The volume of a sphere of radius R is easily obtained by computing

Vsphere =

∫∫∫
sphere

dV

=

∫ R

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ

=
1

3
R3 · 2 · 2π

=
4

3
πR3 (2.15)

The volume of a spherical shell of inner radius Ri and outer radius Ro is equally easily obtained
by computing
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Vshell =

∫∫∫
shell

dV

=

∫ Ro

Ri

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ

=
1

3
(R3

o −R3
i ) · 2 · 2π

=
4

3
π(R3

o −R3
i ) (2.16)

The spherical unit vectors are related to the Cartesian unit vectors by: e⃗r
e⃗θ
e⃗ϕ

 =

 sin θ cosϕ sin θ sinϕ cos θ
cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0

 e⃗x
e⃗y
e⃗z


and the Cartesian unit vectors are related to the spherical unit vectors by e⃗x

e⃗y
e⃗z

 =

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 e⃗r
e⃗θ
e⃗ϕ


Finally, the velocity vector ν⃗ then becomes

ν⃗ = u e⃗x + v e⃗y + w e⃗z

= u (sin θ cosϕ e⃗r + cos θ cosϕ e⃗θ − sinϕ e⃗ϕ)

+ v (sin θ sinϕ e⃗r + cos θ sinϕ e⃗θ + cosϕ e⃗ϕ)

+ w (cos θ e⃗r − sin θ e⃗θ)

= vr e⃗r + vθ e⃗θ + vϕ e⃗ϕ (2.17)

with

vr = u sin θ cosϕ+ v sin θ sinϕ+ w cos θ

vθ = u cos θ cosϕ+ v cos θ sinϕ− w sin θ

vϕ = −u sinϕ+ v cosϕ (2.18)

2.3.5 Converting tensors between Cartesian and Cylindrical bases

TCyl =

 Trr Trθ Trz
Tθr Tθθ Tθz
Tzr Tzθ Tzz

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ·
 Txx Txy Txz

Tyx Tyy Tyz
Tzx Tzy Tzz

 ·
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1



TCart =

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ·
 Trr Trθ Trz

Tθr Tθθ Tθz
Tzr Tzθ Tzz

 ·
 cos θ sin θ 0
− sin θ cos θ 0

0 0 1
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2.3.6 Converting tensors between Cartesian and Spherical bases

Let T be a tensor

T =

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 T =

 Trr Trθ Trϕ
Tθr Tθθ Tθϕ
Tϕr Tϕθ Tϕϕ


in the Cartesian basis (left) and the spherical basis (right).

The two sets of components are related by Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 =

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

·
 Trr Trθ Trϕ

Tθr Tθθ Tθϕ
Tϕr Tϕθ Tϕϕ

·
 sin θ cosϕ sin θ sinϕ cos θ

cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0


or Trr Trθ Trϕ

Tθr Tθθ Tθϕ
Tϕr Tϕθ Tϕϕ

 =

 sin θ cosϕ sin θ sinϕ cos θ
cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0

·
 Txx Txy Txz

Tyx Tyy Tyz
Tzx Tzy Tzz

·
 sin θ cosϕ cos θ cosϕ − sinϕ

sin θ sinϕ cos θ sinϕ cosϕ
cos θ − sin θ 0


If we now assume that the tensor T is symmetric (e.g. stress tensor, strain rate tensor), then there
are only 6 independent terms.

2.4 A continuum mechanics primer

continuum mechanics.tex

Contains contributions by W. Spakman - Continuum mechanics course syllabus

2.4.1 Forces

In continuum mechanics we make a distinction between two broad classes of forces:

� Body forces defined as force per unit volume (Nm−3): gravity, electro-magnetic forces

� Tractions: Surface forces defined as force per unit surface area (Nm−2): Contact forces, elastic
forces per unit area, internal flow friction, pressure, ...
A traction is the surface average of all atomic forces exerted by atoms on the one side on atoms
on the other side of the surface. For real-Earth processes, internal tractions are ultimately
caused by the body forces, usually gravity.

Existing mantle flow(i.e. flow that is forced elsewhere) can exert tractions (shear stresses)
on the subducting slab or for instance at the base of lithosphere plates. In HPT-laboratory
experiments external tractions (pressure, shear traction) are applied to a rock sample, which
cause internal tractions to balance the exerted forces.
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2.4.2 Stress tensor and tractions

The Cauchy stress tensor4 consists of nine components σij that completely define the state of stress
at a point inside a material. The tensor relates a unit-length direction vector n⃗ to the so-called ’stress
vector’ (most commonly called ’traction’) t⃗(n⃗) across an imaginary surface perpendicular to n⃗:

t⃗(n⃗) = σ · n⃗

Modified from original file on Wikipedia5

With respect to an orthonormal basis {e⃗x, e⃗y, e⃗z}, the Cauchy stress tensor is given by:

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (2.19)

The three diagonal elements are called normal stresses while the off-diagonal terms are called shear
stresses.

One can easily prove (see for instance Section 3.3.6 of [493]) that the balance of angular momentum
leads reduces to the statement that the Cauchy stress tensor is symmetric, i.e. σ = σT . Therefore,
the stress state of the medium at any point and instant can be specified by only six independent
parameters, rather than nine:

σ =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 or sometimes σ =

 σx τxy τxz
τxy σy τyz
τxz τyz σz

 (2.20)

where the elements σx, σy, σz are called the orthogonal normal stresses (relative to the chosen
coordinate system), and τxy, τxz, τyz the orthogonal shear stresses. The left form is preferred in this
document. As seen above, the SI units of both stress tensor and traction are Nm−2.
specify the underlying assumptions in what follows

4https://en.wikipedia.org/wiki/Cauchy_stress_tensor
5https://commons.wikimedia.org/wiki/File:Components_stress_tensor_cartesian.svg
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In Cylindrical coordinates the stress tensor components are given by:

σrr = −p+ 2η
∂νr
∂r

(2.21)

σθθ = −p+ 2η

(
1

r

∂νθ
∂θ

+
νr

r

)
(2.22)

σzz = −p+ 2η
∂νz
∂z

(2.23)

σrθ = η

(
1

r

∂νr
∂θ

+
∂νθ
∂r
− νθ

r

)
(2.24)

σrz = η

(
∂νr
∂z

+
∂νz
∂r

)
(2.25)

σθz = η

(
1

r

∂νz
∂θ

+
∂νθ
∂z

)
(2.26)

In Spherical coordinates the stress tensor components are given by:

σrr = −p+ 2η
∂νr
∂r

(2.27)

σθθ = −p+ 2η

(
1

r

∂νθ
∂θ

+
νr

r

)
(2.28)

σϕϕ = −p+ 2η

(
1

r sin θ

∂νϕ
∂ϕ

+
νr

r
+

νθ cot θ

r

)
(2.29)

σrθ = η

(
r
∂

∂r

νθ

r
+

1

r

∂νr
∂θ

)
(2.30)

σrϕ = η

(
1

r sin θ

∂νr
∂ϕ

+ r
∂

∂r

νϕ

r

)
(2.31)

σθϕ = η

(
1

r sin θ

∂νθ
∂ϕ

+
sin θ

r

∂

∂θ

νϕ

sin θ

)
(2.32)

2.4.3 Strain rate and spin tensor

The velocity gradient L is given in Cartesian coordinates by:

L(ν⃗) = ∇⃗ν⃗ =


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 (2.33)

It can be decomposed into its symmetric and skew-symmetric parts according to:

∇⃗ν⃗ = (∇⃗ν⃗)s + (∇⃗ν⃗)w = ε̇(ν⃗) + ω̇(ν⃗) (2.34)

The symmetric part is called the strain rate (or rate of deformation)6:

ε̇(ν⃗) =
1

2

(
∇⃗ν⃗+ (∇⃗ν⃗)T

)
(2.35)

6Note that often the dot is omitted and for example the Aspect manual uses the ε notation.
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The skew-symmetric tensor is called spin tensor (or vorticity tensor):

ω̇(ν⃗) =
1

2

(
∇⃗ν⃗− (∇⃗ν⃗)T

)
(2.36)

Remark. In the mathematical literature a different notation for the strain rate tensor is often used,
i.e. D(ν⃗) - or simply D, such as for instance in Fullsack (1995) [426].

2.5 Viscous Newtonian rheology

physics.tex

The relationship between velocity-related stresses and velocity derivatives is such that the total
stress tensor has the form [74]

σ = −p1+A : ε̇(ν⃗) (2.37)

where p is the thermodynamic pressure which is a function of the density ρ and the temperature T
(an equation of state is then needed) and A is the fourth-rank stiffness tensor.

Since both the stress and the strain tensors are symmetric and for isotropic fluids we have (see
Malvern [831])

A : ε̇(ν⃗) = λ(∇⃗ · ν⃗)1+ 2ηε̇(ν⃗) (2.38)

where λ is the bulk viscosity and η is the dynamic viscosity7. The stress tensor is then

σ = (−p+ λ(∇⃗ · ν⃗))1+ 2ηε̇(ν⃗) (2.39)

By writing

ε̇(ν⃗) =
1

3
tr(ε̇(ν⃗))1+ ε̇d(ν⃗) =

1

3
(∇⃗ · ν⃗)1+ ε̇d(ν⃗)

where ε̇d(ν⃗) is the deviatoric strain rate tensor and (in Cartesian coordinates)

∇⃗ · ν⃗ = div(ν⃗) = tr(ε̇(ν⃗)) =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(2.40)

where tr is the trace operator, we arrive at

σ = (−p+ λ(∇⃗ · ν⃗))1+ 2η

[
1

3
(∇⃗ · ν⃗)1+ ε̇d

]
(2.41)

=

[
−p+

(
λ+

2

3
η

)
(∇⃗ · ν⃗)

]
1+ 2ηε̇d (2.42)

Introducing the second viscosity ζ = λ+ 2
3
η:

σ =
[
−p+ ζ(∇⃗ · ν⃗)

]
1+ 2ηε̇d (2.43)

= −p1+ 2ηε̇d (2.44)

The effect of the volume viscosity ζ is that the mechanical pressure p is not equivalent to the
thermodynamic pressure p

p = p− ζ(∇⃗ · ν⃗) (2.45)

In other words: the isotropic average of the total stress is not the pressure term! This difference is
usually neglected (and it is safe to do so, see [74, section 7.02.3.2.2]) by explicitly assuming ζ = 0
(also called the Stokes assumption [1140, p256]), so that one can then refer to pressure as a single
well-defined value. Note that in the case of an incompressible Newtonian Fluid, the strain rate tensor
is deviatoric (tr(ε̇(ν⃗)) = div(ν⃗) = 0) and the above considerations vanish.

Finally, for both compressible and incompressible flow, the stress tensor becomes simply

7also sometimes called shear viscosity
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σ = −p1+ 2ηε̇d(ν⃗) = −p1+ τ (2.46)

where τ = 2ηε̇d(ν⃗) is the deviatoric stress tensor.

Remark. On page 256 of Schubert, Turcotte and Olson [1140], equation 6.5.3, the authors write
τii/3 = kBeii while stating that τ is deviatoric in equation 6.4.2. This is an obvious conflict of
notations.

2.6 The heat transport equation - energy conservation equa-

tion

physics.tex

2.7 The momentum conservation equations

physics.tex

As explained in Section 2.11, in Earth science applications the Navier-Stokes equations reduce to
the Stokes equation:

∇⃗ · σ + ρg⃗ = 0⃗ (2.47)

Since
σ = −p1+ τ (2.48)

it also writes
−∇⃗p+ ∇⃗ · τ + ρg⃗ = 0⃗ (2.49)

Using the relationship τ = 2ηε̇d(ν⃗) we arrive at

−∇⃗p+ ∇⃗ · (2ηε̇d(ν⃗)) + ρg⃗ = 0⃗ (2.50)

The divergence of a tensor field in cylindrical coordinates (r, θ, z) has been obtained in Sec-
tion 2.3.3. The equations of motion (2.47) becomes8

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) + ρgr = 0 (2.51)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ + ρgθ = 0 (2.52)

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz + ρgz = 0 (2.53)

2.8 The mass conservation equations

physics.tex

8https://en.wikipedia.org/wiki/Linear_elasticity
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The mass conservation equation (often called continuity equation) is given by

Dρ

Dt
+ ρ∇⃗ · ν⃗ = 0

or, since
Dρ

Dt
=
∂ρ

∂t
+ ν⃗ · ∇⃗ρ

then
Dρ

Dt
+ ρ∇⃗ · ν⃗ =

∂ρ

∂t
+ ν⃗ · ∇⃗ρ+ ρ∇⃗ · ν⃗ = 0

and finally:

∂ρ

∂t
+ ∇⃗ · (ρν⃗) = 0 (2.54)

In the case of an incompressible flow, then ∂ρ/∂t = 0 and ∇⃗ρ = 0, i.e. Dρ/Dt = 0 and the remaining
equation is simply:

∇⃗ · ν⃗ = 0

A vector field that is divergence-free is also called solenoidal9.
In cylindrical coordinates (r, θ, ϕ) the continuity equation for an incompressible fluid is :

1

r

∂

∂r
(rνr) +

1

r

∂νθ
∂θ

+
∂νz
∂z

= 0

In spherical coordinates (r, θ, ϕ) the continuity equation for an incompressible fluid is :

1

r2
∂

∂r
(r2νr) +

1

r sin θ

∂

∂θ
(νθ sin θ) +

1

r sin θ

∂νϕ
∂ϕ

= 0 (2.55)

2.9 The equations in Aspect manual

physics.tex

The following is lifted off the Aspect manual. We focus on the system of equations in a d = 2- or
d = 3-dimensional domain Ω that describes the motion of a highly viscous fluid driven by differences
in the gravitational force due to a density that depends on the temperature. In the following, we
largely follow the exposition of this material in Schubert, Turcotte and Olson [1140].

Specifically, we consider the following set of equations for velocity ν⃗, pressure p and temperature
T :

−∇⃗ ·
[
2η

(
ε̇(ν⃗)− 1

3
(∇⃗ · ν⃗)1

)]
+ ∇⃗p = ρg⃗ in Ω,

(2.56)

∇⃗ · (ρν⃗) = 0 in Ω,
(2.57)

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
− ∇⃗ · k∇⃗T = ρH

+ 2η

(
ε̇(ν⃗)− 1

3
(∇⃗ · ν⃗)1

)
:

(
ε̇(ν⃗)− 1

3
(∇⃗ · ν⃗)1

)
(2.58)

+ αT
(
ν⃗ · ∇⃗p

)
in Ω,

9https://en.wikipedia.org/wiki/Solenoidal_vector_field
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where ε̇(ν⃗) = 1
2
(∇⃗ν⃗ + ∇⃗ν⃗T ) is the symmetric gradient of the velocity (often called the strain rate

tensor).
In this set of equations, (2.56) and (2.57) represent the compressible Stokes equations in which

ν⃗ = ν⃗(x, t) is the velocity field and p = p(x, t) the pressure field. Both fields depend on space x and
time t. Fluid flow is driven by the gravity force that acts on the fluid and that is proportional to
both the density of the fluid and the strength of the gravitational pull.

Coupled to this Stokes system is equation (2.58) for the temperature field T = T (x, t) that
contains heat conduction terms as well as advection with the flow velocity v. The right hand side
terms of this equation correspond to

� internal heat production for example due to radioactive decay;

� friction (shear) heating;

� adiabatic compression of material;

In order to arrive at the set of equations in the Aspect manual we need to

� neglect the ∂p/∂t wrong
rephrase

� neglect the ∂ρ/∂t in (2.54).

from equations above. A partial answer is given in the next section.
—————————————-
Also, their definition of the shear heating term Φ is:

Φ = kB(∇⃗ · ν⃗)2 + 2ηε̇d : ε̇d

For many fluids the bulk viscosity kB is very small and is often taken to be zero, an assumption
known as the Stokes assumption: kB = λ + 2η/3 = 0. Note that η is the dynamic viscosity and λ
the second viscosity. Also,

τ = 2ηε̇+ λ(∇ · ν⃗)1

but since kB = λ+ 2η/3 = 0, then λ = −2η/3 so

τ = 2ηε̇− 2

3
η(∇ · ν⃗)1 = 2ηε̇d
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2.10 Equations for thermal convection in an anelastic, com-

pressible, self-gravitating spherical mantle

physics.tex

What follows is borrowed from Section 2.1 of Glǐsović et al. (2012) [468]. We start from the
conservation mass, momentum and energy equations (the full Navier-Stokes equations):

∂ρ

∂t
+ ∇⃗ · (ρν⃗) = 0⃗ (2.59)

ρ
Dν⃗

Dt
= ∇⃗ · σ + ρg⃗ (2.60)

ρCp
DT

Dt
= ∇⃗ · k∇⃗T + αT

Dp

Dt
+ Φ+Q (2.61)

In solving for the mantle flow field that satisfies the equation of momentum conservation, we in-
corporate all effects arising from self-gravitation and we must therefore explicitly consider the 3-D
variation of gravity throughout Earth’s interior. The gravitational acceleration is written as

g⃗ = ∇⃗ϕ

where ϕ is Earth’s gravitational potential which satisfies Poisson’s equation

∆ϕ = −4πGρ

The gravitational potential is expressed as

ϕ = ϕ0(r) + ϕ1(r, θ, ϕ)

where the subscript 0 denotes a hydrostatic reference state, in which the structure of the mantle
(density, gravity, pressure, temperature) varies with radius alone and the subscript 1 denotes all 3D
perturbations arising from the thermal convection process. This decomposition makes sense in the
context of a perfect sphere.

The total perturbed density and pressure fields in the mantle may similarly be expressed as

ρ = ρ0(r) + ρ1(r, θ, ϕ)

p = p0(r) + p1(r, θ, ϕ)

The equation of state relates the density perturbations to the temperature and pressure perturbations
as follows

ρ1 = ρ0[1− α(T − T0(r)) +K−1
T (p− p0(r))]

where KT is the bulk modulus and the term T0(r) represents the horizontally averaged temperature
(i.e. the geotherm) which varies with radius only. The effects of compressibility on the density are
found to be at least two orders of magnitude smaller than the effects of temperature variations.
Therefore, the last term of this equation is often neglected. Note that this expression is a first order
expansion of any Equation of State.

Also, this equation can be misleading if one forgets that the parameters α and KT cannot be
constant but must be related through Maxwell relations (for example, their definitions

α =
1

V

(
∂V

∂T

)
P

= −1

ρ

(
∂ρ

∂T

)
P
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and

KT = −V
(
∂P

∂V

)
T

= ρ

(
∂P

∂ρ

)
T

imply that
∂(αρ)

∂P
= −∂(ρ/KT )

∂T

Some models can be found in the geophysical literature in which assumptions made inconsistently
about thermodynamic parameters (either constant or depth-dependent) violate the Maxwell rules.

Important simplifications are made assuming the anelastic-liquid approximation (e.g. Jarvis &
McKenzie (1980) [637], Solheim & Peltier (1990) [1178]). This approximation is justified because
the velocities associated with mantle convection are very slow compared to the local sound speed
and hence acoustic waves cannot be generated by the slow changes in the mantle pressure field. We
therefore neglect the time derivative of density, thereby eliminating sound waves:

∂ρ

∂t
≃ 0

For the same reason, the pressure distribution may be considered (to first-order accuracy) as the
pressure of a fluid in hydrostatic equilibrium which yields

Dp

Dt
=
∂p

∂t
+ ν⃗ · ∇⃗p ≃ −urρ0(r)g0(r)

The equations are then rewritten in terms of dimensionless variables according to the relations:

r′ =
r

d
(2.62)

ν′ =
ν

U
(2.63)

t′ =
U

d/t
(2.64)

T ′ =
T

∆T
(2.65)

ρ′ =
ρ

ρ0s
(2.66)

g′ =
g

g0s
(2.67)

ϕ′ =
ϕ

g0sd
(2.68)

α′ =
α

αs
(2.69)

p′ =
p

αs∆Tρ0sg0sd
(2.70)

τij =
τij

αs∆Tρ0sg0sd
(2.71)

η′ =
η

ηs
(2.72)

k′ =
k

ks
(2.73)

Q′ =
Qd2

ks∆T
(2.74)

U =
ρ0sg0sαs∆Td

2

ηs
(2.75)
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in which the primes represent the dimensionless variables, the subscript s means that we consider
the surface value of the variable to which it is applied. The length scale d and temperature scale ∆T
are respectively the depth of the mantle and the difference of temperature between the bottom and
the top of the mantle.

Often one deals with dimensionless variables and the primes are dropped for notational conve-
nience (this is the case in what follows).

It is a tedious but trivial exercise to show that the dimensionless equation of conservation of
momentum is then written as follows:

ρ
Ras
Prs

Dν⃗

Dt
=

ρ

αs∆T
∇⃗ϕ− ∇⃗p+ ∇⃗ · τ

in which we introduce the surface Rayleigh Ras and Prandtl Prs numbers defined, respectively, by

Ras =
ρ20sCpg0sαs∆Td

3

ksηs
Prs =

ηsCp
ks

Because of the very high viscosity of mantle rocks, the left-hand term is smaller than the other terms
by several orders of magnitude and may therefore be neglected. This important simplification is
called the infinite Prandtl number approximation.

The equation of energy conservation may also be rewritten in terms of the surface Rayleigh
number, as follows

DT

Dt
=

1

ρRas

(
∇⃗ · k∇⃗T +Q

)
+
Di

ρ

(
−αT Dp

Dt
+ Φ

)
where Di is the dissipation number (see Peltier (1972) [986]) which measures the importance of
compression work and frictional heating, and it is defined as

Di =
αsg0sd

Cp

Di also measures the ratio of the depth of mantle convection (d) to the adiabatic scale height (Cp/αg0
) and for whole-mantle convection is close to order 1 (see Jarvis & McKenzie (1980) [637]).

After simplifications, the dimensionless system of governing equations is written as

∇⃗ · (ρ0ν⃗) = 0 (2.76)
ρ

αs∆T
∇⃗ϕ− ∇⃗p+ ∇⃗ · τ = 0⃗ (2.77)

∂T

∂t
+ ν⃗ · ∇⃗T =

1

ρ0Ras

(
∇⃗ · k∇⃗T +Q

)
+
Di

ρ0
(−αTρ0g0ur + Φ) (2.78)

with
∆ϕ = −4πGρ

ρ1 = ρ0(1− α(T − T0(r)))

VERIFY all this !

2.11 Non-dimensionalisation of the Navier-Stokes equations

physics.tex
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2.11.1 Approach # 1 - isothermal flow

We define (see for instance Massimi et al. (2006) [839]) four reference quantities which are relevant
for geodynamics10:

� a reference viscosity value η = 1020 Pa s

� a reference mass density ρ = 1000 kgm−3

� a reference time t = 1Myr ≃ 3.15 · 1013 s

� a reference length l = 1000 m

� a reference gravity g = 9.81 m s−2

It follows that a reference pressure can be obtained:

p = ρgl = 9.81 · 106 Pa

Note that there is unfortunately no natural selection for the pressure scale. We could also have used
p = ρν2 where dynamic effects are dominant i.e. high velocity flows, or p = ην/l where viscous effects
are dominant i.e. creeping flows (which is the case in geodynamics). The definition of a reference
velocity is more straightforward:

ν =
l

t
= 1 mmyr−1

We define dimensionless variables through:

x =
x

l
y =

y

l
z =

z

l
ν⃗′ =

ν⃗

ν
t =

t

t
η =

η

η
g =

g

g

where the teal color indicates dimensionless values.
Consequently, time and space derivatives will be rescaled as follows:

∇⃗ = l ∇⃗ ∂t = t ∂t

Using this scaling relations the Navier-Stokes equation become:

ρl

t2
∂ν⃗

∂t
+
ρl

t2
(ν⃗ · ∇⃗)ν⃗ = −ρg∇⃗p+

η

lt
∇⃗ · η(∇⃗ν⃗+ ∇⃗ν⃗T ) + ρg⃗

I make ρ = ρ/ρ appear in the left hand side:

ρl

t2
ρ
∂ν⃗

∂t
+
ρl

t2
ρ(ν⃗ · ∇⃗)ν⃗ = −ρg∇⃗p+

η

lt
∇⃗ · η(∇⃗ν⃗+ ∇⃗ν⃗T ) + ρg⃗

which we can divide by ρl/t2 to obtain:

ρ

(
∂ν⃗

∂t
+ (ν⃗ · ∇⃗)ν⃗

)
= −

gt2

l
∇⃗p+

ηt

ρl2
∇⃗ · η(∇⃗ν⃗+ ∇⃗ν⃗T ) + t2

l
ρg⃗

One can recognise in this equation the Reynolds and Froude non-dimensional numbers (the ratio
between the inertial and viscous forces, and the ratio between buoyancy and inertial forces respec-
tively).

Re =
ρl2

ηt
Fr =

l

gt2

10Note that in the paper the authors conflate ρ and ρ̃ which prevents them from non-dimensionalising all terms as
we do here.
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From this we conclude that inertial forces in the Earth’s mantle are small compared to viscous forces.
We can then write:

ρ

(
∂ν⃗

∂t
+ (ν⃗ · ∇⃗)ν⃗

)
= − 1

Fr
∇⃗p+ 1

Re
∇⃗ · η(∇⃗ν⃗+ ∇⃗ν⃗T ) + 1

Fr
g⃗

In our case, given the definitions taken above, we have:

Re ≃ 3.174 · 10−24 Fr ≃ 1.027 · 10−25

so that the inertial terms can be dropped from the momentum equation (thereby yielding the di-
mensionless Stokes equations):

∇⃗ · η(∇⃗ν⃗+ ∇⃗ν⃗T )− Re

Fr
∇⃗p+ Re

Fr
g⃗ = 0

Note that in our case Re/Fr ≃ 30.5.

2.11.2 Approach # 2 - Temperature dependent

dimensionless equations2.tex.tex

Let us now consider a box heated from below and cooled from above. We define 4 fundamental
reference quantities:

� a length Lref (m), (L)

� a temperature Tref (K), (θ)

� a viscosity ηref (Pa s), (ML−1T−1)

� a thermal diffusion coefficient κref (m2 s−1), (L2T−1)

From these reference quantities one can form secondary ones, such as

� a time tref = L2
ref/κref (aka the diffusion time)

� a velocity νref = Lref/tref = κref/Lref

� an acceleration gref = νref/tref = κ2ref/L
3
ref

� a strain rate ε̇ref = t−1
ref = κref/L

2
ref

� a pressure pref = ηref ε̇ref = ηref t
−1
ref

� a reference density ρref = ηrefLref tref/L
3
ref = ηrefL

−2
ref tref

� a reference mass Mref = ηrefLref tref

� a reference energy Eref = ηrefLref tref
L2
ref

t2ref
= ηref

L3
ref

tref

� a reference heat conductivity11 kref = Eref/tref/Lref/Tref = ηrefL
2
ref/t

2
ref/Tref

� a reference heat capacity12 Cref = Eref/Mref/Tref = L2
ref/t

2
ref/Tref

� a reference heat production coefficient13 Href = Eref/tref/Mref =
L2
ref

t3ref

� a reference heat flux14 qref = ηrefLref t
−2
ref

11Units: W/m/K
12Units: J/kg/K
13Units: W/kg
14Units: Wm−2, or kg s−3
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We define dimensionless quantities as follows:

x =
x

Lref
ν⃗ =

ν⃗

νref
t =

t

tref
η =

η

ηref
g =

g

gref
k =

k

kref
Cp =

Cp
Cref

ρ =
ρ

ρref
(2.79)

H =
H

Href

∇⃗ = Lref ∇⃗ ∂t = tref ∂t T =
T

Tref
ε̇ = ε̇ tref (2.80)

We start from the standard Navier-Stokes equation15

ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · (2ηε̇) + ρg⃗

and assume that the density is temperature-dependent (Boussinesq approximation) so that

ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · (2ηε̇) + ρ0(1− αT )g⃗

and remove the hydrostatic pressure (although we keep using p for simplicity, p is now the dynamic
pressure):

ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · (2ηε̇)− ρ0αT g⃗

We divide this equation by pref = ηref ε̇ref :

1

ηref ε̇ref
ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · 2 η

ηref

ε̇

ε̇ref
− ρ0αT g⃗

ηref ε̇ref

Let us call e⃗ the positive vertical vector (e⃗z in Cartesian coordinates, e⃗r in spherical coordinates),
then g⃗ = −g0e⃗ and we can write (using ε̇ref = κref/L

2
ref )

1

ηref ε̇ref
(ρrefρ)

D(νref ν⃗)

Dt
= −∇⃗p+ ∇⃗ · 2ηε̇+

ρ0αTg0
ηref (κref/L2

ref )
e⃗

Finally, dividing by L−1
ref (i.e. multiplying by Lref ) yields

νrefρrefLref
ηref ε̇ref

ρ
Dν⃗

trefDt
= −∇⃗p+ ∇⃗ · 2ηε̇+

ρ0α(TTref )g0L
3
ref

ηrefκref
e⃗

and finally (using νref = Lref/tref )

ρrefκref
ηref

ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · 2ηε̇+

ρ0αTrefg0L
3
ref

ηrefκref
T e⃗

In the context of a system with a temperature difference ∆T between the bottom and top boundaries
separated by a distance H, one would then take Tref = ∆T and Lref = H so that the equation
becomes:

ρrefκref
ηref︸ ︷︷ ︸
Pr−1

ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · 2ηε̇+

ρ0α∆Tg0H
3

ηrefκref︸ ︷︷ ︸
Ra

T e⃗

and we obviously recover the classical definition of the Rayleigh number.

15https://en.wikipedia.org/wiki/Navier-Stokes_equations
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1

Pr
ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · 2ηε̇+ RaT e⃗

On the left side of the equation we recognize the (inverse of the) Prandlt number Pr = η
ρκ
. We

can estimate the dimensionless number before the inertial term for Earth geodynamics:

Pr ≃ 1020−23

3000 · 10−6
>> 1023

Its inverse is then extremely small and this is why we neglect the inertial terms in mantle modelling.
Note that if the fluid is isoviscous, one can then set ηref = η = η0 and then η = 1

Turning now to the continuity equation ∇⃗ · ν⃗ = 0, it is trivial to show that ∇⃗ · ν⃗ = 0. Finally,
starting from the simple heat transport equation:

∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T

We divide each side by Tref so that

∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T

We now divide each side by the reference velocity νref and we obtain

Lref
κref

∂T

∂t
+ ν⃗ · ∇⃗T =

Lref
κref

κ∆T

We multiply each side by Lref and we finally get

L2
ref

κref

∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T

and finally
∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T

The set of dimensionless equations is then:

−∇⃗p+ ∇⃗ · 2ηε̇+ RaT e⃗ = 0⃗ (2.81)

∇⃗ · ν⃗ = 0 (2.82)

∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T (2.83)

Looking now at the Extended Boussinesq Approximation (EBA), we have to conside two addi-
tional terms in the energy equation:

� the shear heating Φ (See Eq.(11.84)) Φ = 2ηε̇d : ε̇d

� the adiabatic heating αT ν⃗ · ∇⃗p

We start this time from

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
− ∇⃗ · k∇⃗T = ρH + 2ηε̇d : ε̇d + αT ν⃗ · ∇⃗p
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ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
− ∇⃗ · k∇⃗T = ρH + 2ηε̇d : ε̇d + αT ν⃗ · ∇⃗p

ρCp
Tref
tref

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
− Tref
L2
ref

∇⃗ · k∇⃗T = ρrefρH +
ηref
t2ref

2ηε̇d : ε̇d +
pref
tref

αT ν⃗ · ∇⃗p

we then use pref = ηref t
−1
ref and ρref = ηrefL

−2
ref tref

ρrefCref
Tref
tref

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
−Trefkref

L2
ref

∇⃗·k∇⃗T =
ηref
L2
ref

tref
L2
ref

t3ref
ρH+

ηref
t2ref

2ηε̇d : ε̇d+
ηref
t2ref

αT ν⃗·∇⃗p

or, multiplying all by t2ref/ηref :

t2ref
ηref

ρrefCref
Tref
tref

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
−
t2ref
ηref

Trefkref
L2
ref

∇⃗ · k∇⃗T = ρH + 2ηε̇d : ε̇d + αT ν⃗ · ∇⃗p

We then make use of Cref = L2
ref/t

2
ref/Tref and kref = ηrefL

2
ref/t

2
ref/Tref to arrive at

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
− ∇⃗ · k∇⃗T = ρH + 2ηε̇d : ε̇d + αT ν⃗ · ∇⃗p
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2.12 The Navier-Stokes equations in cylindrical coordinates

physics.tex

In cylindrical coordinates, (r, θ, z), the continuity equation for an incompressible fluid is

1

r

∂

∂r
(rνr) +

1

r

∂

∂θ
(νθ) +

∂νz
∂z

= 0 (2.84)

or
∂νr
∂r

+
νr

r
+

1

r

∂

∂θ
(νθ) +

∂νz
∂z

= 0 (2.85)

The Navier-Stokes equations of motion for an incompressible fluid with uniform viscosity are:

ρ

(
Dνr

Dt
− ν2

θ

r

)
= −∂p

∂r
+ fr + η

(
∆νr −

νr

r2
− 2

r2
∂νθ
∂θ

)
ρ

(
Dνθ

Dt
+

νθνr

r

)
= −1

r

∂p

∂θ
+ fθ + η

(
∆νθ −

νθ

r2
+

2

r2
∂νr
∂θ

)
ρ
Dνz

Dt
= −∂p

∂z
+ fz + η∆νz (2.86)

where the Lagrangian or material derivative is

D

Dt
=

∂

∂t
+ νr

∂

∂r
+

νθ

r

∂

∂θ
+ νz

∂

∂z

and the Laplacian operator is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
(2.87)

and for an incompressible, Newtonian fluid

σrr = −p+ 2η
∂νr
∂r

(2.88)

σθθ = −p+ 2η

(
1

r

∂νθ
∂θ

+
u

r

)
(2.89)

σzz = −p+ 2η
∂νz
∂z

(2.90)

σrz = η

(
∂νr
∂z

+
∂νz
∂r

)
(2.91)

σrθ = η

(
1

r

∂νr
∂θ

+
∂νθ
∂r
− νθ

r

)
(2.92)

σθz = η

(
1

r

∂νz
∂θ

+
∂νθ
∂z

)
(2.93)
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2.13 The Stokes equations in spherical coordinates

physics.tex

In spherical coordinates, (r, θ, ϕ), the continuity equation for an incompressible fluid is

1

r2
∂

∂r
(r2νr) +

1

r sin θ

∂

∂θ
(νθ sin θ) +

1

r sin θ

∂νϕ
∂ϕ

= 0 (2.94)

Concerning the momentum equation, we start from

∇⃗ · σ + f⃗ = 0⃗ (2.95)

The buoyancy force f⃗ is nearly always given by f⃗ = ρg⃗ = −ρg e⃗r (with g > 0), i.e. fϕ = fθ = 0, and
then

−∇⃗p+ ∇⃗ · τ − ρge⃗r = 0⃗

or,

−(∇⃗p)r + (∇⃗ · τ )r = ρg

−(∇⃗p)θ + (∇⃗ · τ )θ = 0

−(∇⃗p)ϕ + (∇⃗ · τ )ϕ = 0

The pressure gradient is simply given by:

(∇⃗p)r =
∂p

∂r

(∇⃗p)θ =
1

r

∂p

∂θ

(∇⃗p)ϕ =
1

r sin θ

∂p

∂ϕ

We now turn to the remaining three components of the divergence of deviatoric stress in spherical
coordinates r, θ, ϕ, which are given by16

(∇⃗ · τ )r =
∂τrr
∂r

+
1

r

∂τθr
∂θ

+
1

r sin θ

∂τϕr
∂ϕ

+
2τrr − τθθ − τϕϕ

r
+
τθr cot θ

r

(∇⃗ · τ )θ =
∂τrθ
∂r

+
1

r

∂τθθ
∂θ

+
1

r sin θ

∂τϕθ
∂ϕ

+
3τθr + (τθθ − τϕϕ) cot θ

r

(∇⃗ · τ )ϕ =
∂τrϕ
∂r

+
1

r

∂τθϕ
∂θ

+
1

r sin θ

∂τϕϕ
∂ϕ

+
3τrϕ + 2τϕθ cot θ

r
(2.96)

And finally the momentum equation writes:

−∂p
∂r

+
∂τrr
∂r

+
1

r

∂τθr
∂θ

+
1

r sin θ

∂τϕr
∂ϕ

+
2τrr − τθθ − τϕϕ

r
+
τθr cot θ

r
= ρg

−1

r

∂p

∂θ
+
∂τrθ
∂r

+
1

r

∂τθθ
∂θ

+
1

r sin θ

∂τϕθ
∂ϕ

+
3τθr + (τθθ − τϕϕ) cot θ

r
= 0

− 1

r sin θ

∂p

∂ϕ
+
∂τrϕ
∂r

+
1

r

∂τθϕ
∂θ

+
1

r sin θ

∂τϕϕ
∂ϕ

+
3τrϕ + 2τϕθ cot θ

r
= 0 (2.97)

16Would be nice to have a ref here
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The deviatoric stress tensor components are

τrr = 2η

[
ε̇rr −

1

3
(ε̇rr + ε̇θθ + ε̇ϕϕ)

]
τθθ = 2η

[
ε̇θθ −

1

3
(ε̇rr + ε̇θθ + ε̇ϕϕ)

]
τϕϕ = 2η

[
ε̇ϕϕ −

1

3
(ε̇rr + ε̇θθ + ε̇ϕϕ)

]
τrθ = 2ηε̇rθ (2.98)

τrϕ = 2ηε̇rϕ (2.99)

τθϕ = 2ηε̇θϕ (2.100)

with

ε̇rr =
∂νr
∂r

ε̇θθ =
νr

r
+

1

r

∂νθ
∂θ

ε̇ϕϕ =
1

r sin θ

∂νϕ
∂ϕ

+
νr

r
+

νθ cot θ

r

ε̇θr = ε̇rθ =
1

2

(
r
∂

∂r
(
νθ

r
) +

1

r

∂νr
∂θ

)
ε̇ϕr = ε̇rϕ =

1

2

(
1

r sin θ

∂νr
∂ϕ

+ r
∂

∂r
(
νϕ

r
)

)
ε̇ϕθ = ε̇θϕ =

1

2

(
sin θ

r

∂

∂θ
(
νϕ

sin θ
) +

1

r sin θ

∂νθ
∂ϕ

)
We go further by assuming the fluid to be incompressible (i.e. ε̇rr + ε̇θθ + ε̇ϕϕ = 0) and then:

τrr = 2ηε̇rr = 2η
∂νr
∂r

τθθ = 2ηε̇θθ = 2η

(
νr

r
+

1

r

∂νθ
∂θ

)
τϕϕ = 2ηε̇ϕϕ = 2η

(
1

r sin θ

∂νϕ
∂ϕ

+
νr

r
+

νθ cot θ

r

)
τrθ = 2ηε̇rθ = η

(
r
∂

∂r
(
νθ

r
) +

1

r

∂νr
∂θ

)
τrϕ = 2ηε̇rϕ = η

(
1

r sin θ

∂νr
∂ϕ

+ r
∂

∂r
(
νϕ

r
)

)
τθϕ = 2ηε̇θϕ = η

(
sin θ

r

∂

∂θ
(
νϕ

sin θ
) +

1

r sin θ

∂νθ
∂ϕ

)
Inserting these expressions in Eq. (2.97) is a cumbersome affair... Under the assumption that the
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fluid is also isoviscous, we get17

ρg = −∂p
∂r

+ η

(
∆νr −

2νr
r2
− 2

r2
∂νθ
∂θ
− 2νθ cot θ

r2
− 2

r2 sin θ

∂νϕ
∂ϕ

)
0 = −1

r

∂p

∂θ
+ η

(
∆νθ +

2

r2
∂νr
∂θ
− νθ

r2 sin2 θ
− 2 cot θ

r2 sin θ

∂νϕ
∂ϕ

)
0 = − 1

r sin θ

∂p

∂ϕ
+ η

(
∆νϕ +

2

r2 sin θ

∂νr
∂ϕ
− νϕ

r2 sin2 θ
+

2 cot θ

r2 sin θ

∂νθ
∂ϕ

)
(2.101)

and the Laplacian operator is

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

Before being used these equations should be checked against multiple sources.

2.14 The equations for axisymmetric geometries

axisymmetric eqs.tex

In what follows we are concerned with incompressible flow. In some cases the assumption can be
made that the object we wish to sudy has an axisymmetric geometry, for example a plume:

a) b) c)
a)Taken from Kellogg and King [691] (1997); b,c) Taken from Leitch, Steinbach, and Yuen [762] (1996).

Looking at the figure above we see that there are in fact two cases: axisymmetry in cylindrical
coordinates (b) and axisymmetry in spherical coordinates (c).

As mentioned in Kellogg and King [691] (1997): ”By imposing axisymmetry, we restrict the prob-
lem to two degrees of freedom, reducing the computational effort significantly over 3D calculations.”
However, [1052] (2004) also mention: ”An important caveat of axisymmetric calculations is that
there are no variations in the ϕ direction (i.e., there are no ϕ derivatives in the governing equations).
Thus, as we get further from the pole, the results become increasingly less physical. Downwelling
drips off the pole are actually downwelling doughnuts that follow the entire small circle. In a fully
3D calculation, this doughnut feature would in reality be a drip.”

See Section 7.5.6 for the FE formulation of these equations.

17I have not thoroughly checked these equations yet
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In cylindrical coordinates

The velocity vector is ν⃗ = (νr,νθ,νz). Due to the symmetry we have νθ = 0, ∂θ → 0 and the Stokes
equations then become 18

−∂p
∂r

+ η

(
1

r

∂

∂r
(r
∂νr
∂r

) +
∂2νr
∂z2

− νr

r2

)
+ ρgr = 0 (2.102)

−∂p
∂z

+ η

(
1

r

∂

∂r
(r
∂νz
∂r

) +
∂2νz
∂z2

)
+ ρgz = 0 (2.103)

1

r

∂

∂r
(rνr) +

∂νz
∂z

= 0 (2.104)

The strain rate tensor in cylindrical coordinates is given by

ε̇rr =
∂νr
∂r

(2.105)

ε̇θθ =
νr

r
+

1

r

∂νθ
∂θ

(2.106)

ε̇θr = ε̇rθ =
1

2

(
∂νθ
∂r
− νθ

r
+

1

r

∂νr
∂θ

)
(2.107)

ε̇zz =
∂νz
∂z

(2.108)

ε̇rz = ε̇zr =
1

2

(
∂νr
∂z

+
∂νz
∂r

)
(2.109)

ε̇θz = ε̇zθ =
1

2

(
1

r

∂νz
∂θ

+
∂νθ
∂z

)
(2.110)

In the axisymmetric case, we have νθ = 0 and ∂θ → 0 so that

ε̇rr =
∂νr
∂r

(2.111)

ε̇θθ =
νr

r
(2.112)

ε̇rθ = ε̇θr = 0 (2.113)

ε̇zz =
∂νz
∂z

(2.114)

ε̇rz = ε̇zr =
1

2

(
∂νr
∂z

+
∂νz
∂r

)
(2.115)

ε̇θz = ε̇zθ = 0 (2.116)

or,

ε̇ =

 ε̇rr 0 ε̇rz
0 ε̇θθ 0
ε̇zr 0 ε̇zz


Relevant Literature: Daly & Raefsky (1985) [300], Kiefer & Hager (1992) [699].

This is implemented in stone 36,63,90,91,92,96,106.

18https://en.wikipedia.org/wiki/Navier-Stokes_equations
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In spherical coordinates

Assuming the flow velocity does not depend on ϕ (∂ϕ = 0) and therefore also that νϕ = 0

0 = −∂p
∂r

+ fr + η

(
∆vr −

2vr
r2
− 2

r2
∂vθ
∂θ
− 2vθ cot θ

r2

)

0 = −1

r

∂p

∂θ
+ η

(
∆vθ +

2

r2
∂vr
∂θ
− vθ
r2 sin2 θ

)
with

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

THESE EQUATIONS SHOULD BE CHECKED and RE-CHECKED !!
From [1401]:

1

r2
∂

∂r
(r2νr) +

1

r sin θ

∂

∂θ
(νθ sin θ) +

1

r sin θ

∂νϕ
∂ϕ

= 0 (2.117)

Pb with 1/r2 ??

0 = −∂p
∂r

+ (1− ζ)Ra r T +
1

r2
∂

∂r

(
2ηr2

∂νr
∂r

)
+

1

r2 sin θ

∂

∂θ

(
η sin θ

∂νr
∂θ

)
+

∂

∂θ

(
η
∂

∂r

νθ

r

)
(2.118)

where ζ = Ri/Ro

The dimensional form of the energy equation in a spherical axisymmetric geometry is given by
(assuming the conductivity k to be constant):

ρCp

(
∂T

∂t
+ νr

∂T

∂r
+

νθ

r

∂T

∂θ

)
= k

1

r2
∂

∂r

(
r2
∂T

∂r

)
+ k

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
...

THESE EQUATIONS SHOULD BE CHECKED and RE-CHECKED !!
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2.15 The Boussinesq approximation

physics.tex

As nicely explained in Spiegel & Veronis [1186]: ”In the study of problems of thermal convection
it is a frequent practice to simplify the basic equations by introducing certain approximations which
are attributed to Boussinesq (1903). The Boussinesq approximations can best be summarized by
two statements:

1. The fluctuations in density which appear with the advent of motion result principally from
thermal (as opposed to pressure) effects.

2. In the equations for the rate of change of momentum and mass, density variations may be
neglected except when they are coupled to the gravitational acceleration in the buoyancy force.”

Note that their paper examines the Boussinesq approximation for compressible fluids.
[from Aspect manual] The Boussinesq approximation assumes that the density can be consid-

ered constant in all occurrences in the equations with the exception of the buoyancy term on the
right hand side of (2.56). The primary result of this assumption is that the continuity equation (2.57)

will now read ∇⃗ · ν⃗ = 0. This implies that the strain rate tensor is deviatoric. Under the Boussinesq
approximation, the equations are much simplified:

−∇⃗ · [2ηε̇(ν⃗)] + ∇⃗p = ρg⃗ in Ω, (2.119)

∇⃗ · (ρν⃗) = 0 in Ω, (2.120)

ρ0Cp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
− ∇⃗ · k∇⃗T = ρH in Ω (2.121)

Note that all terms on the rhs of the temperature equations have disappeared, with the exception of
the source term.

2.16 The Extended Boussinesq approximation

physics.tex

Yuen et al. (2007) [1397] state that the background of the extended Boussinesq equations can be
found described in Christensen and Yuen (1985) [251] and more completely in Matyska and Yuen
(2007) [842].

Relevant Literature[543, 542]

60



2.17 Stokes equation for elastic medium

elastic equations.tex

This will be moved to Section 16.7
What follows is mostly borrowed from Becker & Kaus lecture notes [66].
The strong form of the PDE that governs force balance in a medium is given by

∇⃗ · σ + f⃗ = 0⃗

where σ is the stress tensor and f⃗ is a body force.
The stress tensor is related to the strain tensor through the generalised Hooke’s law19:

σij =
∑
kl

Cijklεkl or σ = C : ε (2.122)

where C is the fourth-order elastic tensor.
Due to the inherent symmetries of σ, ε, and C, only 21 elastic coefficients of the latter are

independent. For isotropic linear media (which have the same physical properties in any direction),
C can be reduced to only two independent numbers (for example the bulk modulus K and the shear
modulus G that quantify the material’s resistance to changes in volume and to shearing deformations,
respectively). Thus

Cijkl = λδijδkl + µ(δikδjl + δilδjk)

so that Eq. (2.122) becomes:
σij = λεkkδij + 2µεij

or

σ = λ(∇⃗ · u⃗)1+ 2µε(u⃗) (2.123)

where λ is the Lamé parameter and µ is the shear modulus20. The term ∇⃗ · u⃗ is the isotropic dilation.
This can be re-written in the 6-dimensional stress/strain space as

σxx
σyy
σzz
σxy
σxz
σyz


︸ ︷︷ ︸

σ⃗

=


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


︸ ︷︷ ︸

C

·


εxx
εyy
εzz
εxy
εxz
εyz


︸ ︷︷ ︸

ε⃗

or, in terms of the compliance matrix C−1,

ε⃗ = C−1 · σ⃗

with

C−1 =
1

µ(3λ+ 2µ)


λ+ µ −λ/2 −λ/2 0 0 0
−λ/2 λ+ µ −λ/2 0 0 0
−λ/2 −λ/2 λ+ µ 0 0 0
0 0 0 3λ+ 2µ 0 0
0 0 0 0 3λ+ 2µ 0
0 0 0 0 0 3λ+ 2µ


19https://en.wikipedia.org/wiki/Hooke’s_law
20It is also sometimes written G
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If we define the Young’s modulus as E = µ(3λ+2µ)/(λ+µ) and the Poisson’s ratio as ν = λ(λ+µ)/2,
then

C−1 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)


Note that the determinant of C−1 is 8(1 + ν)5(1 − 2ν)E−6, so that when ν → 1/2 (incompressible
material), the compliance matrix is singular and the stress cannot be given as a function of strain
[816].

The strain tensor is related to the displacement as follows:

ε(u⃗) =
1

2
(∇⃗u⃗+ (∇⃗u⃗)T )

The incompressibility (or bulk modulus) K is defined as p = −K∇⃗ · u⃗ where p is the pressure with

p = −1

3
tr(σ)

= −1

3
[λ(∇⃗ · u⃗)tr[1] + 2µtr[ε(u⃗)]]

= −1

3
[λ(∇⃗ · u⃗)3 + 2µ(∇⃗ · u⃗)]

= −
[
λ+

2

3
µ

]
(∇⃗ · u⃗) (2.124)

so that

p = −K∇⃗ · u⃗ with K = λ+
2

3
µ

Remark. Eq. (2.122) and (2.123) are analogous to the ones that one has to solve in the context of
viscous flow using the penalty method. In this case λ is the penalty coefficient, u⃗ is the velocity, and
µ is then the dynamic viscosity.

The Lamé parameter and the shear modulus are also linked to ν the poisson ratio, and E, Young’s
modulus:

λ = µ
2ν

1− 2ν
=

νE

(1 + ν)(1− 2ν)
with E = 2µ(1 + ν)

The shear modulus, expressed often in GPa, describes the material’s response to shear stress. The
poisson ratio describes the response in the direction orthogonal to uniaxial stress. The Young mod-
ulus, expressed in GPa, describes the material’s strain response to uniaxial stress in the direction of
this stress.

Relevant Literature: solvers for 3D Stokes and elasticity problems with heterogeneous coefficients
[1106]
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2.18 The strain rate tensor in all coordinate systems

strainrate tensor.tex

The strain rate tensor ε̇(ν⃗) is given by

ε̇(ν⃗) =
1

2
(∇⃗ν⃗+ (∇⃗ν⃗)T ) (2.125)

2.18.1 Cartesian coordinates

ε̇xx =
∂u

∂x
(2.126)

ε̇yy =
∂v

∂y
(2.127)

ε̇zz =
∂w

∂z
(2.128)

ε̇yx = ε̇xy =
1

2

(
∂u

∂y
+
∂v

∂x

)
(2.129)

ε̇zx = ε̇xz =
1

2

(
∂u

∂z
+
∂w

∂x

)
(2.130)

ε̇zy = ε̇yz =
1

2

(
∂v

∂z
+
∂w

∂y

)
(2.131)

In the Aspect manual there is an interesting discussion about the strain rate tensor in the case
of 2D models: ”The notion we adopt here is to think of two-dimensional models in the following way:
We assume that the domain we want to solve on is a two-dimensional cross section (parameterized by
x and y coordinates) that extends infinitely far in both negative and positive z direction. Further, we
assume that the velocity is zero in z direction and that all variables have no variation in z direction.
As a consequence, we ought to really think of these two-dimensional models as three-dimensional
ones in which the z component of the velocity is zero and so are all z derivatives.”

This of course makes sense but it means that when the deviatoric strain rate tensor needs to be
computed, then it is given by

ε̇d = ε̇d−1

3
(∇⃗·ν⃗)1 =

 ε̇xx ε̇xy 0
ε̇xy ε̇yy 0
0 0 0

−1

3
(ε̇xx+ε̇yy)1 =

1

3

 2ε̇xx − ε̇yy 3ε̇xy 0
3ε̇xy −ε̇xx + 2ε̇yy 0
0 0 −ε̇xx − ε̇yy


As a consequence the shear heating term Φ is given by

Φ = 2ηε̇d : ε̇d = 2η
1

9

[
(2ε̇xx − ε̇yy)2 + (−ε̇xx + 2ε̇yy)

2 + 2 · 9ε̇2xy + (−ε̇xx − ε̇yy)2
]

= 2η
1

9

[
4ε̇2xx − 4ε̇xxε̇yy + ε̇2yy + ε̇2xx − 4ε̇xxε̇yy + 4ε̇2yy + 18ε̇2xy + ε̇2xx + 2ε̇xxε̇yy + ε̇2yy

]
= 2η

1

9

[
6ε̇2xx + 6ε̇2yy − 6ε̇xxε̇yy + 18ε̇2xy

]
= 2η

[
2

3
ε̇2xx +

2

3
ε̇2yy −

2

3
ε̇xxε̇yy + 2ε̇2xy

]
(2.132)
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2.18.2 Polar coordinates

ε̇rr =
∂νr
∂r

(2.133)

ε̇θθ =
νr

r
+

1

r

∂νθ
∂θ

(2.134)

ε̇θr = ε̇rθ =
1

2

(
∂νθ
∂r
− νθ

r
+

1

r

∂νr
∂θ

)
(2.135)

2.18.3 Cylindrical coordinates

ε̇rr =
∂νr
∂r

(2.136)

ε̇θθ =
νr

r
+

1

r

∂νθ
∂θ

(2.137)

ε̇θr = ε̇rθ =
1

2

(
∂νθ
∂r
− νθ

r
+

1

r

∂νr
∂θ

)
(2.138)

ε̇zz =
∂νz
∂z

(2.139)

ε̇rz = ε̇zr =
1

2

(
∂νr
∂z

+
∂νz
∂r

)
(2.140)

ε̇θz = ε̇zθ =
1

2

(
1

r

∂νz
∂θ

+
∂νθ
∂z

)
(2.141)

The velocity divergence is given by

∇⃗ · ν⃗ = ε̇rr + ε̇θθ + ε̇zz =
∂νr

∂r
+

1

r

(
∂νθ

∂θ
+ νr

)
+
∂νz

∂z
(2.142)

2.18.4 Spherical coordinates

ε̇rr =
∂νr
∂r

(2.143)

ε̇θθ =
νr

r
+

1

r

∂νθ
∂θ

(2.144)

ε̇ϕϕ =
1

r sin θ

∂νϕ
∂ϕ

+
νr

r
+

νθ cot θ

r
(2.145)

ε̇θr = ε̇rθ =
1

2

(
r
∂

∂r
(
νθ

r
) +

1

r

∂νr
∂θ

)
(2.146)

ε̇ϕr = ε̇rϕ =
1

2

(
1

r sin θ

∂νr
∂ϕ

+ r
∂

∂r
(
νϕ

r
)

)
(2.147)

ε̇ϕθ = ε̇θϕ =
1

2

(
sin θ

r

∂

∂θ
(
νϕ

sin θ
) +

1

r sin θ

∂νθ
∂ϕ

)
(2.148)

2.18.5 Relationship between Cartesian and polar coordinates expres-
sions

We can go from Cartesian to polar coordinates via the 2× 2 transformation matrix:

P =

(
cos θ sin θ
− sin θ cos θ

)
(2.149)
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The rows correspond to the components of e⃗r and e⃗θ in the Cartesian basis. A vector ν⃗ transforms
from one orthonormal basis to another by multiplying it by the matrix P . As we have seen before,
this yields

νr = u cos θ + v sin θ (2.150)

νθ = −u sin θ + v cos θ (2.151)

A second-order tensor a is Cartesian coordinates transforms into a⋆ in polar coordinates by

a⋆ = P · a · PT

and obviously
a = PT · a⋆ · P

We obtain for the strain rate tensor (or the stress tensor):

ε̇rr = ε̇xx cos
2 θ + ε̇yy sin

2 θ + 2ε̇xy sin θ cos θ

ε̇θθ = ε̇xx sin
2 θ + ε̇yy cos

2 θ − 2ε̇xy sin θ cos θ

ε̇rθ = ε̇xy(cos
2 θ − sin2 θ) + (ε̇yy − ε̇xx) sin θ cos θ

Using the trigonometric identities sin 2θ = 2 sin θ cos θ and cos2 θ − sin2 θ = cos 2θ , then we obtain

ε̇rr = ε̇xx cos
2 θ + ε̇yy sin

2 θ + ε̇xy sin 2θ

ε̇θθ = ε̇xx sin
2 θ + ε̇yy cos

2 θ − ε̇xy sin 2θ

ε̇rθ = ε̇xy cos 2θ +
1

2
(ε̇yy − ε̇xx) sin 2θ

and likewise:

ε̇xx = ε̇rr cos
2 θ + ε̇θθ sin

2 θ − 2ε̇rθ sin θ cos θ (2.152)

ε̇yy = ε̇rr sin
2 θ + ε̇θθ cos

2 θ + 2ε̇rθ sin θ cos θ (2.153)

ε̇xy = ε̇rθ(cos
2 θ − sin2 θ) + (ε̇rr − ε̇θθ) sin θ cos θ (2.154)
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2.19 Boundary conditions

physics.tex

In mathematics, the Dirichlet (or first-type) boundary condition is a type of boundary condition,
named after Peter Gustav Lejeune Dirichlet. When imposed on an ODE or PDE, it specifies the
values that a solution needs to take along the boundary of the domain. Note that a Dirichlet boundary
condition may also be referred to as a fixed boundary condition.

The Neumann (or second-type) boundary condition is a type of boundary condition, named
after Carl Neumann. When imposed on an ordinary or a partial differential equation, the condition
specifies the values in which the derivative of a solution is applied within the boundary of the domain.

It is possible to describe the problem using other boundary conditions: a Dirichlet boundary
condition specifies the values of the solution itself (as opposed to its derivative) on the boundary,
whereas the Cauchy boundary condition, mixed boundary condition and Robin boundary condition
are all different types of combinations of the Neumann and Dirichlet boundary conditions.

2.19.1 The Stokes equations

You may find the following terms in the computational geodynamics literature:

� free surface: this means that no force is acting on the surface, i.e. σ · n⃗ = 0⃗. It is usually used
on the top boundary of the domain and allows for topography evolution.

� free slip: ν⃗ · n⃗ = 0 and (σ · n⃗)× n⃗ = 0⃗. This condition ensures a frictionless flow parallel to the
boundary where it is prescribed.

� no slip: this means that the velocity (or displacement) is exactly zero on the boundary, i.e.
ν⃗ = 0⃗.

� prescribed velocity: ν⃗ = ν⃗bc

� stress b.c.:

� open .b.c.: see stone 29.

2.19.2 The heat transport equation

There are two types of boundary conditions for this equation: temperature boundary conditions
(Dirichlet boundary conditions) and heat flux boundary conditions (Neumann boundary conditions).
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2.20 Meaningful physical quantities

physics.tex

� Velocity ν⃗(m/s): This is a vector quantity and both magnitude and direction are needed to
define it. It is the rate of change of position with respect to a frame of reference.

� Root mean square velocity νrms(m/s):

νrms =

(∫
Ω
|ν⃗|2 dV∫
Ω
dV

)1/2

=

(
1

VΩ

∫
Ω

|ν⃗|2 dV
)1/2

(2.155)

Remark. VΩ is usually computed numerically at the same time that νvrms is computed.

In Cartesian coordinates, for a cuboid domain of size Lx × Ly × Lz, the νrms is simply given
by:

νrms =

(
1

LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0

(u2 + v2 + w2)dxdydz

)1/2

(2.156)

In the case of an annulus domain, although calculations are carried out in Cartesian coordinates,
it makes sense to look at the radial velocity component νr and the tangential velocity component
νθ, and their respective root mean square averages:

νr|rms =
(

1

VΩ

∫
Ω

v2r dΩ

)1/2

(2.157)

νθ|rms =
(

1

VΩ

∫
Ω

v2θ dΩ

)1/2

(2.158)

� Pressure p (Pa):

� Stress tensor σ (Pa):

� Strain tensor ε (dimensionless):

� Strain rate tensor ε̇ (s−1):

� Argand Number: Non-dimensional number (Ar) representing the ratio of the stress arising
from crustal thickness contrasts (vertical stress) to the stress required to deform the material
at ambient strain rates (horizontal stress) It is commonly used in mountain building dynamics
as a measure of the tendency of an orogen to collapse under its own gravitational potential
energy. See England & McKenzie [376], Houseman & England [596].

� (Thermal) Rayleigh number Ra (or RaT ) (X): It is a dimensionless number that expresses the
ratio of the driving forces to the opposing forces. The buoyancy force comes from the volumetric
thermal expansion while the viscous forces and the heat diffusivity oppose convection (the latter
one smoothes out thermal gradients).

The Rayleigh number for convection driven by a constant temperature hot base and a cold
surface in a domain of thickness D is:

Ra =
ρ0gαD

3

ηκ
·∆T =

ρ20CpgαD
3∆T

ηk
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The Rayleigh number for convection driven by a hot base (constant basal heat flow qb) and a
colder surface is:

Ra =
ρ0gαD

3

ηκ
· qbD
k

The Rayleigh number for convection driven by internal heating H (production per cubic meter)
is:

Ra =
ρ0gαD

3

ηκ
· HD

2

k

The Rayleigh number for convection driven by both basal heat flow and internal heating is:

Ra =
ρ0gαD

3

ηκ
· qbD +HD2

k

For convection to occur, the Rayleigh number must be larger than the so-called critical Rayleigh
number, which ranges from 600 to 3000 (it depends on the boundary conditions and the geom-
etry).

� Compositional Rayleigh Number RaC :

RaC =
∆ρCgD

3

κη0

where ∆ρC is the difference in density between the distinct material compositions (when com-
pared at identical temperatures). See for instance Trim et al. (2020) [1281].

� Prandtl number Pr (X): It is named after the German physicist Ludwig Prandtl21 and is defined
as the ratio of momentum diffusivity to thermal diffusivity. It is given as:

Pr =
momentum diffusivity

thermal diffusivity
=

η/ρ

k/(ρCp)
=
ηCp
k

For Earth materials, we have Pr ∼ (10211000)/3 >> 1, which means that momentum diffusivity
dominates.

� Nusselt number Nu (X): the Nusselt number (Nu) is the ratio of convective to conductive heat
transfer across (normal to) the boundary. The conductive component is measured under the
same conditions as the heat convection but with a (hypothetically) stagnant (or motionless)
fluid.

In practice the Nusselt number Nu of a layer (typically the mantle of a planet) is defined as
follows:

Nu =
q

qc
(2.159)

where q is the heat transferred by convection while qc = k∆T/D is the amount of heat that
would be conducted through a layer of thickness D with a temperature difference ∆T across it
with k being the thermal conductivity.

For 2D Cartesian systems of size (Lx,Ly) the Nu is computed [95]

Nu =

1
Lx

∫ Lx
0

k ∂T
∂y
(x, y = Ly)dx

− 1
Lx

∫ Lx
0

kT (x, y = 0)/Lydx
= −Ly

∫ Lx
0

∂T
∂y
(x, y = Ly)dx∫ Lx

0
T (x, y = 0)dx

i.e. it is the mean surface temperature gradient over the mean bottom temperature.

21https://en.wikipedia.org/wiki/Ludwig_Prandtl
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finish. not happy with definition. Look at literature

Note that in the case when no convection takes place then the measured heat flux at the top
is the one obtained from a purely conductive profile which yields Nu=1.

Note that a relationship Ra ∝ Nuα exists between the Rayleigh number Ra and the Nusselt
number Nu in convective systems, see [1368] and references therein.

Turning now to cylindrical geometries with inner radius R1 and outer radius R2, we define
f = R1/R2. A small value of f corresponds to a high degree of curvature. We assume now
that R2 − R1 = 1, so that R2 = 1/(1 − f) and R1 = f/(1 − f). Following [635], the Nusselt
number at the inner and outer boundaries are:

Nuinner =
f ln f

1− f
1

2π

∫ 2π

0

(
∂T

∂r

)
r=R1

dθ (2.160)

Nuouter =
ln f

1− f
1

2π

∫ 2π

0

(
∂T

∂r

)
r=R2

dθ (2.161)

Note that a conductive geotherm in such an annulus between temperatures T1 and T2 is given
by

Tc(r) =
ln(r/R2)

ln(R1/R2)
=

ln(r(1− f))
ln f

so that
∂Tc
∂r

=
1

r

1

ln f

We then find:

Nuinner =
f ln f

1− f
1

2π

∫ 2π

0

(
∂Tc
∂r

)
r=R1

dθ =
f ln f

1− f
1

R1

1

ln f
= 1 (2.162)

Nuouter =
ln f

1− f
1

2π

∫ 2π

0

(
∂Tc
∂r

)
r=R2

dθ =
ln f

1− f
1

R2

1

ln f
= 1 (2.163)

As expected, the recovered Nusselt number at both boundaries is exactly 1 when the temper-
ature field is given by a steady state conductive geotherm.

derive formula for Earth size R1 and R2

Relevant Literature[800]

� Temperature (K):

� (Dynamic) Viscosity (Pa s): For air it is roughly 10−5Pa s, about 10−3 Pa s for water, about
1010 Pa s for ice and about 1017 Pa s for salt.

� Entropy S (JK−1)

� (mass) Density ρ (kgm−3):

� Heat capacity Cp (JK−1): It is the measure of the heat/energy required to increase the tem-
perature of a unit quantity of a substance by unit degree. Note that the specific heat capacity
cP of a substance is the heat capacity of a sample of the substance divided by the mass of the
sample, with units JK−1 kg−1.

“Different substances respond to heat in different ways. If a metal chair sits in the bright sun
on a hot day, it may become quite hot to the touch. An equal mass of water under the same
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sun exposure will not become nearly as hot. This means that water has a high heat capacity
(the amount of heat required to raise the temperature of an object by 1 ◦C). Water is very
resistant to changes in temperature, while metals generally are not.” 22

� Heat conductivity, or thermal conductivity k (Wm−1K−1). It is the property of a material that
indicates its ability to conduct heat. It appears primarily in Fourier’s Law for heat conduction.
Note that it is a function of temperature, especially in mantle convection settings, see Bonneville
& Capolsini (1999) [115] and refs therein, Miyauchi & Kameyama (2013) [885], Hofmeister &
Yuen (2007) [583]. Note also that it can be a tensorial quantity in anisotropic context. The
heat conductivity of many rocks was determined in [23].

� Heat diffusivity: κ = k/(ρCp) (m2 s−1). Substances with high thermal diffusivity rapidly
adjust their temperature to that of their surroundings, because they conduct heat quickly in
comparison to their volumetric heat capacity or ’thermal bulk’.

� thermal expansion α (K−1): it is the tendency of a matter to change in volume in response
to a change in temperature. Note that it is a function of temperature, especially in mantle
convection settings [885].

α =
1

V

(
∂V

∂T

)
P

� Urey Ratio: mantle heat production divided by heat loss. It is a key constraint for thermal
history models. Recent Urey ratio estimates are in the range of 0.21-0.49. [768]

� Shear modulus: modulus of rigidity, usually expressed in GPa. It describes the material re-
sponse to shear stress.

� Poisson ratio: response in the direction orthogonal to uniaxial stress.

� Young’s modulus: describes the material strain response to uniaxial stress in the direction of
this stress, usually expressed in GPa.

� Average viscosity: following Christensen (1983) [242], one can compute the averaged viscosity
in a domain as follows:

⟨η⟩ =
∫
V
ηε̇2edV∫

V
ε̇2edV

(2.164)

check aspect manual The 2D cylindrical shell benchmarks by Davies et al. 5.4.12

22https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)

/17%3A_Thermochemistry/17.04%3A_Heat_Capacity_and_Specific_Heat
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2.21 Principal stress and principal invariants

physics.tex

As seen before (see Section 2.4.2) the stress tensor is a symmetric 3 × 3 real matrix, and linear
algebra tells us that it therefore has three mutually orthogonal unit-length eigenvectors n⃗1, n⃗2, n⃗3

and three real eigenvalues λ1, λ2, λ3 such that σ ·n⃗i = λin⃗i.
As a consequence, in a coordinate system with axes n⃗1, n⃗2, n⃗3, the stress tensor is a diagonal

matrix, and has only the three normal components λ1, λ2, λ3 i.e. the principal stresses. If the three
eigenvalues are equal, the stress is an isotropic compression or tension, always perpendicular to any
surface, there is no shear stress, and the tensor is a diagonal matrix in any coordinate frame.

2.21.1 In two dimensions

We are looking for the stress tensor eigenvector vector n⃗ = (nx, ny) associated to the eigenvalue λ
such that (

σxx σxy
σxy σyy

)
·
(
nx
ny

)
= λ

(
nx
ny

)
or, (

σxx σxy
σxy σyy

)
·
(
nx
ny

)
−
(
λ 0
0 λ

)
·
(
nx
ny

)
= 0⃗

i.e., (
σxx − λ σxy
σxy σyy − λ

)
·
(
nx
ny

)
= 0⃗

which yields
(σxx − λ)(σyy − λ)− σ2

xy = 0

or,
λ2 − (σxx + σyy)λ+ (σxxσyy − σ2

xy) = 0

The discriminant ∆ is

∆ = (σxx + σyy)
2 − 4(σxxσyy − σ2

xy)

= (σxx − σyy)2 + 4σ2
xy

The roots are given by:

λ± =
(σxx + σyy)±

√
(σxx − σyy)2 + 4σ2

xy

2

=
σxx + σyy

2
±

√(
σxx − σyy

2

)2

+ σ2
xy

The two principal stresses are then:

σ1 =
σxx + σyy

2
+

√(
σxx − σyy

2

)2

+ σ2
xy

σ2 =
σxx + σyy

2
−

√(
σxx − σyy

2

)2

+ σ2
xy (2.165)
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with the convention σ1 > σ2. The maximum shear stress is defined as one-half the difference between
the two principal stresses

τmax =
σ1 − σ2

2
=

√(
σxx − σyy

2

)2

+ σ2
xy (2.166)

The eigenvector n⃗1 corresponding to σ1 is obtained by solving

σ ·n⃗1 = σ1n⃗1

and same for the other eigenvalue/vector:

σ ·n⃗2 = σ2n⃗2

Each is a system of two equations with two unknowns. These are not difficult to solve, but can prove
cumbersome. Note that linear algebra tells us that n⃗1 · n⃗2 = 0, i.e. the eigenvectors form a basis of
R2.

This is the reason why often people go another route. One can ask the question: what is the
value of the angle θp which, if used to perform a rotation of the axis system, yields a stress tensor
that is diagonal, with the principal stresses on the diagonal?

Taken from https://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress_principal.cfm

The rotation matrix is

R =

(
cos θp − sin θp
sin θp cos θp

)
and the image of σ by means of the axis rotation is σ′ = R · σ ·R−1, i.e.

σ′ =

(
cos θp − sin θp
sin θp cos θp

)
·
(
σxx σxy
σxy σyy

)
·
(

cos θp sin θp
− sin θp cos θp

)
=

(
cos θp − sin θp
sin θp cos θp

)
·
(
σxx cos θp − σxy sin θp σxx sin θp + σxy cos θp
σxy cos θp − σyy sin θp σxy sin θp + σyy cos θp

)
=

(
. . . cos θp(σxx sin θp + σxy cos θp)− sin θp(σxy sin θp + σyy cos θp)
. . . . . .

)
In the matrix above I have only computed the off diagonal term since we are actually looking for θp
such that σ′

xy = 0, or

cos θp(σxx sin θp + σxy cos θp)− sin θp(σxy sin θp + σyy cos θp) = 0

sin θp cos θp(σxx − σyy) + (cos2 θp − sin2 θp)σxy = 0
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and then
sin θp cos θp

cos2 θp − sin2 θp
=

σxy
σxx − σyy

The left hand term is actually a trigonometric identity23:

sin θp cos θp
cos2 θp − sin2 θp

=
1
2
sin 2θp

cos 2θp
=

1

2
tan 2θp

and finally:

tan 2θp =
2σxy

σxx − σyy
or θp =

1

2
tan−1 2σxy

σxx − σyy

Once θp has been found the other direction is given by θp + π/2.

Example: Let us assume a diagonal stress tensor of the form

σ =

(
a 0
0 b

)
then tan 2θp = 0, and then θp = 0. The principal directions are the horizontal and vertical directions,
i.e. the Cartesian axis system, which is consistent.
add a remark that 2D does not exist and that plane strain incompressible actually is what is going on above

2.21.2 In three dimensions

We are looking for the stress tensor eigenvector vector n⃗ = (nx, ny, nz) associated to the eigenvalue
λ such that  σxx σxy σxz

σxy σyy σyz
σxz σyz σzz

 ·
 nx

ny
nz

 = λ

 nx
ny
nz


or,  σxx σxy σxz

σxy σyy σyz
σxz σyz σzz

 ·
 nx

ny
nz

−
 λ 0 0

0 λ 0
0 0 λ

 ·
 nx

ny
nz

 = 0⃗

 σxx − λ σxy σxz
σxy σyy − λ σyz
σxz σyz σzz − λ

 ·
 nx

ny
nz

 = 0⃗

Non-trivial solutions of this equation require∣∣∣∣∣∣
σxx − λ σxy σxz
σxy σyy − λ σyz
σxz σyz σzz − λ

∣∣∣∣∣∣ = 0

Expanding the determinant results in the following cubic equation:

0 = (σxx − λ)[(σyy − λ)(σzz − λ)− σ2
yz]− σxy[σxy(σzz − λ)− σyzσxz] + σxz[σxyσyz − (σyy − λ)σxz]

= (σxx − λ)[σyyσzz − λ(σyy + σzz) + λ2 − σ2
yz]− σxy[σxy(σzz − λ)− σyzσxz] + σxz[σxyσyz − (σyy − λ)σxz]

= −λ3 + (σxx + σyy + σzz)λ
2 + (−σyyσzz − σxxσyy − σxxσzz + σ2

yz + σ2
xy + σ2

xz)λ+ det(σ)

23https://en.wikipedia.org/wiki/List_of_trigonometric_identities
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or, after multiplying the last line by -1,

λ3 −K1(σ)λ
2 +K2(σ)λ−K3(σ) = 0 (2.167)

with24:

K1(σ) = σxx + σyy + σzz

K2(σ) = σxxσyy + σyyσzz + σxxσzz − σ2
xy − σ2

xz − σ2
yz

K3(σ) = det(σ)

= σxxσyyσzz − σxxσ2
yz − σ2

xyσzz + σxyσyzσxz + σxzσxyσyz − σ2
xzσyy

= σxxσyyσzz + 2σxyσyzσxz − (σxxσ
2
yz + σzzσ

2
xy + σyyσ

2
xz) (2.168)

K1, K2 and K3 are called principal invariants25 (see also Appendix A.1 of Zienkiewicz & Taylor [1431]
or Eq. (6.4) of Freudenthal & Geiringer [418]). These invariants can be written in a coordinate-free
manner26:

K1(σ) = tr(σ)

K2(σ) =
1

2
(tr(σ)2 − tr(σ2))

K3(σ) = det(σ)

and if the stress tensor is diagonal, we have

K1(σ) = σ1 + σ2 + σ3

K2(σ) = σ1σ2 + σ2σ3 + σ1σ3

K3(σ) = σ1σ2σ3

The principal invariants K{1,2,3} are related to the moment invariants I{1,2,3} (see Section 2.22) as
follows (Appendix A.2 of Zienkiewicz & Taylor [1431]):

I1(σ) = K1(σ) (2.169)

I2(σ) =
1

2
K1(σ)

2 −K2(σ) (2.170)

I3(σ) =
1

3
K1(σ)

3 −K1(σ)K2(σ) +K3(σ) (2.171)

write proofs in appendix

Very often we will find ourselves interested in the principal components of the deviatoric stress
tensor τ so that we now have the following determinant to compute:∣∣∣∣∣∣

τxx − λ τxy τxz
τxy τyy − λ τyz
τxz τyz τzz − λ

∣∣∣∣∣∣ = 0

and therefore obtain the following cubic equation

λ3 −K1(τ )λ
2 +K2(τ )λ−K3(τ ) = 0 (2.172)

24Note that in the equation (2.167) there is often a plus sign in front of K2 but not always. Be careful when reading
literature!

25https://en.wikipedia.org/wiki/Invariants_of_tensors
26Proofs are in Appendix T
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By definition of a deviatoric tensor we have K1(τ ) = 0 and then Eqs. (2.170) and (2.171) become

I2(τ ) = −K2(τ ) (2.173)

I3(τ ) = K3(τ ) (2.174)

so that the cubic equation becomes

λ3 − I2(τ )λ− I3(τ ) = 0 (2.175)

Noting the trigonometric identity27

sin 3θ = 3 sin θ − 4 sin3 θ or, sin3 θ − 3

4
sin θ +

1

4
sin 3θ = 0 (2.176)

and substituting λ = r sin θ into (2.175) we have28

sin3 θ − I2(τ )
r2

sin θ − I3(τ )
r3

= 0 (2.177)

Comparing (2.176) and (2.177) gives

r =
2√
3

√
I2(τ ) (2.178)

sin 3θ = −4I3(τ )
r3

= −3
√
3

2

I3(τ )
I2(τ )3/2

(2.179)

The so-called Lode angle [1423] is then given by

θL =
1

3
sin−1

(
−3
√
3

2

I3(τ )
I2(τ )3/2

)
(2.180)

with −π/6 < θL < π/6. The very same equation is also found in Willett (1992) [1359] for instance.
The first root of (2.179) with θL determined for 3θL in the range ±π/2 is a convenient alternative

to the third invariant, I3(τ ). By noting the cyclic nature of sin(3θL + 2nπ) we have immediatly
the three (and only three) possible values of sin θL which define the three principal stresses. The
deviatoric principal stresses are given by λ = r sin θL on substitution of the three values of sin θL in
turn.

We then obtain 
τ1

τ2

τ3

 =
2√
3

√
I2(τ )


sin(θL + 2π/3)

sin θL

sin(θL + 4π/3)

 (2.181)

with τ1 > τ2 > τ3 and −π/6 ≤ θL ≤ π/6. It is indeed easy to verify that for −π/6 ≤ θL ≤ π/6 we
have sin(θL + 2π/3) > sin θL > sin(θL + 4π/3).

Finally, we wish to compute the principal stresses of the full stress tensor σ. In the right coordi-
nate system both stress and deviatoric stress tensors are diagonal and σ = −p1+ τ writes: σ1 0 0

0 σ2 0
0 0 σ3

 =

 −p 0 0
0 −p 0
0 0 −p

+

 τ1 0 0
0 τ2 0
0 0 τ3


27see section 7.4 of Owen & Hinton [967]
28Note that r and θ have nothing to do with polar, cylindrical or spherical coordinates.
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so that (since p = −1
3
tr(σ) = −1

3
I1(σ))

σ1 = τ1 − p = τ1 +
1

3
I1(σ) (2.182)

σ2 = τ2 − p = τ2 +
1

3
I1(σ) (2.183)

σ3 = τ3 − p = τ3 +
1

3
I1(σ) (2.184)

and finally the total principal stresses are
σ1

σ2

σ3

 =
2√
3

√
I2(τ )


sin(θL + 2π/3)

sin θL

sin(θL + 4π/3)

+
I1(σ)
3


1

1

1

 (2.185)

with σ1 > σ2 > σ3 and −π/6 ≤ θL ≤ π/6. We have

sin(θL + 2π/3) = sin θL cos 2π/3 + cos θL sin 2π/3

= −1

2
sin θL + cos θL

√
3

2
(2.186)

sin(θL + 4π/3) = sin θL cos 4π/3 + cos θL sin 4π/3

= −1

2
sin θL − cos θL

√
3

2
(2.187)

so that 
σ1

σ2

σ3

 =
2√
3

√
I2(τ )


−1

2
sin θL + cos θL

√
3
2

sin θL

−1
2
sin θL − cos θL

√
3
2

+
I1(σ)
3


1

1

1

 (2.188)

=
√
I2(τ )



− 1√
3
sin θL + cos θL

2√
3
sin θL

− 1√
3
sin θL − cos θL


+
I1(σ)
3


1

1

1

 (2.189)

Remark. The Lode angle is one of the Lode coordinates29, or Haigh-Westergaard coordinates.

Remark. The Lode angle θL is essentially similar to the Lode parameter defined by −
√
3 tan θ [967].

Remark. There are 3 different Lode angles, as explained online30:

sin 3θs = − sin 3θ̄s = cos 3θc =
3
√
3

2

I3(τ )
(I2(τ ))3/2

and they are related by θs =
π
6
− θc and θs = −θ̄s. The one used in this document is in fact the θ̄s

above.

To recap:

29https://en.wikipedia.org/wiki/Lode_coordinates
30https://en.wikipedia.org/wiki/Lode_coordinates
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σ1 =
I1(σ)
3

+
√
I2(τ )

(
− 1√

3
sin θL + cos θL

)
(2.190)

σ2 =
I1(σ)
3

+
√
I2(τ )

(
2√
3
sin θL

)
(2.191)

σ3 =
I1(σ)
3

+
√
I2(τ )

(
− 1√

3
sin θL − cos θL

)
(2.192)

We will later need σ1 − σ3 and σ1 + σ3 so we compute these quantities hereafter:

σ1 − σ3 =
√
I2(τ )

(
− 1√

3
sin θL + cos θL +

1√
3
sin θL + cos θL

)
= 2 cos θL

√
I2(τ ) (2.193)

σ1 + σ3 =
I1(σ)
3

+
√
I2(τ )

(
− 1√

3
sin θL + cos θL

)
+
I1(σ)
3

+
√
I2(τ )

(
− 1√

3
sin θL − cos θL

)
=

2

3
I1(σ)−

√
I2(τ )

2√
3
sin θL (2.194)

or,

σ1 − σ3
2

= cos θL
√
I2(τ ) (2.195)

σ1 + σ3
2

=
1

3
I1(σ)−

√
I2(τ )

1√
3
sin θL (2.196)

Remark. The expression for the Lode angle is different in [1433, p101] than in [1423] or [1431,
p62]. They all look suspiciously wrong too.

2.21.3 About the 2nd principal invariant of the deviatoric stress

K2(τ ) =
1

2
[Tr(τ )2 − Tr(τ 2)]

=
1

2
[(τxx + τyy)

2 − (τ 2xx + 2τ 2xy + τ 2yy)]

=
1

2
[τ 2xx + 2τxxτyy + τ 2yy − τ 2xx − 2τ 2xy − τ 2yy]

=
1

2
[2τxxτyy − 2τ 2xy]

= τxxτyy − τ 2xy

=

(
σxx −

σxx + σyy
2

)(
σyy −

σxx + σyy
2

)
− τ 2xy

=

(
σxx −

σxx + σyy
2

)(
σyy −

σxx + σyy
2

)
− τ 2xy

=

(
σxx − σyy

2

)(
−σxx + σyy

2

)
− τ 2xy

= −
(
σxx − σyy

2

)2

− τ 2xy

Looking at Eq. (2.166), we can then write
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τmax =
√
−K2(τ ) =

√(
σxx − σyy

2

)2

+ σ2
xy

2.22 Tensor (moment) invariants

physics.tex

There are many different notations used in the literature for invariants and these can prove to be
confusing31. Note that we only consider symmetric tensors in what follows. Given a tensor T , one
can compute its (moment) invariants as follows (see [1051, p.339], or Appendix A.2 of [1431])

I1(T ) = tr[T ] (2.197)

= Txx + Tyy + Tzz (2.198)

I2(T ) =
1

2
tr[T · T ] (2.199)

=
1

2

∑
ij

TijTji (2.200)

=
1

2
(T 2

xx + T 2
yy + T 2

zz) + T 2
xy + T 2

xz + T 2
yz (2.201)

I3(T ) =
1

3
tr[T · T · T ] (2.202)

=
1

3

∑
i

∑
j

∑
k

TijTjkTki (2.203)

31No kidding, true story.
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i j k TijTjkTki symm
x x x TxxTxxTxx T 3

xx

y x x TyxTxxTxy TxxT
2
xy

z x x TzxTxxTxz TxxT
2
xz

x y x TxyTyxTxx TxxT
2
xy

y y x TyyTyxTxy TyyT
2
xy

z y x TzyTyxTxz TxyTxzTyz
x z x TxzTzxTxx TxxT

2
xz

y z x TyzTzxTxy TxyTxzTyz
z z x TzzTzxTxz TzzT

2
xz

x x y TxxTxyTyx TxxT
2
xy

y x y TyxTxyTyy TyyT
2
xy

z x y TzxTxyTyz TxyTxzTyz
x y y TxyTyyTyx TyyT

2
xy

y y y TyyTyyTyy T 3
yy

z y y TzyTyyTyz TyyT
2
yz

x z y TxzTzyTyx TxyTxzTyz
y z y TyzTzyTyy TyyT

2
yz

z z y TzzTzyTyz TzzT
2
yz

x x z TxxTxzTzx TxxT
2
xz

y x z TyxTxzTzy TxyTxzTyz
z x z TzxTxzTzz TzzT

2
xz

x y z TxyTyzTzx TxyTyzTyz
y y z TyyTyzTzy TyyT

2
yz

z y z TzyTyzTzz TzzT
2
yz

x z z TxzTzzTzx TzzT
2
xz

y z z TyzTzzTzy TzzT
2
yz

z z z TzzTzzTzz T 3
zz

In the end∑
i=x,y,z

∑
j=x,y,z

∑
k=x,y,z

TijTjkTki = Txx(T
2
xx+3T 2

xy+3T 2
xz)+Tyy(3T

2
xy+T

2
yy+3T 2

yz)+Tzz(3T
2
xz+3T 2

yz+T
2
zz)+6TxyTyzTyz

and then the third moment invariant of the symmetric tensor T is given by:

I3(T ) =
1

3
Txx(T

2
xx + 3T 2

xy + 3T 2
xz)

+
1

3
Tyy(3T

2
xy + T 2

yy + 3T 2
yz)

+
1

3
Tzz(3T

2
xz + 3T 2

yz + T 2
zz)

+ 2TxyTxzTyz (2.204)

=
1

3
(T 3

xx + T 3
yy + T 3

zz) + Txx(T
2
xy + T 2

xz) + Tyy(T
2
xy + T 2

yz) + Tzz(T
2
xz + T 2

yz) + 2TxyTxzTyz(2.205)

2.23 Stress & strain rate invariants

stress sr invariants.tex

The implementation of the plasticity criterions relies essentially on the invariants of the (devia-
toric) stress τ and the (deviatoric) strainrate tensors ε̇:
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I1(σ) = σxx + σyy + σzz (2.206)

I2(τ ) =
1

2
(τ 2xx + τ 2yy + τ 2zz) + τ 2xy + τ 2xz + τ 2yz (2.207)

I3(τ ) =
1

3
τxx(τ

2
xx + 3τ 2xy + 3τ 2xz)

+
1

3
τyy(3τ

2
xy + τ 2yy + 3τ 2yz)

+
1

3
τzz(3τ

2
xz + 3τ 2yz + τ 2zz)

+ 2τxyτxzτyz (2.208)

and also the second invariant of the deviatoric strain rate is:

I2(ε̇d) =
1

2

[
(ε̇dxx)

2 + (ε̇dyy)
2 + (ε̇dzz)

2
]
+ (ε̇dxy)

2 + (ε̇dxz)
2 + (ε̇dyz)

2

=
1

6

[
(ε̇xx − ε̇yy)2 + (ε̇yy − ε̇zz)2 + (ε̇xx − ε̇zz)2

]
+ ε̇2xy + ε̇2xz + ε̇2yz (2.209)

Proofs of these relationships are given in Appendix T.
We have

τ 2xx + τ 2yy + τ 2zz =

(
σxx −

1

3
I1

)2

+

(
σyy −

1

3
I1

)2

+

(
σzz −

1

3
I1

)2

= σ2
xx + σ2

yy + σ2
zz −

2

3
I1(σxx + σyy + σzz) + 3

1

9
I21

= σ2
xx + σ2

yy + σ2
zz −

2

3
I21 +

1

3
I21

= σ2
xx + σ2

yy + σ2
zz −

1

3
I21

= σ2
xx + σ2

yy + σ2
zz −

1

3
(σxx + σyy + σzz)

2

= σ2
xx + σ2

yy + σ2
zz −

1

3
(σ2

xx + σ2
yy + σ2

zz + 2σxxσyy + 2σxxσzz + 2σyyσzz)

=
1

3
(3σ2

xx + 3σ2
yy + 3σ2

zz − σ2
xx − σ2

yy − σ2
zz − 2σxxσyy − 2σxxσzz − 2σyyσzz)

=
1

3
(2σ2

xx + 2σ2
yy + 2σ2

zz − 2σxxσyy − 2σxxσzz − 2σyyσzz) (2.210)

=
1

3
((σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2) (2.211)

so that

I2(τ ) =
1

6

[
(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2

]
+ σ2

xy + σ2
xz + σ2

yz

Remark. I2(τ ) is often called J2 or J ′
2 so that one sometimes speaks of J2-plasticity.

These (second) invariants are almost always used under a square root so we define:

τe =
√
I2(τ ) ε̇e =

√
I2(ε̇d) (2.212)

Note that these quantities have the same dimensions as their tensor counterparts, i.e. Pa for stresses
and s−1 for strain rates.
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If the stress tensor is such that it is diagonal, i.e.

σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 and τ =

 τ1 0 0
0 τ2 0
0 0 τ3


then the invariants are

I1(σ) = σ1 + σ2 + σ3

I2(τ ) =
1

6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
(2.213)

I3(τ ) = τ1τ2τ3

=
1

3
tr[τ · τ · τ ]

=
1

3
tr

 τ1 0 0
0 τ2 0
0 0 τ3

 ·
 τ1 0 0

0 τ2 0
0 0 τ3

 ·
 τ1 0 0

0 τ2 0
0 0 τ3


=

1

3
tr

 τ 31 0 0
0 τ 32 0
0 0 τ 33


=

1

3
(τ 31 + τ 32 + τ 33 )

=
1

3
[(σ1 − I1(σ)/3)3 + (σ2 − I1(σ)/3)3 + (σ3 − I1(σ)/3)3]

=
1

3 · 27
[(3σ1 − I1(σ))3 + (3σ2 − I1(σ))3 + (3σ3 − I1(σ))3]

=
1

81

[
(2σ1 − σ2 − σ3)3 + (2σ2 − σ1 − σ3)3 + (2σ3 − σ1 − σ2)3

]
(2.214)

The formulation of the third invariant of τ in Eq. 2.214 is used in Wojciechowski [1367].

2.24 Two-dimensional plane strain calculations

plane strain.tex

We start from the 3D strain rate tensor

ε̇(ν⃗) =

 ε̇xx ε̇xy ε̇xz
ε̇yx ε̇yy ε̇yz
ε̇zx ε̇zy ε̇zz


The plane strain assumption is such that the problem at hand is assumed to be infinite in a given

direction. In the case of computational geodynamics, most 2D modelling is a vertical section of the
crust-lithosphere-mantle and the underlying implicit assumption is then that the orogen/rift/sub-
duction/etc ... is infinite in the direction perpendicular to the screen/paper.

Let us assume that the deformation takes place in the x, y-plane, so that w = 0 (velocity in the z
direction is zero) and ∂z → 0 (no change in the z direction). We then have ε̇zz = 0 as well as ε̇xz = 0
and ε̇yz = 0, so that the strain rate tensor is

ε̇(ν⃗) =

 ε̇xx ε̇xy 0
ε̇yx ε̇yy 0
0 0 0
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Incompressible flow

If the flow is incompressible then the deviatoric stress tensor is given by

τ = 2ηε̇d(ν⃗) = 2η

ε̇(ν⃗)− 1

3
tr[ε̇]︸︷︷︸
=0

1

 = 2ηε̇(ν⃗) =

 τxx τxy 0
τyx τyy 0
0 0 0


One then discards the unnecessary line and column in the tensor, leaving a 2 × 2 matrix. Finding
the principal stress components is then trivial since we have done it in 2D already.

It is important to keep in mind that the invariants we need to implement the rheologies are I1(σ),
I2(τ ) and I3(τ ). By formulating our yield surfaces with pressure p = −I1(σ)/3 we can then avoid
confusion, and since the other two invariants are functions of τ the pressure term does not pose any
problem: simply set τxz, τyz and τzz to zero in the equations of Section 2.23 and we obtain:

I2(τ ) =
1

2
(τ 2xx + τ 2yy) + τ 2xy (2.215)

I3(τ ) =
1

3
τxx(τ

2
xx + 3τ 2xy) +

1

3
τyy(3τ

2
xy + τ 2yy)

=
1

3
(τ 3xx + 3τxxτ

2
xy + 3τyyτ

2
xy + τ 3yy)

=
1

3
(τ 3xx + 3(τxx + τyy)τ

2
xy + τ 3yy)

=
1

3
(τ 3xx + τ 3yy) since τii = 0 (2.216)

The principal stresses of the deviatoric stress tensor τ are given by

τ1 =
τxx + τyy

2
+

√(
τxx − τyy

2

)2

+ τ 2xy

τ2 =
τxx + τyy

2
−

√(
τxx − τyy

2

)2

+ τ 2xy (2.217)

The full stress tensor is then

σ = −p1+ τ =

 −p+ τxx τxy 0
τyx −p+ τyy 0
0 0 −p


so it remains a 3× 3 tensor!

However, looking at the conservation of momentum,

∇⃗ · σ + ρg⃗ = 0⃗

Given the conditions for plane-strain then g⃗ is likely to be in the xy-plane so that the z component
of the equation becomes:

−∂zp = 0

and since we have ∂z → 0 anyways this equation is automatically fulfilled. Then, we might as well
proceed by considering that the stress tensor is in fact 2D as the third row/column has no incidence.
In that case the pressure is given by p = −I1(σ)/2. In the plasticity yield criterion or plastic
potential we will need the full stress σ only via its first invariant (i.e. the pressure). The other two
invariants are those of the deviatoric stress.
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Let us start from the deviatoric stress tensor:

τ = σ − 1

2
I1(σ) =

(
σxx σxy
σxy σyy

)
− σxx + σyy

2

(
1 0
0 1

)
=

(
(σxx − σyy)/2 σxy

σxy −(σxx − σyy)/2

)
The second invariant of the deviatoric stress tensor is then

I2(τ ) =
1

2
τ : τ =

1

2

(
2(σxx − σyy)2/4 + 2σ2

xy

)
or

I2(τ ) =
(
σxx − σyy

2

)2

+ σ2
xy

and the effective deviatoric stress

τe =

√(
σxx − σyy

2

)2

+ σ2
xy

Remark: Using the form of I2(τ ) above one arrives at

∂I2(τ )
∂σxx

= 2
1

2

σxx − σyy
2

= τxx

∂I2(τ )
∂σyy

= −21
2

σxx − σyy
2

= τyy

∂I2(τ )
∂σxy

= 2σxy = 2τxy

which is ...wrong! One should first write the second invariant for the generic case of the deviatoric
stress tensor (without assuming it is symmetric):

I2(τ ) =
1

2
τ : τ =

1

2

(
2(σxx − σyy)2/4 + σ2

xy + σ2
yx

)
=

(
σxx − σyy

2

)2

+
1

2
σ2
xy +

1

2
σ2
yx

Then

∂I2(τ )
∂σxx

= 2
1

2

σxx − σyy
2

= τxx

∂I2(τ )
∂σyy

= −21
2

σxx − σyy
2

= τyy

∂I2(τ )
∂σxy

= σxy = τxy

∂I2(τ )
∂σyx

= σyx = τyx

which can be simply written as

∂I2(τ )
∂σ

= τ
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Compressible flow

If the flow is not incompressible, then the deviatoric strain rate tensor is

ε̇d(ν⃗) = ε̇(ν⃗)− 1

3
tr[ε̇]1 = ε̇(ν⃗)− 1

3
(ε̇xx + ε̇yy)1 =

 2
3
ε̇xx − 1

3
ε̇yy ε̇xy 0

ε̇yx −1
3
ε̇xx +

2
3
ε̇yy 0

0 0 −1
3
ε̇xx − 1

3
ε̇yy


The deviatoric stress tensor now has the form

τ =

 τxx τxy 0
τyx τyy 0
0 0 τzz


We are interested in the principal components of the deviatoric stress tensor τ so that we now

have the following determinant to compute:∣∣∣∣∣∣
τxx − λ τxy 0
τxy τyy − λ 0
0 0 τzz − λ

∣∣∣∣∣∣ = 0

which yields the following characteristic equation:

(τzz − λ)(λ− τ1)(λ− τ2) = 0

where τ1,2 have previously been obtained in the 2D case:

τ1 =
τxx + τyy

2
+

√(
τxx − τyy

2

)2

+ τ 2xy

τ2 =
τxx + τyy

2
−

√(
τxx − τyy

2

)2

+ τ 2xy (2.218)

We have

τxx + τyy = 2η
1

3
(ε̇xx + ε̇yy)

τxx − τyy = 2η(ε̇xx − ε̇yy) (2.219)

Then

τ1 =
τxx + τyy

2
+

√(
τxx − τyy

2

)2

+ τ 2xy

= η
1

3
(ε̇xx + ε̇yy) + η

√
(ε̇xx − ε̇yy)2 + 4ε̇2xy

τ2 =
τxx + τyy

2
−

√(
τxx − τyy

2

)2

+ τ 2xy

= η
1

3
(ε̇xx + ε̇yy)− η

√
(ε̇xx − ε̇yy)2 + 4ε̇2xy (2.220)

It does not look like it is going to simplify down the road ... Also, the third eigenvalue/principal stress
remains and it is not clear whether it is larger or smaller than the other two. The 3D framework is
then probably the most appropriate.
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Let us now turn to the second invariant of the deviatoric strain rate (see Eq. (2.209)):

I2(ε̇d) =
1

2
ε̇d : ε̇d (2.221)

=
1

2

[
(ε̇dxx)

2 + (ε̇dyy)
2 + (ε̇dzz)

2
]
+ (ε̇dxy)

2 + (ε̇dxz)
2 + (ε̇dyz)

2 (2.222)

But there is also an expression for I2(ε̇d) directly as a function of the ε̇ij components (see Eq. (2.209)):

I2(ε̇d) =
1

6

[
(ε̇xx − ε̇yy)2 + (ε̇yy − ε̇zz)2 + (ε̇xx − ε̇zz)2

]
+ ε̇2xy + ε̇2xz + ε̇2yz (2.223)

=
1

6

[
(ε̇xx − ε̇yy)2 + (ε̇yy)

2 + (ε̇xx)
2
]
+ ε̇2xy (2.224)

=
1

6

[
ε̇2xx − 2ε̇xxε̇yy + ε̇2yy + ε̇2yy + ε̇2xx

]
+ ε̇2xy (2.225)

=
1

6

[
2ε̇2xx − 2ε̇xxε̇yy + 2ε̇2yy

]
+ ε̇2xy (2.226)

=
1

3

[
ε̇2xx − ε̇xxε̇yy + ε̇2yy

]
+ ε̇2xy (2.227)

If we now do things the old/wrong(?) way, one would start directly from the 2D strain rate tensor

ε̇ =

(
ε̇xx ε̇xy
ε̇yx ε̇yy

)
The deviatoric strain rate tensor is then logically defined as

ε̇d = ε̇− 1

2
Tr[ε̇]1 = ε̇− 1

2
(ε̇xx + ε̇yy)1

or,

ε̇d =

(
1
2
ε̇xx − 1

2
ε̇yy ε̇xy

ε̇yx −1
2
ε̇xx +

1
2
ε̇yy

)
Let us now turn to the second invariant of the deviatoric strain rate (see Section 3.21 in fieldstone)

I2(ε̇d) =
1

2
ε̇d : ε̇d

=
1

2
[(
1

2
ε̇xx −

1

2
ε̇yy)

2 + (−1

2
ε̇xx +

1

2
ε̇yy)

2] + ε̇2xy

=
1

2
[
1

4
(2ε̇2xx − 4ε̇xxε̇yy + 2ε̇2yy)] + ε̇2xy

=
1

4
[ε̇2xx − 2ε̇xxε̇yy + ε̇2yy] + ε̇2xy (2.228)

which is not the same as the previous expression!

2.25 Alternative principal stresses notations

physics.tex

The principal stresses of the stress tensor σ are σ1, σ2 and σ3 with σ1 ≥ σ2 ≥ σ3. Following Woj-
ciechowski [1367], we start by stating that the intermediate principal stress can always be represented
as a linear combination of two other stresses:

σ2 = (1− b)σ1 + bσ3 where b =
σ1 − σ2
σ1 − σ3

∈ [0, 1] (2.229)
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The quantity b is called the principal stress ratio. Let us now introduce the maximum shear plane
stresses σm and τm such that 32

σm =
σ1 + σ3

2
τm =

σ1 − σ3
2

(2.230)

so that we have

σ1 = σm + τm (2.231)

σ2 = σm − aτm (2.232)

σ3 = σm − τm (2.233)

The quantity a ∈ [−1, 1] is an equivalent measure of the principal stress ratio and is defined as

a = 2b− 1 = 2
σ1 − σ2
σ1 − σ3

− 1 =
σ1 − 2σ2 + σ3

σ1 − σ3
(2.234)

We can introduce a, σm and τm in the invariants above:

I1(σ) = σ1 + σ2 + σ3

= (σm + τm) + (σm − aτm) + (σm − τm)
= 3σm − aτm (2.235)

I2(τ ) =
1

6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
=

1

6

[
(σm + τm − σm + aτm)

2 + (σm − aτm − σm + τm)
2 + (σm + τm − σm + τm)

2
]

=
1

6

[
(τm + aτm)

2 + (−aτm + τm)
2 + (τm + τm)

2
]

=
τ 2m
6

[
(1 + a)2 + (−a+ 1)2 + 4

]
=

τ 2m
6

[
1 + 2a+ a2 + 1− 2a+ a2 + 4

]
=

τ 2m
3

(
a2 + 3

)
(2.236)

Using the definition of the third invariant of Eq. (2.214):

I3(τ ) =
1

81

[
(2σ1 − σ2 − σ3)3 + (2σ2 − σ1 − σ3)3 + (2σ3 − σ1 − σ2)3

]
=

1

81

[
(2σm + 2τm − σm + aτm − σm + τm)

3 + (2σm − 2aτm − σm − τm − σm + τm)
3 + (2σm − 2τm − σm − τm − σm + aτm)

3
]

=
1

81

[
(2τm + aτm + τm)

3 + (−2aτm − τm + τm)
3 + (−2τm − τm + aτm)

3
]

=
τ 3m
81

[
(3 + a)3 + (−2a)3 + (−3 + a)3

]
=

τ 3m
81

[
27 + 9a+ 3a2 + a3 − 8a3 − 27 + 9a− 3a2 + a3

]
=

τ 3m
81

(
18a− 6a3

)
=

2aτ 3m
27

(
3− a2

)
(2.237)

32Although most of this section is inspired by Wojciechowski [1367], I have decided not to use his notations which
are very confusing since he denotes σm by p
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which is different than Eq. (14) of Wojciechowski [1367]!!
To recap:

I1(σ) = 3σm − aτm I2(τ ) =
τ 2m
3

(
a2 + 3

)
I3(τ ) =

2aτ 3m
27

(
3− a2

)
(2.238)

Remark. Wojciechowski [1367] defines the Lode angle as being the opposite of my definition in
Eq. 2.180.

Finally, we can show using Eqs. (2.190,2.191,2.192) that

a =
σ1 − 2σ2 + σ3

σ1 − σ3

=

√
I2(τ )

(
− 1√

3
sin θ + cos θ

)
− 2
√
I2(τ )

(
2√
3
sin θ

)
+
√
I2(τ )

(
− 1√

3
sin θ − cos θ

)
√
I2(τ )

(
− 1√

3
sin θ + cos θ

)
−
√
I2(τ )

(
− 1√

3
sin θ − cos θ

)
=

(
− 1√

3
sin θ + cos θ

)
− 2

(
2√
3
sin θ

)
+
(
− 1√

3
sin θ − cos θ

)
(
− 1√

3
sin θ + cos θ

)
−
(
− 1√

3
sin θ − cos θ

)
=
− 6√

3
sin θ

2 cos θ

= − 3√
3

sin θ

cos θ

= −
√
3 tan θ (2.239)

Here again we arrive at the opposite of Eq. (16) of Wojciechowski [1367].
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2.26 Recap of notations and definitions of stress invariants

recap invariants.tex

When it comes to stress invariants, I urge the reader to be extremely careful when considering
their source(s). As we have seen these come in two main flavours (principal and moment invariants)
and they are often written for the full stress or deviatoric tensor. On top of it all, typos are common
like in any source and the occasional minus sign or factor 2 or 3 can be missing. This is the reason why
I have spent substantial time re-deriving those in the past pages with a consistent set of notations:

σ (full) stress tensor
σ1, σ2, σ3 principal stresses
τ deviatoric stress tensor
τ1, τ2, τ3 principal deviatoric stresses
I1(T ) first moment invariant of tensor T
I2(T ) second moment invariant of tensor T
I3(T ) third moment invariant of tensor T

τe =
√
I2(τ ) effective deviatoric stress

ε̇e =
√
I2(ε̇d) effective deviatoric strain rate

Proofs of all the following relationships are given in Appendix T.

� First invariant

I1(σ) = σxx + σyy + σzz

I1(τ ) = 0

∂I1(σ)
∂σ

= 1

� Second invariant

I2(τ ) =
1

2
τ : τ

=
1

2
tr[τ · τ ]

=
1

2

∑
ij

τijτji

=
1

2
(τ 2xx + τ 2yy + τ 2zz + 2τ 2xy + 2τ 2xz + 2τ 2yz)

=
1

6

[
(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2

]
+ σ2

xy + σ2
xz + σ2

yz

= −1

6
I1(σ)2 + I2(σ)

∂I2(τ )
∂σ

= τ

� Third invariant
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I3(τ ) =
1

3

∑
ijk

τijτjkτki

= det(τ )

=
1

3
tr[τ · τ · τ ]

=
2

27
I1(σ)3 −

2

3
I1(σ)I2(σ) + I3(σ)

∂I3(τ )
∂σ

= (2.240)

θL =
1

3
sin−1

(
−3
√
3

2

I3(τ )
I2(τ )3/2

)
(2.241)

∂I1(σ)
∂σ

= 1 (2.242)

∂I2(σ)
∂σ

= σ (2.243)

∂I3(σ)
∂σ

= σ · σ (2.244)
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2.27 Rheology in geodynamics

rheology.tex

The reader is referred to Barnes [45] for a discussion and review of non-linear viscous rheologies
and to Coussot [281] for a review of experimental data for yield stress fluid flows. See also Tanner &
Tanner [1236] for a summary of Heinrich Hencky’s scientific work on rheology.

The Cauchy stress tensor is given by σ = −p1 + τ so that I1(σ) = −pI1(1) + I1(τ ). Since τ
is deviatoric, its first invariant is zero. We then have I1(σ) = −p nD where nD is the number of
dimensions.

Books:

� Plasticity and Geomechanics, Davis and Selvadurai. [319]

� Elasticity and Geomechanics, Davis and Selvadurai. [318]

� Rheology of the Earth, Ranalli. [1041]

� Deformation of Earth materials, Karato. [674]

� Fundamentals of the Theory of Plasticity, Kachanov. [661]

� Computational methods for plasticity, de Souza Neto et al. [1183]

� Computer simulation of dynamic phenomena, M. wilkins [1357]

� Continuum theory of plasticity, Khan and Huang [698]

� Theory of plasticity, Chakrabarty [217]

� Zienkiewicz Taylor [1431]

� Rheology Principles, Macosko [821]

� Computational Inelasticity, Simo and Hughes [622]

� Lectures on Visco-Plastic Fluid Mechanics, G. Ovarlez & S. Hormozi [966]

� Complex fluids, P. Saramito [1112]

2.27.1 Linear viscous aka Newtonian

Simply put, a Newtonian fluid is a fluid in which the viscous stresses at every point are linearly
proportional to the local strain rate. Mathematically speaking, this means that the fourth-order
tensor C relating the viscous stress tensor to the strain rate tensor does not depend on the stress
state and velocity of the flow.

τ = C : ε̇ (2.245)

One very often makes the assumption that the fluid is isotropic, i.e. its mechanical properties are
the same along any direction. As a consequence the fourth order viscosity tensor C is symmetric
and will have only two independent real parameters: a bulk viscosity coefficient, that defines the
resistance of the medium to gradual uniform compression; and a dynamic viscosity coefficient η that
expresses its resistance to gradual shearing33.

33We here neglect the so-called rotational viscosity coefficient which results from a coupling between the fluid flow
and the rotation of the individual particles
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Rather logically we denote by non-Newtonian fluids which are not Newtonian, i.e. their viscosity
(tensor) depends on stress. Such fluids are part of our daily life, e.g. honey, toothpaste, paint, blood,
or shampoo. They are also sometimes denoted as Generalized Newtonian Fluid .

no idea where this comes from ...

2.27.2 Power-law model

One of the simplest non-Newtonian viscosity model is the power law model, for which the viscosity
depends on the (effective) deviatoric strain rate as follows:

η(ε̇e) = Kε̇n−1
e or σ = 2Kε̇ne (2.246)

where n and K are parameters. n is called the power law index. ε̇e is defined in (2.212) and in the
table here above. Note that a Newtonian viscosity is recovered when n = 1. Also n and K may
depend on temperature (see Reddy [1051, p339]).

A so-called ’generalised’ power law rheology is proposed in Iaffaldano & bunge (2009) [618]:

η = K(ε̇e + ε̇0)
n−1 (2.247)

so that in the rigid areas where ε̇e → 0 the rheology uses instead a minimum strain rate value ε̇0.
Relevant Literature: England & Molnar (1997) [377]

2.27.3 Carreau model

Note that this model is sometimes called Bird-Carreau in the literature. As explained in Reddy
[1051], the power-law model poses no restriction on how small or large the viscosity may become,
which may prove problematic once implemented as it can lead to runaway effects (strain rate becomes
large → viscosity becomes smaller → strain rate becomes larger, etc ...). This problem is alleviated
in the so-called Carreau 34 model [210] (see for example Zinani & Frey (2007) [1439]). The viscosity
is then given by

η(ε̇e) = η∞ + (η0 − η∞)
(
1 + (λε̇e)

2
)(n−1)/2

(2.248)

where η0, η∞, λ and n ∈ [0, 1] are material parameters. λ is called the relaxation time: it is the
inverse of the shear rate at which the fluid changes from Newtonian to power-law behavior.

At low strain rate a Carreau fluid behaves as a Newtonian fluid with viscosity η0. At intermediate
strain rates ε̇eλ ∼ 1 a Carreau fluid behaves as a Power-law fluid. At high strain rate, a Carreau
fluid behaves as a Newtonian fluid again with viscosity η∞.

34https://en.wikipedia.org/wiki/Carreau_fluid
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Left: Carreau model effective viscosity as a function of the product λε̇e. Right: taken from video at https://youtu.be/qErs5zZV4BQ.

Note that the (Bird)-Carreau-Yasuda model [1382, 963] is very similar to the standard (Bird)-
Carreau:

η = η∞ + (η0 − η∞) (1 + (λε̇e)
a)(n−1)/a (2.249)

It is for instance used in van de Vosse et al. (2003) [1303] to model blood.
Flows in a Lid-Driven Cavity with this rheology are presented in [1439, 1153].

Relevant Literature: Bercovici (1993) [76], Bercovici (1995) [77], Marcotte (2000) [835], Huerta
& Liu (1988) [603].

2.27.4 Bingham model

Bingham [88] fluids can sustain an applied stress without any motion occuring. Only when the
applied stress exceeds a yield stress τ0 then the fluid flows. This translates as follows [1051]:

τ =
(τ0
ε̇
+ 2η0

)
ε̇d if τe > τ0 (2.250)

τ = 0 if τe ≤ τ0 (2.251)

When flow occurs, the effective viscosity is then given by:

η(ε̇e) =
τ0
ε̇e

+ 2η0 (2.252)

and when the strain rate is large we recover a Newtonian behaviour. Typical Bingham fluids are
mud, slurry, toothpaste.

When using a velocity-based FEM code, the implementation of this rheological behaviour is
complicated by the no-flow condition under a given stress. However, our codes require a relationship
between stress and strain rate in the form of an effective viscosity which cannot be zero. This
difficulty can be circumvented by implementing Bingham fluids as follows [1051]:

τ =

(
τ0(1− η/ηr)

ε̇e
+ 2η0

)
ε̇ if τe > τ0 (2.253)

τ = 2ηrε̇ if τe ≤ τ0 (2.254)

where ηr is a pre-yield viscosity and η/ηr << 1 (typically 1% or less). This is a form of regularisation,
and we will see a similar one in the next section.

Note the interesting paper by Barnes and Walter (1985) [46] who argue that ”the yield stress
concept is an idealization, and that, given accurate measurements, no yield stress exists. The simple
Cross model is shown to be a useful empiricism for many non-Newtonian fluids, including those which
have hitherto been thought to possess a yield stress.” The Cross model is presented in Section 2.27.8.

Relevant Literature: Papanastasiou (1987) [973], Blackery & Mitsoulis (1997) [94], Mitsoulis &
Zisis (2001) [884], Mahmood et al. (2017) [824], Syrakos et al. (2014) [1223], Bingham [88], Balmforth
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& Rust (2009) [41], Grinevich & Olshanskii (2009) [497], Sverdrup et al. (2018) [1221] FE method for
incompressible non-Newtonian flow (Bercovier & Engelman (1980) [80]); Flow around a rigid sphere
(Liu et al. (2002) [794]), Conduit flow of an incompressible, yield-stress fluid, Taylor and Wilson
[1241] (1997).

2.27.5 Herschel-Bulkley visco-plastic model

The Herschel-Bulkley model is effectively a combination of the power-law model and a simple plastic
model:

τ = 2
(
Kε̇n−1

e +
τ0
ε̇

)
ε̇ if τe > τ0 (2.255)

ε̇ = 0 if τe ≤ τ0 (2.256)

in which τ0 is the yield stress, K the consistency, and n is the flow index [85]. The flow index
measures the degree to which the fluid is shear-thinning (n < 1) or shear-thickening (n > 1). If
n = 1 and τ0 = 0 the model reduces to the Newtonian model.

The term between parenthesis above is the nonlinear effective viscosity. Concretely, the imple-
mentation goes as follows35:

η(ε̇) =

{
η0 ε̇e ≤ ε̇0

Kε̇n−1
e + τ0

ε̇e
ε̇e ≥ ε̇0

(2.257)

The limiting viscosity η0 is chosen such that η0 = Kε̇n−1
0 + τ0

ε̇0
A large limiting viscosity means that the fluid will only flow in response to a large applied force.

This feature captures the Bingham-type behaviour of the fluid. Note that when strain rates are large,
the power-law behavior dominates.

As we have seen for Bingham fluids, the equations above are not easily amenable to implemen-
tation so that one usually resorts to regularisation, which is a modification of the equations by
introducing a new material parameter which controls the exponential growth of stress. This way the
equation is valid for both yielded and unyielded areas (Blackery & Mitsoulis (1997) [94], Papanasta-
siou (1987) [973], Zinani & Frey (2007) [1439], Sverdrup et al. (2018) [1221]):

η(ε̇e) = Kε̇n−1
e +

τ0
ε̇e
[1− exp(−mε̇e)] (2.258)

When the strain rate becomes (very) small a Taylor expansion of the regularisation term yields
1 − exp(−mε̇) ∼ mε̇ so that ηeff → mτ0. However, it seems more physically meaningful to replace
m by a reference strain rate value ε̇0 so that

ηeff (ε̇) = Kε̇n−1
e +

τ0
ε̇e

[
1− exp

(
− ε̇e
ε̇0

)]
(2.259)

In this case, when strain rate becomes (very) small a Taylor expansion of the regularisation term
yields

τ0
ε̇e

[
1− exp

(
− ε̇e
ε̇0

)]
≃ τ0
ε̇e

ε̇e
ε̇0

=
τ0
ε̇0

(2.260)

This has the dimensions of a viscosity and this is effectively the definition of a maximum viscosity
ηmax.

Relevant Literature:

� Viscous flow with large free surface motion (Huerta & Liu (1988) [603]);

35https://en.wikipedia.org/wiki/Herschel-Bulkley_fluid
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� Numerical simulation of thermal plumes (Massmeyer et al. [840]);

� Flows Through a Sudden Axisymmetric Expansion (Machado et al. [818], Jay et al. (2001)
[640]);

� Dam break problem (Ancey & Cochard (2009) [17], Cochard & Ancey (2009) [262], Balmforth
et al. [40];

� Weakly compressible Poiseuille flow (Taliadorou (2009) [1231]);

� Flow past cylinders in tubes (Mitsoulis & Galazoulas (2009) [883]);

� Determination of yield surfaces (Burgos & Alexandrou (1999) [180]);

� Carbopol hydrogel rheology for experimental tectonics and geodynamics Di Giuseppe et al.
[333] (2015);

� Flow past a sphere(disc) Besses, Magnin, and Jay [85] (2004); Gavrilov et al. (2017) [442]).

� Progress in numerical simulation of yield stress fluid flows, Saramito and Wachs [1113] (2017);

� elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model Saramito [1111]
(2019).

2.27.6 The Casson model

It is described in Barnes (1999) [45]:
√
σ =
√
σy +

√
ηpε̇e (2.261)

or, when squaring it:
σ = σy + ηpε̇e + 2

√
σpηpε̇e (2.262)

This model has been found to accurately describe the behaviour of synthetic based muds [2]. See
also Section 2.5.1 of Macosko [821].

2.27.7 The Ellis model

An Ellis equation would be of the form [1077]

η − η∞
η0 − η∞

=
1

1 + (σ/σc)m
(2.263)

where σ is the shear stress, σc is a critical shear stress and m is a large number. See also Section 2.4.3
of Macosko [821].

2.27.8 One model to rule them all?

Let us consider the base equation

η − η∞
η0 − η∞

= [1 + (Kε̇e)
a]−(1−n)/a (2.264)

This equation is purposefully generic and specific parameter combination choices allow to recover any
of the above models (and more) [963]. See also an early paper by Cross (1965) [288] for a somewhat
similar equation. See also Section 2.4.2 of Macosko [821].

Similar conclusions are reached in the following video:
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Taken from Huerta and Liu [603] (1988)

2.27.9 Dislocation and Diffusion creep

insert here background and links to relevant textbooks

The standard dislocation creep effective viscosity is given by:

ηds(p, T, ε̇) = ηds(p, T, ε̇e) =
1

2
fA−1/nε̇(1−n)/ne exp

(
Q+ pV

nRT

)
where A is the pre-exponential scaling factor, f is a scaling factor representing viscous weakening or
strengthening, Q is the activation energy, V is the activation volume, T is the absolute temperature,
n is the power-law exponent, R is the universal gas constant.

The coefficients A, n,Q, V are material parameters and are obtained in the laboratory by means of
high pressure/temperature experiments (see for instance Karato & Wu (1993) [673]). Unfortunately
these experiments cannot be run at Earth-like strain rate values (∼ 10−15s−1) so that extrapolations
must be carried out over several orders of magnitude to arrive at values we can use in our numerical
models. The 1/2 factor arises from the relationship between deviatoric stress and strain rate which
involves a factor 2.

The factor f is in fact a tuning parameter used to explore end members (e.g. ’weak crust’ vs
’strong crust’), see discussion in the supplementary material in Huismans & Beaumont (2011) [612].
This approach has been extensively used by the Sopale users community, see for instance Warren
et al. (2008) [1343, 1344, 1345] or Gray & Pysklywec (2012) [482].
insert here equation for diffusion creep

Furthermore, we know that several other factors will strongly affect the rheology:

� water content, or as often mentioned: ’dry’ vs ’wet’. Following [673], dry means water-free and
wet means water-saturated conditions.
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Taken from Karato and Wu [673].

Relevant Literature: Quinquis & Buiter (2014) [1027] and refs therein for the effects of water
migration on models of subduction dynamics.

� composition: while one typically assigns olivine properties to the mantle in models, the mineral
olivine36 is actually a magnesium iron silicate with the formula (Mg2+, Fe2+)2SiO4. and the
ratio of magnesium to iron varies between the two endmembers of the solid solution series:
forsterite (Mg-endmember: Mg2SiO4) and fayalite (Fe-endmember: Fe2SiO4).

� grain size: this only affects diffusion creep mechanisms [673]. Grain size varies over several
orders of magnitude and also evolves over time and its evolution is affected by the ambient
deformation and the deformation history. Dannberg et al. [301] then used a diffusion creep
effective viscosity given by:

ηdf =
1

2
A−1
df d

m exp

(
Qdf + pVdf

RT

)
where d is the (variable) grain size and m the grain size exponent. Grain growth/evolution
is usually approximated using semi-empirical expressions [301, section 2.2]. Smaller grains
facilitating faster creep.

Relevant literature on this topic is in Section ??.

� anisotropy, LPO: see relevant literature in Section ??.

� phase changes

Remark. It is not uncommon to find in the literature effective viscosity formulations written as
a function of B with B = A−1/n [1343, 1344, 1345]. Also, this B coefficient often contains the
conversion factor of the next remark.

Remark. Material parameters obtained in the lab are often measured on a uniaxial machine. An
additional coefficient is added to the effective viscosity formula (see [482, 483], or Table 1a of Warren
et al. (2008) [1343]): 3−(1+n)/2n2(1−n)/n. See page 77 of Ranalli [1041] for an explanation.

Remark. In Tullis, Horowitz, and Tullis [1287] it is explained how to formulate a flow law for a
polyphase aggregate from end-member flow laws.

36https://en.wikipedia.org/wiki/Olivine
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Fig-B: Left: Taken from Kameyama et al. (1999) [666]. Deformation mechanism map calculated for grain size a = 0.1mm. The lightly shaded area indicates

that deformation mainly occurs by diffusion creep. The densely shaded area indicates that deformation mainly occurs by power-law creep. The white region

indicates that deformation mainly occurs by the Peierls mechanism. The solid curves are lines of constant strain rate. The numbers attached to each contour

indicate the logarithm of the strain rate in the unit of s−1. Right: Taken from Elbeshausen & Melosh (1998) [366]. Strain rate as a function of stress and

temperature. The parameter space dominated by each of the terms is denoted by different hues, depending on strain rate. Note that the original equations

implicitly include a pressure dependence in the enthalpy term, which is not strong and therefore neglected here. The diffusion regime is highly temperature

dependent and important for small strain rates only. Dislocation creep occurs for intermediate stresses and higher temperatures, while the Peierls mechanism

dominates at higher stresses (≥ 500MPa) and shows a strong stress dependence for low temperatures. The dashed contours are strain rate in units of s−1.

A closer look at the diffusion creep of Karato & Wu (1993) In the article, the following
equation is used:

ε̇ = A

(
τ

µ

)(
b

d

)m
exp

(
−Q+ pV

RT

)
where µ is the shear modulus (∼80GPa), b is the length of the Burgers vector (∼0.5nm) and d is the
grain size. One can express the above equation in terms of second invariants (see Section 2.22):

ε̇e = A

(
τ e
µ

)(
b

d

)m
exp

(
−Q+ pV

RT

)
and assuming a Newtonian linearisation/relation between deviatoric stress and strain rate τ e =
2ηdf ϵ̇e, one arrive at

ηdf =
1

2

(
A

µ

)−1(
b

d

)−m

exp

(
Q+ pV

RT

)
or,

ηdf =
1

2

[
A

µ

(
b

d

)m]−1

exp

(
Q+ pV

RT

)
The effective diffusion creep viscosity is independent of strain-rate so that one could substitute the
total pressure for lithostatic pressure in the equation, assume a geotherm and easily compute the
predicted viscosity as a function of grain size d.

Let us assume that the 1D profile starts from the base of the lithosphere (say 120km depth)
and ends at the 660 boundary. Assume the temperature to increase linearly from 1300 ◦C to Tbottom
(to be specified). At the bottom of the lithosphere, the lithostatic pressure is of the order of ρ ·
g · L ≃ 3000 · 10 · 120e3 ≃ 4GPa. At the bottom of the domain, the pressure has increased by
3300 · 10 · 630e3 ≃ 21GPa.

The viscosity profile is plotted hereunder for three different grain sizes, bottom temperature and
activation volumes (4,5,6 cm3/mol).
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Although this exercise only provides us with first-order results, we can conclude that one can
essentially change the diffusion creep effective viscosity by up to 2 orders of magnitude simply by
choosing key parameters within acceptable ranges.

Relevant Literature: Dixon and Durham [335]“Measurement of activation volume for creep of
dry olivine at upper-mantle conditions”
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2.27.10 The von Mises failure criterion

vMcriterion.tex

The von Mises yield criterion suggests that the yielding of materials begins when the second
deviatoric stress invariant I2(τ ) reaches a critical value. For this reason, it is sometimes called the
J2-plasticity or J2 flow theory37. It is part of a plasticity theory that applies best to ductile materials,
such as metals.

In material science and engineering the von Mises yield criterion can be also formulated in terms
of the von Mises stress or equivalent tensile stress, σv, a scalar stress value that can be computed
from the stress tensor. In this case, a material is said to start yielding when its von Mises stress
reaches a critical value known as the yield strength, σY . The von Mises stress is used to predict
yielding of materials under any loading condition from results of simple uniaxial tensile tests. The
von Mises stress satisfies the property that two stress states with equal distortion energy have equal
von Mises stress.

Because the von Mises yield criterion is independent of the first stress invariant, I1(σ), it is
applicable for the analysis of plastic deformation for ductile materials such as metals, as the onset of
yield for these materials does not depend on the hydrostatic component of the stress tensor.

Although formulated by Maxwell in 1865, it is generally attributed to von Mises [876]. Huber
(1904), in a paper in Polish, anticipated to some extent this criterion. Heinrich Hencky formulated
the same criterion as von Mises independently in 1924 [562, 1236]. This criterion is also referred to
as the Maxwell-Huber-Hencky-von Mises theory.

The von Mises yield criterion (also known as Prandtl-Reuss yield criterion) is expressed in the
principal stresses as√

I2(τ ) = c or,
1

6
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] = c2

where c is the yield stress in uniaxial tension. The von Mises yield criterion writes:

F VM =
√
I2(τ )− c (2.265)

which is the Drucker-Prager criterion with ϕ = 0 (see Section 2.27.13).
The following figure shows the von Mises yield surface in the three-dimensional space of principal

stresses.

37J2 is the common notation for I2(τ )
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Left: Taken from https://en.wikipedia.org/wiki/Yield_surface. Right: Taken from Owen and Hinton [967].

It is a circular cylinder of infinite length with its axis inclined at equal angles to the three principal
stresses.

Relevant Literature: Tasos C Papanastasiou. “Flows of materials with yield”. In: Journal of
Rheology 31.5 (1987), pp. 385–404, F. Tin-Loi and N.S. Ngo. “Performance of the p-version finite
element method for limit analysis”. In: International Journal of Mechanical Sciences 45 (2003),
pp. 1149–1166. doi: 10.1016/j.ijmecsci.2003.08.004

The yield surface Let us try to draw the yield function in the space σ1, σ2, σ3. It is given by√
I2(τ ) = c (2.266)

⇒ I2(τ ) = c2 (2.267)

⇒ 1

6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
= c2 (2.268)

⇒ (σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 = 6c2 (2.269)

or, temporarily setting x = σ1, y = σ2 and z = σ3:

(x− y)2 + (y − z)2 + (x− z)2 = 6c2 (2.270)

(x− y)2 + y2 − 2yz + z2 + x2 − 2xz + z2 = 6c2 (2.271)

2z2 − 2(x+ y)z + (x− y)2 + x2 + y2 − 6c2 = 0 (2.272)

This is a second order polynomial in z. Its discriminant ∆ is

∆ = 4(x+ y)2 − 4 · 2 · [(x− y)2 + x2 + y2 − 6c2]

= 4x2 + 8xy + 4y2 − 8[x2 − 2xy + y2 + x2 + y2 − 6c2]

= 4x2 + 8xy + 4y2 − 8[2x2 − 2xy + 2y2 − 6c2]

= 4x2 + 8xy + 4y2 − 16x2 + 16xy − 16y2 + 48c2

= −12x2 + 24xy − 12y2 + 48c2

= −12(x2 − 2xy + y2) + 48c2

= −12(x− y)2 + 48c2

Since I am looking for z(x, y) ∈ R then ∆ > 0 and this imposes a restriction on admissible x, y pairs:

−12(x− y)2 + 48c2 > 0

(x− y)2 < 4c2

x− y < 2c or, y − x < 2c

y > x− 2c or, y < x+ 2c
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So the discriminant is positive in the band given by y > x − 2c and y < x + 2c in the x, y-plane,
which is a band centered around the line y = x. When ∆ > 0 we have then

z =
2(x+ y)±

√
∆

4

which means that for each pair x, y there are 2 z values. The middle of this surface is given by the
line z = (x+ y)/2. The plane normal to this line is given by z = −2(x+ y).

This approach is reasonably simple for the von Mises criterion but quickly becomes intractable
for other criteria.

We now look into the derivatives of the von Mises plastic potential QvM(σ). We have

QvM(σ) =
√
I2(τ )− c (2.273)

Then

∂QvM

∂I1(σ)
= 0 (2.274)

∂QvM

∂
√
I2(τ )

= 1 (2.275)

∂QvM

∂θL(τ )
= 0 (2.276)

so

CvM

1 = 0 (2.277)

CvM

2 =
1

2
√
I2(τ )

(1− 0) =
1

2
√
I2(τ )

(2.278)

CvM

3 = 0 (2.279)
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2.27.11 The Tresca failure criterion

trcriterion.tex

The Tresca or maximum shear stress yield criterion is taken to be the work of Henri Tresca. It is
also referred as the Tresca-Guest (TG) criterion. The functional form of this yield criterion is

f(σ1, σ2, σ3) = 0

In terms of the principal stresses the Tresca criterion is expressed as

max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) = c

The following figure shows the Tresca-Guest yield surface in the three-dimensional space of principal
stresses.

Left: Taken from https://en.wikipedia.org/wiki/Yield_surface. Right: Taken from Owen and Hinton [967].

It is a prism of six sides and having infinite length. This means that the material remains viscous
when all three principal stresses are roughly equivalent (a hydrostatic pressure), no matter how much
it is compressed or stretched. However, when one of principal stresses becomes smaller (or larger)
than the others the material is subject to shearing. In such situations, if the shear stress reaches the
yield limit then the material enters the plastic domain.

Remark. The yield function presents sharp corners, making its numerical implementation more
difficult (directional derivatives are needed)

We have already established in Eq. (2.195):

σ1 − σ3 = 2
√
I2(τ ) cos θ

with σ1 > σ2 > σ3, so that the failure criterion is given by
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F TR = 2
√
I2(τ ) cos θ − c

Relevant Literature: F. Tin-Loi and N.S. Ngo. “Performance of the p-version finite element
method for limit analysis”. In: International Journal of Mechanical Sciences 45 (2003), pp. 1149–
1166. doi: 10.1016/j.ijmecsci.2003.08.004

We now look into the derivatives of the plastic potential QTr(σ). We have

QTr = 2
√
I2(τ ) cos θL(τ )− c

∂QTr

∂I1(σ)
= 0 (2.280)

∂QTr

∂
√
I2(τ )

= 2 cos θL − 2
√
I2(τ ) sin θL

∂θL

∂
√
I2(τ )

= 2 cos θL − 2
√
I2(τ ) sin θL

∂θL
∂I2(τ )

∂I2(τ )
∂
√
I2(τ )

= 2 cos θL − 2
√
I2(τ ) sin θL

(
−1

2
tan 3θL

1

I2(τ )

)
2
√
I2(τ )

= 2 cos θL + 2 sin θL tan 3θL

= 2 cos θL(1 + tan θL tan 3θL) (2.281)

∂QTr

∂θL(τ )
= −2

√
I2(τ ) sin θL (2.282)

so

CTr

1 = 0 (2.283)

CTr

2 =
1

2
√
I2(τ )

(
∂Q

∂
√
I2(τ )

− tan 3θL√
I2(τ )

∂Q

∂θL(τ )

)

=
1

2
√
I2(τ )

(
2 cos θL(1 + tan θL tan 3θL) +

tan 3θL√
I2(τ )

2
√
I2(τ ) sin θL

)
=

1

2
√
I2(τ )

(2 cos θL(1 + tan θL tan 3θL) + 2 tan 3θL sin θL)

=
1

2
√
I2(τ )

(2 cos θL(1 + tan θL tan 3θL) + 2 cos θL tan 3θL tan θL)

=
1

2
√
I2(τ )

(2 cos θL(1 + 2 tan θL tan 3θL)) (2.284)

CTr

3 = −
√
3

2 cos 3θL

1

I2(τ )3/2
∂Q

∂θL(τ )

= −
√
3

2 cos 3θL

1

I2(τ )3/2
(−2

√
I2(τ ) sin θL)

=

√
3

I2(τ )
sin θL
cos 3θL

(2.285)
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2.27.12 The Mohr-Coulomb failure criterion

mccriterion.tex

Mohr-Coulomb theory is a model describing the response of a material such as rubble piles or
concrete to shear stress as well as normal stress. Most of the classical engineering materials somehow
follow this rule in at least a portion of their shear failure envelope. In geology it is used to define
shear strength of soils at different effective stresses [525].

In structural engineering it is used to determine failure load as well as the angle of fracture of
a displacement fracture in concrete and similar materials. Coulomb’s friction hypothesis is used to
determine the combination of shear and normal stress that will cause a fracture of the material.
Mohr’s circle is used to determine the principal stresses that will produce this combination of shear
and normal stress, and the angle of the plane in which this will occur. According to the principle
of normality, the stress introduced at failure will be perpendicular to the line describing the fracture
condition.

Taken from Owen and Hinton [967].

The Mohr-Coulomb failure criterion represents the linear envelope that is obtained from a plot
of the shear strength of a material versus the applied normal stress. This relation is expressed as
(Owen & Hinton book [967, p219])

τm = −σm sinϕ+ c cosϕ (2.286)

where τm is the magnitude of the shear stress, σm is the normal stress, c is the intercept of the failure
envelope with the τ axis, and ϕ is the slope of the failure envelope. The minus sign in the above
equation is for the case where compression is assumed to be negative38. The quantity c is often called
the cohesion and the angle ϕ is called the angle of internal friction.

We have

τm =
σ1 − σ3

2
σm =

σ1 + σ3
2

with σ1 is the maximum principal stress and σ3 is the minimum principal stress, or

σ1 − σ3
2

= −
σ1 + σ3

2
sinϕ+ c cosϕ (2.287)

Using Eqs. (2.195) and (2.196) for (σ1 − σ3)/2 and (σ1 + σ3)/2 we get39:

σ1 − σ3
2

= −σ1 + σ3
2

sinϕ+ c cosϕ

⇒
√
I2(τ ) cos θ = −

(
1

3
I1(σ)−

√
I2(τ )

1√
3
sin θ

)
sinϕ+ c cosϕ

⇒ 1

3
I1(σ) sinϕ+

√
I2(τ )

(
cos θ − 1√

3
sin θ sinϕ

)
− c cosϕ = 0

38https://en.wikipedia.org/wiki/Mohr-Coulomb_theory
39This is Eq. (7.16) of Owen and Hinton [967]
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FMC =
1

3
I1(σ) sinϕ+

√
I2(τ )

(
cos θ − 1√

3
sin θ sinϕ

)
− c cosϕ (2.288)

This formula (without the cohesion) is used in Willett [1359]. Since p = −1
3
I1(σ), we also have:

FMC =
√
I2(τ )

(
cos θ − 1√

3
sin θ sinϕ

)
− (p sinϕ+ c cosϕ) (2.289)

Remark. The expression for F in the Mohr-Coulomb case in Zienkiewicz & Cormeau (1974) [1423]
contains errors which are later corrected in Zienkiewicz, Taylor, and Fox [1433, p102].

Relevant Literature: this criterion is also used in computer graphics animation [1420] when
ϕ = 0
we
should
recover
Tresca
but fac-
tor 2 is
wrong ?

We now look into the derivatives of the Drucker-Prager plastic potential QMC(σ). We have

QMC =
1

3
I1(σ) sinϕ+

√
I2(τ )

(
cos θL(τ )−

1√
3
sin θL(τ ) sinϕ

)
− c cosϕ

Then

∂QMC

∂I1(σ)
=

1

3
sinϕ (2.290)

∂QMC

∂
√
I2(τ )

= cos θL −
1√
3
sin θL sinϕ+

√
I2(τ )

(
− sin θL −

1√
3
cos θL sinϕ

)
∂θL

∂
√
I2(τ )

= cos θL −
1√
3
sin θL sinϕ+

√
I2(τ )

(
− sin θL −

1√
3
cos θL sinϕ

)
∂θL

∂I2(τ )
∂I2(τ )
∂
√
I2(τ )

= cos θL −
1√
3
sin θL sinϕ+

√
I2(τ )

(
− sin θL −

1√
3
cos θL sinϕ

)(
−1

2
tan 3θL

1

I2(τ )

)
2
√
I2(τ )

= cos θL −
1√
3
sin θL sinϕ+

(
sin θL +

1√
3
cos θL sinϕ

)
tan 3θL

= cos θL

[
1− 1√

3
tan θL sinϕ+

(
tan θL +

1√
3
sinϕ

)
tan 3θL

]
= cos θL

[
(1 + tan θL tan 3θL) +

1√
3
sinϕ(tan 3θL − tan θL)

]
(2.291)

∂QMC

∂θL(τ )
=

√
I2(τ )(− sin θL −

1√
3
cos θL sinϕ)

= − 1√
3

√
I2(τ )(

√
3 sin θL + cos θL sinϕ) (2.292)
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so

CMC

1 =
1

3
sinϕ (2.293)

CMC

2 =
1

2
√
I2(τ )

(
∂Q

∂
√
I2(τ )

− tan 3θL√
I2(τ )

∂Q

∂θL(τ )

)

=
1

2
√
I2(τ )

(
cos θL

[
(1 + tan θL tan 3θL) +

1√
3
sinϕ(tan 3θL − tan θL)

]
+

tan 3θL√
I2(τ )

1√
3

√
I2(τ )(

√
3 sin θL + cos θL sinϕ)

)

=
1

2
√
I2(τ )

(
cos θL

[
(1 + tan θL tan 3θL) +

1√
3
sinϕ(tan 3θL − tan θL)

]
+ tan 3θL(sin θL +

1√
3
cos θL sinϕ)

)
=

1

2
√
I2(τ )

(
cos θL

[
(1 + tan θL tan 3θL) +

1√
3
sinϕ(tan 3θL − tan θL) + tan 3θL(tan θL +

1√
3
sinϕ)

])
=

1

2
√
I2(τ )

cos θL

[
(1 + 2 tan θL tan 3θL) +

1√
3
sinϕ(2 tan 3θL − tan θL)

]
CMC

3 = −
√
3

2 cos 3θL

1

I2(τ )3/2
∂Q

∂θL(τ )

= −
√
3

2 cos 3θL

1

I2(τ )3/2

[
− 1√

3

√
I2(τ )(

√
3 sin θL + cos θL sinϕ)

]
=

√
3 sin θL + sinϕ cos θL
2I2(τ ) cos 3θL

(2.294)
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2.27.13 The Drucker-Prager failure criterion

dpcriterion.tex

The von Mises yield criterion is not suitable for modelling the yielding of frictional material as it
does not include the effect of mean stress as observed in experiments. To overcome this limitation,
Drucker and Prager (1952) [347] proposed a revised function for frictional materials.

The Drucker-Prager yield criterion has the function form

FDP(σ) = F (I1(σ), I2(τ )) = 0 (2.295)

This criterion is most often used for concrete where both normal and shear stresses can determine
failure. The Drucker-Prager yield criterion may be expressed as

FDP =
√
I2(τ ) + αI1(σ) + k = 0 (2.296)

should it not be −k ?

Taken from Owen and Hinton [967].

Using the parameters σm, τm, a = −
√
3 tan θ, I1(σ) and I2(τ ) of Section 2.25 we have

FDP =
√
I2(τ ) + αI1(σ) + k

=

√
τ 2m
3
(a2 + 3) + α(3σm − aτm) + k

= τm
√
(a2/3 + 1) + α(3σm + τm

√
3 tan θ) + k (since τm > 0)

= τm
√
tan2 θ + 1 + α(3σm + τm

√
3 tan θ) + k

= τm

√
1

cos2 θ
+ α(3σm + τm

√
3 tan θ) + k

= τm
1

cos θ
+ α(3σm + τm

√
3 tan θ) + k (since cos θ > 0)

F = 0 then leads to write

τm + (3ασm + k) cos θ + τmα
√
3 sin θ = 0

⇒ τm(1 + α
√
3 sin θ) + (3ασm + k) cos θ = 0

and finally

τm = −(3ασm + k) cos θ

1 + α
√
3 sin θ

= − 3α cos θ

1 + α
√
3 sin θ

σm −
k cos θ

1 + α
√
3 sin θ

Remark. This is the same equation as Eq. 19 of Wojciechowski [1367] but with θ → −θ.
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The Mohr-Coulomb yield criterion writes (see Eq. (2.286))

τm = −σm sinϕ+ c cosϕ

so that equating both expressions of τm for the Drucker-Prager and Mohr-Coulomb criteria leads to:

− 3α cos θ

1 + α
√
3 sin θ

= − sinϕ (2.297)

− k cos θ

1 + α
√
3 sin θ

= c cosϕ (2.298)

Eq. (2.297) yields
3α cos θ = sinϕ(1 + α

√
3 sin θ)

⇒ 3α cos θ − α
√
3 sin θ sinϕ = sinϕ

and finally

α(ϕ) =
sinϕ

3 cos θ −
√
3 sin θ sinϕ

Inserting this into Eq. (2.298):

−k cos θ = c cosϕ
(
1 + α

√
3 sin θ

)
= c cosϕ

(
1 +

sinϕ

3 cos θ −
√
3 sin θ sinϕ

√
3 sin θ

)
= c cosϕ

(
1 +

√
3 sinϕ sin θ

3 cos θ −
√
3 sin θ sinϕ

)

= c cosϕ

(
3 cos θ −

√
3 sin θ sinϕ

3 cos θ −
√
3 sin θ sinϕ

+

√
3 sinϕ sin θ

3 cos θ −
√
3 sin θ sinϕ

)

= c cosϕ

(
3 cos θ

3 cos θ −
√
3 sin θ sinϕ

)
so that

k(c, ϕ) = − 3 c cosϕ

3 cos θ −
√
3 sin θ sinϕ

The Drucker-Prager yield criterion which for a given θ is equal to the Mohr-Coulomb yield is
then:

FDP =
√
I2(τ ) + α(ϕ)I1(σ) + k(c, ϕ)

=
√
I2(τ ) +

sinϕ

3 cos θ −
√
3 sin θ sinϕ

I1(σ)−
3 c cosϕ

3 cos θ −
√
3 sin θ sinϕ

=
√
I2(τ )−

[
− 3 sinϕ

3 cos θ −
√
3 sin θ sinϕ

I1(σ)
3

+
3 c cosϕ

3 cos θ −
√
3 sin θ sinϕ

]
(2.299)

=
√
I2(τ )−

[
3 p sinϕ

3 cos θ −
√
3 sin θ sinϕ

+
3 c cosϕ

3 cos θ −
√
3 sin θ sinϕ

]
=

√
I2(τ )−

3 p sinϕ+ 3 c cosϕ

3 cos θ −
√
3 sin θ sinϕ

=
√
I2(τ )−

p sinϕ+ c cosϕ

cos θ − 1√
3
sin θ sinϕ

(2.300)
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which, when multiplied by cos θ − 1√
3
sin θ sinϕ, gives the Mohr-Coulomb criterion of Eq. (2.288).

For θ = π/6, the DP yield surface circumscribes the MC yield surface and Eq. (2.299) writes:

FDP =
√
I2(τ )−

[
− 3 sinϕ

3
√
3/2−

√
3/2 sinϕ

I1(σ)
3

+
3 c cosϕ

3
√
3/2−

√
3/2 sinϕ

]
=

√
I2(τ )−

[
− 6 sinϕ√

3(3− sinϕ)

I1(σ)
3

+
6 c cosϕ√
3(3− sinϕ)

]
=

√
I2(τ )−

6p sinϕ+ 6 c cosϕ√
3(3− sinϕ)

(2.301)

i.e.

Taken from Owen and Hinton [967].

FDP =
√
I2(τ ) +

6 sinϕ√
3(3− sinϕ)

I1(σ)
3
− 6 c cosϕ√

3(3− sinϕ)
(2.302)

which is the formula used in Glerum et al. (2018) [467]. This is also Eq. (14a) in Zienkiewicz &
Cormeau (1974) [1423], Eq. (7.18) in Owen and Hinton [967], and Eq. (13.10a) in Zienkiewicz (1975)
[1422] provided it is divided altogether by

√
3.

For θ = −π/6, the DP yield surface middle circumscribes the MC yield surface and Eq. (2.299)
writes:

FDP =
√
I2(τ )−

[
− 3 sinϕ

3
√
3/2 +

√
3/2 sinϕ

I1(σ)
3

+
3 c cosϕ

3
√
3/2 +

√
3/2 sinϕ

]
=

√
I2(τ )−

[
− 6 sinϕ√

3(3 + sinϕ)

I1(σ)
3

+
6 c cosϕ√
3(3 + sinϕ

)

]
=

√
I2(τ )−

6p sinϕ+ 6c cosϕ√
3(3 + sinϕ)

(2.303)

This is Eq. (7.19) of Owen and Hinton [967].
Another DP formulation which inscribes the MC yield surface is found on the wikipedia page

of the Drucker-Prager yield criterion 40 (but I have no idea how it is arrived at):

FDP =
√
I2(τ )−

[
− 3 sinϕ√

9 + 3 sin2 ϕ

I1(σ)
3

+
3 c cosϕ√
9 + 3 sin2 ϕ

]
(2.304)

The yield surfaces of these three Drucker-Prager formulations are plotted against the Mohr-
Coulomb yield surface in Section 2.27.16.

40https://en.wikipedia.org/wiki/Drucker-Prager_yield_criterion
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Remark. Leroy & Ortiz [772] use the Drucker-Prager plasticity model also and match it to the
Mohr-Coulomb model in the triaxial test and formulate it as follows (Their definition of the second
invariant of stress contains a 3/2 term):

F = τe
√
3 +

6 sinϕ

3− sinϕ

(
−p− c

tanϕ

)
= τe

√
3−

(
6 sinϕ

3− sinϕ
p+ c

6 cosϕ

3− sinϕ

)
=
√
3

[
τe −

(
6 sinϕ√

3(3− sinϕ)
p+ c

6 cosϕ√
3(3− sinϕ)

)]
(2.305)

Except for the
√
3 this is identical to Eq. (2.301).

Remark. Bui et al. (2008) [160] use yet again another formulation:

F =
√
I2(τ ) +

tanϕ√
9 + 12 tan2 ϕ

I1(σ)−
3c√

9 + 12 tan2 ϕ

=
√
I2(τ ) +

sinϕ√
9 cos2 ϕ+ 12 sin2 ϕ

I1(σ)−
3c cosϕ√

9 cos2 ϕ+ 12 sin2 ϕ

=
√
I2(τ ) +

sinϕ√
9 + 3 sin2 ϕ

I1(σ)−
3c cosϕ√
9 + 3 sin2 ϕ

which is identical to (2.304).

Remark. Cacace & Jacquey (2017) [197] replace
√
I2(τ ) by

√
I2(τ ) + ϵ20 where ϵ0 is a small non-

hardening parameters here introduced to relax the singularity at the cone’s tip of the Drucker-Prager
yield envelope.

Relevant Literature: Gilda Currenti and Charles A Williams. “Numerical modeling of deforma-
tion and stress fields around a magma chamber: Constraints on failure conditions and rheology”. In:
Physics of the Earth and Planetary Interiors 226 (2014), pp. 14–27. doi: 10.1016/j.pepi.2013.
11.003

Dissecting the original paper by Drucker and Prager (1952) The authors state that a yield
function which is a proper generalisation of the M-C hypothesis is:

F = αI1(σ) +
√
I2(τ )− k

where α and k are positive constants at each point of the material.
According to the concept of plastic potential, the stress-train relation corresponding to this yield

function is

ε̇pij = λ
∂F

∂σij

where ε̇pij is the plastic strain rate and λ is a positive factor of proportionality which may assume
different values in space. Using the above expression for F :

ε̇pij = λ

(
αδij +

τij

2
√
I2(τ )

)
(2.306)

A very important feature of this equation is that the plastic rate of cubical dilation is

tr[ε̇p] = ε̇pii = 3αλ ̸= 0 (2.307)

This equation shows that plastic deformation must be accompanied by an increase in volume if α ̸= 0.
This property is known as dilatancy.
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Plane strain We need to establish three expressions. First, from Eq. (2.306) we can write

ε̇pzz = λ

(
α +

τzz

2
√
I2(τ )

)

but since ε̇zz = 0 in plane strain then we find

τzz = −2α
√
I2(τ ) (2.308)

which is Eq. (6) of the paper.
Second, we start from the definition of the first invariant and use the equation above:

I1(σ) = σxx + σyy + σzz

I1(σ) = σxx + σyy + τzz +
1

3
I1(σ)

I1(σ) = σxx + σyy − 2α
√
I2(τ ) +

1

3
I1(σ)

2

3
I1(σ) = σxx + σyy − 2α

√
I2(τ )

I1(σ) =
3

2
(σxx + σyy)− 3α

√
I2(τ ) (2.309)

which is Eq. (7) of the paper.
Finally, we start from (and we use the fact that σxx − σyy = τxx − τyy)(

σxx − σyy
2

)2

+ τ 2xy =
1

4
(σxx − σyy)2 + τ 2xy

=
1

4
(σxx − σyy)2 + τ 2xy +

1

2
(τ 2xx + τ 2yy + τ 2zz)︸ ︷︷ ︸

I2(τ )

−1

2
(τ 2xx + τ 2yy + τ 2zz)

=
1

4
(τxx − τyy)2 + I2(τ )−

1

2
τ 2xx −

1

2
τ 2yy −

1

2
τ 2zz

= I2(τ ) +
1

4
τ 2xx −

1

2
τxxτyy +

1

4
τ 2yy −

1

2
τ 2xx −

1

2
τ 2yy −

1

2
4α2I2(τ )

= I2(τ )−
1

4
τ 2xx −

1

2
τxxτyy −

1

4
τ 2yy − 2α2I2(τ )

= I2(τ )−
1

4
(τ 2xx + 2τxxτyy + τ 2yy)− 2α2I2(τ )

= I2(τ )−
1

4
(τxx + τyy︸ ︷︷ ︸

−τzz

)2 − 2α2I2(τ )

= I2(τ )−
1

4
τ 2zz − 2α2I2(τ )

= I2(τ )−
1

4
4α2I2(τ )− 2α2I2(τ )

= I2(τ )− 3α2I2(τ )
= I2(τ )(1− 3α2) (2.310)

so that

I2(τ ) =
1

1− 3α2

[(
σxx − σyy

2

)2

+ τ 2xy

]
(2.311)
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which is Eq. (8) of the paper.
In the paper the authors propose the yield function

F = αI1(σ) +
√
I2(τ )− k

We first replace the first (plane strain) invariant (see Eq. (2.309)):

F = α

[
3

2
(σxx + σyy)− 3α

√
I2(τ )

]
+
√
I2(τ )− k

= α
3

2
(σxx + σyy)− 3α2

√
I2(τ ) +

√
I2(τ )− k

= α
3

2
(σxx + σyy) + (1− 3α2)

√
I2(τ )− k

and we now introduce the second invariant of Eq. (2.311):

F = α
3

2
(σxx + σyy) + (1− 3α2)

1

(1− 3α2)1/2

[(
σxx − σyy

2

)2

+ τ 2xy

]1/2
− k

= α
3

2
(σxx + σyy) + (1− 3α2)1/2

[(
σxx − σyy

2

)2

+ τ 2xy

]1/2
− k

=
3α

(1− 3α2)1/2
1

2
(σxx + σyy) +

[(
σxx − σyy

2

)2

+ τ 2xy

]1/2
− k

(1− 3α2)1/2

=
3α

(1− 3α2)1/2︸ ︷︷ ︸
sinϕ

1

2
(σxx + σyy) +

[(
σxx − σyy

2

)2

+ τ 2xy

]1/2
− k

(1− 12α2)1/2︸ ︷︷ ︸
c

(1− 12α2)1/2

(1− 3α2)1/2︸ ︷︷ ︸
cosϕ

(2.312)

Note that if we define a triangle with sides (1 − 12α2)1/2 and 3α with hypotenuse (1 − 3α2)1/2

then the angle ϕ makes sense and we recover cos2 ϕ+ sin2 ϕ = 1.
In the end:

F =

[(
σxx − σyy

2

)2

+ τ 2xy

]1/2
−
(
−1

2
(σxx + σyy) sinϕ+ c cosϕ

)
which is the Mohr-Coulomb yield criterion of Eq. (1) in the paper.

Note that when α = 0 (yield criterion independent of the mean stress - incompressible flow see
Eq. (2.307)) then c = k, cosϕ = 1 and sinϕ = 0 and we find the Tresca yield criterion

F TR =

[(
σxx − σyy

2

)2

+ τ 2xy

]1/2
− k

Also, setting α = 0 in Eq. (2.311) yields a criterion that writes

F vM = I2(τ )− k

which is the von Mises criterion!

We now look into the derivatives of the Drucker-Prager plastic potential QDP(σ). We have

QDP(σ) =
√
I2(τ ) + αI1(σ) + k
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Then

∂QDP

∂I1(σ)
= α (2.313)

∂QDP

∂
√
I2(τ )

= 1 (2.314)

∂QDP

∂θL(τ )
= 0 (2.315)

The parameters α and k can be expressed as a function of the angle of friction and cohesion so as to
match the Mohr-Coulomb criterion in some sense (see above). Then

CDP

1 = α (2.316)

CDP

2 =
1

2
√
I2(τ )

(2.317)

CDP

3 = 0 (2.318)

ToDo: check Alejano and Bobet [6] (2012) and compare with my notes above.
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2.27.14 The Griffith-Murrell failure criterion

The Griffith-Murrell yield criterion [140, 143, 54] is not often used. Extending the work of Griffith
(1921) to three dimensional stress distributions, Murrell (1963) suggested the following criterion for
rock failure expressed in terms of the principal stresses:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 + 24T0(σ1 + σ2 + σ3) = 0

where T0 is a material property called the tensile strength. In principal stress space, this criterion is
represented by a paraboloid of revolution around the pressure (or hydrostatic) axis.

Using the definition of I2(τ ) and I1(σ), it also writes:

I2(τ )− 12T0p = 0

which is the formulation used in Hansen et al. (2000) [532], although the authors use the lithostatic
pressure instead of the full pressure. They also use a tensile strength parameter T e0 and a compressive
strength parameter T c0 , both around a few tens of MPas.

2.27.15 The Cam-clay failure criterion

camclay.tex

The Original Cam-Clay model is based on the assumption that the soil is isotropic, elasto-plastic,
deforms as a continuum, and it is not affected by creep.

Relevant Literature: [991]
ask Chris Spiers. Pijnenburg et al. , JGR 2019

2.27.16 The failure envelope, or yield surface

Relevant Literature: Schöpfer et al. (2013) [1136].
A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The state

of stress of inside the yield surface is elastic. When the stress state lies on the surface the material
is said to have reached its yield point and the material is said to have become plastic. Further
deformation of the material causes the stress state to remain on the yield surface, even though the
surface itself may change shape and size as the plastic deformation evolves, this is because stress
states that lie outside the yield surface are non-permissible.

The yield surface is usually expressed in terms of (and visualized in) a three-dimensional principal
stress space (σ1, σ2, σ3), a two- or three-dimensional space spanned by stress invariants or a version
of the three-dimensional Haigh-Westergaard space.

Yield surfaces in stress space [1423]. Note that the axes are −σ1,−σ2,−σ3
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Having obtained the equations for the yield functions in the previous sections, we can easily test
them as follows: in the (σ1, σ2, σ3) space we can look for stress states that fulfil the yield equations.
I set c = 20MPa and ϕ = 20◦and restrain the search to the space [-100MPa:100MPa]3. The python
code and the gnuplot script used to generate the plots hereafter are in images/rheology/surfaces.
The implemented algorithm is somewhat naive and quite inefficient: discretise the space in N3 points
and for each point check whether any of the von Mises, Tresca, Mohr-Coulomb and (the three variants
of) Drucker-Prager criteria is satisfied and when the point is in the space σ1 + σ2 + σ3 = 10MPa
(perpendicular to the x = y = z line) write it to the corresponding file.

The recovered surfaces are similar to those of the figure above but their plot in a 3D space is
difficult. I have therefore isolated two sub-plots. The first one is for σ1 = σ2:
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Drucker-Prager (c), π=30o

We see that the von Mises and Tresca envelopes are parallel to the line σ1 = σ2 = σ3 (which is
expected since they do not depend on pressure).

The second plot is in the plane σ1 + σ2 + σ3 = 0 which is perpendicular to the middle line
σ1 = σ2 = σ3 = 0. To facilitate plotting the envelopes are plotted as a function of σ1 only (so that
even though they are circles in the chosen plane they appear here as ellipses):
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We see that we indeed recover that the three Drucker-Prager formulations inscribe (purple),
middle-circumscribe (blue) and circumscribe (green) the Mohr-Coulomb one.
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2.27.17 Peierls creep

peierls.tex

Looking at the literature, there seem to be many formulations for the Peierls creep deformation
mechanism, but it it appears that a standard formulation for the Peierls creep writes:

ε̇ = Aσn exp

[
−Q+ pV

RT

(
1− (

σ

σP
)k
)q]

and it seems common to take k = 1, and n = 2 [455, 675]

ε̇ = Aσ2 exp

[
−Q+ pV

RT

(
1− σ

σP

)q]
Elbeshausen & Melosh (2018) [366] use

ε̇ = A exp

[
− Q

RT

(
1− σ

σP

)q]
In Chenin et al. (2019) [229] the authors state that their Peierls creep implementation relies on
parameters from Evans and Goetze (1979) [383] using the approach of Kameyama et al. (1999) [666]:

ηpe =
2

3

(1− s)/s
(1 + s)/2s

A (εdse )
1
n
−1

with A for this formulation:

A =

[
Ap exp

(
−Q(1− γ)

2

RT

)]−1/s

γσp

where s is an effective stress exponent that depends on the temperature:

s = 2γ
Q

RT
(1− γ)

where γ is a fitting parameter.
Relevant LiteratureBabeyko, Sobolev, Vietor, Oncken, and Trumbull [36], Burov [187], Faul,

Gerald, Farlai, Ahlefeldt, and Jackson [388], Garel, Goes, Davies, Davies, Kramer, and Wilson [435],
Gerya [455], Goetze and Evans [470], Katayama and Karato [675], Kawazoe, Karato, Otsuka, Jing,
and Mookherjee [685], Karato, Riedel, and Yuen [671], Mei, Suzuki, Kohlstedt, Dixon, and Durham
[860], Zhong and Watts [1413], Chenin, Schmalholz, Manatschal, and Karner [228], Shi, Wei, Li, Liu,
and Liu [1160], Review article from 1966: Guyot & Dorn [518]

2.27.18 Stress limiting rheology

Taken from van Hunen et al. (2002) [616]:

ηy = τyε̇
−1/ny
y ε̇(1/ny)−1

e

where the yield stress τy, the yield strain rate ε̇y and the yield exponent ny are prescribed parameters.
In this article, ny = 10, ε̇y = 10−15s−1 When ny = 1 the viscosity is constant and given by ηeff =
τy/ϵ̇y.

This rheology has also been coined pseudo-plastic in Zhong et al. (1998) [1411]. Their equation
is simply

ηeff = A1/nε̇−1+1/n
e

where A is the preexponent which depends on temperature, pressure, and composition.
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Left figure is taken from [1411]. Authors report A = 7.9 · 10−8Pa3s for the n = 3 case, which makes no sense. See gnuplot script for actual values of A.

2.27.19 Arrhenius law

A purely temperature-dependent dimensional Arrhenius law that emulates the temperature depen-
dence of viscosity in silicate rock is often employed for mantle rocks [5, 1406, 557, 126, 923, 1196,
98, 504]:

η(T ) = η0 exp

(
Q

R
(
1

T
− 1

T0
)

)
or η(T ) = η0 exp

(
Q

RT

)
(2.319)

where η0 is a reference viscosity and T0 its corresponding reference temperature.
It can also account for pressure effects as in [812] where the diffusion creep viscosity (under the

assumption of homogeneous grain size) is temperature- and pressure-dependent:

η(T ) = η0 exp

(
1

R
(
Q− pV

T
− Q

T0
)

)
(I find the minus sign rather suspicious)

2.27.20 Simple parametrisation of the mantle

Many CITCOMs-based publications [166, 165] have used the following (dimensionless) viscosity for
the mantle:

η(T, z) = ηr(r) exp(A(0.5− T ))

where ηr is a depth-dependent viscosity profile (usually defined as discontinuous linear profiles for
various shells)

The non-dimensional activation coefficient is chosen to be A = 9.2103 in [165] which leads to a
temperature-induced viscosity contrast of 104 (for T ∈ [0, 1]).

This is also called the Frank-Kamenetskii flow rule, as used in [1196, 756]:

η′ = η0 exp(−θT )

where the the parameters η0, θ account for the local chemical composition of the rock. Note that
the Frank-Kamenetskii approximation takes many forms in the literature [943].

Another temperature-dependent common expression is as follows [397]:

η(T ) = η∞ exp

(
Q

R
(
1

T
− 1

T∞
)

)
Also, following [397]: For studying transient convection in a non- Newtonian rheological fluid, it is
expedient from a computational point of view to employ a law which behaves linearly for low stresses
initially and becomes gradually non-Newtonian only after a certain threshold stress level has been
surpassed [243, 245]:

η(T, p, τ2) = η(T, p)
1

A2 + A3τ 22
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where A2 is a parameter describing the linear creep at low stress levels and A3 governs the transition
stress between Newtonian and non-Newtonian rheologies.

Coltice and Sheppard (2018) [274] use a depth- and temperature-dependent viscosity formulation:

η(z, T ) = η0(z) exp
Q

RT

Note that this expression is supplemented with a pseudo-plastic formulation [1082].
Relevant Literature: [705]

2.27.21 Glen’s law for ice

Ice and rocks share similarities in terms of (viscous) rheology. Glen’s law is the most commonly used
flow law for ice in glaciers and ice sheets [466] and it is actually a power-law type rheology:

ε̇ = Aτ n

with n ∼ 3 and A ∼ 2.4 · 10−24Pa−3 · s−1 at 0◦C. The effective viscosity is then given by

η =
1

2Aτn−1
e

Left: Taken from Glen [466]; Right: taken from [471].

Most of these studies suggest values of the power-law exponent n ∼ 2 − 4, and there seems to be a
general indication that the exponent is lower at lower stresses.

The A coefficient above has been found to depend on temperature and is reasonably described
with an Arrhenius law:

A(T ) = A0 exp

(
− Q

RT

)
A standard formulation is the Paterson-Budd law with a fixed Glen exponent n = 3 and a split
Arrhenius term [982]:

A = 3.615 · 10−13Pa−3 · s−1, Q = 60 kJ/mol, if T < 263K

A = 1.733 · 103Pa−3 · s−1, Q = 139 kJ/mol, if T > 263K

Be careful that in these two equations the temperature T is the pressure-adjusted temperature [982].
Note that A is also affected by the water content and the presence of impurities.

Finally, Glen’s law is the standard rheology used for ice-sheet modelling but it does not account
for the complex evolution of fabric and resulting anisotropy. Indeed the grain size evolution (growth
& reduction) plays a large role in the rheology Behn, Goldsby, and Hirth [68] (2021). See stone 59.

Relevant LiteratureAlley [8] (1992), Greve [492] (1997), Greve and Blatter [493] (2009), Isaac,
Stadler, and Ghattas [623] (2015), Krabbendam [728] (2016), Jiménez, Duddu, and Bassis [648]
(2017), Helanow and Ahlkrona [561] (2018), Very mathematics heavy papers: [658, 222].
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2.27.22 Strain rate partitioning across deformation mechanisms

When multiple viscous deformation mechanisms are present, one needs more dashpots, and more
complicated element diagrams than the ones above occur (also when adding plastic deformation).
Two important rules are to be remembered: 1) for parallel components, stresses are additive, strain
rates are equal in each; 2) for components in series, stresses are equal in each and strain rates are
additive.

Let us then look at various assemblies of dashpots and plastic elements:

� two viscous dampers in series:

τ

η1 η2

ε̇1 ε̇2

each is subjected to the same stress τ but deforms with its own strain rate ε̇1 and ε̇2 and we
have

ε̇T = ε̇1 + ε̇2 =
τ

2η1
+

τ

2η2
(2.320)

The effective viscosity of this combination is denoted ηeff and is such that ηeff = τ/2ε̇T , which
means that

τ

2ηeff
=

τ

2η1
+

τ

2η2
or,

ηeff =

(
1

η1
+

1

η2

)−1

i.e. it follows that the effective viscosity of two or more viscous dampers in series is the harmonic
average of the individual viscosities of the dampers.

In general, for n dampers in series:

ηeff =

(
n∑
i=1

1

ηi

)−1

� two viscous dampers in parallel:

τ

η1

η2

ε̇T
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each is deformed with the same strain rate ε̇T and their stresses add up:

τ = τ1 + τ2 = 2η1ε̇T + 2η2ε̇T

and since we define the effective viscosity as τ = 2ηeff ε̇T then it follows:

2ηeff ε̇T = 2η1ε̇T + 2η2ε̇T

or,
ηeff = η1 + η2

i.e., the effective viscosity of two or more viscous dampers is the sum of their viscosities (but
not their arithmetic mean!).

� one viscous damper and a plastic element in parallel:

(tikz vp.tex)

τ

ηm

Y

ε̇T

The effective ’plastic’ viscosity of the plastic element is ηp = Y
2ε̇T

so the effective viscosity of
this setup is then

ηeff =
Y

2ε̇T
+ ηm

which is the viscosity of a Bingham fluid (see Section 2.27.4).

� two viscous dampers and a plastic element arranged as follows:

(tikz vvp.tex)

τ

ηv

ηm

Y

ε̇v ε̇vp

This rheology would be called visco-viscoplastic. The algorithm goes then as follows:

1. Assume we know ηv and ε̇T (from previous iteration), as well as the plasticity parameters
Y and ηm.

2. if 2ηvε̇T < Y the stress is below the yield stress value and plasticity is not active. Use ηv
in the material model and ε̇v = ε̇T .
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3. if 2ηvε̇T > Y the stress is above the yield value, which is not allowed. In this case the
plastic element is ’switched on’. In that case the viscous damper is in series with the
(visco)plastic element. The former deforms with a strain rate ϵ̇v while the latter with ϵ̇vp
(both under the same stress τ) and we have ε̇T = ε̇v + ε̇vp.

ε̇T = ε̇v + ε̇vp

= ε̇v +
τ

2ηvp

= ε̇v +
τ

2
(

Y
2ε̇vp

+ ηm

)
= ε̇v +

τ

2
(

Y
2(ε̇T−ε̇v)

+ ηm

)
ε̇T − ε̇v =

τ

2
(

Y
2(ε̇T−ε̇v)

+ ηm

)
2(ε̇T − ε̇v)

(
Y

2(ε̇T − ε̇v)
+ ηm

)
= τ

Y + 2(ε̇T − ε̇v)ηm = τ

Y + 2(ε̇T −
τ

2ηv
)ηm = τ

Y + (2ηvε̇T − τ)
ηm
ηv

= τ

Y + 2ηmε̇T = τ(1 +
ηm
ηv

)

and finally

τ =
Y + 2ηmε̇T
1 + ηm

ηv

(2.321)

Note that this solution exists even when ηm = 0, and then rather logically τ = Y .

4. Once we have τ , we can easily compute ϵ̇v =
τ

2ηv

5. We then compute ε̇vp = ε̇T − ε̇v which we use to compute ηvp:
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ηvp =
Y

2ε̇vp
+ ηm

=
Y

2(ε̇T − ε̇v)
+ ηm

=
Y

2(ε̇T − τ
2ηv

)
+ ηm

=
Y

2(ε̇T − Y+2ηmε̇T
1+ ηm

ηv

1
2ηv

)
+ ηm

=
Y

2ε̇T − Y+2ηmε̇T
ηv+ηm

+ ηm (2.322)

=
Y (ηv + ηm)

2(ηv + ηm)ε̇T − (Y + 2ηmε̇T )
+ ηm (2.323)

=
Y (ηv + ηm)

2ηvε̇T − Y
+ ηm (2.324)

=
Y (ηv + ηm)/2ηv
ε̇T − Y/2ηv

+ ηm (2.325)

6. Having obtained ηvp we can compute the final effective viscosity

ηeff =

(
1

ηv
+

1

ηvp

)−1

On the following plots are shown τ , ε̇vp, ε̇v, ηvp, and ηeff as a function of ε̇T :
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Obtained for ηm = 1021, Y = 20MPa and ηv = 1025. Python code in images/rheology/vvp/

In the following plots the resulting stress τ and effective viscosities ηeff are compared between
the above approach (’new’) and the simpler (and naive) approach where ε̇T is used in ηvp instead
of ε̇ (’old’). In this particular case we see that it makes a difference at low strain rates close to
the brittle-ductile transition.
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Remark. The introduction of the damper ηm in parallel with the plastic element has an un-
avoidable effect: the stress τ becomes larger than Y at high strain rate values! Since the vp
block is akin to a bingham fluid, this is no surprise.

Remark. The viscous dashpot ηv also acts as a maximum viscosity cutoff: if ηvp becomes (very)
large, i.e. ηvp ≫ ηv, then ηeff → ηv. Conversely, if ηp = Y/2ε̇vp becomes (very) small, i.e.
ηp ≪ ηm then ηm acts as a minimum viscosity limiter, i.e. ηvp → ηm. Since ηm ≪ ηv then
ηeff → ηm.

A simple regularisation This idea originates in Massmeyer et al. (2013) [840]. We postulate

η̃eff =

(
1− exp(− ε̇T

ε̇cT
)

)(
Y

2ε̇T
+ ηm

)
where ε̇cT is the critical strain rate at which the transition viscous to viscous-viscoplastic occues
given by ε̇cT = Y/2ηv. When ε̇T ≪ ε̇cT then the exponential term tends to zero and

η̃eff →
Y

2ε̇T
+ ηm

and if ε̇T →∞ then η̃eff → ηm. Conversely if ε̇T → 0 then we can carry out a Taylor expansion
of the exponential term (expx ∼ 1 + x when x is small).

η̃eff ∼
(
ε̇T
ε̇cT

)(
Y

2ε̇T
+ ηm

)
→ ε̇T

ε̇cT

Y

2ε̇T
= ηv

At low strain rates the viscosity does not ’explode’ but actually converges to the background
viscosity ηv. The stress τ corresponding to this viscosity is simply τ̃ = 2η̃eff . Both τ̃ and η̃eff
are plotted hereunder:
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τ

ηds ηdl

ε̇ds ε̇dl

There are two dashpots in series, one accounts for dislocation creep, the other for diffusion
creep. The algorithm goes then as follows:

1. Assume we know ε̇T (from previous iteration).

2. The dashpots are in series so
ε̇T = ε̇ds + ε̇df

with

ε̇ds = Adsτ
n exp

(
−Qds + pVds

RT

)
(2.326)

ε̇df = Adfτ exp

(
−Qdf + pVdf

RT

)
(2.327)

such that we are in fact looking for the stress value τ so that

ε̇T = Adsτ
n exp

(
−Qds + pVds

RT

)
+ Adfτ exp

(
−Qdf + pVdf

RT

)
or, we must find the zero of the function F(τ):

F(τ) = ε̇T − Adsτn exp
(
−Qds + pVds

RT

)
− Adfτ exp

(
−Qdf + pVdf

RT

)
This equation can be solved with a Newton-Raphson algorithm and the iterations will be
of the form:

τn+1 = τn −
F(τn)
F ′(τn)

where the derivative of the function F with respect to τ reads:

F ′(τ) =
∂F
∂τ

= −Adsnτn−1 exp

(
−Qds + pVds

RT

)
− Adf exp

(
−Qdf + pVdf

RT

)
Once the value of τ is found, the strain rate values of Eqs. (2.326) and (2.327) can be
computed and so can the respective effective viscosities:

ηds =
1

2
A

1/n
ds ε̇

1
n
−1

ds exp

(
Qds + pVds
nRT

)
(2.328)

ηdf =
1

2
A

1/n
df exp

(
Qdf + pVdf

RT

)
(2.329)

Their average effective viscosity η̃eff is given by

η̃eff =

(
1

ηds
+

1

ηdf

)−1
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Rather importantly, as we will see hereafter, the following variant is implemented in some codes
(e.g. Douar , Fantom , Sopale , and probably many others) so as to bypass these costly
Newton iterations:

1. compute ηds and ηdf with the same strainrate ε̇T , pressure and temperature values

2. average them by means of an harmonic average

In this case, we have

ε̇T = Adfτdf exp

(
−Qdf + pVdf

RT

)
ε̇T = Adsτ

n
ds exp

(
−Qds + pVds

RT

)
or,

ηds =
1

2
A

1/n
ds ε̇T

1
n
−1 exp

(
Qds + pVds
nRT

)
(2.330)

ηdf =
1

2
A

1/n
df exp

(
Qdf + pVdf

RT

)
(2.331)

We see that this simplification has consequences on the dislocation creep viscosity only.

A concrete example Let us consider a vertical section of upper mantle, from 660km depth
to 30km depth. The lithosphere is assumed to be 90km thick. The temperature at the moho
(the top of the domain) is set to 550C, 1330C at the LMB and 1380C at the bottom. A constant
strainrate ϵ̇T = 10−15s−1 is assumed. We assume that the pressure is lithostatic (for simplicity
the density is taken to be constant at 3300kg/m3). The temperature and pressure fields are
shown hereunder:

 0

 100

 200

 300

 400

 500

 600

 700
 500  600  700  800  900  1000  1100  1200  1300  1400

de
pt

h 
(k

m
)

temperature (C)

 0

 100

 200

 300

 400

 500

 600

 700
 0  5000  10000  15000  20000  25000

de
pt

h 
(k

m
)

pressure (MPa)

Material properties are taken from Karato & Wu (1993) [673]. The (fortran) code is available
in images/rheology/effvisc/.

In what follows, the values obtained with Newton iterations are coined ’NR’ and those obtained
without are coined ’CHEAP’. The diffusion and dislocation creep viscosities can be computed
for both algorithms and are shown hereunder (As mentioned earlier the diffusion creep viscosity
is independent of strain rate so is the same for both):
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We can also plot the resulting effective viscosity ηeff for both approaches and we see that
the differences are larger than 20%. This is shown here under on the left, alongside with the
partitioning of the strain rate as a function of depth:
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� multiple viscous dampers and a plastic element arranged as follows:

(tikz vvp2.tex)
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Y

ε̇vp

The algorithm goes then as follows:

1. Assume we know ε̇T (from previous iteration), as well as the plasticity parameters Y (a
constant in the case of von Mises, or a pressure-dependent quantity otherwise) and ηm.

2. We start by assuming that the plasticity ’block’ is not active (ε̇vp = 0): we have then
three dampers in series. We need their associated strain rates ε̇df and ε̇ds which are such
that

ε̇T = ε̇v + ε̇ds + ε̇df

with

ε̇v =
τ

2ηv
(2.332)

ε̇ds = Adsτ
n exp

(
−Qds + pVds

RT

)
(2.333)

ε̇df = Adfτ exp

(
−Qdf + pVdf

RT

)
(2.334)

such that we are in fact looking for the stress value τ so that

ε̇T = Adsτ
n exp

(
−Qds + pVds

RT

)
+ Adfτ exp

(
−Qdf + pVdf

RT

)
+

τ

2ηv
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or, we must find the zero of the function F :

F(τ) = ε̇T − Adsτn exp
(
−Qds + pVds

RT

)
− Adfτ exp

(
−Qdf + pVdf

RT

)
− τ

2ηv

This equation can be solved with a Newton-Raphson algorithm and the iterations will be
of the form:

τn+1 = τn −
F(τn)
F ′(τn)

where the derivative of the function F with respect to τ reads:

F ′(τ) =
∂F
∂τ

= −Adf exp
(
−Qdf + pVdf

RT

)
− Adsnτn−1 exp

(
−Qds + pVds

RT

)
− 1

2ηv

Once the value of τ is found, the strain rate values of Eqs. (2.333), (2.334) and (2.332)
can be computed and so can the respective effective viscosities:

ηds =
1

2
A

1/n
ds ε̇

1
n
−1

ds exp

(
Qds + pVds
nRT

)
(2.335)

ηdf =
1

2
A

1/n
df exp

(
Qdf + pVdf

RT

)
(2.336)

Their average effective viscosity η̃eff is given by

η̃eff =

(
1

ηds
+

1

ηdf
+

1

ηv

)−1

3. if τ = 2η̃eff ε̇T < Y the stress is below the yield stress value and the plasticity element is
indeed not active. Use η̃eff in the material model.

4. if τ = 2η̃eff ε̇T > Y the stress is above the yield value, which is not allowed. In this case
the plastic element must be present and active and the viscous dampers are then in series
with the (visco)plastic element. The formers deform with a strain rate ε̇v, ϵ̇ds and ϵ̇df while
the latter with ϵ̇vp (all under the same tress τ) and we have ε̇T = ε̇v + ε̇ds + ε̇df + ε̇vp so:

ε̇T − ε̇v(τ)− ε̇ds(τ)− ε̇df (τ) = ε̇vp

=
τ

2
(

Y
2ε̇vp

+ ηm

)
ε̇T − ε̇v(τ)− ε̇ds(τ)− ε̇df (τ) =

τ

2
(

Y
2(ε̇T−ε̇v(τ)−ε̇ds(τ)+ε̇df (τ))

+ ηm

)
2[ε̇T − ε̇v(τ)− ε̇ds(τ)− ε̇df (τ)]

(
Y

2(ε̇T − ε̇v(τ)− ε̇ds(τ) + ε̇df (τ))
+ ηm

)
= τ

Y + 2(ε̇T − ε̇v(τ)− ε̇ds(τ)− ε̇df (τ))ηm = τ

As before, we must find the zero of the function F :

F(τ) = Y + 2[ε̇T − ε̇v(τ)− ε̇ds(τ)− ε̇df (τ)]ηm − τ

= Y + 2

[
ε̇T −

τ

2ηv
− Adsτn exp

(
−Qds + pVds

RT

)
− Adfτ exp

(
−Qdf + pVdf

RT

)]
ηm − τ

Because dislocation creep involves the n-th power of the stress we will here also need to
find the zero by means of a Newton-Raphson algorithm.
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We have:

∂F
∂τ

=

[
− 1

ηv
− 2

∂ε̇ds(τ)

∂τ
− 2

∂ε̇df (τ)

∂τ

]
ηm − 1 (2.337)

F(τ)/2ηm =
Y

2ηm
+ ε̇T −

τ

2ηv
− Ads(p, T )τn − Adf (p, T )τ −

τ

2ηm
(2.338)

= −Ads(p, T )τn −
(
Adf (p, T ) +

1

2ηv
− 1

2ηm

)
τ +

(
Y

2ηm
+ ε̇T

)
= 0(2.339)

Note that when ηm = 0 we logically recover τ = Y as the stress cannot exceed the yield strength
Y .

Although this approach is probably the most consistent in terms of physics, the presence of the
Newton-Raphson iterations makes it very expensive since this procedure is to be repeated for
every quadrature point or every particle.

Let us consider a concrete example: we set Y = 20MPa, ηv = 1025pascal, ηm = 1020pascal.
The domain is one-dimensional of depth 660km. The density is assumed to be constant at
3300kgm−3. Dislocation and diffusion creep parameters are taken from Karato & Wu (1993)
[673]. The temperature is linear is 20◦C at the surface, 550◦C at 30km depth, 1330celsius at
90km depth and 1380◦C at the bottom. Pressure is assumed to be lithostatic. The python
program and the gnuplot script are in images/rheology/example.

In the code I consider two cases: ’old’ and ’new’. The latter is described above. ’old’ goes as
follows: loop over total strain rate values. Compute dislocation and diffusion creep viscosities
with it. Compute harmonic average of these with linear viscosity. Compute deviatoric stress
value. use it in dislocation and diffusion formulae to arrive at respective strainrates.
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Viscous branch: (ds+df+v) ’old’ stands for the old approach when ε̇T was used for all mechanisms. ’new’ stands for the new approach and the right

strain rate decomposition.

130



Visco-viscoplastic rheology: (ds+df+v+vp)

Remark. Chenin et al. (2019) [229], base their rheological model on the additive decomposition of
the following deviatoric strain rate tensor εd:

εd = εel + εpl + εds + εdf + εpe

where the five strain rate terms correspond respectively to the elastic, plastic, and viscous creep
(dislocation, diffusion, peierls) contributions. This implies that all these elements are in series and
the associated viscosities are then averaged with an harmonic mean. Rather interestingly, it is then
stated that ”this strain rate equation is nonlinear and solved locally on cell centroids and vertices in
order to define the current effective viscosity and stress [1011].”

Relevant Literature: [580, 808, 579, 1117, 805, 25, 367]

2.27.23 Anisotropic viscosity

Following the paper by Lev and Hager (2008) [776], the anisotropic viscosity enters the equation
of momentum through a ’correction’ term added to the isotropic part of the constitutive equation
relating stress and strain rate [914]:

σij = −pδij + 2ηN ε̇ij − 2(ηN − ηS)Λijklε̇kl

where ηN is the normal viscosity and ηS is the shear viscosity. The fourth order tensor Λ reflects the
orientation of the directors in space, denoted by n⃗:

Λijkl =
1

2
(ninkδlj + njnkδil + ninlδkjnjnlδik)− 2ninjnknl

Following [898, 914], the ’directors’ are advected through the model and are analogous to particles.
The directors are vector-particles pointing normal to the easy-glide plane or layer, thus defining the
directions associated with ηN and ηS. In each time step of the calculation, the directors are advected
and rotated by the flow, and in return determine the viscosity structure for the next time step [912].
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Taken from Lev & Hager (2008) [776].
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2.27.24 Rheology of the lithosphere

Schematic view of the three most common first order rheological models of the continental lithosphere under a strain rate of 10−14s−1 . In all three models

the upper crust has its frictional strength increased with pressure and depth. (a) The jelly sandwich model has a weak mid-lower crust and a strong mantle

composed of dry olivine. (b) The crème brûlée model assumes that the mantle is weak, due to the presence of water and high temperature deformation, and

the dry and brittle crust determines the strength of the lithosphere. (c) The banana split model assumes that the lithosphere as a whole has its strength

greatly reduced due to various strain weakening and feedback processes [179]

Taken from [92]. Typical vertical distribution of maximum shear stress in continental lithosphere undergoing compressional (right) or extensional (left) strain

at 10−15s. Friction controls level of shear stress in upper part of crust and sometimes in mantle lithosphere; then, below brittle/ductile transition, shear stress

is controlled by thermally-activated dislocation creep.

Molnar [889] discusses the validity of the Brace-Goetze strength profiles. In particular, he has
this to say about the power law parameters: The uncertainty alone in Q alone renders calculated
strengths uncertain by 10 times at temperatures of about 700C. Correspondingly, that uncertainty in
Q is approximately equivalent to an uncertainty of about 100C in temperature.

Wet Quartzite upper crust [632, 1343]
upper continental crust [697, 295]
lower crust [632, 1343]
ocean sediment [697]

Dry Olivine lithosphere [614]
sublithospheric mantle [614]

Dry Maryland Diabase lower crust [1343, 1344]
lower continental crust [697, 295]
oceanic crust [1343, 697, 1344, 295]

Wet Olivine continental mantle lithosphere [1343, 1344]
oceanic mantle lithosphere [1343, 1344]
sublithospheric mantle [1343, 697, 1344]
mantle lithosphere [697]
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Relevant Literature[186, 179, 1043, 1042]
I need to talk about Byerlee’s law. [196]
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2.28 The Perzyna model

perzyna.tex

In what follows I make use of the approach and notations of Zienkiewicz and Cormeau [1423]
(and all the 1974-75 papers that follow) and Owen and Hinton [967].

The total strain (rate) is divided into two parts41:

ε̇ = ε̇e + ε̇vp

where εe stands for the elastic strain tensor and εvp stands for the visco-plastic strain tensor.
The yield condition is given as

F (σ, κ) = Ψ(σ, ε̇)− Y (κ) = 0

with F < 0 denoting the purely elastic region, κ is a history-dependent hardening/softening param-
eter and Y (κ) is a static yield stress. Ψ is a function of the stress and/or strain rate invariants.

We borrow from classical viscoplasticity theory (Perzyna [994, 993]) the idea of a plastic potential
defined as Q(σ) and write

ε̇vp = γ
〈
ϕ (F )

〉∂Q
∂σ

(2.340)

where γ is a positive, possibly time-dependent fluidity parameter. Note that sometimes the pseudo-
viscosity η̄ = γ−1 is defined [1425] so that the equation above writes:

ε̇vp =
1

η̄

〈
ϕ (F )

〉∂Q
∂σ

(2.341)

F represents the plastic yield condition. ϕ(x) is a positive scalar-valued monotonic increasing function
in the range x > 0 such that ϕ−1(x) exists and possess similar properties in the same range. The
notation ⟨⟩ denotes the Macaulay brackets42 and stands for43

⟨ϕ(x)⟩ = ϕ(x) if x > 0

⟨ϕ(x)⟩ = 0 if x ≤ 0

If Q = F then we speak of an associative law and if Q ̸= F we have a non-associative situation. The
tensor ∂Q

∂σ
represents the direction of plastic flow and when F = Q it is a vector directed normal to

the yield surface at the stress point under consideration. This is potentially problematic in the case
of the Tresca and Mohr-Coulomb yield surfaces since the normal is not well defined along the apices
of the surfaces (see Section 7.6 of Owen and Hinton [967]). In the non-associative case, the direction
of plastic flow in the principal stress space during plastic flow is not the same as the direction of the
vector normal to the yield surface.

In what follows we concentrate our attention on isotropic materials for which both F and Q can
be defined in terms of stress invariants.

According to Zienkiewicz, Humpheson, and Lewis [1427] (1975):”One of the main stumbling
blocks of the classical plasticity theory lay in the universal assumption, based on Drucker’s pos-
tulates (Drucker and Prager, 1952), that the plastic behaviour is ‘associated’. With the use of
Mohr-Coulomb type yield envelopes to define the limit between states of elasticity and of continuing

41Zienkiewicz and Cormeau [1423] add a third term ε0 which stands for initial/autogenous strain such as due to
temperature changes but I neglect it in what follows.

42https://en.wikipedia.org/wiki/Macaulay_brackets
43there is a difference between Zienkiewicz and Cormeau [1423](1974) and Zienkiewicz and Cormeau [1424](1974)

wrt > and ≥, and also a difference with wikipedia!
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irreversible deformation, the associated behaviour manifestly contradicted observation and gave ex-
cessive dilation. It became necessary therefore to extend plasticity ideas to a ‘non-associated’ form in
which the plastic potential and yield surfaces are defined separately”. At the same time, it is worth
remembering that these early studies mostly dealt with plasticity in metals, and later soils, but not
kilometer-scale crustal layers.

Also, the Perzyna model is not the only one, see for instance the Duvaut-Lions viscoplastic model
or the Consistency model [1339, 558].

We therefore need to look into the derivative of the plastic potential Q with respect to the stress
tensor. Since the potential is expressed as a function of the stress invariants I1(σ), I2(τ ) and θL(τ ),
we then have44:

∂Q

∂σ
=

∂

∂σ
Q(I1(σ), I2(τ ), θL(τ ))

=
∂Q

∂I1(σ)
∂I1(σ)
∂σ

+
∂Q

∂
√
I2(τ )

∂
√
I2(τ )

∂I2(τ )
∂I2(τ )
∂σ

+
∂Q

∂θL(τ )

∂θL(τ )

∂σ

=
∂Q

∂I1(σ)
∂I1(σ)
∂σ

+
∂Q

∂
√
I2(τ )

1

2
√
I2(τ )

∂I2(τ )
∂σ

− ∂Q

∂θL(τ )

√
3

2 cos 3θL

[
−3

2

I3(τ )
I2(τ )5/2

∂I2(τ )
∂σ

+
1

I2(τ )3/2
∂I3(τ )
∂σ

]
=

∂Q

∂I1(σ)
∂I1(σ)
∂σ

+

(
∂Q

∂
√
I2(τ )

1

2
√
I2(τ )

+
∂Q

∂θL(τ )

√
3

2 cos 3θL

3

2

I3(τ )
I2(τ )5/2

)
∂I2(τ )
∂σ

− ∂Q

∂θL(τ )

√
3

2 cos 3θL

1

I2(τ )3/2
∂I3(τ )
∂σ

= C1
∂I1(σ)
∂σ

+ C2
∂I2(τ )
∂σ

+ C3
∂I3(τ )
∂σ

(2.342)

i.e.

∂Q

∂σ
= C1a1 + C2a2 + C3a3 = C1

∂I1(σ)
∂σ

+ C2
∂I2(τ )
∂σ

+ C3
∂I3(τ )
∂σ

(2.343)

where the C1,2,3 coefficients depend on the plastic potential Q and the stress invariants as follows:

C1 =
∂Q

∂I1(σ)
(2.344)

C2 =
∂Q

∂
√
I2(τ )

1

2
√
I2(τ )

+
∂Q

∂θL(τ )

√
3

2 cos 3θL

3

2

I3(τ )
I2(τ )5/2

=
∂Q

∂
√
I2(τ )

1

2
√
I2(τ )

− 1

2

tan 3θL
I2(τ )

∂Q

∂θL(τ )

=
1

2
√
I2(τ )

(
∂Q

∂
√
I2(τ )

− tan 3θL√
I2(τ )

∂Q

∂θL(τ )

)
(2.345)

C3 = −
√
3

2 cos 3θL

1

I2(τ )3/2
∂Q

∂θL(τ )
(2.346)

These are identical to those of Eq. (7.71) in Owen & Hinton45:

44The derivative of the Lodé angle was obtained in Section ??
45This is not exactly true: the factor 1

2
√

I2(τ )
is absent in their Eq. (7.71) but it is to be found in their Eq. (7.70).
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Note that we already have established (see Section 2.26) that

a1 =
∂I1(σ)
∂σ

= 1 (2.347)

a2 =
∂I2(τ )
∂σ

= τ (2.348)

a3 =
∂I3(τ )
∂σ

= τ · τ − 2

3
I2(τ )1 (2.349)

with

Tr[a1] = tr

[
∂I1(σ)
∂σ

]
= 3 (2.350)

Tr[a2] = tr

[
∂I2(τ )
∂σ

]
= 0 (2.351)

Tr[a3] = tr

[
∂I3(τ )
∂σ

]
= tr[τ · τ ]− 2I2(τ ) = 2I2(τ )− 2I2(τ ) = 0 (2.352)

Then the generic form of the plastic potential derivative also reads

∂Q

∂σ
= C11+ C2τ + C3

(
τ · τ − 2

3
I2(τ )1

)
(2.353)

The momentum conservation equation that we solve is

−∇⃗p+ ∇⃗ ·
[
2ηε̇d

]
+ ρg⃗ = 0⃗

so we need the deviatoric strain rate tensor. We here assume for simplicity that there is only a
visco-plastic element in the system, i.e. ε̇ = ε̇vp. Then

ε̇d = ε̇vp − 1

3
tr[ε̇vp]1

= γ⟨ϕ(F )⟩
{(

C11+ C2τ + C3(τ · τ −
2

3
I2(τ )1)

)
− 1

3
tr

[
C11+ C2τ + C3(τ · τ −

2

3
I2(τ )1)

]
1

}
= γ⟨ϕ(F )⟩

{(
C11+ C2τ + C3(τ · τ −

2

3
I2(τ )1)

)
− 1

3
3C11

}
= γ⟨ϕ(F )⟩

(
C2τ + C3(τ · τ −

2

3
I2(τ )1)

)
(2.354)

The C1,2,3 coefficients have been computed in Sections 2.27.10, 2.27.11, 2.27.13 and 2.27.12, and are
summarized below:

C1 C2(× 1

2
√

I2(τ )
) C3

Tresca 0 2 cos θL(1 + 2 tan θL tan 3θL)
√
3

I2(τ )
sin θL
cos 3θL

von Mises 0 1 0

Mohr-Coulomb 1
3 sinϕ cos θL

[
(1 + 2 tan θL tan 3θL) +

1√
3
sinϕ(2 tan 3θL − tan θL)

] √
3 sin θL+sinϕ cos θL
2I2(τ ) cos 3θL

Drucker-Prager α 1 0
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The differences with the table below taken from Owen and Hinton [967] are highlighted in blue. The
difference in the von Mises simply comes from the definition of the yield value.

Taken from Owen and Hinton [967]. This table supposedly presents all three C1,2,3 coefficients for all four plastic potentials/yield functions (associative

plasticity). This is however not the case: the C2 column is not C2 but ∂F/∂
√
I2!

Also, the continuity equation for incompressible flow contains the divergence of the velocity field,
and in this case

∇⃗ · ν⃗ = tr[ε̇vp] = γ⟨ϕ(F )⟩3C1

I find it difficult to wrap my head around this as the continuity equation is usually derived by
other means. If C1 is not zero, then dilation occurs, the material is not incompressible so density
should also change...

2.28.1 von Mises plasticity following Zienkiewicz (1975)

What follows is borrowed from Zienkiewicz (1975) [1422].

Taken from Zienkiewicz [1422].

We start from section 13.4.2 of the paper with the Perzyna formulation of the plastic strain 46.

ε̇vp = γ⟨ϕ(F )⟩∂Q
∂σ

46from which I have removed the unnecessary/uncommon
√
3 terms
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Associative plasticity is used, i.e. F vM = QvM, and the von Mises yield criterion is F vM =
√
I2(τ )−Y

so

ε̇vp = γ
〈
ϕ
(√
I2(τ )− Y

)〉∂(√I2(τ )− Y )

∂σ

= γ
〈
ϕ
(√
I2(τ )− Y

)〉∂√I2(τ )
∂σ

= γ
〈
ϕ
(√
I2(τ )− Y

)〉 1

2
√
I2(τ )

∂I2(τ )
∂σ

(2.355)

Using results of Section 2.26 for the partial derivative of the second invariant we find47:

ε̇vp = γ
〈
ϕ
(√
I2(τ )− Y

)〉 1

2
√
I2(τ )

τ (2.356)

which we can also write48

ε̇vp =
1

2η
τ with

1

2η
= γ

〈
ϕ(
√
I2(τ )− Y )

〉 1

2
√
I2(τ )

Note that it here follows that the flow is incompressible since the visco-plastic strain rate tensor is
proportional to the deviatoric stress tensor so it is deviatoric itself!

From the definition of the second moment invariant:

I2(τ ) =
1

2
τ : τ =

1

2
(2ηε̇vp) : (2ηε̇vp) = 4η2

1

2
ε̇vp : ε̇vp = 4η2I2(ε̇vp)

from which η can be found as a function of strain rates and hence Γ(ε̇) becomes available. Note that
annoyingly the author defines the second invariant as 2ε̇ : ε̇ in Eq. (13.50) of the paper.

It follows that
τe =

√
I2(τ ) = 2ηε̇vpe

Then we drop the ⟨·⟩ as we assume to be above yield and we also assume a power-law form
ϕ(F ) = F n so that we can solve explicitly for η:

1

2η
= γ

〈
ϕ(
√
I2(τ )− Y )

〉 1

2
√
I2(τ )

1

2η
= γ

(
2η
√
I2(ε̇)− Y

)n 1

2 2η
√
I2(ε̇)

1

2η
= γ (2ηε̇e − Y )n

1

2 2ηε̇e
2ε̇e = γ(2ηε̇e − Y )n

2ε̇e/γ = (2ηε̇e − Y )n

(2ε̇e/γ)
1/n = 2ηε̇e − Y

η =
Y + (2ε̇e/γ)

1/n

2ε̇e
(2.357)

47This is the same equation as Eq. (14) of Zienkiewicz, Jain, and Oñate [1428]
48There most likely is a confusion in the paper between σ and τ there.

139



This form is convenient for plastic, visco-plastic and creep phenomena49. This can be re-written

η =
Y + (2ε̇e/γ)

1/n

2ε̇e

=
Y

2ε̇e
+

(2ε̇e/γ)
1/n

2ε̇e

=
Y

2ε̇e
+

(2/γ)1/n

2
ε̇

1
n
−1

e

=
Y

2ε̇e
+

1

2
(γ/2)−1/nε̇

1
n
−1

e (2.358)

We often use dislocation creep/power-law rheologies and these yield an effective viscosity 1
2
A−1/nε̇

1
n
−1

e

(the temperature and/or pressure-dependent exponential has been omitted for simplicity - it is a
power law rheology). The equation above is then the sum of the ’plastic viscosity’ and the ’viscous
creep viscosity’ – which corresponds to a dashpot and a plastic element in parallel. Note that the
expression above is very similar to the one for Bingham or Herschel-Bulkley visco-plastic models.

If n = 1 then we find (as in Vilotte et al. (1982) [1322])

η =
Y

2ε̇e
+

1

γ
(2.359)

and γ is then the inverse of the (linear) viscosity of the dashpot. Also if n = 1 then η̄ = γ−1.
For pure plasticity then γ →∞ and we have here simply

η =
Y

2ε̇e

As stated in Vilotte etal (1982) [1322]: “The plastic flow law of Eq. (2.358) permits us to represent
in a single expression both the rigid-perfectly plastic flow (γ →∞) and the common power creep law
without plastic limit (Y = 0) (usually referred to as the Norton-Hoff law)50”. Vilotte, Daignieres,
and Madariaga [1322] then explain that the fluidity γ can depend on temperature T in the form

γ = γ0 exp(−Q/RT )

In conclusion we find that this formulation allows us to represent linear, power law, perfectly plastic
and visco-plastic materials. Also, we know that the additional term η̄ = γ−1 introduces a length
scale in the shear bands by limiting the viscosity value in said shear bands.

Remarks:
If we use a non-associative plasticity then often Q =

√
I2(τ ). and the formulation of the previous

section remains valid. In that case we have C1 = 0 and C3 = 0 which allows to easily arrive at a
relationship of the type ε̇vp = 1

2η
τ where η is a scalar viscosity.

However, if Q is such that C3 ̸= 0, then we have a problem because even by setting n = 1 I do
not know how to arrive at a scalar viscosity, and even thinking of η as a tensor then I am stuck, see
Section about Choi & Petersen (2015).

49Down to various
√
2 or

√
3 coefficients here or there, it is also to be found in Vilotte etal [1322, 1323, 1324]

50https://en.wikipedia.org/wiki/Viscoplasticity
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2.28.2 Dissecting Choi & Petersen (2015)

For implementation details, please look at stone 39.
The original paper [237] is in 2D and focuses on the MC criterion. The authors state that the

conservation of mass equation should be

∂vx
∂x

+
∂vy
∂y

= R = 2 sinψ ε̇p

where where R is the dilation rate, Ψ is the dilation angle and ε̇p is the square root of the second
invariant of the deviatoric plastic strain rate tensor.

After multiple reads, I originally had many questions:

� where does this dilation rate R come from ?

� after reading many papers or textbooks on plasticity I cannot see a factor 2 in an equation
anymore without re-deriving it from scratch with a coherent set of notations (preferably mine
in fieldstone).

� is this relationship still valid in 3D?

� is it the same term for Drucker-Prager ?

Let us first look at their Eq. (3) in which the MC yield function is given by the function f :

f = σ1 −Nϕσ3 − 2
√
Nϕc

where σ1 and σ3 are the greatest and the least principal stress, Nϕ = (1 + sinϕ)/(1− sinϕ). This is
a somewhat unusual formulation in the geodynamics community.

Let us then start with the MC yield criterion51

τm = σm sinϕ+ c cosϕ (2.360)

which means that compression is assumed to be positive (the opposite as in fieldstone) and where τm
is the magnitude of the shear stress, σm is the normal stress, c is the intercept of the failure envelope
with the τ axis, and ϕ is the slope of the failure envelope. The quantity c is called the cohesion and
the angle ϕ is called the angle of internal friction. We have

σm =
1

2
(σ1 + σ3)

and

τm =
1

2
(σ1 − σ3)

Inserting these into Eq. (2.360)

1

2
(σ1 − σ3) =

1

2
(σ1 + σ3) sinϕ+ c cosϕ (2.361)

which can be reworked as follows:

σ1 −
1 + sinϕ

1− sinϕ
σ3 − 2

cosϕ

1− sinϕ
c = 0

51https://en.wikipedia.org/wiki/Mohr-Coulomb_theory
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The third term can further be modified as follows:

cosϕ

1− sinϕ
=

√
1− sin2 ϕ√
(1− sinϕ)2

=

√
(1− sinϕ)(1 + sinϕ)√

(1− sinϕ)2
=

√
1 + sinϕ

1− sinϕ

Finally, we define Nϕ as follows

Nϕ =
1 + sinϕ

1− sinϕ

so that the yield condition becomes:

σ1 −Nϕσ3 − 2
√
Nϕ c = 0

which is Eq. 3 of the article by Choi & Petersen [237].
They also define the plastic potential as

g = σ1 −Nψσ3 = τm − σm sinψ

We start again from the M-C criterion (in this case σ2 replaces σ3):

1

2
(σ1 − σ2) = −1

2
(σ1 + σ2) sinϕ+ c cosϕ

(2.362)

In the case of incompressible flow I have established in Section 2.24 that

σ1 + σ2
2

=
σxx + σyy

2
=

1

2
I1(σ) (2.363)

σ1 − σ2
2

=

√(
σxx − σyy

2

)2

+ σ2
xy =

√
I2(τ ) (2.364)

so that we now have

FMC =
1

2
I1(σ) sinϕ+

√
I2(τ )− c cosϕ

and then the plastic potential Q is given by

QMC =
1

2
I1(σ) sinψ +

√
I2(τ )

We will need ∂Q/∂σ. By applying the chain rule we can write

∂Q

∂σ
=

∂Q

∂I1(σ)
∂I1(σ)
∂σ

+
∂Q

∂I2(τ )
∂I2(τ )
∂σ

=
∂Q

∂I1(σ)
∂I1(σ)
∂σ

+
∂Q

∂
√
I2(τ )

∂
√
I2(τ )

∂I2(τ )
∂I2(τ )
∂σ

=
1

2
sinψ 1+

1

2
√
I2(τ )

τ (2.365)

Ultimately we would like to be able to write ε̇vp = τ/(2η) where η is the ’viscoplastic’ viscos-
ity. However, as opposed to Zienkiewicz (1975) in the previous section, the term ∂Q/∂σ is not
directly/only proportional to the deviatoric stress τ and we have instead:

ε̇vp = γ
〈
ϕ(FMC)

〉(1

2
sinψ 1+

1

2
√
I2(τ )

τ

)
(2.366)
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Right away we note that the strain rate tensor above is not deviatoric, i.e. the flow is not incompress-
ible. Rather conveniently, the M-C criterion in plane strain can also be cast FMC =

√
I2(τ )− Y =

τe − Y as in the von Mises case, albeit with Y = −1
2
I1(σ) sinϕ + c cosϕ. Assuming ϕ(x) = x for

convenience here and the argument of the brackets is positive,

ε̇vp = γ
(√
I2(τ )− Y

)(1

2
sinψ 1+

1

2
√
I2(τ )

τ

)
= γ

(√
I2(τ )− Y

) 1

2
sinψ 1+ γ

(√
I2(τ )− Y

) 1

2
√
I2(τ )

τ

= γ (τe − Y )
1

2
sinψ 1+ γ (τe − Y )

1

2τe
τ (2.367)

If we follow the procedure of Zienkiewicz (1975) , then the deviatoric part of the equation above
would yield a viscosity

η =
Y

2ε̇vpe
+

1

γ
⇒ τe = 2ηε̇vpe = Y + γ−12ε̇vpe ⇒ τe − Y = γ−12ε̇vpe (2.368)

If we insert this in Eq. (2.367):

ε̇vp = γγ−12ε̇vpe
1

2
sinψ 1+

1

2η
τ

= ε̇vpe sinψ 1+
1

2η
τ (2.369)

Assuming that the total strain rate is the sum of the strain rates associated to the various deformation
mechanisms, and that all other deformation mechanisms are deviatoric, then

div(ν⃗) = ε̇xx + ε̇yy = 2ε̇vpe sinψ

This is identical to the dilation rate of Choi and Petersen [237]!

2.28.3 my take on this in 3D for Drucker-Prager

I have established in Section ?? that in the general 3D case

FDP = α(ϕ, c)I1(σ) +
√
I2(τ ) + k(ϕ, c) =

√
I2(τ )− Y (2.370)

with α and k being functions of the cohesion c and angle of friction ϕ (but not from the stress). Then
the plastic potential is

QDP = α(ψ, c)I1(σ) +
√
I2(τ ) (2.371)

where ψ is the dilation angle. We then have

∂Q

∂σ
=

∂Q

∂I1(σ)
∂I1(σ)
∂σ

+
∂Q

∂
√
I2(τ )

∂
√
I2(τ )

∂I2(τ )
∂I2(τ )
∂σ

= α(ψ, c) 1+
1

2
√
I2(τ )

τ (2.372)

Then

ε̇vp = γ
(√
I2(τ )− Y

)(
α(ψ, c) 1+

1

2
√
I2(τ )

τ

)
= γ (τe − Y )α(ψ, c) 1+ γ (τe − Y )

1

2τe
τ (2.373)

Using again τe − Y = γ−12ε̇vpe as in the 2D case we arrive finally

div(ν⃗) = tr[ε̇vp] = ε̇xx + ε̇yy + ε̇zz = 6α(ψ, c)ε̇vpe

Since k does not depend on stress, the only difference between the associative and the non-associative
case is whether ϕ = ψ or not.
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2.28.4 my take on this in 3D for MC

I have established in fieldstone that in the general 3D case

FMC =
1

3
I1(σ) sinϕ+

√
I2(τ )

(
cos θL(τ )−

1√
3
sin θL(τ ) sinϕ

)
− c cosϕ (2.374)

Note that since p = −I1(σ)/3 then we recover the usual ’p sinϕ+ c cosϕ’.
Following Eq. (4) of the paper the plastic potential would be given by

QMC =
1

3
I1(σ) sinψ +

√
I2(τ )

(
cos θL(τ )−

1√
3
sin θL(τ ) sinψ

)
The visco-plastic strain rate would then write

ε̇vp = γ⟨ϕ(FMC)⟩∂Q
MC

∂σ

We have established that

∂Q

∂σ
= C1

∂I1(σ)
∂σ

+ C2
∂I2(τ )
∂σ

+ C3
∂I3(τ )
∂σ

= C11+ C2τ + C3

(
τ · τ − 2

3
I2(τ )1

)
(2.375)

and in the case of the Mohr-Coulomb criterion:

CMC

1 =
1

3
sinϕ (2.376)

CMC

2 =
1

2
√
I2(τ )

cos θL

[
(1 + 2 tan θL tan 3θL) +

1√
3
sinϕ(2 tan 3θL − tan θL)

]
CMC

3 =

√
3 sin θL + sinϕ cos θL
2I2(τ ) cos 3θL

(2.377)

ε̇vp = γ⟨ϕ(F )⟩
(
C11+ C2τ + C3

(
τ · τ − 2

3
I2(τ )1

))
Assuming brackets ok, and ϕ(x) = xn:

ε̇vp = γ(
√
I2(τ )− Y )n

(
C11+ C2τ + C3

(
τ · τ − 2

3
I2(τ )1

))
Taking the deviatoric part of this:

ε̇vp,d = γ(
√
I2(τ )− Y )n

(
C2τ + C3

(
τ · τ − 2

3
I2(τ )1

))
so I cannot find a scalar η such that

ε̇vp,d =
1

2η
τ

I am STUCK here?!
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2.28.5 Revisiting Lemiale et al (2008) and Spiegelman et al (2016)

The authors postulate that the total strain rate is the sum of the viscous deformation and plastic
deformation:

ε̇ = ε̇v + ε̇p

Then
σ = −p1+ 2η(ε̇− ε̇p) (2.378)

Immediately we see that they implicitely assume that the flow is incompressible. Upon yielding a
flow rule is needed to specify the plastic behaviour. The plastic strain rate is written as

ε̇p = λ̇
∂Q

∂σ
(2.379)

where λ̇ is a scalar plastic flow rate and Q is the so-called plastic potential. Note that in Heeres,
Suiker, and de Borst [558] the authors define λ̇ = ⟨ϕ(x)⟩/η so that the equation above is the Perzyna
model. A classical choice for Q, in conjunction with the incompressibility constraint, is:

Q =
√
I2(τ )

We notice that Eq. 2.379 is different (although obviously not unrelated) than the Perzyna approach
above, although in the end they arrive at a similar expression as we did before for the von Mises
case.

If we consider only the deviatoric part of the stress tensor in Eq. (2.378), we thus obtain52

τ = 2η(ε̇− ε̇p) = 2η

(
ε̇− λ̇∂Q

∂σ

)
= 2η

(
ε̇− λ̇ 1

2
√
I2(τ )

∂I2(τ )
∂σ

)
= 2η

(
ε̇− λ̇ 1

2
√
I2(τ )

τ

)
(2.380)

This equation can be written as (
1 + λ̇

η√
I2(τ )

)
τ = 2ηε̇

One can then take the square root of the second invariant of this equation:(
1 + λ̇

η√
I2(τ )

)√
I2(τ ) = 2η

√
I2(ε̇)

Then (
1 + λ̇

η

τe

)
τe = 2ηε̇e

so that

λ̇ =
2ηε̇e − τe

η
= 2ε̇e −

τe
η

52do they assume varepsilon deviatoric too?
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Finally we can insert this expression of λ̇ in Eq. (2.380)

τ = 2η

(
ε̇− λ̇ 1

2
√
I2(τ )

τ

)
(2.381)

= 2η

(
ε̇− (2ε̇e −

τe
η
)

1

2
√
I2(τ )

τ

)
(2.382)

= 2η

(
ε̇− (2ε̇e −

τe
η
)
1

2τe
τ

)
(2.383)

= 2ηε̇− 2ηε̇e
1

τe
τ + η

τe
η

1

τe
τ (2.384)

= 2ηε̇− 2ηε̇e
1

τe
τ + τ (2.385)

(2.386)

The term τ is present on both sides of the equal sign so it cancels out and we are left with:

0 = 2ηε̇− 2ηε̇e
1

τe
τ

or,

τ =
τe
ε̇e
ε̇

On yield we have τe = Y (c, ϕ) so in the end:

τ = 2
1

2

Y (c, ϕ)

ε̇e︸ ︷︷ ︸
ηp

ε̇

That last step is poorly documented in the paper! This is a cumbersome exercise and it relies heavily
on the choice of Q = τe.

Remark. Lemiale et al. (2008) define τ =
√
τijτij/2 but define γ̇ =

√
2DijDij!

Let us now turn to Spiegelman, May, and Wilson [1187] (2016). In Section 2.1.1 of this paper
the authors follow the same path as above. They assume Q = τe but justify their choice by stating
that “The use of incompressible materials mandates that we use a plastic potential g which is not a
function of the pressure p”

This is indeed very important in the context of our incompressible calculations in geodynamics.
They define the yield surface, F (σ) which is a scalar function defining the failure (yield) state of

a material. Yield surfaces are assumed to be of the following form

F (σ) = τe − Y (σ)

where Y is the yield criterion. The authors state that “it is common practice in geodynamics to
define the plastic multiplier λ̇ which exactly satisfies F = 0, or equivalently τe = Y [764]”. We see
that it is then the same as the Lemiale et al. paper.
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2.29 Moment of inertia

momentofinertia.tex

Consider a rigid body rotating with fixed angular velocity ω about an axis which passes through
the origin. Let ri be the position vector of the ith mass element, whose mass is mi. We expect this
position vector to precess about the axis of rotation (which is parallel to ω) with angular velocity ω.

dri
dt

= ω × ri.

Thus, the above equation specifies the velocity, vi = dri/dt, of each mass element as the body
rotates with fixed angular velocity ω about an axis passing through the origin.

The total angular momentum of the body (about the origin) is written

L =
∑
i=1,N

mi ri ×
dri
dt

=
∑
i=1,N

mi ri × (ω × ri) =
∑
i=1,N

mi [r
2
iω − (ri · ω)ri]

The above formula can be written as a matrix equation of the form Lx
Ly
Lz

 =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ωx
ωy
ωz


where

Ixx = +
∑
i=1,N

(y 2
i + z 2

i )mi =

∫
(y2 + z2) dm =

∫
V

(y2 + z2) ρ(x, y, z)dV

Iyy = +
∑
i=1,N

(x 2
i + z 2

i )mi =

∫
(x2 + z2) dm =

∫
V

(x2 + z2) ρ(x, y, z)dV

Izz = +
∑
i=1,N

(x 2
i + y 2

i )mi =

∫
(x2 + y2) dm =

∫
V

(x2 + y2) ρ(x, y, z)dV

Ixy = Iyx = −
∑
i=1,N

xi yimi = −
∫
x y dm = −

∫
x y ρ(x, y, z)dV

Iyz = Izy = −
∑
i=1,N

yi zimi = −
∫
y z dm = −

∫
y z ρ(x, y, z)dV

Ixz = Izx = −
∑
i=1,N

xi zimi = −
∫
x z dm = −

∫
x z ρ(x, y, z)dV

Here, Ixx is called the moment of inertia about the x-axis, Iyy the moment of inertia about the
y-axis, Ixy the xy product of inertia, Iyz the yz product of inertia, etc. The matrix of the Iij values
is known as the moment of inertia tensor.

In general, the angular momentum vector, L points in a different direction to the angular velocity
vector, ω. In other words, L is generally not parallel to ω.

Finally, although the above results were obtained assuming a fixed angular velocity, they remain
valid at each instant in time if the angular velocity varies.

In the simplified case of a spherically symmetric planet, it is easy to see that Ixx = Iyy = Izz so
that I = 1

3
(Ixx + Iyy + Izz), and ρ = ρ(r) with dV = 4πr2dr, leading to

I =
8π

3

∫ R

0

ρ(r)r4dr
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Assuming further that the planet has a constant density ρ0, we obtain

I =
8π

3
ρ0

∫ R

0

r4dr =
8π

3
ρ0
R5

5
=

2

5
MR2

where M is the mass of the planet and R is its radius.
Assuming now that the planet is composed of a core of radius Rc and density ρc surrounded by

a mantle of density ρm, we have

I =
8π

3

∫ R

0

ρ(r)r4dr =
8π

3

(∫ Rc

0

ρcr
4dr +

∫ R

Rc

ρmr
4dr

)
=

8π

15

(
ρcR

5
c + ρm(R

5 −R5
c)
)

The moment of inertia of the core is given in Table 2 of ”Core Dynamics”, Treatise on Geophysics,
edited by Peter Olson: Icore = 9.2 × 1036kg.m2. The total moment of inertia for the Earth is then
given by I = Icore + Imantle.

2.30 The need for numerical modelling

The governing equations we have seen in this chapter require the use of numerical solution techniques
for three main reasons:

� the advection term in the energy equation couples velocity and temperature;

� the constitutive law (the relationship between stress and strain rate) often depends on velocity
(or rather, strain rate), temperature, pressure, ...

� Even when the coefficients of the PDE’s are linear, often their spatial variability, coupled to
potentially complex domain geometries prevent arriving at the analytical solution.

Also we often have to deal with additional challenges:

� Complex geometries

� Multiphysics

� Many scales in space and time

Note that in CFD one makes a distinction between verification and validation. Simply put [1076]:

� verification: ”solving the equations right”

� validation: ”solving the right equations”
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2.31 Important mathematical concepts and equations

mathematics.tex

2.31.1 Taylor expansion

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a) + . . .

2.31.2 Divergence theorem

This is also coined the Green-Ostrogradski theorem. For a volume V bound by a surface Γ:∫∫
Γ

V⃗ · dS⃗ =

∫∫∫
V

∇⃗ · V⃗ dV (2.387)
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Chapter 3

The Finite Difference Method

3.1 Back to basics: what is a derivative?

Before we start with the basics of the Finite Difference method, we should quickly recall the definition
of the derivative of a function.

The derivative of a function y = f(x) of a variable x is a measure of the rate at which the value y
of the function changes with respect to the change of the variable x. It is called ”the derivative of f

with respect to x”. If x and y are real numbers, and if the graph of f is plotted against x, the
derivative is the slope of this graph at each point.

There are two standard notations:

df

dx
(x) and f ′(x) (3.1)

The mathematical definition is1:

f ′(x) = lim
h→0

f(x+ h)− f(x)
(x+ h)− x

= lim
h→0

f(x+ h)− f(x)
h

(3.2)

i.e., how much does the function grow between x and x+h, divided by the length h. On the following
left plot the function is in green while the line joining the points x, f(x) and x+h, f(x+h) is shown
in purple. On the right figure we see that when h becomes smaller and smaller this line does indeed
get closer and closer to the real tangent line in brown.

Left: The secant to curve y = f(x) determined by points (x, f(x)) and (x + h, f(x + h));

Right: The tangent line as limit of secants (h′′ < h′ < h). Taken from Wikipedia2.

1if the limit exists
2https://en.wikipedia.org/wiki/Derivative
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Also, one can rewrite the formula above as

f(x+ h) ≃ f(x) + f ′(x)h (3.3)

which is in fact the beginning of the Taylor expansion of the function:

f(x+ h) ≃ f(x) + f ′(x)h+
1

2!
f ′′(x)h2 + . . . (3.4)

We will see in what follows that the Taylor expansion and the concept of derivation is central in the
Finite Difference method.

3.2 Welcome to the discrete world

discrete.tex

In mathematics and in physics we assume that space and time form a continuum, i.e. a segment
can be divided in two indefinitely, or in other words one can ’zoom in’ on a part of space or time
as much as needed. However computers are binary machines with a finite amount of memory so
they cannot represent a continuum (the transistors in a processor are either ’on’ or ’off’, nothing
in between). As a consequence, in the context of solving PDEs describing physical phenomena,
computers will only allow us to compute the solution at certain discrete locations and at certain
discrete times.

Illustration of space discretisation. If the picture is cut up in a small number of cells covering it we obtain the picture on the left. If more cells are used,

we obtain the picture in the middle. When a (very) large number of cells is used we finally see all details and it approaches a continuum.

3.3 FDM basics in 1D

In what follows we suppose that we have a function f(x), which is continuous and differentiable over
the range of interest. Let us also assume that we know the value f(x0) and all the derivatives at
x = x0.

First order derivatives

The forward Taylor-series expansion for f(x0 + h), away from the point x0 by a small amount h is
given by

f(x0 + h) = f(x0) + h
∂f

∂x
(x0) +

h2

2!

∂2f

∂x2
(x0) + · · ·+

hn

n!

∂nf

∂xn
(x0) +O(hn+1) (3.5)

We can substract f(x0) to each side of the equation and divide by h:

1

h
(f(x0 + h)− f(x0)) =

∂f

∂x
(x0) +

h

2!

∂2f

∂x2
(x0) + . . . (3.6)
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and we can then express the first derivative of f as follows:

∂f

∂x
(x0) =

f(x0 + h)− f(x0)
h

− h

2!

∂2f

∂x2
(x0) . . . (3.7)

or, replacing the term in h by O(h):

∂f

∂x
(x0) =

f(x0 + h)− f(x0)
h

+O(h) (3.8)

O(h) indicates that the full solution would require additional terms of order h, h2, and so on.
O is called the truncation error: if the distance h is made smaller and smaller, the (numerical
approximation) error decreases ∝ h in this case.

Let us assume that the 1D domain on which a given ODE/PDE is to be solved has been discretised
and let us zoom in on three consecutive points (x0 = xi here):

h h

xi−1 xi xi+1
x

In the context of a discrete calculation on a set of discrete points xi we can compute the first order
derivative of f at point xi as an approximation:

∂f

∂x
(xi) =

fi+1 − fi
h

+O(h) (forward difference) (3.9)

where functions fi = f(xi) are evaluated at discretely spaced xi with xi+1 = xi+h (i.e. h = xi+1−xi),
where the node spacing, or resolution, h is assumed constant. We also introduce the notation
f ′
i = f ′(xi) =

∂f
∂x
(xi).

The forward FD derivative as expressed above is called first order accurate, and this means
that very small h is required for an accurate solution.
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Example FDM-1: Before we go any further with the theory, let us look at
a very simple example. Let us consider the Stokes equations in the absence
of fluid motion (i.e. ν⃗ = 0⃗). Then the strain rate tensor components are
identically zero and the equation simply is

−∇⃗p+ ρg⃗ = 0⃗. (3.10)

where we assume that 1) density is constant in space for simplicity and 2) the
domain is infinite in the x-direction. The gravity vector is g⃗ = −ge⃗y so that
the above equation becomes:

−dp
dy
− ρg = 0 (3.11)

This is a first-order ODE. It needs to be supplemented by a single boundary
condition, which in this case constrains the pressure to be zero at the surface,
i.e. p(y = Ly) = 0.

g⃗
ρ

free surface
Ly

0

p = 0

y

p3 = 0

p2

p1

p0

h

We can write the discretised ODE at node 2 (since we know p3 = 0):

dp

dy
(x2) ≃

p3 − p2
h

= −ρg (3.12)

or, p2 = ρgh. Having obtained p2, we write the ODE at node 1:

dp

dy
(x1) ≃

p2 − p1
h

= −ρg (3.13)

or, p1 = ρgh+ p2 = ρg2h. And finally we obtain as expected

p0 = ρg 3h = ρgLy. (3.14)

This brings us to our first exercise:
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Exercise FDM-1

We will now put the previous example into practice and write a python code
which uses forward differences to compute the 1D pressure field inside the
crust.
→ Exercise 1 FDM.ipynb

We can also expand the Taylor series backward (i.e. looking ’left’ of x0)

f(x0 − h) = f(x0)− h
∂f

∂x
(x0) +

h2

2!

∂2f

∂x2
(x0)− . . . (3.15)

The backward FD derivative then writes:

∂f

∂x
(xi) =

fi − fi−1

h
+O(h) (backward difference) (3.16)

Alternatively, we can substract the backward formula from the forward one and divide by two.
Concretely, we start from

f(x0 + h) = f(x0) + h
∂f

∂x
(x0) +

h2

2!

∂2f

∂x2
(x0) + . . . (3.17)

and substract the following from it

f(x0 − h) = f(x0)− h
∂f

∂x
(x0) +

h2

2!

∂2f

∂x2
(x0) + . . . (3.18)

to obtain:

f(x0 + h)− f(x0 − h) = 2h
∂f

∂x
(x0) +O(h3) (3.19)

or,
∂f

∂x
(x0) =

f(x0 + h)− f(x0 − h)
2h

+O(h2)

We see that the resulting central difference approximation is second order accurate. In the
discrete world one then write

∂f

∂x
(xi) =

fi+1 − fi−1

2h
+O(h2) (central difference) (3.20)

Simply put, the denominator is 2h because it is the distance between point xi−1 and xi+1.
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3 types of the finite difference method. Central gives the best approximation of the derivative. Taken from Wikipedia3

Can we do better than O(h2)? The answer is yes, and I list hereunder the formula:

f ′
i =

2fi+1 + 3fi − 6fi−1 + fi−2

6h
+O(h3) backward difference (3.21)

f ′
i =
−fi+2 + 6fi+1 − 3fi − 2fi−1

6h
+O(h3) forward difference (3.22)

f ′
i =
−fi+2 + 8fi+1 − 8fi−1 + fi−2

12h
+O(h4) central difference (3.23)

Looking at these formula it is obvious that the cost of forming the derivative is larger than before
(more multiplications, additions, ...) which translates to longer calculations and, in the case of
implicit methods, much denser matrices.

Exercise FDM-1 (bonus)

Prove the formula above.

Second-order derivatives

Many PDEs contain second order derivatives (typically diffusion equations) so we now turn to these

and define f ′′
i = f ′′(xi) =

∂2f
∂x2

(xi).

Second order forward Let us define a function g(x) such that g = f ′. Then we have seen that
the forward difference formula leads to write:

g′i =
gi+1 − gi

h
(3.24)

On the one hand, we have g′i = g′(xi) = f ′′(xi) = f ′′
i and on the other hand

gi+1 − gi
h

=
f ′
i+1 − f ′

i

h
(3.25)

We can then use the forward derivative formula for f ′
i+1 and f

′
i and obtain the following second order

derivatives of f :

f ′′
i =

f ′
i+1 − f ′

i

h
=

fi+2−fi+1

h
− fi+1−fi

h

h
=
fi+2 − 2fi+1 + fi

h2
(3.26)

which is the first order accurate, forward difference approximation for second order derivatives
at xi. In order to compute f ′′(xi) we need the value of f at xi but also at two other locations right
of this location.

Second order backward Likewise, we obtain the following formula when using the backward
derivative twice:

f ′′
i =

f ′
i − f ′

i−1

h
=

fi−fi−1

h
− fi−2−fi−1

h

h
=
fi − 2fi−1 + fi−2

h2
(3.27)

This time we we need the value of f at xi but also at two other locations left of this location.

3https://en.wikipedia.org/wiki/Finite_difference
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Second order central By adding the taylor expansions (with +h and −h) a second order
accurate approximation of the second derivative is obtained. We start from

f(x0 + h) = f(x0) + h
∂f

∂x
(x0) +

h2

2!

∂2f

∂x2
(x0) +

h3

3!

∂3f

∂x3
(x0) + · · ·+

hn

n!

∂nf

∂xn
(x0) +O(hn+1)

f(x0 − h) = f(x0)− h
∂f

∂x
(x0) +

h2

2!

∂2f

∂x2
(x0)−

h3

3!

∂3f

∂x3
(x0) + · · ·+

(−h)n

n!

∂nf

∂xn
(x0) +O(hn+1)

and we see that adding the first equation to the second yields

f(x0+h)+f(x0−h) = 2f(x0)+h
∂f

∂x
(x0)− h

∂f

∂x
(x0)︸ ︷︷ ︸

=0

+2
h2

2!

∂2f

∂x2
(x0)+

h3

3!

∂3f

∂x3
(x0)−

h3

3!

∂3f

∂x3
(x0)︸ ︷︷ ︸

=0

+O(h4)

(3.28)
or,

∂2f

∂x2
(x0) =

f(x0 + h)− 2f(x0) + f(x0 − h)
h2

+O(h2) (3.29)

which translates into

f ′′
i =

fi+1 − 2fi + fi−1

h2
+O(h2) (second order central difference) (3.30)

Note that this formula requires one value left and one value right of the point under consideration.
Another way to arrive at the same expression is to write the expansion at x0 ± h/2, i.e. at the

(convenient, yet nonexistent) half points i± 1/2:

xi−1 xi xi+1

xi− 1
2

xi+ 1
2 x

f ′
i+1/2 =

fi+1 − fi
h

f ′
i−1/2 =

fi − fi−1

h
(3.31)

f ′′
i =

f ′
i+1/2 − f ′

i−1/2

h
=
fi+1 − 2fi + fi−1

h2
(3.32)

Note that derivatives of the form (see heat transport equation in Section 2.6)

∂

∂x

(
k
∂f

∂x

)
(3.33)

where k is a function of space, should be formed as follows

∂

∂x

(
k
∂f

∂x

)∣∣∣∣
i

=
ki+1/2

fi+1−fi
h
− ki−1/2

fi−fi−1

h

h
+O(h2) (3.34)

where ki±1/2 is evaluated between the points to maintain the second order accuracy.

Remark. If the heat conductivity k shows strong jumps from one grid point to another that are not
aligned with the grid-nodes, most second-order methods will show first order accuracy at best.

Can we do better than O(h2)? The answer is yes again:

f ′′
i =
−fi+2 + 16fi+1 − 30fi + 16fi−1 − fi−2

12h2
+O(h4)

write about one-sided FD, useful on boundaries
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3.4 Solving the 1D diffusion equation

Consider the one-dimensional, transient (i.e. time-dependent) heat conduction equation without heat
generating sources

ρCp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(3.35)

where ρ is density, Cp heat capacity, k thermal conductivity, T temperature, x distance, and t time.
If the thermal conductivity, density and heat capacity are constant over the model domain, the

equation can be simplified to a diffusion equation:

∂T

∂t
= κ

∂2T

∂x2
(3.36)

where κ = k/ρCp is the heat diffusivity.
We wish to solve this PDE in time and space (provided the appropriate boundary conditions

have been given). The domain is [0, Lx] and it is discretised by means of nnx points as depicted
hereunder:

x
0 Lx

xi−1 xi xi+1x0 x1 x2 nnx− 1

h

The derivative of temperature with regards to time can be approximated with a forward finite
difference approximation in time as

∂T

∂t
≃ T n+1

i − T ni
tn+1 − tn

=
T n+1
i − T ni
δt

(3.37)

where δt is the time step, i.e. the time between two consecutive measurements (the equivalent of h
in space). In all that follows the subscript will always refer to space indices while the superscript will
always refer to time indices. To be clear: n represents the current time step whereas n+1 represents
the next time step.

Both n and i are integers; n varies from 0 to nstep− 1 (total number of time steps) and i varies
from 0 to nnx− 1 (where nnx is the total number of grid points in x-direction).

The spatial derivative is replaced by a central FD approximation

∂2T

∂x2
≃
T ni+1 − 2T ni + T ni−1

h2
(3.38)

We obtain

T n+1
i − T ni
δt

= κ
T ni+1 − 2T ni + T ni−1

h2
(3.39)

and finally

T n+1
i = T ni + δt κ

T ni+1 − 2T ni + T ni−1

h2
(3.40)

Because the temperature at the current time step n is known, we can compute the new tempera-
ture without solving any additional equations. Such a scheme is an explicit finite difference method
and was made possible by the choice to evaluate the temporal derivative with forward differences.

157



h

δt

Lx
space

time

i− 1 i i+ 1

i

n− 1

n

n+ 1

Explicit scheme

In order to solve the original PDE equation we need to

� prescribe an initial temperature field

� prescribe two boundary conditions

Such requirements hold also in the discrete world.
We know that this numerical scheme will converge to the exact solution for small h and δt because

it has been shown to be consistent - that its discretization process can be reversed, through a Taylor
series expansion, to recover the governing partial differential equation - and because it is stable for
certain values of h and δt: any spontaneous perturbations in the solution (such as round-off error)
will either be bounded or will decay.
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Example FDM-2: let us prescribe an initial temperature field T 0
i for i =

0, nnx− 1. For example:

x

0 Lx

T

T 0

x0 x1 x2 x3 x4 x5

h

Then, we will be able to compute the new temperature of (for example) node
3 at time t = 1 · δt (i.e. T 1

3 ) with

T 1
3 = T 0

3 + δt κ
T 0
4 − 2T 0

3 + T 0
2

h2
(3.41)

Note that T0 and T5 cannot be computed by means of the above equation,
which is not a problem because both these values are actually the prescribed
boundary conditions.

The main drawback of the explicit approach is that stable solutions are obtained only when

0 <
2κδt

h2
≤ 1 or, δt ≤ h2

2κ
(3.42)

If this condition is not satisfied, the solution becomes unstable, starts to wildly oscillate and ulti-
mately ’blows up’. We will observe this during the practicals.

The stability condition means that the maximum time step needs to be smaller than the time it
takes for an anomaly to diffuse across the grid (nodal) spacing h. The explicit solution is an example
of a conditionally stable method that only leads to well behaved solutions if a criterion like the one
above is satisfied.

Exercise FDM-2

We are going to solve the 1D diffusion equation with the explicit method for
the following physical setup: The domain is Lx = 1km long, it is maintained
at a temperature T = 100◦C at x = 0 and at a temperature T = 200◦C at
x = Lx. The initial temperature is T (x, t = 0) = 123 and κ = 10−6. Time
stepping will be carried out until steady state is reached.
→ Exercise 2 FDM.ipynb
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An alternative approach is an implicit finite difference scheme, where the spatial derivatives of the
Laplacian are evaluated (at least partially) at the new time step. We then use the backward difference
for the time derivative:

∂T

∂t
=
T ni − T n−1

i

δt
(3.43)

so that
T ni − T n−1

i

δt
= κ

T ni+1 − 2T ni + T ni−1

h2
(3.44)

Note that this is often rewritten as follows in order to keep the unknwowns at time n+ 1:

T n+1
i − T ni
δt

= κ
T n+1
i+1 − 2T n+1

i + T n+1
i−1

h2
(3.45)

It is a fully implicit scheme where the time derivative is taken backward. Let us define the
dimensionless parameter s as follows:

s =
κ δt

h2
(3.46)

The previous equation can be rearranged as follows:

−s T n+1
i+1 + (1 + 2s) T n+1

i − s T n+1
i−1 = T ni (3.47)

h

δt

Lx
space

time

i− 1

i

i+ 1i

n− 1

n

n+ 1

Implicit scheme

Note that in this case we no longer have an explicit relationship for T n+1
i−1 , T n+1

i and T n+1
i+1 . Instead,

we have to solve a linear system of equations, which is discussed further below.
The main advantage of implicit methods is that there are no restrictions on the time step, the

fully implicit scheme is unconditionally stable. This does not mean that it is accurate! Stability
and accuracy are two different things! Taking large time steps may result in an inaccurate solution
for features with small spatial scales!

For any application, it is therefore always a good idea to check the results by decreasing the time
step until the solution does not change anymore (this is called a convergence check), and to ensure
the method can deal with small and large scale features robustly at the same time.
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Example FDM-3: Once again let us look at things with a very concrete ap-
proach. Let us discretise the domain of length Lx with 6 cells, i.e. i = 0, . . . 6
(nnx = 7). We also prescribe the following boundary conditions (remember it
is a 2nd order derivative in space, so we need two of them): T (x = 0) = T0 = 0
and T (x = Lx) = T6 = 100 (we assume that they do not change with time
for simplicity). Finally we assume that we know T 0

i for all i and we wish to
compute T 1

i .
We then have:

T 1
0 = 0

−sT 1
2 + (1 + 2s)T 1

1 − sT 1
0 = T 0

1

−sT 1
3 + (1 + 2s)T 1

2 − sT 1
1 = T 0

2

−sT 1
4 + (1 + 2s)T 1

3 − sT 1
2 = T 0

3

−sT 1
5 + (1 + 2s)T 1

4 − sT 1
3 = T 0

4

−sT 1
6 + (1 + 2s)T 1

5 − sT 1
4 = T 0

5

T 1
6 = 100 (3.48)

or,

1 0 0 0 0 0 0
−s 1 + 2s −s 0 0 0 0
0 −s 1 + 2s −s 0 0 0
0 0 −s 1 + 2s −s 0 0
0 0 0 −s 1 + 2s −s 0
0 0 0 0 −s 1 + 2s −s
0 0 0 0 0 0 1


︸ ︷︷ ︸

A

·



T 1
0

T 1
1

T 1
2

T 1
3

T 1
4

T 1
5

T 1
6


︸ ︷︷ ︸

T⃗

=



0
T 0
1

T 0
2

T 0
3

T 0
4

T 0
5

100


︸ ︷︷ ︸

b⃗

As opposed to the explicit approach we must solve a linear system which size
is given by the total number of nodes/points nnx in order to compute a new
temperature field.

In summary, an implicit method requires us to solve A · T⃗ = b⃗ with

� A is a nnx× nnx sparse matrix (i.e. mostly empty),

� b⃗ is a known vector of size nnx (often called the ’right-hand side’, or rhs)

� T⃗ the vector of unknowns.

A word about solvers There are two main approaches to solving such a linear system: one can
use a direct approach or an iterative approach. In a nutshell, a direct solver will ’manipulate’ the
matrix lines and columns so as to arrive at the solution (like you would do on paper yourself for a
small system). A simple example of such an approach is the technique of elimination of variables of
the following example.
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Example FDM-4: Consider the following system: 1 3 −2
3 5 6
2 4 3

 ·
 x

y
z

 =

 5
7
8

 (3.49)

which is of course equivalent to

x+ 3y − 2z = 5

3x+ 5y + 6z = 7

2x+ 4y + 3z = 8 (3.50)

Solving the first equation for x gives x = 5 + 2z − 3y, and plugging this into
the second and third equation yields (or take the second line of the matrix
and remove 3 times the first line from it, etc ...) 1 3 −2

0 −4 12
0 −2 7

 ·
 x

y
z

 =

 5
−8
−2

 (3.51)

Solving the second line for y yields y = 2 + 3z, and plugging this into the
second equation yields z = 2. We now have: 1 3 −2

0 −4 12
0 0 2

 ·
 x

y
z

 =

 5
−8
4

 (3.52)

Substituting z = 2 into the second equation gives y = 8, and substituting
z = 2 and y = 8 into the first equation yields x = −15. Therefore, the
solution set is the single point (x, y, z) = (−15, 8, 2).
Taken from https://en.wikipedia.org/wiki/System_of_linear_equations

This example is of course very naive and direct solvers often come in the form of very large
numerical libraries which have been highly optimised to take advantage of the sparsity of the matrix
in order to arrive at the solution in the lowest number of operations possible. In reality techniques
such as LU decomposition or Cholesky decomposition are used.

Iterative solvers on the other hand compute the solution of the system by first postulating an
initial guess for the solution and then by improving this guess iteratively until the termination
criterion is met (see Section 9.33). There are two classes of iteratives methods in this context:
stationary iterative methods (e.g. Jacobi, Gauss-Seidel, SSOR) and Krylov subspace methods (e.g.
CG, GMRES, BiCG). At this stage things get real complicated and the details of iterative solvers
are vastly out of the scope of this course4 (see for instance the book by Saad [1092]).

4https://en.wikipedia.org/wiki/Iterative_method
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Example FDM-5: the stationary Jacobi method. The matrixA is decomposed
as follows:

A = D +L+U (3.53)

where D is the diagonal of the matrix A, L is the strict lower triangular part
of A and U is the strict upper triangular part of A. The iterative method is
defined by:

D · T⃗ k+1 = −(L+U ) · T⃗ k + b⃗ k = 0, 1, . . . (3.54)

where T⃗ 0 is the initial guess (often taken to be zero). Note that the superscript
denotes the iteration number and has nothing to do with the time step in this
context. This method is trivial to implement since the linear system on the
left side of the equal sign involves a diagonal matrix. This can also be written

T k+1
i =

1

Aii

(
bi −

∑
j ̸=i

AijT
k
j

)
i = 1, 2, ...nnx (3.55)

Looking at the previous example, we have

D =

 1 0 0
0 5 0
0 0 3

 and L+U =

 0 3 −2
3 0 6
2 4 0

 (3.56)

We then start with the guess T⃗ 0 = 0⃗, so that for k = 0:

T⃗ 1 = D−1 · b⃗ =

 1 0 0
0 1/5 0
0 0 1/3

 ·
 5

7
8

 =

 5
7/5
8/3

 (3.57)

and then we obtain T⃗ 2 by solving

T⃗ 2 = D−1 ·
[
−(L+U) · T⃗ 1 + b⃗

]
=

 1 0 0
0 1/5 0
0 0 1/3

 ·
−

 0 3 −2
3 0 6
2 4 0

 ·
 5

7/5
8/3

+

 5
7
8


= . . . (3.58)

We keep iterating until two consecutively obtained temperature vectors are
nearly identical, or,

∥T⃗ k+1 − T⃗ k∥ < ϵ (3.59)

where ϵ is a carefully chosen small enough number.
A sufficient (but not necessary) condition for the method to converge is
that the matrix A is strictly or irreducibly diagonally dominant a. Strict
row diagonal dominance means that for each row, the absolute value of the
diagonal term is greater than the sum of absolute values of other terms
|aii| >

∑
j ̸=i |aij|. Also, this algorithm will fail if one or more diagonal terms

of A is nul.

ahttps://en.wikipedia.org/wiki/Diagonally_dominant_matrix
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Exercise FDM-3

Implement example FDM-5 from scratch in a new code. Write a separate
function for the Jacobi solver. What do you observe ? why does it explode?
Multiply all diagonal values by 10 and re-run it. What do you observe now?
Bonus: implement the Gauss-Seidel method. Which of the two methods con-
verges the fastest?
→https://en.wikipedia.org/wiki/Iterative_method.

Finally, looking at
−s T n+1

i+1 + (1 + 2s) T n+1
i − s T n+1

i−1 = T ni (3.60)

and dividing by −s and letting δt→∞, we obtain:

T n+1
i+1 − 2T n+1

i + T n+1
i−1 = 0 (3.61)

which is a central difference approximation of the steady state solution

∂2T

∂x2
= 0 (3.62)

Therefore, the fully implicit scheme will always yield the right equilibrium solution but may not
capture small scale, transient features.

Exercise FDM-4

This is exactly the same exercise as Exercise 2 but we are going to solve the
1D diffusion equation with the implicit method this time. First use a solver
from scipy to solve the system, then implement your own Jacobi solver. Note
that the Jacobi solver must be implemented as a function which is to be called
inside the time loop.
In your code use an if statement which allows to choose between explicit and
implicit, and another if statement which allows to choose between scipy solver
and iterative solver.
Bonus: implement the SSOR method in another function and compare Jacobi,
Gauss-Seidel and SSOR.
→https://en.wikipedia.org/wiki/Iterative_method

Crank-Nicolson scheme It turns out that this fully implicit method is second order accurate in
space but only first order accurate in time, i.e. the error goes as O(h2, δt).

It is possible to write down a scheme which is second order accurate both in time and in space
(i.e. O(h2, δt2)), e.g. the Crank-Nicolson 5 scheme which is unconditionally stable.

5The method was developed by John Crank and Phyllis Nicolson in the mid 20th century. https://en.wikipedia.
org/wiki/Crank-Nicolson_method
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The Crank-Nicolson method is the time analog of central spatial differences and is given by

T n+1
i − T ni
δt

= κ
1

2

T ni+1 − 2T ni + T ni−1

h2︸ ︷︷ ︸
at time n

+
T n+1
i+1 − 2T n+1

i + T n+1
i−1

h2︸ ︷︷ ︸
at time n+1

 (3.63)

We define s = κδt/2h2 so that the equation above can be rearranged as follows :

−s T n+1
i+1 + (1 + 2s) T n+1

i − s T n+1
i−1 = s T ni+1 + (1− 2s) T ni + s T ni−1 (3.64)

Any partially implicit method is more complicated to compute as we need to infer the future
solution at time n + 1 by solution (inversion) of a system of linear equations based on the known
solution at time n.

h

δt

Lx
space

time

i− 1

i− 1

i

i+ 1

i+ 1

i

n− 1

n

n+ 1

Implicit scheme

Exercise FDM-5

Modify the code of Exercise FDM-4 to implement the Crank-Nicolson method.

3.5 Solving the 1D advection equation

fdm adv1D.tex

The 1D hyperbloic advection equation is:

ρCp

(
∂T

∂t
+ u

∂T

∂x

)
= 0 (3.65)

or simply
∂T

∂t
+ u

∂T

∂x
= 0 (3.66)
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We have seen how to deal with the time derivative (explicit, implicit) and with the first order space
derivative (forward, backward or central). Let us consider the FTCS scheme (Forward in Time,
Central in Space).

Ti
n+1 − T ni
δt

+ ui
T ni+1 − T ni−1

2h
= 0

Note that although the velocity u is prescribed, it can vary in space, hence the subscript i.
There is however a major problem: the FTCS method is in this case unconditionally unstable

(see Section 6.2.1 of [582], section 4.3.1 of [985]), i.e., it blows up for any δt. The instability is related
to the fact that this scheme produces negative diffusion, which is numerically unstable. We could
also consider the FTFS method:

Ti
n+1 − T ni
δt

+ ui
T ni+1 − T ni

h
= 0

but it is also unconditionally unstable (see Section 6.2.1 of [582]).
We will now look at to methods which alleviate this problem:

� The Lax-Friedrichs method6 consists of replacing the Ti
n in the time derivative term with

(T ni+1 +T ni−1)/2 (see for instance Section 4.3.1 of [985] in the context of surface processes). The
resulting equation is

Ti
n+1 − (T ni+1 + T ni−1)/2

δt
= −ui

T ni+1 − T ni−1

2h
or,

Ti
n+1 =

1

2
(T ni+1 + T ni−1)−

uiδt

h

1

2
(T ni+1 − T ni−1)

von Neumann stability analysis indicates that this method is stable when C = uδt/h ≤ 1 where
C is the Courant number.

� In the Streamline upwind method the spatial finite difference scheme depends on the sign of
the velocity:

Ti
n+1 − (T ni+1 + T ni−1)/2

δt
=


−ui

Tni −Tni−1

hx
if ui < 0

−ui
Tni+1−Tni

hx
if ui > 0

In fact, we have replaced central with forward or backward derivatives, depending on the flow
direction. This method is stable when C = uδt/h ≤ 1.

These are not the only possibilities, see for instance the leapfrog method or the Lax-Wendroff method
[582].

Finally, The Crank-Nicolson implicit scheme for solving the diffusion equation can be adapted to
solve the advection equation:

Ti
n+1 +

uδt

4h
(T n+1

i+1 − T n+1
i−1 ) = Ti

n − uδt

4h
(T ni+1 − T ni−1)

TODO: write about how we obtain this.

6Named after Peter Lax and Kurt O. Friedrichs
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Exercise FDM-6

Let us consider the domain [0, 1]. The temperature field at t = 0 is given by
T = 1 for x < 0.25 and T = 0 otherwise. The prescribed velocity is u = 1
and we set nnx = 51. Boundary conditions are T = 1 at x = 0 and T = 0 at
x = 1.

0 0.25 0.5 0.75 1

T

x

Program the above FTCS method. Run the model for 250 time steps with
δt = 0.002. Program the Lax-Friedrichs method by modifying the previous
code.
Bonus: Program the upwind method and/or the Crank-Nicolson method.
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3.6 FDM basics in 2D

In a 2D Cartesian domain overlain by a nnx× nny grid, the spacing between nodes in the x and y
direction is hx and hy respectively.

hy

hx

x

y

(0, 0) Lx

Ly

We have seen in Section 3.3 how to discretise second-order derivatives in 1D. In 2D, we then
logically have for a function f(x, y)

∂2f

∂x2
(x0, y0) =

f(x0 + hx, y0)− 2f(x0, y0) + f(x0 − hx, y0)
h2x

+O(h2x) (3.67)

∂2f

∂y2
(x0, y0) =

f(x0, y0 + hy)− 2f(x0, y0) + f(x0, y0 − hy)
h2y

+O(h2y) (3.68)

What about mixed derivatives? Since these are combinations of first-order derivatives, we can
straightforwardly discretise them:

∂2f

∂x∂y
(x0, y0)

=
∂

∂x

(
∂f

∂y

)
(x0, y0)

=
∂

∂x

(
f(x0, y0 + hy)− f(x0, y0 − hy)

2hy

)
=

1

2hy

∂f

∂x
(x0, y0 + hy)−

1

2hy

∂f

∂x
(x0, y0 − hy)

=
1

2hy

f(x0 + hx, y0 + hy)− f(x0 − hx, y0 + hy)

2hx
− 1

2hy

f(x0 + hx, y0 − hy)− f(x0 − hx, y0 − hy)
2hx

=
f(x0 + hx, y0 + hy)− f(x0 − hx, y0 + hy)− f(x0 + hx, y0 − hy) + f(x0 − hx, y0 − hy)

2hxhy
+O(h2x, h2y)

From 1D to 2D

INSERT TEXT

(tikz needicon.tex)
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1D

T0 T1 T2 T3 T4

T⃗ =


T0
T1
T2
T3
T4



2D

T⃗ =



T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11



T0 T1 T2 T3

T4
T5 T6 T7

T8 T9 T10 T11

T0 T11 T6 T3

T8

T5
T2

T7

T4

T9

T10
T1

Also, here is a rather handy code snippet which should allow you to make nice plots of the coming
exercises.

f i l ename = ’ s o l u t i o n { : 04d } . pdf ’ . format ( i s t e p )
f i g = p l t . f i g u r e ( )
#ax = f i g . gca ( p r o j e c t i on =’3d ’)
ax = f i g . add subplot ( p r o j e c t i o n=’ 3d ’ )
ax . p l o t s u r f a c e ( x . reshape ( ( nny , nnx ) ) , y . reshape ( ( nny , nnx ) ) ,T. reshape ( ( nny , nnx )

) , c o l o r = ’ darkseagreen ’ )
ax . s e t x l a b e l ( ’X [ m ] ’ )
ax . s e t y l a b e l ( ’Y [ m ] ’ )
ax . s e t z l a b e l ( ’ Temperature [ C ] ’ )
p l t . t i t l e ( ’ Timestep %.2d ’ %( i s t e p ) , l o c=’ r i g h t ’ )
p l t . g r i d ( )
p l t . s a v e f i g ( f i l ename )
#p l t . show ()
p l t . c l o s e ( )
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3.7 Solving the 2D diffusion equation

We now revisit the transient heat equation, this time with sources/sinks for 2D problems. In the
absence of advective heat transport, the heat equation is

ρCp
∂T

∂t
= ∇⃗ · k∇⃗T +Q (3.69)

where Q is the radiogenic heat production. It simply writes as follows when Cartesian coordinates
are used:

ρCp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+Q (3.70)

If the heat conductivity is constant in space (and so are the other coefficients), it writes:

∂T

∂t
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
+ Q̃ (3.71)

with Q̃ = Q/ρCp. In order to solve this equation over the Cartesian domain of size Lx ×Ly we need
to generate a mesh as shown hereunder:

hy

hx

x

y

(0, 0) Lx

Ly

i-1,j i,j i+1,j

i,j+1

i,j-1

The spacing between the nodes in the x-direction is hx and hy is the spacing between the nodes
in the y direction. There are now nnp = nnx× nny nodes in total. The above grid is characterised
by i = 0, 1, 2, 3, 4 and j = 0, 1, 2, 3 and counts in total 20 nodes.

In one dimension, the subscript indicated the node i. In two dimensions we therefore need two
indices i and j to identify a node, so that the temperature at node i, j at time n is denoted T ni,j.

One question remains: should we number nodes row by row ? column by column ? randomly ?
These three approaches are shown hereunder:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0 4 8 12 16

1 5 9 13 19

2 6 10 14 18

3 7 11 15 19

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

19 11 2 13 4

17 9 0 18 1

16 7 3 6 14

5 8 15 12 10

row-wise numbering column-wise numbering random numbering

This is a critical point because the discretised PDE is formulated as a function of Ti,j with

i = 0, . . . nnx− 1 and j = 0, . . . nny− 1 but the vector T⃗ containing all these values (encountered in
implicit methods) is indexed by a single index k = 0, . . . nnp−1. The numbering strategy determines
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how easy it is to go from (i, j) to k and vice versa. Very concretely again, where should T3,4 be placed

in the global vector of unknowns T⃗?
At the same time we cannot do away with i, j indices because these are needed to locate the

direct neighbours of any node and allow to form discrete derivatives.
We then need a (preferably simple/straightforward) ’function’ which associates to every (i, j) a

global index k. For the first grid with row-wise numbering, we have 0 ≤ i ≤ 4 , 0 ≤ j ≤ 3 and
0 ≤ k ≤ 19. It follows that

k(i, j) = j · nnx+ i (3.72)

This is easy to verify: i = 3 and j = 2 indeed corresponds to node # 13, i = 4 and j = 1 corresponds
to node # 9, etc ...

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

Exercise FDM-7

In a new code declare and assign values to nnx and nny. Compute nnp. Set
Lx = 7 and Ly = 6. Compute hx and hy.
Declare two arrays xcoords and ycoords which will contain the x and y coor-
dinates of all nnp nodes.
By means of two imbricated for loops compute these coordinates & fill both
arrays.
Visualise the nodes with matplotlib.
Tip: Make sure your code works for various combinations of nnx and nny.

3.7.1 Explicit scheme

The simplest approach is an FTCS (forward time, centered space) explicit method like in 1D:

T n+1
i,j − T ni,j

δt
= κ

(
T ni−1,j − 2T ni,j + T ni+1,j

h2x
+
T ni,j−1 − 2T ni,j + T ni,j+1

h2y

)
+ Q̃n

i,j (3.73)

where we have assumed that the source term Q̃ can depend of space coordinates and therefore appears
as Q̃i,j in the equation. We define sx and sy as follows:

sx =
κδt

h2x
sy =

κδt

h2y
(3.74)

so that
T n+1
i,j = T ni,j + sx(T

n
i−1,j − 2T ni,j + T ni+1,j) + sy(T

n
i,j−1 − 2T ni,j + T ni,j+1) + Q̃n

i,jδt (3.75)

or,

T n+1
k(i,j) = T nk(i,j) + sx(T

n
k(i−1,j) − 2T nk(i,j) + T nk(i+1,j)) + sy(T

n
k(i,j−1) − 2T nk(i,j) + T nk(i,j+1)) + Q̃n

k(i,j)δt (3.76)
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The scheme is stable for

δt ≤
min(h2x, h

2
y)

2κ
(3.77)

Boundary conditions can be set the usual way: for example a constant (Dirichlet) temperature at
node (i, j) is given by

Ti,j = Tbc (3.78)

where Tbc is the prescribed temperature.

Exercise FDM-8

A simple (time-dependent) analytical solution for the temperature equation
exists for the case that the initial temperature field is

T (x, y, t = 0) = T0 + Tmax exp

[
−x

2 + y2

σ2

]
(3.79)

where Tmax is the maximum amplitude of the temperature perturbation at
(x, y) = (0, 0) and σ its half-width.

initial temperature field

The solution of the time-dependent PDE is

T (x, y, t) = T0 +
Tmax

1 + 4tκ/σ2
exp

[
− x2 + y2

σ2 + 4tκ

]
(3.80)

Set Lx=100km and Ly = 80km, κ = 10−6, Q̃ = 0, Tmax = 100◦, T0 = 200◦,
and σ = 104m.
Use the previous exercise to generate a nnx×nny grid in the [−Lx/2, Lx/2]×
[−Ly/2, Ly/2] domain.
Write a function which takes x, y, t, T0, Tmax, κ and σ as argument and
returns the analytical temperature value.
Write a an explicit FDM code which solves the 2D diffusion equation. At each
time step prescribe on the boundary the analytical solution.

3.7.2 Implicit scheme

If we now employ a fully implicit, unconditionally stable discretization scheme, the discretised PDE
becomes:

T n+1
i,j − Ti,jn

δt
= κ

(
T n+1
i−1,j − 2T n+1

i,j + T n+1
i+1,j

h2x
+
T n+1
i,j−1 − 2T n+1

i,j + T n+1
i,j+1

h2y

)
+
Qn
i,j

ρCp
(3.81)
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Rearranging terms with n+ 1 on the left and terms with n on the right hand side gives

−sx T n+1
i+1,j − sy T n+1

i,j+1 + (1 + 2sx + 2sy) T
n+1
i,j − sx T n+1

i−1,j − sy T n+1
i,j−1 = T ni,j + Q̃n

i,jδt (3.82)

or

−sx T n+1
k(i+1,j)−sy T

n+1
k(i,j+1)+(1+2sx+2sy) T

n+1
k(i,j)−sx T

n+1
k(i−1,j)−sy T

n+1
k(i,j−1) = T nk(i,j)+ Q̃

n
k(i,j)δt (3.83)

which here again yields a linear system of equations written A · T⃗ = b⃗ where A is a (nnp × nnp)
matrix.

Boundary conditions are T (x, y) = 0 on all sides, so all nodes on the boundary have a prescribed
zero temperature7:

T0,0 = T0 = 0

T1,0 = T1 = 0

T2,0 = T2 = 0

T3,0 = T3 = 0

T4,0 = T4 = 0

T0,1 = T5 = 0

T4,1 = T9 = 0

T0,2 = T10 = 0

T4,2 = T14 = 0

T0,3 = T15 = 0

T1,3 = T16 = 0

T2,3 = T17 = 0

T3,3 = T18 = 0

T4,3 = T19 = 0

In what follows we assume for simplicity and conciseness of notation that hx = hy = h so that
sx = sy = s. The discretised PDE equation will now be applied to the interior nodes:

� For node k = 6 (i = 1, j = 1):

−sT n+1
2,1 − sT n+1

1,2 + (1 + 4s)T n+1
1,1 − sT n+1

0,1 − sT n+1
1,0 = T n1,1 + Q̃n

1,1δt

⇒ −sT n+1
7 − sT n+1

11 + (1 + 4s)T n+1
6 − sT n+1

5 − sT n+1
1 = T n6 + Q̃n

6δt (3.84)

� For node k = 7 (i = 2, j = 1):

−sT n+1
3,1 − sT n+1

2,2 + (1 + 4s)T n+1
2,1 − sT n+1

1,1 − sT n+1
2,0 = T n2,1 + Q̃n

2,1δt

⇒ −sT n+1
8 − sT n+1

12 + (1 + 4s)T n+1
7 − sT n+1

6 − sT n+1
2 = T n7 + Q̃n

7δt (3.85)

� For node k = 8 (i = 3, j = 1):

−sT n+1
4,1 − sT n+1

3,2 + (1 + 4s)T n+1
3,1 − sT n+1

2,1 − sT n+1
3,0 = T n3,1 + Q̃n

3,1δt

⇒ −sT n+1
9 − sT n+1

13 + (1 + 4s)T n+1
8 − sT n+1

7 − sT n+1
3 = T n8 + Q̃n

8δt (3.86)

7We assume here again that these boundary conditions do not change with time.
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� For node k = 11 (i = 1, j = 2):

−sT n+1
2,2 − sT n+1

1,3 + (1 + 4s)T n+1
1,2 − sT n+1

0,2 − sT n+1
2,1 = T n1,2 + Q̃n

1,2δt

⇒ −sT n+1
12 − sT n+1

16 + (1 + 4s)T n+1
11 − sT n+1

10 − sT n+1
6 = T n11 + Q̃n

11δt (3.87)

� For node k = 12 (i = 2, j = 2):

−sT n+1
3,2 − sT n+1

2,3 + (1 + 4s)T n+1
2,2 − sT n+1

1,2 − sT n+1
2,1 = T n2,2 + Q̃n

2,2δt

⇒ −sT n+1
13 − sT n+1

17 + (1 + 4s)T n+1
12 − sT n+1

11 − sT n+1
7 = T n12 + Q̃n

12δt (3.88)

� For node k = 13 (i = 3, j = 2):

−sT n+1
4,2 − sT n+1

3,3 + (1 + 4s)T n+1
3,2 − sT n+1

2,2 − sT n+1
3,1 = T n3,2 + Q̃n

3,2δt

⇒ −sT n+1
14 − sT n+1

18 + (1 + 4s)T n+1
13 − sT n+1

12 − sT n+1
8 = T n13 + Q̃n

13δt (3.89)

Putting it all together yields the following linear system:
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1 . . . . . . . . . . . . . . . . . . .
. 1 . . . . . . . . . . . . . . . . . .
. . 1 . . . . . . . . . . . . . . . . .
. . . 1 . . . . . . . . . . . . . . . .
. . . . 1 . . . . . . . . . . . . . . .
. . . . . 1 . . . . . . . . . . . . . .
. −s . . . −s 1 + 4s −s . . . −s . . . . . . . .
. . −s . . . −s 1 + 4s −s . . . −s . . . . . . .
. . . −s . . . −s 1 + 4s −s . . . −s . . . . . .
. . . . . . . . . 1 . . . . . . . . . .
. . . . . . . . . . 1 . . . . . . . . .
. . . . . . −s . . . −s 1 + 4s −s . . . −s . . .
. . . . . . . −s . . . −s 1 + 4s −s . . . −s . .
. . . . . . . . −s . . . −s 1 + 4s −s . . . −s .
. . . . . . . . . . . . . . 1 . . . . .
. . . . . . . . . . . . . . . 1 . . . .
. . . . . . . . . . . . . . . . 1 . . .
. . . . . . . . . . . . . . . . . 1 . .
. . . . . . . . . . . . . . . . . . 1 .
. . . . . . . . . . . . . . . . . . . 1


︸ ︷︷ ︸

A

·



T n+1
0

T n+1
1

T n+1
2

T n+1
3

T n+1
4

T n+1
5

T n+1
6

T n+1
7

T n+1
8

T n+1
9

T n+1
10

T n+1
11

T n+1
12

T n+1
13

T n+1
14

T n+1
15

T n+1
16

T n+1
17

T n+1
18

T n+1
19


︸ ︷︷ ︸

T⃗

=



0
0
0
0
0
0

T n6 + Q̃6δt

T n7 + Q̃7δt

T n8 + Q̃8δt
0
0

T n11 + Q̃11δt

T n12 + Q̃12δt

T n13 + Q̃13δt
0
0
0
0
0
0


︸ ︷︷ ︸

b⃗

Note that we now have five ’diagonals’ filled with non-zero entries as opposed to three diagonals in the 1D case.
replace zeros by some more random value corresponding to Tboundary

Note also that this is a simplified matrix since we assumed that sx = sy.
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Exercise FDM-9

Same exercise as exercise FDM-8, but now with implicit method.

Looking at this matrix, it is clear that this approach is sub-optimal: for such a small grid counting
20 nodes, the boundary conditions enforce the temperature on 14 of them, so that these temperatures
should/could be removed from the list of unknowns, leaving a vector of unknowns T⃗ of size 6 (the
number of nodes which are not on the boundary). As a consequence, we would have to solve a 6× 6
linear system, as opposed to a 20× 20 one!

In this case, we focus again on nodes 6,7,8,11,12,13. we start from

−sT n+1
7 − sT n+1

11 + (1 + 4s)T n+1
6 − sT n+1

5 − sT n+1
1 = T n6 + Q̃n

6δt (3.90)

but we know that the boundary conditions impose that T1 = 0 and T5 = 0 so that the equation
above simplifies to:

−sT n+1
7 − sT n+1

11 + (1 + 4s)T n+1
6 = T n6 + Q̃n

6δt (3.91)

These 6 equations can finally be combined in the expected smaller linear system:
1 + 4s −s . −s . .
−s 1 + 4s −s . −s .
. −s 1 + 4s . . −s
−s . −s 1 + 4s −s .
. −s . −s 1 + 4s −s
. . −s . −s 1 + 4s


︸ ︷︷ ︸

A

·


T n+1
6

T n+1
7

T n+1
8

T n+1
11

T n+1
12

T n+1
13


︸ ︷︷ ︸

T⃗

=



T n6 + Q̃6δt

T n7 + Q̃7δt

T n8 + Q̃8δt

T n11 + Q̃11δt

T n12 + Q̃12δt

T n13 + Q̃13δt


︸ ︷︷ ︸

b⃗

(3.92)

Note that is the boundary values had not been zero they would have found their way to the right
hand side vector.

The Crank-Nicolson version of the implicit scheme is then as follows:

T n+1
i,j − Ti,jn

δt
=

1

2
κ

(
T n+1
i−1,j − 2T n+1

i,j + T n+1
i+1,j

h2x
+
T n+1
i,j−1 − 2T n+1

i,j + T n+1
i,j+1

h2y

)

+
1

2
κ

(
T ni−1,j − 2T ni,j + T ni+1,j

h2x
+
T ni,j−1 − 2T ni,j + T ni,j+1

h2y

)
(3.93)

The implementation of this method will require from you to bring all the terms in T n+1 to the left of
the equal sign while all the terms in T n are assumed to be known and therefore find their way into
the right hand side.

Likewise, the Lax-Friedrichs method is as follows:

T n+1
i,j − 1

4

(
T ni−1,j + T ni+1,j + T ni,j−1 + T ni,j+1

)
δt

= κ

(
T n+1
i−1,j − 2T n+1

i,j + T n+1
i+1,j

h2x
+
T n+1
i,j−1 − 2T n+1

i,j + T n+1
i,j+1

h2y

)
+
Qn
i,j

ρCp
(3.94)

Rearranging terms with n+ 1 on the left and terms with n on the right hand side gives
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3.7.3 The 9-point stencil for the Laplace operator

What follows is mostly borrowed from Wikipedia8.
If we discretize the 2D Laplacian by using central-difference methods, we obtain the commonly

used five-point stencil, represented by the following convolution kernel:

D =

 0 1 0
1 −4 1
0 1 0


or,

DTi,j =
1

h2
(Ti−1,j + Ti+1,j, + Ti,j−1 + Ti,j+1, − 4Ti,j)

Even though it is simple to obtain and computationally lighter, the central difference kernel possess
an undesired intrinsic anisotropic property, since it doesn’t take into account the diagonal neighbours.

The two most commonly used isotropic nine-point stencils are displayed below, in their convolu-
tion kernel forms. They can be obtained by the following formula

D = (1− γ)

 0 1 0
1 −4 1
0 1 0

+ γ

 1/2 0 1/2
0 −2 0
1/2 0 1/2


The first one is known by Oono-Puri,and it is obtained when γ = 1/2:

D =

 1/4 2/4 1/4
2/4 −12/4 2/4
1/4 2/4 1/4

 =
1

4

 1 2 1
2 −12 2
1 2 1


The second one is known by Patra-Karttunen or Mehrstellen, and it is obtained when γ = 1/3:

D =

 1/6 4/6 1/6
4/6 −20/6 4/6
1/6 4/6 1/6

 =
1

6

 1 4 1
4 −20 4
1 4 1


or,

∇⃗2Ti,j =
1

6h2
(Ti+1,j+1 + Ti−1,j+1 + Ti+i,j−1, + Ti−1,j−1 + 4(Ti+1,j + Ti−1,j) + 4(Ti,j+1 + Ti,j−1)− 20Ti,j)

Both are isotropic forms of discrete Laplacian, and in the limit of small h, they all become equivalent.
This form is the one we find in LeVeque [778, p64].

3.8 Solving the 2D advection-diffusion equation

So far, we have mainly focused on the diffusion equation in a non-moving flow (relevant for the case
of a dike intrusion cooling off or for a lithosphere which remains undeformed).

We now want to consider problems where material moves during the time period under consid-
eration and takes temperature anomalies with it (e.g. a plume rising through a convecting mantle).
If the numerical grid remains fixed in the background, the hot temperatures should be moved to
different grid points at each time step.

We start again from the heat transport equation of Section 2.6:

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= ∇⃗ · k∇⃗T +Q (3.95)

8https://en.wikipedia.org/wiki/Nine-point_stencil
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We have previously dealt with the one-dimensional Cartesian coordinates equation:

ρCp

(
∂T

∂t
+ u

∂T

∂x

)
=

∂

∂x

(
k
∂T

∂x

)
+Q (3.96)

and we now turn to the two-dimensional equation:

ρCp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+Q (3.97)

As before, asumming that k is constant in space we can rewrite the equation as a function of the
heat diffusivity κ:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
+Q (3.98)

Since we have already seen how to deal with ’pure’ diffusion equations in the previous section, let us
now turn to ’pure’ advection equations:

∂T

∂t
+ u

∂T

∂x
= 0 (3.99)

or
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= 0 (3.100)

where we assume ν⃗ = (u, v) known.
Even though the equations appear simple, it is quite tricky to solve them accurately, more so than

for the diffusion problem. This is particularly the case if there are large gradients in the quantity
that is to be advected.

We have seen how to deal with the time derivative (explicit, implicit) and with the first order
space derivative (forward, backward or central). Let us consider again the FTCS scheme (Forward
in Time, Central in Space).

Ti,j
n+1 − T ni,j
δt

+ ui,j
T ni+1,j − T ni−1,j

2hx
+ vi,j

T ni,j+1 − T ni,j−1

2hy
= 0 (3.101)

The fully implicit version is then as follows:

Ti,j
n+1 − T ni,j
δt

+ ui,j
T n+1
i+1,j − T n+1

i−1,j

2hx
+ vi,j

T n+1
i,j+1 − T n+1

i,j−1

2hy
= 0 (3.102)

or,

Ti,j
n+1 +

ui,jδt

2hx
(T n+1

i+1,j − T n+1
i−1,j) +

vi,jδt

2hy
(T n+1

i,j+1 − T n+1
i,j−1) = T ni,j

The terms on the left will form five diagonals in the matrix while the term on the right is the right
hand side.

The Crank-Nicolson approach is then easily derived by taking:

Ti,j
n+1 − T ni,j
δt

+
ui,j
2

T ni+1,j − T ni−1,j

2hx
+
vi,j
2

T ni,j+1 − T ni,j−1

2hy
+
ui,j
2

T n+1
i+1,j − T n+1

i−1,j

2hx
+
vi,j
2

T n+1
i,j+1 − T n+1

i,j−1

2hy
= 0

(3.103)
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Exercise FDM-10

We wish to compute the advection of a product-cosine hill in a prescribed
velocity field. The initial temperature is:

T0(x, y) =

{
1
4

(
1 + cos π x−xc

σ

) (
1 + cos π y−yc

σ

)
if (x− xc)2 + (y − yc)2 ≤ σ2

0 otherwise

The boundary conditions are T (x, y) = 0 on all four sides of the unit square
domain. In what follows we set xc = yc = 2/3 and σ = 0.2. The velocity field
is analytically prescribed: ν⃗ = (−(y − Ly/2),+(x− Lx/2)). Resolution is set
to 31× 31 nodes.
The timestep is set to δt = 2π/200 and we wish to carry out 200 timesteps so
that the cone does a 2π rotation.
See Stone 43 for results/figures of this experiment obtained with Finite Ele-
ments.
Implement this with the FTCS method. What do you observe? What happens
when you decrease the value of δt?
Bonus: Lax method, Crank-Nicolson method.

Exercise FDM-11

NOT FOR 2020!
Redo exercise FDM-6 in a unit square domain. The temperature field at t = 0
is given by T (x, y) = 1 for x < 0.25 and T (x, y) = 0 otherwise. The prescribed
velocity is ν⃗ = (1, 0) and we set nnx = nny = 51. Boundary conditions are
T = 1 at x = 0 and T = 0 at x = 1.
Program the above FTCS method. Run the model for 250 time steps with
δt = 0.002. Compare the 2D solution with the previously obtained 1D solution
of exercise FDM-6.
Make sure the code works in the y-direction too by rotating the initial tem-
perature by 90◦ anti-clockwise, set ν⃗ = (0, 1) and change boundary conditions
accordingly.
Bonus: Lax method, Crank-Nicolson method.

Note to self: - CFL missing still - stensils next to boundaries missing too - add many more visual
aids
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3.9 FEM vs FDM?

Let us start with the 1D steady advection-diffusion equation:

ρCpu
dT

dx
− kd

2T

dx2
= f in [0, Lx] (3.104)

with the boundary conditions T (x = 0) = 0 and T (x = Lx) = 0.
We have seen before (see Section ??) that the elemental matrix Ka for the advection and the

elemental matrix Kd for the diffusion terms are

Ke
a =

ρCpu

2

(
−1 1
−1 1

)
Ke

d =
k

hx

(
1 −1
−1 1

)
where hx is the distance between nodes in the x-direction and e denotes the element number.

Assuming that we have 5 elements (i.e. 6 nodes), the assembled 6 × 6 advection and diffusion
matrices (before boundary conditions are applied) are:

Ka =
ρCpu

2


−1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1

 Kd =
k

hx


1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


The rhs is zero, so that we would have to solve (Ka +Kd) · T⃗ = 0 , or:

ρCpu

2


−1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1

+
k

hx


1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1



 ·


T1
T2
T3
T4
T5
T6

 = 0⃗

Note that boundary conditions are not applied yet. Therefore the algebraic equation for an interior
node i is

ρCpu
Ti+1 − Ti−1

2
+

k

hx
(−Ti−1 + 2Ti − Ti+1) = 0

or,

ρCpu
Ti+1 − Ti−1

2hx
− k

h2x
(Ti−1 − 2Ti + Ti+1) = 0 (3.105)

However, we have seen in Section ?? that the second order accurate central differencing based
approximate first and second derivatives written for an interior node i of a finite difference mesh with
a constant node spacing of h is

dT

dx

∣∣∣∣
i

≃ Ti+1 − Ti−1

2hx

d2T

dx2
≃ Ti+1 − 2Ti + Ti−1

h2x

Using these approximations, the discretised formualtion of Eq. (3.104) is exactly the same as Eq. (3.105).
This simple example proves that the FEM and the FDM share similarities!

It is also useful to introduce the elemental Peclet number

Pe =
uh

2κ
=
uhρCp
2k
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and Eq. (3.104) becomes:

u

2hx

[(
1− 1

Pe

)
Ti+1 +

2

Pe
Ti −

(
1 +

1

Pe

)
Ti−1

]
= f

CHECK!!!
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Chapter 4

Numerical integration

As we will see later, using the Finite Element method to solve problems involves computing integrals
which are more often than not too complex to be computed analytically/exactly. We will then need
to compute them numerically.

[wiki] In essence, the basic problem in numerical integration is to compute an approximate solution
to a definite integral

I =

∫ b

a

f(x)dx (4.1)

to a given degree of accuracy. This problem has been widely studied and we know that if f(x) is
a smooth function, and the domain of integration is bounded, there are many methods for approxi-
mating the integral to the desired precision.

There are several reasons for carrying out numerical integration.

� The integrand f(x) may be known only at certain points, such as obtained by sampling. Some
embedded systems and other computer applications may need numerical integration for this
reason.

� A formula for the integrand may be known, but it may be difficult or impossible to find an
antiderivative that is an elementary function. An example of such an integrand is f(x) =
exp(−x2), the antiderivative of which (the error function, times a constant) cannot be written
in elementary form.

� It may be possible to find an antiderivative symbolically, but it may be easier to compute a
numerical approximation than to compute the antiderivative. That may be the case if the
antiderivative is given as an infinite series or product, or if its evaluation requires a special
function that is not available.

Let us remember that the integral of Eq. (4.1) is in fact equal to the (signed) area between the
x-axis and the curve f(x) over the interval [a, b]:

(tikz quadrature idef.tex)

a b x

f(x)

f(a)

f(b)
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Note that in the example above f(x) > 0 so the area of the gray domain is counted positive. For
example, if the function f(x) is a polynomial the integral can easily be computed analytically. In
the case of a 0th order polynomial, we have f(x) = C where C is a constant. We then have

I =

∫ b

a

f(x)dx =

∫ b

a

C dx = C

∫ b

a

dx = C(b− a) (4.2)

(tikz quadrature idef2.tex)

a b x

f(x)C

We see that the area of the gray domain in simply the product of its length b− a by its height c
and we indeed recover I = C(b− a).

4.1 In 1 dimension

4.1.1 Midpoint and Trepezoidal rules

The simplest method of this type is to let the interpolating function be a constant function (a
polynomial of degree zero) that passes through the point ((a+ b)/2, f((a+ b)/2)). This is called the
midpoint rule or rectangle rule. We then have

I =

∫ b

a

f(x)dx ≃ (b− a)f
(
a+ b

2

)
which is the area of this gray domain:

(tikz quadrature rectangle.tex)

a b xa+b
2

f(x)

f(a+b
2
)

f(a)

f(b)

We can do a little bit better at virtually no cost: we choose the interpolating function to be a
straight line (an affine function, i.e. a polynomial of degree 1) passing through the points (a, f(a))
and (b, f(b)). This is called the trapezoidal rule. Then

I =

∫ b

a

f(x)dx ≃ (b− a)f(a) + f(b)

2

(tikz quadrature trapeze.tex)
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a b x

f(x)

f(a)

f(b)

We see that if the function f is monotonous on the interval [a, b] then the trapezoidal approach
is likely to return a value close to the real value. However if the function f oscillates a lot in the
interval, approximating it with a single rectangle or trapeze is not a sound assumption. We can then
make use of the additive property of the integral: let c be the coordinate of the middle of the [a, b]
interval, i.e. c = (a+ b)/2. Then we have

I =

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

We can then apply the midpoint rule or the trapezoidal rule over both segments [a, c] and [c, b]:

(tikz quadrature both.tex)

a b xca+c
2

c+b
2

f(x)

f( a+c
2

)

f( c+b
2

)

a b xc

f(x)

In this case we would have

Imidpoint = (c− a)f(a+ c

2
) + (b− c)f(c+ b

2
)

Itrapeze = (c− a)f(a) + f(c)

2
+ (b− c)f(c) + f(b)

2

Of course we can repeat the process and for either one of these rules, we can make a more accurate
approximation by breaking up the interval [a, b] into some number n of subintervals, computing an
approximation for each subinterval, then adding up all the results. For example, the composite
trapezoidal rule can be stated as∫ b

a

f(x)dx ≃ b− a
n

(
f(a)

2
+

n−1∑
k=1

f

(
a+ k

b− a
n

)
+
f(b)

2

)
(4.3)

where the subintervals have the form [kh, (k + 1)h], with h = (b− a)/n and k = 0, 1, 2, . . . , n− 1.

a) b)
The interval [−2, 2] is broken into 16 sub-intervals. The blue lines correspond to the approximation

of the red curve by means of a) the midpoint rule, b) the trapezoidal rule.
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There are several algorithms for numerical integration (also commonly called “numerical quadra-
ture”, or simply “quadrature”) . Interpolation with polynomials evaluated at equally spaced points
in [a, b] yields the Newton-Cotes formulas, of which the rectangle rule and the trapezoidal rule are
examples.

4.1.2 in 1D - Gauss-Legendre quadrature

If we allow the intervals between interpolation points to vary, we find another group of quadrature
formulas, such as the Gauss(ian) quadrature formulas. A Gaussian quadrature rule is typically more
accurate than a Newton-Cotes rule, which requires the same number of function evaluations, if the
integrand is smooth (i.e., if it is sufficiently differentiable).

An n−point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule
constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of
the points xi and weights wi for i = 1, . . . , n.

The domain of integration for such a rule is conventionally taken as [−1, 1], so the rule is stated
as ∫ +1

−1

f(x)dx =
n∑

iq=1

wiqf(xiq)

In this formula the xiq coordinate is the i-th root of the Legendre polynomial1 Pn(x).
It is important to note that a Gaussian quadrature will only produce good results if the function

f(x) is well approximated by a polynomial function within the range [−1, 1]. As a consequence, the
method is not, for example, suitable for functions with singularities.

1https://en.wikipedia.org/wiki/Legendre_polynomials
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n xiq wiq xiq (approx) wiq (approx)

1 0 2 0 2

2 ±
√

1/3 1 ±0.577 350 269 189 626 1
3 0 8/9 0 0.888 888 888 888 888

±
√

3/5 5/9 ±0.774 596 669 241 483 0.555 555 555 555 555

4 ±
√

3
7
− 2

7

√
6/5 18+

√
30

36
±0.339 981 043 584 856 0.652 145 154 862 546

±
√

3
7
+ 2

7

√
6/5 18−

√
30

36
±0.861 136 311 594 953 0.347 854 845 137 454

5 0 128/225 0 0.568 888 888 888 889

±1
3

√
5− 2

√
10
7

322+13
√
70

900
±0.538 469 310 105 683 0.478 628 670 499 366

±1
3

√
5 + 2

√
10
7

322−13
√
70

900
±0.906 179 845 938 664 0.236 926 885 056 189

6 ? ? ±0.238 619 186 083 197 0.467 913 934 572 691
±0.661 209 386 466 265 0.360 761 573 048 139
±0.932 469 514 203 152 0.171 324 492 379 170

7 ±0.949 107 912 342 759 0.129 484 966 168 870
±0.741 531 185 599 394 0.279 705 391 489 277
±0.405 845 151 377 397 0.381 830 050 505 119
0.000 000 000 000 000 0.417 959 183 673 469

8 ±0.960 289 856 497 536 0.101 228 536 290 376
±0.796 666 477 413 627 0.222 381 034 453 374
±0.525 532 409 916 329 0.313 706 645 877 887
±0.183 434 642 495 650 0.362 683 783 378 362

9 ±0.968 160 239 507 626 0.081 274 388 361 574
±0.836 031 107 326 636 0.180 648 160 694 857
±0.613 371 432 700 590 0.260 610 696 402 935
±0.324 253 423 403 809 0.312 347 077 040 003
0.000 000 000 000 000 0.330 239 355 001 260

10 ±0.973 906 528 517 172 0.066 671 344 308 688
±0.865 063 366 688 985 0.149 451 349 150 581
±0.679 409 568 299 024 0.219 086 362 515 982
±0.433 395 394 129 247 0.269 266 719 309 996
±0.148 874 338 981 631 0.295 524 224 714 753

Abscissae and weights for Gauss quadratures up to n = 10. See [779, p89]. Also check https://pomax.github.io/bezierinfo/legendre-gauss.html.

As shown in the above table, it can be shown that the weight values must fulfil the following
condition: ∑

iq

wiq = 2 (4.4)

This simply comes from the requirement that when f(x) = 1 then
∫ +1

−1
f(x)dx = 2 =

∑
wiq. It is

also worth noting that all quadrature point coordinates are symmetrical around the origin.
Since most quadrature formula are only valid on a specific interval, we now must address the

problem of their use outside of such intervals. The solution turns out to be quite simple: one must
carry out a change of variables from the interval [a, b] to [−1, 1]. We then consider the reduced
coordinate r ∈ [−1, 1] such that

r =
2

b− a
(x− a)− 1 (4.5)

This relationship can be reversed such that when r is known, its equivalent coordinate x ∈ [a, b] can
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be computed:

x =
b− a
2

(1 + r) + a (4.6)

From this it follows that

dx =
b− a
2

dr (4.7)

and then ∫ b

a

f(x)dx =
b− a
2

∫ +1

−1

f(r)dr ≃ b− a
2

nq∑
iq=1

wiqf(riq) (4.8)

4.1.3 A probably naive way of finding the quadrature points coordinates
and weights

We start from the assumption that the quadrature must be exact for polynomials f(r), that it is
written

I =

∫ +1

−1

f(r)dr =

nq∑
iq=1

wiqf(riq)

and that nq > 0, wiq ̸= 0 and riq ∈ [−1, 1].
Let us start with zero-th order polynomials, i.e. f(r) = C. Then I = 2C and we must then have

2C =

nq∑
iq=1

wiqf(riq) =

nq∑
iq=1

wiqC

which imposes
nq∑
iq=1

wiq = 2 ∀nq > 0 (4.9)

As long as the sum of the weights is equal to 2, any nq-point based quadrature can integrate exactly
a zero-th order polynomial.

Let us move on with first-order polynomials. Since we have covered the constant term hereabove,
we set f(r) = ar where a ̸= 0. We have I = 0 so

0 =

nq∑
iq=1

wiqf(riq) = a

nq∑
iq=1

wiqriq ⇒
nq∑
iq=1

wiqriq = 0 ∀nq > 0 (4.10)

In order to integrate exactly first-order polynomials an nq-point based quadrature must fulfil Eqs.(4.9)
and (4.10).

� If nq = 1, then we automatically have w1 = 2 and w1r1 = 0, i.e. r1 = 0.

� If nq = 2, then w1+w2 = 2 and w1r1+w2r2 = 0. There are many solutions w1, w2, r1, r2 which
can fulfil these two equations, so this is not enough to determine a unique set of coordinates
and weights.

Let us now turn to second-order polynomials: as before, I choose f(r) = ar2. We have I = 2a/3
and

2a

3
=

nq∑
iq=1

wiqf(riq) = a

nq∑
iq=1

wiqr
2
iq

nq∑
iq=1

wiqr
2
iq =

2

3
∀nq > 0 (4.11)
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� If nq = 1, we know that w1 = 2 and r1 = 0. This means that 1-point quadrature cannot exactly
integrate polynomials higher than 1.

� If nq = 2, then w1 + w2 = 2, w1r1 + w2r2 = 0 and now w1r
2
1 + w2r

2
2 = 2/3. We have three

equations but still four unknowns. At this stage, we can do a simple additional assumption:
common sense would have us realise that there is no reason why the (in this case) 2 quadrature
point coordinates should be both negative or both positive. In light thereof we require that
quadrature point coordinates are symmetric with respect with the origin r = 0, i.e. r1 = −r2
in this case. This yields to write: w1r1 + w2r2 = w1r1 + w2(−r1) = r1(w1 − w2) = 0. If r1 = 0
then r2 = 0 too and we do not have a 2-point quadrature. It must then follows that w1 = w2.
And finally w1r

2
1 + w2r

2
2 = w1r

2
1 + w1(−r1)2 = 2/3, i.e. r1 = −1/

√
3 and r2 = 1/

√
3 since

r1 < r2.

If we now turn to third-order polynomials, i.e. f(r) = ar3, then I = 0 again. We then must have

nq∑
iq=1

wiqr
3
iq = 0 ∀nq > 0 (4.12)

We see that the coordinates and weights obtained for a 2-point quadrature verify this equation, i.e.
a 2-point quadrature can also exactly integrate a 3rd-order polynomial. However, it is equally easy
to verify that the 2-point quadrature cannot exactly integrate a 4th-order polynomial since

I =

∫ +1

−1

r4dr =
2

5
̸=

2∑
iq=1

wiqr
4
iq

A three-point quadrature will then be needed for those. Because of the symmetry, we know that the
middle point will be at r = 0.

Remark. This approach unfortunately does not shed any light on why the method is called Gauss-
Legendre quadrature nor why the quadrature points are the zeros of the Legendre polynomials...

4.1.4 Examples

Example 1

Since we know how to carry out any required change of variables, we choose for simplicity a = −1,
b = +1. Let us take for example f(r) = π. Then we can compute the integral of this function over
the interval [a, b] exactly:

I =

∫ +1

−1

f(r)dr = π

∫ +1

−1

dr = 2π

We can now use a Gauss-Legendre formula to compute this same integral:

Igq =

∫ +1

−1

f(r)dr =

nq∑
iq=1

wiqf(riq) =

nq∑
iq=1

wiqπ = π

nq∑
iq=1

wiq︸ ︷︷ ︸
=2

= 2π

where we have used the property of the weight values of Eq.(4.4). Since the actual number of points
was never specified, this result is valid for all quadrature rules.
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Example 2

Let us now take f(r) = mr + p and repeat the same exercise:

I =

∫ +1

−1

f(r)dr =

∫ +1

−1

(mr + p)dr = [
1

2
mr2 + pr]+1

−1 = 2p

Igq =

∫ +1

−1

f(r)dr=

nq∑
iq=1

wiqf(riq)=

nq∑
iq=1

wiq(mriq + p)= m

nq∑
iq=1

wiqriq︸ ︷︷ ︸
=0

+p

nq∑
iq=1

wiq︸ ︷︷ ︸
=2

= 2p

since the quadrature points are symmetric w.r.t. to zero on the r-axis. Once again the quadrature
is able to compute the exact value of this integral: this makes sense since an n-point rule exactly
integrates a 2n− 1 order polynomial such that a 1 point quadrature exactly integrates a first order
polynomial like the one above.

Example 3

Let us now take f(r) = r2. We have

I =

∫ +1

−1

f(r)dr =

∫ +1

−1

r2dr =

[
1

3
r3
]+1

−1

=
2

3

and

Igq =

∫ +1

−1

f(r)dr=

nq∑
iq=1

wiqf(riq)=

nq∑
iq=1

wiqr
2
iq

� nq = 1: r
(1)
iq = 0, wiq = 2. Igq = 0

� nq = 2: r
(1)
q = −1/

√
3, r

(2)
q = 1/

√
3, w

(1)
q = w

(2)
q = 1. Igq =

2
3

� It also works ∀nq > 2 !
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4.2 In 2 & 3 dimensions

4.2.1 On the reference square

Let us now turn to a two-dimensional integral of the form

I =

∫ +1

−1

∫ +1

−1

f(r, s)drds

where f(r, s) is again assumed to be continuous over the domain. The equivalent Gaussian quadrature
writes:

Igq ≃
nq∑
iq=1

nq∑
jq

f(riq , sjq)wiqwjq

Finally we have

I =

∫ +b

a

∫ +d

c

f(r, s)drds ≃ b− a
2

d− c
2

nq∑
iq=1

nq∑
jq

f(riq , sjq)wiqwjq (4.13)

4.2.2 On a generic quadrilateral

Let K be a quadrilateral element with straight boundary lines and with vertices arranged as follows:
IMAGE
We wish to evaluate

I =

∫∫
K

f(x, y)dxdy

In order to do so we will first transform the element K to the reference square element and then
apply the quadrature of the previous section. This transformation can be carried out by means of
the Q1 basis functions, see Section 5.3.1. We construct a linear mapping between the quadrilateral
element K and the reference square element:

x(r, s) =
4∑
i=1

Ni(r, s)xi (4.14)

y(r, s) =
4∑
i=1

Ni(r, s)yi (4.15)

Then we have

I =

∫∫
K

f(x, y)dxdy =

∫ +1

−1

∫ +1

−1

f(x(r, s), y(r, s))|J(r, s)|drds

where J(r, s) is the Jacobian of the transformation defined by

J(r, s) =

 ∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s


Finally applying the Gaussian quadrature yields:

I =

∫∫
K

f(x, y)dxdy ≃
nq∑
iq=1

nq∑
jq

f(x(riq , sjq), y(riq , sjq)) |J(riq , sjq)| wiqwjq
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4.2.3 Exercises

Exercise Quad-1

Write a program which uses the midpoint rule to compute (subdivide the
interval in n subintervals)

I =

∫ π/2

0

f(x) dx f(x) = x and f(x) = cos(x)

Compute and plot the (absolute) error between the measured In and the
analytical value I as a function of the subinterval size h.
Bonus: same as before with I =

∫ 3

1

∫ 4

2
(x2y3 + xy + 1)dxdy.

Exercise Quad-2

Same exercise as above but with the trapezoidal rule. Which method is the
most accurate?
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Exercise Quad-3

The following Fortran program is an example of how Gauss quadrature can
be implemented:

Modify/translate this previous program to use 5 quadrature points instead of
two.
Integrate the functions

f1(x) = sin(xπ + π/2) f2(x) =
√
x+ 1 f3(x) = x4 − x3

with the 2-point and the 5-point quadrature rules.
Compare the results with the analytical values.

Exercise Quad-4

Compute analytically the integral of the function f(x, y) = x2 + 4y over the
domain Ω = [11, 14]× [7, 10].
Write a code which integrates this function by means of a 2×2, 3×3 or 4×4
Gauss-Legendre quadrature algorithm.
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4.2.4 Quadrature on triangles

quadrature triangles.tex

Our goal is to develop a quadrature rule of the form∫∫
△
f(r, s) drds ≃ 1

2

nq∑
iq=1

ωiqf(riq , siq)

We will here add two requirements: a) we would like to find quadrature rules which achieve the
highest possible accuracy for the lowest possible number of quadrature points; b) we would like the
quadrature points to possess some kind of symmetry. Note that the factor 1/2 in the equation above
is a convention. If f = 1 then the left hand term is the area of the triangle which is 1/2. Since people
usually require that

∑
i ωi = 1 then the factor 1/2 is necessary.

Before we go any further, we need to establish that∫∫
△
{1, r, s, r2, rs, t2, r3, r2s, rs2, s3} drds =

{
1

2
,
1

6
,
1

6
,
1

12
,
1

24
,
1

12
,
1

20
,
1

60
,
1

60
,
1

20

}
where △ stands for the reference triangle.

Gaussian quadrature of degree 1

This means that the quadrature should be accurate for f(r, s) = {1, r, s}. We then obtain:∫∫
△
1 drds =

1

2
=

1

2

1∑
iq=1

ωiqf(riq , siq) =
1

2
ω1f(r1, s1) =

1

2
ω1

∫∫
△
r drds =

1

6
=

1

2

1∑
iq=1

ωiqriq =
1

2
ω1r1

∫∫
△
s drds =

1

6
=

1

2

1∑
iq=1

ωiqsiq =
1

2
ω1s1

We then obtain ω1 = 1 and r1 = s1 =
1
3
.
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Gaussian quadrature of degree 2

The quadrature should be accurate for f(r, s) = {1, r, s, r2, rs, t2} so that∫∫
△
1drds =

1

2
=

1

2

nq∑
iq=1

ωiq

∫∫
△
rdrds =

1

6
=

1

2

nq∑
iq=1

ωiqriq

∫∫
△
sdrds =

1

6
=

1

2

nq∑
iq=1

ωiqsiq

∫∫
△
r2drds =

1

12
=

1

2

nq∑
iq=1

ωiqr
2
iq∫∫

△
rsdrds =

1

24
=

1

2

nq∑
iq=1

ωiqriqsiq

∫∫
△
s2drds =

1

12
=

1

2

nq∑
iq=1

ωiqs
2
iq

(4.16)

If we set nq = 1 then we have 6 equations and only three unknowns ω1, r1, s1 so this will not work.
If we set nq = 2 then we have 6 equations and six unknowns ω1, r1, s1, ω2, r2, s2 but we find that the
quadrature is not symmetric2. If we set nq = 3 then we have 6 equations and 9 unknowns and the
solution is not unique. Because of symmetry we for instance have to impose r2 = s3 and s2 = r3
(points 2 and 3 are symmetric with respect to the r = s line). Two common quadratures are found:

(r1, s1) = (
1

6
,
1

6
) (r2, s2) = (

2

3
,
1

6
) (r3, s3) = (

1

6
,
2

3
) ω1 = ω2 = ω3 =

1

3

and

(r1, s1) = (0,
1

2
) (r2, s2) = (

1

2
, 0) (r3, s3) = (

1

2
,
1

2
) ω1 = ω2 = ω3 =

1

3
2proof to do
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Gaussian quadrature of degree 3

The quadrature should be accurate for f(r, s) = {1, r, s, r2, rs, t2, r3, r2s, rs2, t2} so that∫∫
△
1drds =

1

2
=

1

2

nq∑
iq=1

ωiq

∫∫
△
rdrds =

1

6
=

1

2

nq∑
iq=1

ωiqriq

∫∫
△
sdrds =

1

6
=

1

2

nq∑
iq=1

ωiqsiq

∫∫
△
r2drds =

1

12
=

1

2

nq∑
iq=1

ωiqr
2
iq∫∫

△
rsdrds =

1

24
=

1

2

nq∑
iq=1

ωiqriqsiq

∫∫
△
s2drds =

1

12
=

1

2

nq∑
iq=1

ωiqs
2
iq∫∫

△
r3drds =

1

20
=

1

2

nq∑
iq=1

ωiqr
3
iq∫∫

△
r2sdrds =

1

60
=

1

2

nq∑
iq=1

ωiqr
2
iqsiq∫∫

△
rs2drds =

1

60
=

1

2

nq∑
iq=1

ωiqriqs
2
iq∫∫

△
s3drds =

1

20
=

1

2

nq∑
iq=1

ωiqs
3
iq

(4.17)

This time nq = 3 will not work since we have 10 equations. Switching to nq = 4 we now have 12
unknowns and 10 equations so there are many possibilities. One of them is given in the table below.
As a side note there could be cases where having a negative weight ω could be problematic.

Tabulated quadrature rules on the reference triangle

In what follows we use the following quadrature rule:∫∫
△
f(r, s) drds ≃

nq∑
iq=1

ωiqf(riq , siq)

with
∑

i ωi = 1/2.
Quadrature rules for triangles can be found in Dunavant [350] (1985). The following ones are

identical to those in the ip triangle.m file of the MILAMIN code [299]. See also Lether [775] (1976)
on the topic of computation of double integrals over a triangle.
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rq sq wq rq sq wq
exact exact exact approx. approx. approx.

iq = 1 1/3 1/3 1/2

iq = 1 1/6 1/6 1/6
iq = 2 2/3 1/6 1/6
iq = 3 1/6 2/3 1/6

iq = 1 1/3 1/3 −27/96
iq = 2 0.6 0.2 25/96
iq = 3 0.2 0.6 25/96
iq = 4 0.2 0.2 25/96

iq = 1 1− 2g1 g1 w1/2 0.108103018168070 0.44594849091596
iq = 2 g1 1− 2g1 w1/2 0.445948490915965 0.108103018168070
iq = 3 g1 g1 w1/2 0.445948490915965 0.445948490915965
iq = 4 1− 2g2 g2 w2/2 0.816847572980459 0.091576213509771
iq = 5 g2 1− 2g2 w2/2 0.091576213509771 0.816847572980459
iq = 6 g2 g2 w2/2 0.091576213509771 0.091576213509771

iq = 1 0.091576213509771 0.091576213509771 0.109951743655322/2.0
iq = 2 0.816847572980459 0.091576213509771 0.109951743655322/2.0
iq = 3 0.091576213509771 0.816847572980459 0.109951743655322/2.0
iq = 4 0.445948490915965 0.445948490915965 0.223381589678011/2.0
iq = 5 0.108103018168070 0.445948490915965 0.223381589678011/2.0
iq = 6 0.445948490915965 0.108103018168070 0.223381589678011/2.0

iq = 1 0.1012865073235 0.1012865073235 0.0629695902724
iq = 2 0.7974269853531 0.1012865073235 0.0629695902724
iq = 3 0.1012865073235 0.7974269853531 0.0629695902724
iq = 4 0.4701420641051 0.0597158717898 0.0661970763942
iq = 5 0.4701420641051 0.4701420641051 0.0661970763942
iq = 6 0.0597158717898 0.4701420641051 0.0661970763942
iq = 7 0.3333333333333 0.3333333333333 0.1125000000000

iq = 1 5.01426509658179e− 01 2.49286745170910e− 01 5.83931378631895e− 02
iq = 2 2.49286745170910e− 01 5.01426509658179e− 01 5.83931378631895e− 02
iq = 3 2.49286745170910e− 01 2.49286745170910e− 01 5.83931378631895e− 02
iq = 4 8.73821971016996e− 01 6.30890144915020e− 02 2.54224531851035e− 02
iq = 5 6.30890144915020e− 02 8.73821971016996e− 01 2.54224531851035e− 02
iq = 6 6.30890144915020e− 02 6.30890144915020e− 02 2.54224531851035e− 02
iq = 7 5.31450498448170e− 02 3.10352451033784e− 01 4.14255378091870e− 02
iq = 8 6.36502499121399e− 01 5.31450498448170e− 02 4.14255378091870e− 02
iq = 9 3.10352451033784e− 01 6.36502499121399e− 01 4.14255378091870e− 02
iq = 10 5.31450498448170e− 02 6.36502499121399e− 01 4.14255378091870e− 02
iq = 11 6.36502499121399e− 01 3.10352451033784e− 01 4.14255378091870e− 02
iq = 12 3.10352451033784e− 01 5.31450498448170e− 02 4.14255378091870e− 02

where

g1 =

(
8−
√
10 +

√
38− 44

√
2/5

)
/18 g2 =

(
8−
√
10−

√
38− 44

√
2/5

)
/18

w1 =

(
620 +

√
213125− 53320

√
10

)
/3720 w2 =

(
620−

√
213125− 53320

√
10

)
/3720

All these are implemented in stone 120 (see also stone 112).
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The case of a generic triangle

Let T be a triangular element with straight edges defined by the three vertices (xi, yi) (i = 1, 2, 3)
arranged in the counter-clockwise order:

INSERT FIGURE
We now need to evaluate the following integral over T :

I =

∫∫
T

f(x, y) dxdy

We will proceed similarly to the quadrilateral case: first transform (’map’) this triangle into the
reference triangle △ and then use the adequate quadrature rule.

We can base this transformation (’mapping’) on the linear (’P1’) basis functions
3:

N1(r, s) = 1− r − s
N1(r, s) = r

N1(r, s) = s

with

x = P (r, s) =
3∑
i=1

xiNi(r, s) = x1N1(r, s) + x2N2(r, s) + x3N3(r, s)

y = Q(r, s) =
3∑
i=1

yiNi(r, s) = y1N1(r, s) + y2N2(r, s) + y3N3(r, s)

For example when (r, s) → (0, 0) we find (x, y) → (x1, y1), when (r, s) → (1, 0) we find (x, y) →
(x2, y2), and when (r, s)→ (0, 1) we find (x, y)→ (x3, y3).

Then we have

I =

∫∫
T

f(x, y) dxdy =

∫∫
△
f(P (r, s), Q(r, s)) |J(r, s)| drds

where J(r, s) is the Jacobian of the transformation:

J(r, s) =

∣∣∣∣∣∣
∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

∂
∂r

3∑
i=1

xiN (ri, si)
∂
∂r

3∑
i=1

yiN (ri, si)

∂
∂s

3∑
i=1

xiN (ri, si)
∂
∂s

3∑
i=1

yiN (ri, si)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣ (−x1 + x2) (−y1 + y2)
(−x1 + x3) (−y1 + y3)

∣∣∣∣ = 2AT

where AT is the area of triangle T . In the end we have

I =

∫∫
T

f(x, y) dxdy = 2AT
∫∫

△
f(P (r, s), Q(r, s)) drds

and the rhs integral can then be computed by means of quadrature.

4.2.5 A mathematical recreation: computing the volume of a tetrahe-
dron

Let us find the volume of tetrahedron bounded by the planes passing through the points A(1,0,0),
B(0,1,0), C(0,0,1) and the coordinate planes Oxy, Oxz and Oyz.

3See Section 7.6
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(tikz tetrahedron.tex)

x

y

z

B

C

A

The equation of the plane is x+ y + z = 1, or z = 1− x− y.Hence, the limits of integration over
the variable z range in the interval from z = 0 to z = 1 − x − y. Now we can calculate the volume
of the tetrahedron:

V =

∫∫∫
dx dy dz

=

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

=

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)

=

∫ 1

0

dx

[
y − xy − 1

2
y2
]1−x
0

=

∫ 1

0

dx

(
(1− x)− x(1− x)− 1

2
(1− x)2

)
=

∫ 1

0

dx

(
1

2
− x+ 1

2
x2
)

=

[
1

2
x− 1

2
x2 +

1

6
x3
]1
0

=
1

6
(4.18)

We will use this result in the following section.

4.2.6 Quadrature on tetrahedra

quadrature tetrahedra.tex

Remark. In what follows the coefficients in the tables are not the reduced coordinates of the quadratue
points but the coefficients corresponding to the 4 nodes.

Quadrature rules on tetrahedra take the form:∫ ∫ ∫
el

f(x, y, z)dxdydz = Vel

nqel∑
iq=1

wiqf(ξ
iq
1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 )

or, that is to say: ∫ ∫ ∫
el

f(x, y, z)dxdydz =

nqel∑
iq=1

(wiqVel)f(ξ
iq
1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 )
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with in our case Vel = 1/6.
In the literature it can be found that a one point quadrature is characterised by

wiq = 1 ξiq1 = ξiq2 = ξiq3 = ξiq4 = 0.25

i.e, the coordinates of the single point are given by:

xiq =
4∑
i=1

ξiqi xi =
1

4
(x1 + x2 + x3 + x4)

Same for y and z coordinates.
A four-point quadrature rule is characterised by wiq = Vel ∗ 0.25 = 1/24 ≃ 04166666666666667

and
ξ1 ξ2 ξ3 ξ4

iq=1 0.585410196624969 0.138196601125011 0.138196601125011 0.138196601125011
iq=2 0.138196601125011 0.585410196624969 0.138196601125011 0.138196601125011
iq=3 0.138196601125011 0.138196601125011 0.585410196624969 0.138196601125011
iq=4 0.138196601125011 0.138196601125011 0.138196601125011 0.585410196624969
We then have:

riq =
4∑
i=1

ξiqi xi = (ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 ) · (r1, r2, r3, r4) = (ξiq1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 ) · (0, 1, 0, 0) = ξiq2

siq =
4∑
i=1

ξiqi yi = (ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 ) · (s1, s2, s3, s4) = (ξiq1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 ) · (0, 0, 1, 0) = ξiq3

tiq =
4∑
i=1

ξiqi zi = (ξiq1 , ξ
iq
2 , ξ

iq
3 , ξ

iq
4 ) · (t1, t2, t3, t4) = (ξiq1 , ξ

iq
2 , ξ

iq
3 , ξ

iq
4 ) · (0, 0, 0, 1) = ξiq4

Finally:
rq sq tq wq

iq=1 0.138196601125011 0.138196601125011 0.138196601125011 0.04166666666666667
iq=2 0.585410196624969 0.138196601125011 0.138196601125011 0.04166666666666667
iq=3 0.138196601125011 0.585410196624969 0.138196601125011 0.04166666666666667
iq=4 0.138196601125011 0.138196601125011 0.585410196624969 0.04166666666666667

4.2.7 The Gauss-Lobatto approach

All what we have seen above falls under the Gauss-Legendre quadrature method. There is however
another somewhat common quadrature method: the Gauss-Lobatto quadrature. . It is similar to
Gaussian quadrature with the following important differences: 1) There are integration points in the
interval but they also always include the end points of the integration interval; 2) It is accurate for
polynomials up to degree 2n− 3, where n is the number of integration points.

In 1D, it reads: ∫ +1

−1

f(x)dx =
2

n(n− 1)
[f(−1) + f(1)] +

n−1∑
i=2

wif(xi)

The locations and weights of the integration points are as follows:
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n xiq wiq xiq (approx) wiq (approx)

3 0 4/3
±1 1/3

4 ±
√

1
5

5/6

±1 1/6
5 0 32/45

±
√

3
7

49/90

±1 1/10

6 ±
√

1
3
− 2

√
7

21
14+

√
7

30

±
√

1
3
+ 2

√
7

21
14−

√
7

30

±1 1/15

4.2.8 Computing the ’real’ coordinates of the quadrature points and
other considerations

The quadrature point coordinates are always given in (what I call) reduced coordinates, i.e. between
-1 and 1. However, one sometimes need their equivalent in the x, y Cartesian space. This is trivial
once one remembers that within an element, a field f is reprensented as follow:

f(r, s) =
m∑
i=1

Ni(r, s)fi

where m is the number of nodes, r and s are the reduced coordinates and Ni are the basis functions.
The value of f at a quadrature point (rq, sq) is then simply

f(rq, sq) =
m∑
i=1

Ni(rq, sq)fi

If we now take f = x, then

xq = x(rq, sq) =
m∑
i=1

Ni(rq, sq)xi

and

yq = y(rq, sq) =
m∑
i=1

Ni(rq, sq)yi

where xi and yi are the Cartesian coordinates of the nodes. This is then easily extended to three
dimensions:

xq = x(rq, sq, tq) =
m∑
i=1

Ni(rq, sq, tq)xi

yq = x(rq, sq, tq) =
m∑
i=1

Ni(rq, sq, tq)yi

zq = z(rq, sq, tq) =
m∑
i=1

Ni(rq, sq, tq)zi

or,

r⃗q = r⃗(rq, sq, tq) =
m∑
i=1

Ni(rq, sq, tq)r⃗i
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This also applies to other fields such as velocity, temperature, or even strain rate components (as
long as the strain rate values have previously been computed on the nodes):

ν⃗q = ν⃗(rq, sq) =
m∑
i=1

Ni(rq, sq)ν⃗i

Tq = T (rq, sq) =
m∑
i=1

Ni(rq, sq)Ti

ε̇xy,q = ε̇xy(rq, sq) =
m∑
i=1

Ni(rq, sq)ε̇xy,i
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Chapter 5

The building blocks of the Finite Element
Method

chapter fem0.tex

5.1 A bit of FE terminology

terminology.tex

We introduce here some terminology for efficient element descriptions [488]:

� For triangles/tetrahedra, the designation Pm × Pn means that each component of the velocity
is approximated by continuous piecewise complete Polynomials of degree m and pressure by
continuous piecewise complete Polynomials of degree n. For example P2 × P1 means

uh(x, y) ∼ a1 + a2x+ a3y + a4xy + a5x
2 + a6y

2

with similar approximations for v, and

ph(x, y) ∼ b1 + b2x+ b3y

Both velocity and pressure are continuous across element boundaries, and each triangular
element contains 6 velocity nodes and three pressure nodes.

� For the same families, Pm×P−n is as above, except that pressure is approximated via piecewise
discontinuous polynomials of degree n. For instance, P2×P−1 is the same as P2P1 except that
pressure is now an independent linear function in each element and therefore discontinuous at
element boundaries.

� For quadrilaterals/hexahedra, the designation Qm × Qn means that each component of the
velocity is approximated by a continuous piecewise polynomial of degree m in each direction
on the quadrilateral and likewise for pressure, except that the polynomial is of degree n. For
instance, Q2 ×Q1 means

uh(x, y) ∼ a1 + a2x+ a3y + a4xy + a5x
2 + a6y

2 + a7x
2y + a8xy

2 + a9x
2y2

and
ph(x, y) ∼ b1 + b2x+ b3y + b4xy

� For these same families, Qm ×Q−n is as above, except that the pressure approximation is not
continuous at element boundaries.
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� Again for the same families, Qm×P−n indicates the same velocity approximation with a pressure
approximation that is a discontinuous complete piecewise polynomial of degree n (not of degree
n in each direction !)

� The designation P+
m orQ+

m means that some sort of bubble function was added to the polynomial
approximation for the velocity. You may also find the term ’enriched element’ in the literature.

� Finally, for n = 0, we have piecewise-constant pressure, and we omit the minus sign for sim-
plicity.

Another point which needs to be clarified is the use of so-called ’conforming elements’ (or ’non-
conforming elements’). Following again Gresho & Sani [488], conforming velocity elements are those
for which the basis functions form a subset of H1 for the continuous problem (the first derivatives and
their squares are integrable in Ω). For instance, the rotated Q1×P0 element of Rannacher and Turek
(see section 7.3.9) is such that the velocity is discontinous across element edges, so that the derivative
does not exist there. Another typical example of non-conforming element is the Crouzeix-Raviart
element [290].
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5.2 Elements and basis functions in 1D

elements1D.tex

5.2.1 Linear basis functions (Q1)

Let f(r) be a C1 function on the interval [−1 : 1] with f(−1) = f1 and f(1) = f2.

Let us assume that the function f(r) is to be approximated on [−1, 1] by the first order polynomial

fh(r) = a+ br (5.1)

Then it must fulfil

fh(r = −1) = a− b = f1

fh(r = +1) = a+ b = f2

This leads to

a =
1

2
(f1 + f2)

b =
1

2
(−f1 + f2) (5.2)

and then replacing a, b in Eq. (5.1) by the above values one gets

fh(r) =

[
1

2
(1− r)

]
f1 +

[
1

2
(1 + r)

]
f2

or

fh(r) =
2∑
i=1

Ni(r)f1

with

N1(r) =
1

2
(1− r)

N2(r) =
1

2
(1 + r) (5.3)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

r

N1(r)
N2(r)

Plot of the two linear functions N1(r) and N2(r).

205



5.2.2 Quadratic basis functions (Q2)

Let f(r) be a C1 function on the interval [−1 : 1] with f(−1) = f1, f(0) = f2 and f(1) = f3.

Let us assume that the function f(r) is to be approximated on [−1, 1] by the second order polynomial
fh(r):

f(r) = a+ br + cr2 (5.4)

Then it must fulfil

fh(r = −1) = a− b+ c = f1

fh(r = 0) = a = f2

fh(r = +1) = a+ b+ c = f3

This leads to

a = f2

b =
1

2
(−f1 + f3)

c =
1

2
(f1 + f3 − 2f2) (5.5)

and then replacing a, b, c in Eq. (5.4) by the above values on gets

fh(r) =

[
1

2
r(r − 1)

]
f1 + (1− r2)f2 +

[
1

2
r(r + 1)

]
f3

or,

fh(r) =
3∑
i=1

Ni(r)fi

with

N1(r) =
1

2
r(r − 1)

N2(r) = (1− r2)

N3(r) =
1

2
r(r + 1) (5.6)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

r

N1(r)
N2(r)
N3(r)

Plot of the three quadratic functions N1(r), N2(r) and N3(r).
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Note that Q2 basis functions can take negative values.
We will later need the first-order derivatives of these functions:

∂N1

∂r
= r − 1

2
∂N2

∂r
= −2r

∂N3

∂r
= r +

1

2
(5.7)

5.2.3 Cubic basis functions (Q3)

We proceed as previously by assuming that the third-order polynomial representation of function
f(r) is given by

fh(r) = a+ br + cr2 + dr3

with the nodes at position -1,-1/3, +1/3 and +1. It then must fulfil all four conditions:

f(−1) = a− b+ c− d = f1

f(−1/3) = a− b

3
+
c

9
− d

27
= f2

f(+1/3) = a− b

3
+
c

9
− d

27
= f3

f(+1) = a+ b+ c+ d = f4

Adding the first and fourth equation and the second and third, one arrives at

f1 + f4 = 2a+ 2c f2 + f3 = 2a+
2c

9

and finally:

a =
1

16
(−f1 + 9f2 + 9f3 − f4)

c =
9

16
(f1 − f2 − f3 + f4)

Combining the original 4 equations in a different way yields

2b+ 2d = f4 − f1
2b

3
+

2d

27
= f3 − f2

so that

b =
1

16
(f1 − 27f2 + 27f3 − f4)

d =
9

16
(−f1 + 3f2 − 3f3 + f4)
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Finally,

fh(r) = a+ b+ cr2 + dr3

=
1

16
(−1 + r + 9r2 − 9r3)f1

+
1

16
(9− 27r − 9r2 + 27r3)f2

+
1

16
(9 + 27r − 9r2 − 27r3)f3

+
1

16
(−1− r + 9r2 + 9r3)f4

=
4∑
i=1

Ni(r)fi

where (see also for example [779, p49])

N1 =
1

16
(−1 + r + 9r2 − 9r3)

N2 =
1

16
(9− 27r − 9r2 + 27r3)

N3 =
1

16
(9 + 27r − 9r2 − 27r3)

N4 =
1

16
(−1− r + 9r2 + 9r3)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

r

N1(r)
N2(r)
N3(r)
N4(r)

Plot of the four cubic functions N1(r), N2(r), N3(r) and N4(r).

Let us now verify that these functions can represent any polynomial function up to third order:

� Let us assume f(r) = C, then

fh(r) =
∑

Ni(r)fi =
∑
i

NiC = C
∑
i

Ni = C

so that a constant function is exactly reproduced, as expected. This is a very important
property of the Ni functions: They must fulfil

∑
i

Ni = 1.
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� Let us assume f(r) = r, then f1 = −1, f2 = −1/3, f3 = 1/3 and f4 = +1. We then have

fh(r) =
∑

Ni(r)fi

= −N1(r)−
1

3
N2(r) +

1

3
N3(r) +N4(r)

= [−(−1 + r + 9r2 − 9r3)

−1

3
(9− 27r − 9r2 − 27r3)

+
1

3
(9 + 27r − 9r2 + 27r3)

+(−1− r + 9r2 + 9r3)]/16

= [−r + 9r + 9r − r]/16 + ...0...

= r (5.8)

� The cases f(r) = r2 and f(r) = r3 are left as exercise.

The basis functions first-order derivatives are given by

∂N1

∂r
=

1

16
(1 + 18r − 27r2)

∂N2

∂r
=

1

16
(−27− 18r + 81r2)

∂N3

∂r
=

1

16
(+27− 18r − 81r2)

∂N4

∂r
=

1

16
(−1 + 18r + 27r2)

We can also verify that the derivatives are also properly approximated:

� Let us assume f(r) = C, then

∂fh

∂r
=

∑
i

∂Ni

∂r
fi

= C
∑
i

∂Ni

∂r

=
C

16
[(1 + 18r − 27r2) + (−27− 18r + 81r2) + (+27− 18r − 81r2) + (−1 + 18r + 27r2)]

= 0

� Let us assume f(r) = r, then f1 = −1, f2 = −1/3, f3 = 1/3 and f4 = +1. We then have

∂fh

∂r
=

∑
i

∂Ni

∂r
fi

=
1

16
[−(1 + 18r − 27r2)− 1

3
(−27− 18r + 81r2) +

1

3
(27− 18r − 81r2) + (−1 + 18r + 27r2)]

=
1

16
[−2 + 18 + 54r2 − 54r2]

= 1
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� Let us assume f(r) = r2, then f1 = 1, f2 = 1/9, f3 = 1/9 and f4 = 1. We then have

∂fh

∂r
=

∑
i

∂Ni

∂r
fi

=
1

16

[
(1 + 18r − 27r2) +

1

9
(−27− 18r + 81r2) +

1

9
(27− 18r − 81r2) + (−1 + 18r + 27r2)

]
=

1

16
(32r)

= 2r (5.9)

as expected.

5.2.4 Quartic basis functions (Q4)

The 1D basis polynomial is given by

fh(r) = a+ br + cr2 + dr3 + er4

with the nodes at position -1,-1/2, 0, +1/2 and +1. The function fh(r) must then fulfil

fh(−1) = a− b+ c− d+ e = f1

fh(−1/2) = a− b

2
+
c

4
− d

8
+

e

16
= f2

fh(0) = a = f3

fh(+1/2) = a− b

2
+
c

4
− d

8
+

e

16
= f4

fh(+1) = a+ b+ c+ d+ e = f5

or, 
1 −1 1 −1 1
1 −1/2 1/4 −1/8 1/16
1 0 0 0 0
1 1/2 1/4 1/8 1/16
1 1 1 1 1




a
b
c
d
e

 =


f1
f2
f3
f4
f5

 (5.10)

The third line gives a = f3 so that
−1 1 −1 1
−1/2 1/4 −1/8 1/16
1/2 1/4 1/8 1/16
1 1 1 1


︸ ︷︷ ︸

A


b
c
d
e

 =


f1 − f3
f2 − f3
f4 − f3
f5 − f3

 (5.11)

The inverse of the matrix A is:

A−1 =
1

6


1 −8 8 −1
−1 16 16 −1
−4 8 −8 4
4 −16 −16 4


so that 

b
c
d
e

 =
1

6


1 −8 8 −1
−1 16 16 −1
−4 8 −8 4
4 −16 −16 4

 ·


f1 − f3
f2 − f3
f4 − f3
f5 − f3
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and then

b =
1

6
(f1 − 8f2 + 8f4 − f5) (5.12)

c =
1

6
(−f1 + 16f2 − 30f3 + 16f4 − f5) (5.13)

d =
1

6
(−4f1 + 8f2 − 8f4 + 4f5) (5.14)

e =
1

6
(4f1 − 16f2 + 24f3 − 16f4 + 4f5) (5.15)

Finally

fh(r) = a+ br + cr2 + dr3 + er4

= f3 +
1

6
(f1 − 8f2 + 8f4 − f5) r +

1

6
(−f1 + 16f2 − 30f3 + 16f4 − f5) r2 +

1

6
(−4f1 + 8f2 − 8f4 + 4f5) r

3 +
1

6
(4f1 − 16f2 + 24f3 − 16f4 + 4f5) r

4

=
1

6

(
r − r2 − 4r3 + 4r4

)
f1

+
1

6

(
−8r + 16r2 + 8r3 − 16r4

)
f2

+
(
1− 5r2 + 4r4

)
f3

+
1

6

(
8r + 16r2 − 8r3 − 16r4

)
f4

+
1

6

(
−r − r2 + 4r3 + 4r4

)
f5

with

N1(r) =
1

6

(
r − r2 − 4r3 + 4r4

)
N2(r) =

1

6

(
−8r + 16r2 + 8r3 − 16r4

)
N3(r) =

(
1− 5r2 + 4r4

)
N4(r) =

1

6

(
8r + 16r2 − 8r3 − 16r4

)
N5(r) =

1

6

(
−r − r2 + 4r3 + 4r4

)
(5.16)
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Plot of the 5 quartic basis functions.

The basis functions derivative are given by

211



∂N1

∂r
=

1

6
(1− 2r − 12r2 + 16r3)

∂N2

∂r
=

1

6
(−8 + 32r + 24r2 − 64r3)

∂N3

∂r
= −10r + 16r3

∂N4

∂r
=

1

6
(8 + 32r − 24r2 − 64r3)

∂N5

∂r
=

1

6
(−1− 2r + 12r2 + 16r3) (5.17)

5.2.5 Fifth-order basis functions (Q5)

Following the methodology presented hereafter for Q6, we arrive at

N1(r) = −625

768
(r +

3

5
)(r +

1

5
)(r − 1

5
)(r − 3

5
)(r − 1)

N2(r) =
3125

768
(r + 1)(r +

1

5
)(r − 1

5
)(r − 3

5
)(r − 1)

N3(r) = −3125

384
(r + 1)(r +

3

5
)(r − 1

5
)(r − 3

5
)(r − 1)

N4(r) =
3125

384
(r + 1)(r +

3

5
)(r +

1

5
)(r − 3

5
)(r − 1)

N5(r) = −3125

768
(r + 1)(r +

3

5
)(r +

1

5
)(r − 1

5
)(r − 1)

N6(r) =
625

768
(r + 1)(r +

3

5
)(r +

1

5
)(r − 1

5
)(r − 3

5
) (5.18)

or,

N1(r) = − 1

768
(625r5 − 625r4 − 250r3 + 250r2 + 9r − 9)

N2(r) =
25

768
(125r5 − 75r4 − 130r3 + 78r2 + 5r − 3)

N3(r) = − 25

384
(125r5 − 25r4 − 170r3 + 34r2 + 45r − 9)

N4(r) =
25

384
(125r5 + 25r4 − 170r3 − 34r2 + 45r + 9)

N5(r) = − 25

768
(125r5 + 75r4 − 130r3 − 78r2 + 5r + 3)

N6(r) =
1

768
(625r5 + 625r4 − 250r3 − 250r2 + 9r + 9) (5.19)

with the derivatives given by
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∂N1

∂r
= − 1

768
(3125r4 − 2500r3 − 750r2 + 500r + 9)

∂N2

∂r
=

25

768
(625r4 − 300r3 − 390r2 + 156r + 5)

∂N3

∂r
= − 25

384
(625r4 − 100r3 − 510r2 + 68r + 45)

∂N4

∂r
=

25

384
(625r4 + 100r3 − 510r2 − 68r + 45)

∂N5

∂r
= − 25

768
(625r4 + 300r3 − 390r2 − 156r + 5)

∂N6

∂r
=

1

768
(3125r4 + 2500r3 − 750r2 − 500r + 9) (5.20)
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-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1
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Plot of the 6 fifth-order basis functions.

These functions are used in stone ??.

5.2.6 Sixth-order basis functions (Q6)

The 1D basis polynomial is given by

fh(r) = a+ br + cr2 + dr3 + er4 + fr5 + gr6

with the nodes at position -1,-2/3, -1/3, 0, +1/3, +2/3 and +1. The function fh(r) must then fulfil

1 −1 1 −1 1 −1 1
1 −2

3
4
9
− 8

27
16
81
− 32

243
64
729

1 −1
3

1
9
− 1

27
1
81
− 1

243
1

729

1 0 0 0 0 0 0
1 1

3
1
9

1
27

1
81

1
243

1
729

1 2
3

4
9

8
27

16
81

32
243

64
729

1 1 1 1 1 1 1


·



a
b
c
d
e
f
g


=



f1
f2
f3
f4
f5
f6
f7


The middle line yields a = f4, so that we have:

213




−1 1 −1 1 −1 1
−2

3
4
9
− 8

27
16
81
− 32

243
64
729

−1
3

1
9
− 1

27
1
81
− 1

243
1

729
1
3

1
9

1
27

1
81

1
243

1
729

2
3

4
9

8
27

16
81

32
243

64
729

1 1 1 1 1 1

 ·


b
c
d
e
f
g

 =


f1 − f4
f2 − f4
f3 − f4
f5 − f4
f6 − f4
f7 − f4


Multiplying all lines by 729, we obtain:

1

729


−729 729 −729 729 −729 729
−486 324 −216 144 −96 64
−243 81 −27 9 −3 1
243 81 27 9 3 1
486 324 216 144 96 64
729 729 729 729 729 729

 ·


b
c
d
e
f
g

 =


f1 − f4
f2 − f4
f3 − f4
f5 − f4
f6 − f4
f7 − f4


The inverse1 of this matrix is:

-0.00006859 0.00061728 -0.00308642 0.00308642 -0.00061728 0.00006859

0.00006859 -0.00092593 0.00925926 0.00925926 -0.00092593 0.00006859

0.00077160 -0.00617284 0.01003086 -0.01003086 0.00617284 -0.00077160

-0.00077160 0.00925926 -0.03009259 -0.03009259 0.00925926 -0.00077160

-0.00138889 0.00555556 -0.00694444 0.00694444 -0.00555556 0.00138889

0.00138889 -0.00833333 0.02083333 0.02083333 -0.00833333 0.00138889

Obviously, this is not a very practical approach anymore. One could solve the system by hand,
making sure to keep fractions but it will be cumbersome. Let us turn to another approach.

The nodes inside the reference element are as follows:

(1) (2) (3) (4) (5) (6) (7)

-|---|----|---+---|----|---|-

-1 -2/3 -1/3 0 1/3 2/3 1

Basis function N1(r) is a 6th order polynomial expression that should be 1 at node 1, and 0 at
others, i.e. at r = −2/3,−1/3, 0, 1/3, 2/3, 1. It must then be of the form:

N1(r) = α(r +
2

3
)(r +

1

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

When evaluated at r = −1, we get

N1(r = −1) = α(−1

3
)(−2

3
)(−1)(−4

3
)(−5

3
)(−2) = α

80

81
Since this quantity must be 1, we have

1 = α
80

81
→ α =

81

80
so that

N1(r) =
81

80
(r +

2

3
)(r +

1

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

=
81

80

1

81
(3r + 2)(3r + 1)(r)(3r − 1)(3r − 2)(r − 1)

=
1

80
(9r2 − 4)(9r2 − 1)(r2 − r)

=
1

80
(81r4 − 45r2 + 4)(r2 − r) (5.21)

1https://physandmathsolutions.com/Matrices/matrix_inverse/matrix_inverse_6x6.php
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Moving to N2(r), we have

N2(r) = α(r + 1)(r +
1

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

which must be equal to 1 for r = −2/3:

N2(r = −2/3) = α(−2

3
+ 1)(−2

3
+

1

3
)(−2

3
)(−2

3
− 1

3
)(−2

3
− 2

3
)(−2

3
− 1)

= α(
1

3
)(−1

3
)(−2

3
)(−1)(−4

3
)(−5

3
)

= −α 40

243
(5.22)

so that

N2(r) = −
243

40
(r + 1)(r +

1

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

Moving to N3(r), we have

N3(r) = α(r + 1)(r +
2

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

which must be equal to 1 for r = −1/3:

N3(r = −1/3) = α(−1

3
+ 1)(−1

3
+

2

3
)(−1

3
)(−1

3
− 1

3
)(−1

3
− 2

3
)(−1

3
− 1)

= α(
2

3
)(
1

3
)(−1

3
)(−2

3
)(−1)(−4

3
)

= α
16

243
(5.23)

so that

N3(r) =
243

16
(r + 1)(r +

2

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

Likewise, we arrive at the rest of the basis functions. In the end:

N1(r) =
81

80
(r +

2

3
)(r +

1

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

N2(r) = −243

40
(r + 1)(r +

1

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

N3(r) =
243

16
(r + 1)(r +

2

3
)(r)(r − 1

3
)(r − 2

3
)(r − 1)

N4(r) = −81

4
(r + 1)(r +

2

3
)(r +

1

3
)(r − 1

3
)(r − 2

3
)(r − 1)

N5(r) =
243

16
(r + 1)(r +

2

3
)(r +

1

3
)(r)(r − 2

3
)(r − 1)

N6(r) = −243

40
(r + 1)(r +

2

3
)(r +

1

3
)(r)(r − 1

3
)(r − 1)

N7(r) =
81

80
(r + 1)(r +

2

3
)(r +

1

3
)(r)(r − 1

3
)(r − 2

3
) (5.24)

or
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N1(r) =
1

80
(81r6 − 81r5 − 45r4 + 45r3 + 4r2 − 4r)

N2(r) = − 9

40
(27r6 − 18r5 − 30r4 + 20r3 + 3r2 − 2r)

N3(r) =
9

16
(27r6 − 9r5 − 39r4 + 13r3 + 12r2 − 4r)

N4(r) = −1

4
(81r6 − 126r4 + 49r2 − 4)

N5(r) =
9

16
(27r6 + 9r5 − 39r4 − 13r3 + 12r2 + 4r)

N6(r) = − 9

40
(27r6 + 18r5 − 30r4 − 20r3 + 3r2 + 2r)

N7(r) =
1

80
(81r6 + 81r5 − 45r4 − 45r3 + 4r2 + 4r) (5.25)
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Plot of the 7 six-order basis functions.

Using WolframAlpha2, we arrive at

dN1

dr
=

1

80
(486r5 − 405r4 − 180r3 + 135r2 + 8r − 4)

dN2

dr
= − 9

20
(81r5 − 45r4 − 60r3 + 30r2 + 3r − 1)

dN3

dr
=

9

16
(162r5 − 45r4 − 156r3 + 39r2 + 24r − 4)

dN4

dr
=

1

2
(−243r5 + 252r3 − 49r)

dN5

dr
=

9

16
(162r5 + 45r4 − 156r3 − 39r2 + 24r + 4)

dN6

dr
= − 9

20
(81r5 + 45r4 − 60r3 − 30r2 + 3r + 1)

dN7

dr
=

1

80
(486r5 + 405r4 − 180r3 − 135r2 + 8r + 4) (5.26)

These functions are used in stone ??.

2https://www.wolframalpha.com/
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5.2.7 A generic approach to 1D basis functions

In order to define basis functions of order n each element must have n + 1 nodes. The i − th basis
function for an n− th order approximation is given by:

Ni(r) =
∏n

j=0,j ̸=i(r − rj)∏n
j=0,j ̸=i(ri − rj)

Let us see in practice how this works and start with n = 2 (i.e. Q2 basis functions). In the
reference element we have r0 = −1, r1 = 0 and r2 = +1, so that

N0 =
(r − r1)(r − r2)
(r0 − r1)(r0 − r2)

=
(r − 0)(r − 1)

(−1− 0)(−1− 1)

=
1

2
r(r − 1)

N1 =
(r − r0)(r − r2)
(r1 − r0)(r1 − r2)

=
(r + 1)(r − 1)

(0 + 1)(0− 1)

= 1− r2

N2 =
(r − r0)(r − r1)
(r2 − r0)(r2 − r1)

=
(r + 1)(r − 0)

(1 + 1)(1− 0)

=
1

2
r(r + 1) (5.27)

These are the basis functions obtained in Section 5.2.2.
Note that in practice it is often rarely desirable to use much higher than quadratic basis functions

because higher order ones have too much oscillation.
What about derivatives?
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Remark:
According to Guermond3: “While the choice of equidistant nodes appears somewhat natural, it

is appro- priate only when working with low-degree polynomials. The main difficulty comes from the
oscillatory nature of the Lagrange polynomials as the num- ber of interpolation nodes grows. This
phenomenon is often referred to as the Runge phenomenon [359] (see also Meray [313]”

3https://people.tamu.edu/~guermond/M661_FALL_2015/chap2.pdf
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5.3 Elements and basis functions in 2D

elements2D.tex

Let us for a moment consider a single quadrilateral element in the xy-plane, as shown on the
following figure:

Let us assume that we know the values of a given field u at the four vertices. For a given point M
inside the element in the plane, what is the value of the field u at this point? It makes sense to
postulate that uM will be given by

uM = ϕ(u1, u2, u3, u4, xM , yM)

where ϕ is a function to be determined. Although ϕ is not unique, we can decide to express the
value uM as a weighed sum of the values at the vertices ui. One option could be to assign all four
vertices the same weight, say 1/4 so that uM = (u1 + u2 + u3 + u4)/4, i.e. uM is simply given by the
arithmetic mean of the vertices values. If the function u(x, y) is such that it is a constant function,
say u(x, y) = C, then uM = (u1 + u2 + u3 + u4)/4 = (C +C +C +C)/4 = C and the result is exact.
However, for any other function u the value uM will not be as accurate. Also, this approach suffers
from a major drawback as it does not use the location of point M inside the element. For instance,
when (xM , yM)→ (x2, y2) we expect uM → u2 but uM would remain equal to (u1 + u2 + u3 + u4)/4.

In light of this, we could now assume that the weights would depend on the position of M in a
continuous fashion:

u(xM , yM) =
4∑
i=1

Ni(xM , yM) ui = N1(xM , yM)u1 +N2(xM , yM)u2 +N3(xM , yM)u3 +N4(xM , yM)u4

(5.28)
where the bNi are continuous (and also ”well behaved”) functions which have the property:

Ni(xj, yj) = δij

or, in other words for example:

N3(x1, y1) = 0

N3(x2, y2) = 0

N3(x3, y3) = 1

N3(x4, y4) = 0 (5.29)

The functions Ni are commonly called basis functions.
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Omitting the M subscripts (yet stil assuming the point being inside the element), the velocity
components u and v for a point inside the element are given by:

uh(x, y) =
4∑
i=1

Ni(x, y) ui (5.30)

vh(x, y) =
4∑
i=1

Ni(x, y) vi (5.31)

where we have added the superscript h to denote that it is an approximation of the functions of this
element of diameter h (by diameter we mean here a representative scalar value of the dimension of
the element).

One can now easily compute velocity gradients (and therefore the strain rate tensor) since we
have assumed the basis functions to be ”well behaved” (in this case first-order differentiable):

ε̇hxx(x, y) =
∂uh

∂x
=

4∑
i=1

∂Ni
∂x

ui (5.32)

ε̇hyy(x, y) =
∂vh

∂y
=

4∑
i=1

∂Ni
∂y

vi (5.33)

ε̇hxy(x, y) =
1

2

(
∂uh

∂y
+
∂vh

∂x

)
=

1

2

4∑
i=1

∂Ni
∂y

ui +
1

2

4∑
i=1

∂Ni
∂x

vi (5.34)

How we actually obtain the exact form of the basis functions Ni is explained in the coming sections.

5.3.1 Bilinear basis functions in 2D (Q1)

basis Q1 2D.tex

In this section, we consider for simplicity an element which is a square defined by −1 < r < 1,
−1 < s < 1 in the Cartesian coordinates system (r, s)4:

(tikz q12d.tex)

r

s

1

4

2

3

−1 +1

−1

+1

Note the counter-clockwise numbering5. This element is commonly called the reference element.
How we go from the (x, y) coordinate system to the (r, s) once and vice versa will be dealt with later
on. The basis functions in the above reference element in the reduced coordinates system (r, s) are
given by:

4There is a reason to choose r and s as coordinates and not x and y as we will see later.
5Note that in many of the python codes which are part of this project the numbering starts at 0.
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N1(r, s) = 0.25(1− r)(1− s)
N2(r, s) = 0.25(1 + r)(1− s)
N3(r, s) = 0.25(1 + r)(1 + s)

N4(r, s) = 0.25(1− r)(1 + s) (5.35)

These basis functions are the product of the linear basis functions of Section 5.2.1 in the r direction
and the s direction.
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Surface representation of the basis functions on the reference element. in images/basis Q1 2D/

The partial derivatives of these functions with respect to r ans s automatically follow:

∂N1

∂r
(r, s) = −0.25(1− s) ∂N1

∂s
(r, s) = −0.25(1− r)

∂N2

∂r
(r, s) = +0.25(1− s) ∂N2

∂s
(r, s) = −0.25(1 + r)

∂N3

∂r
(r, s) = +0.25(1 + s)

∂N3

∂s
(r, s) = +0.25(1 + r)

∂N4

∂r
(r, s) = −0.25(1 + s)

∂N4

∂s
(r, s) = +0.25(1− r)

Let us go back to Eq. (5.31) and let us assume that the function v(r, s) = C so that vi = C for
i = 1, 2, 3, 4. It then follows that

vh(r, s) =
4∑
i=1

Ni(r, s) vi = C
4∑
i=1

Ni(r, s) = C[N1(r, s) +N2(r, s) +N3(r, s) +N4(r, s)] = C

This is a very important property: if the v function used to assign values at the vertices is constant,
then the value of vh anywhere in the element is exactly C. If we now turn to the derivatives of v
with respect to r and s:

∂vh

∂r
(r, s) =

4∑
i=1

∂Ni
∂r

(r, s) vi = C
4∑
i=1

∂Ni
∂r

(r, s) = C [−0.25(1− s) + 0.25(1− s) + 0.25(1 + s)− 0.25(1 + s)] = 0

∂vh

∂s
(r, s) =

4∑
i=1

∂Ni
∂s

(r, s) vi = C
4∑
i=1

∂Ni
∂s

(r, s) = C [−0.25(1− r)− 0.25(1 + r) + 0.25(1 + r) + 0.25(1− r)] = 0

We reassuringly find that the derivative of a constant field anywhere in the element is exactly zero.
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If we now choose v(r, s) = ar + bs with a and b two constant scalars, we find:

vh(r, s) =
4∑
i=1

Ni(r, s) vi

=
4∑
i=1

Ni(r, s)(ari + bsi)

= a
4∑
i=1

Ni(r, s)ri + b

4∑
i=1

Ni(r, s)si

= a

[
1

4
(1− r)(1− s)(−1) + 1

4
(1 + r)(1− s)(+1) +

1

4
(1 + r)(1 + s)(+1) +

1

4
(1− r)(1 + s)(−1)

]
+ b

[
1

4
(1− r)(1− s)(−1) + 1

4
(1 + r)(1− s)(−1) + 1

4
(1 + r)(1 + s)(+1) +

1

4
(1− r)(1 + s)(+1)

]
=

a

4
[−(1− r)(1− s) + (1 + r)(1− s) + (1 + r)(1 + s)− (1− r)(1 + s)]

+
b

4
[−(1− r)(1− s)− (1 + r)(1− s) + (1 + r)(1 + s) + (1− r)(1 + s)]

= ar + bs (5.36)

This set of bilinear basis functions is therefore capable of exactly representing a bilinear field. The
derivatives are:

∂vh

∂r
(r, s) =

4∑
i=1

∂Ni
∂r

(r, s) vi

= a
4∑
i=1

∂Ni
∂r

(r, s)ri + b
4∑
i=1

∂Ni
∂r

(r, s)si

= a

[
−1

4
(1− s)(−1) + 1

4
(1− s)(+1) +

1

4
(1 + s)(+1)− 1

4
(1 + s)(−1)

]
+ b

[
−1

4
(1− s)(−1) + 1

4
(1− s)(−1) + 1

4
(1 + s)(+1)− 1

4
(1 + s)(+1)

]
=

a

4
[(1− s) + (1− s) + (1 + s) + (1 + s)]

+
b

4
[(1− s)− (1− s) + (1 + s)− (1 + s)]

= a (5.37)

Here again, we find that the derivative of the bilinear field inside the element is exact: ∂vh

∂r
= ∂v

∂r
.

However, following the same methodology as above, one can easily prove that this is no more true
for polynomials of degree strictly higher than 1. This fact has serious consequences: if the solution to
the problem at hand is for instance a parabola, the Q1 basis functions cannot represent the solution
properly, but only by approximating the parabola in each element by a line. As we will see later, Q2

basis functions can remedy this problem by containing quadratic terms.

Remark. The Q1 basis functions are first-order polynomials. We have seen that they can be used
to compute gradients. However they cannot be used to compute 2nd-order derivatives since their
2nd-order derivative is identically zero.

5.3.2 Biquadratic basis functions in 2D (Q2)

basis Q2 2D.tex
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This element is part of the so-called Lagrange family [1047]. Inside an element the local numbering
of the nodes is as follows6:

(tikz q22d.tex)

r

s

0 4 1

7 8 5

3 6 2

Note that this numbering is also employed in Li [779, p56]. The polynomial representation of the
function ϕ over this element is then taken to be biquadratic:

ϕh(r, s) = a+ br + cs+ drs+ er2 + fs2 + gr2s+ hrs2 + ir2s2 =
8∑
i=0

Ni(r, s)ϕi

and one can show that the basis functions are:

N0(r, s) =
1

2
r(r − 1)

1

2
s(s− 1)

N1(r, s) =
1

2
r(r + 1)

1

2
s(s− 1)

N2(r, s) =
1

2
r(r + 1)

1

2
s(s+ 1)

N3(r, s) =
1

2
r(r − 1)

1

2
s(s+ 1)

N4(r, s) = (1− r2)1
2
s(s− 1)

N5(r, s) =
1

2
r(r + 1)(1− s2)

N6(r, s) = (1− r2)1
2
s(s+ 1)

N7(r, s) =
1

2
r(r − 1)(1− s2)

N8(r, s) = (1− r2)(1− s2)

Note that we have Ni(rj, sj) = δij and then obviously Ni(ri, si) = 1.
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6I have adopted here a numbering scheme starting at zero! Also, it is a numbering among many other possible
choices!
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Surface representation of the basis functions on the reference element. in images/basis Q2 2D/

Their derivatives are given by:

∂N0

∂r
=

1

2
(2r − 1)

1

2
s(s− 1)

∂N0

∂s
=

1

2
r(r − 1)

1

2
(2s− 1)

∂N1

∂r
=

1

2
(2r + 1)

1

2
s(s− 1)

∂N1

∂s
=

1

2
r(r + 1)

1

2
(2s− 1)

∂N2

∂r
=

1

2
(2r + 1)

1

2
s(s+ 1)

∂N2

∂s
=

1

2
r(r + 1)

1

2
(2s+ 1)

∂N3

∂r
=

1

2
(2r − 1)

1

2
s(s+ 1)

∂N3

∂s
=

1

2
r(r − 1)

1

2
(2s+ 1)

∂N4

∂r
= (−2r)1

2
s(s− 1)

∂N4

∂s
= (1− r2)1

2
(2s− 1)

∂N5

∂r
=

1

2
(2r + 1)(1− s2) ∂N5

∂s
=

1

2
r(r + 1)(−2s)

∂N6

∂r
= (−2r)1

2
s(s+ 1)

∂N6

∂s
= (1− r2)1

2
(2s+ 1)

∂N7

∂r
=

1

2
(2r − 1)(1− s2) ∂N7

∂s
=

1

2
r(r − 1)(−2s)

∂N8

∂r
= (−2r)(1− s2) ∂N8

∂s
= (1− r2)(−2s)

These basis functions are used for example in stone 18.

5.3.3 Bicubic basis functions in 2D (Q3)

basis Q3 2D.tex

Inside an element a possible local numbering of the nodes is as follows:

(tikz q32d.tex)

r

s
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12 13 14 15

As shown in Section 5.2.3 the 1D cubic basis functions are given by:

N1(r) = (−1 + r + 9r2 − 9r3)/16 N1(s) = (−1 + s+ 9s2 − 9s3)/16

N2(r) = (+9− 27r − 9r2 + 27r3)/16 N2(s) = (+9− 27s− 9s2 + 27s3)/16

N3(r) = (+9 + 27r − 9r2 − 27r3)/16 N3(s) = (+9 + 27s− 9s2 − 27s3)/16

N4(r) = (−1− r + 9r2 + 9r3)/16 N4(s) = (−1− s+ 9s2 + 9s3)/16
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and the resulting 2D basis functions are simply the tensor product of the above 1D ones:

N01(r, s) = N1(r)N1(s) = (−1 + r + 9r2 − 9r3)/16 · (−1 + s+ 9s2 − 9s3)/16

N02(r, s) = N2(r)N1(s) = (+9− 27r − 9r2 + 27r3)/16 · (−1 + s+ 9s2 − 9s3)/16

N03(r, s) = N3(r)N1(s) = (+9 + 27r − 9r2 − 27r3)/16 · (−1 + s+ 9s2 − 9s3)/16

N04(r, s) = N4(r)N1(s) = (−1− r + 9r2 + 9r3)/16 · (−1 + s+ 9s2 − 9s3)/16

N05(r, s) = N1(r)N2(s) = (−1 + r + 9r2 − 9r3)/16 · (9− 27s− 9s2 + 27s3)/16

N06(r, s) = N2(r)N2(s) = (+9− 27r − 9r2 + 27r3)/16 · (9− 27s− 9s2 + 27s3)/16

N07(r, s) = N3(r)N2(s) = (+9 + 27r − 9r2 − 27r3)/16 · (9− 27s− 9s2 + 27s3)/16

N08(r, s) = N4(r)N2(s) = (−1− r + 9r2 + 9r3)/16 · (9− 27s− 9s2 + 27s3)/16

N09(r, s) = N1(r)N3(s) = (−1 + r + 9r2 − 9r3)/16 · (9 + 27s− 9s2 − 27s3)/16

N10(r, s) = N2(r)N3(s) = (+9− 27r − 9r2 + 27r3)/16 · (9 + 27s− 9s2 − 27s3)/16

N11(r, s) = N3(r)N3(s) = (+9 + 27r − 9r2 − 27r3)/16 · (9 + 27s− 9s2 − 27s3)/16

N12(r, s) = N4(r)N3(s) = (−1− r + 9r2 + 9r3)/16 · (9 + 27s− 9s2 − 27s3)/16

N13(r, s) = N1(r)N4(s) = (−1 + r + 9r2 − 9r3)/16 · (−1− s+ 9s2 + 9s3)/16

N14(r, s) = N2(r)N4(s) = (+9− 27r − 9r2 + 27r3)/16 · (−1− s+ 9s2 + 9s3)/16

N15(r, s) = N3(r)N4(s) = (+9 + 27r − 9r2 − 27r3)/16 · (−1− s+ 9s2 + 9s3)/16

N16(r, s) = N4(r)N4(s) = (−1− r + 9r2 + 9r3)/16 · (−1− s+ 9s2 + 9s3)/16 (5.38)
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Surface representation of the basis functions on the reference element. in images/basis Q3 2D/

The derivatives are trivial to obtain from the derivatives of the 1D basis functions, e.g.

∂N13

∂r
=
∂N1

∂r
N3(s)

These basis functions are used in stone 19.
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5.3.4 Eight node serendipity basis functions in 2D (Q
(8)
2 )

basis Q28 2D.tex

The serendipity elements are those rectangular elements which have no interior nodes (See for
example Reddy [1051, p65]). Inside an element a possible local numbering of the nodes is as follows:

(tikz serendipity2d.tex)
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s
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3 6 2

The main difference with the Q2 element resides in the fact that there is no node in the middle
of the element. The polynomial representation of the function ϕ over the element is then

ϕh(r, s) = a+ br + cs+ drs+ er2 + fs2 + gr2s+ hrs2

Note that absence of the r2s2 term which was previously associated to the center node. We find
that

N0(r, s) =
1

4
(1− r)(1− s)(−r − s− 1) (5.39)

N1(r, s) =
1

4
(1 + r)(1− s)(r − s− 1) (5.40)

N2(r, s) =
1

4
(1 + r)(1 + s)(r + s− 1) (5.41)

N3(r, s) =
1

4
(1− r)(1 + s)(−r + s− 1) (5.42)

N4(r, s) =
1

2
(1− r2)(1− s) (5.43)

N5(r, s) =
1

2
(1 + r)(1− s2) (5.44)

N6(r, s) =
1

2
(1− r2)(1 + s) (5.45)

N7(r, s) =
1

2
(1− r)(1− s2) (5.46)

The basis functions at the mid side nodes are products of a second order polynomial parallel
to side and a linear function perpendicular to the side while basis functions for corner nodes are
modifications of the bilinear quadrilateral element.
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 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

N8

r

s

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Surface representation of the basis functions on the reference element. in images/basis Q28 2D/

The first-order derivatives are given by:

∂N0

∂r
(r, s) = −1

4
(s− 1)(2r + s) (5.47)

∂N1

∂r
(r, s) = −1

4
(s− 1)(2r − s) (5.48)

∂N2

∂r
(r, s) =

1

4
(s+ 1)(2r + s) (5.49)

∂N3

∂r
(r, s) =

1

4
(s+ 1)(2r − s) (5.50)

∂N4

∂r
(r, s) = r(s− 1) (5.51)

∂N5

∂r
(r, s) =

1

2
(1− s2) (5.52)

∂N6

∂r
(r, s) = −r(s+ 1) (5.53)

∂N7

∂r
(r, s) = −1

2
(1− s2) (5.54)

∂N0

∂s
(r, s) = −1

4
(r − 1)(r + 2s) (5.55)

∂N1

∂s
(r, s) = −1

4
(r + 1)(r − 2s) (5.56)

∂N2

∂s
(r, s) =

1

4
(r + 1)(r + 2s) (5.57)

∂N3

∂s
(r, s) =

1

4
(r − 1)(r − 2s) (5.58)

∂N4

∂s
(r, s) = −1

2
(1− r2) (5.59)

∂N5

∂s
(r, s) = −(r + 1)s (5.60)

∂N6

∂s
(r, s) =

1

2
(1− r2) (5.61)

∂N7

∂s
(r, s) = (r − 1)s (5.62)

These basis functions are used in stone 52.
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5.3.5 Eight node serendipity basis functions in 2D (QH8− C1)
This element is proposed in Zhang & Xiang (2020) [1404]. Two remarks must be made: 1) Eq. (29)
of their publication which is the definition of the basis functions contains an error7. 2) The authors
use a rather uncommon and annoying rotated numbering:

y

|

2=====5=====1 3=====6=====2

| | | | (r_0,s_0)=(-1,-1) (r_4,s_4)=( 0,-1)

| | | | (r_1,s_1)=(+1,-1) (r_5,s_5)=(+1, 0)

6 8--x 7 + 5 (r_2,s_2)=(+1,+1) (r_6,s_6)=( 0,+1)

| | | | (r_3,s_3)=(-1,+1) (r_7,s_7)=(-1, 0)

| | | |

3=====7=====4 0=====4=====1

Zhang & Xiang our numbering

For each element they define (their numbering):

A =
1

2
[(x1 − x3)(y2 − y4)− (x2 − x4)(y1 − y3)]

mx = (x1 − x4)(y2 − y3)− (x2 − x3)(y1 − y4)
my = (x3 − x4)(y1 − y2)− (x1 − x2)(y3 − y4)

Note that A is the area of the element, and that in the case when the element is a rectangle then
mx = my = 0.

N1(r, s) = n1(r, s) + (m2
x −mxmy +m2

y)
E(r, s)

D

N2(r, s) = n2(r, s) + (m2
x +mxmy +m2

y)
E(r, s)

D

N3(r, s) = n3(r, s) + (m2
x −mxmy +m2

y)
E(r, s)

D

N4(r, s) = n4(r, s) + (m2
x +mxmy +m2

y)
E(r, s)

D

N5(r, s) = n5(r, s)−mx(2Amx +m2
y)
E(r, s)

AD

N6(r, s) = n6(r, s)−my(2Amy +m2
x)
E(r, s)

AD

N7(r, s) = n7(r, s) +mx(−2Amx +m2
y)
E(r, s)

AD

N8(r, s) = n8(r, s) +my(−2Amy +m2
x)
E(r, s)

AD

with
E(r, s) = (1− r2)(1− s2) D = 4(4A2 +m2

x +m2
y)

and where the ni functions are the basis functions of the ’regular’ 8-node element (see Section 5.3.4).
This is implemented in stone 52.

not finished. SHOW CONSISTENCY !! like in paper email sent to author about mistake.

7Answer from the author: “N5 to N8 is missing an A in the denominator and the calculation program does not
have this problem”
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Let us verify consistency:

8∑
i=1

Ni(r, s) =
8∑
i=1

ni(r, s)︸ ︷︷ ︸
=0

+
E(r, s)

D

[
(m2

x −mxmy +m2
y) + (m2

x +mxmy +m2
y) + (m2

x −mxmy +m2
y) + (m2

x +mxmy +m2
y)

−mx(2Amx +m2
y)

1

A
−my(2Amy +m2

x)
1

A
+mx(−2Amx +m2

y)
1

A
+my(−2Amy +m2

x)
1

A

]
=

E(r, s)

D

[
(4m2

x + 4m2
y) +

1

A
(−4Am2

x − 4Am2
y)

]
(5.63)

= 0 (5.64)

5.3.6 Biquartic basis functions in 2D (Q4)

Inside an element the local numbering of the nodes is as follows:

(tikz q42d.tex)

r

s

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

5.3.7 Linear basis functions for triangles in 2D (P1)

basis P1 2D.tex

Here we do not start from a reference element but consider instead a generic triangle:

(tikz P1.tex)

x

y

1

2

3

This is the simplest 2D element, which is also called linear triangular element. Velocities (or dis-
placements) (uh, vh) in the element are interpolated from nodal velocities (ui, vi) using basis functions
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Ni as follows,

ν⃗h =

(
uh(x, y)
vh(x, y)

)
=

( ∑3
i=1Ni(x, y)ui∑3
i=1Ni(x, y)vi

)
=

(
N1(x, y) 0 N2(x, y) 0 N3(x, y) 0

0 N1(x, y) 0 N2(x, y) 0 N3(x, y)

)
·


u1
v1
u2
v2
u3
v3


or simply

For this element, we have three nodes at the vertices of the triangle, which are numbered around
the element in the counterclockwise direction. Each node has two degrees of freedom (i.e. it can
move in the x and y directions). The velocities uh and vh are assumed to be linear functions within
the element, that is,

uh(x, y) = b1 + b2x+ b3y

vh(x, y) = b4 + b5x+ b6y (5.65)

where bi are constants to be determined and which depend on the triangle shape. Note that the
strain rate components are then given by

ε̇xx(ν⃗) = b2

ε̇yy(ν⃗) = b6

ε̇xy(ν⃗) = (b3 + b5)/2

and are constant throughout the element.
The velocities should satisfy the following six equations (when it is evaluated at a node we should

recover the nodal velocity):

u1 = uh(x1, y1) = b1 + b2x1 + b3y1

u2 = uh(x2, y2) = b1 + b2x2 + b3y2

u3 = uh(x3, y3) = b1 + b2x3 + b3y3

v1 = vh(x1, y1) = b4 + b5x1 + b6y1

v2 = vh(x2, y2) = b4 + b5x2 + b6y2

v3 = vh(x3, y3) = b4 + b5x3 + b6y3

Let us focus on the three equations with the u component of the velocity. These can be re-written: u1
u2
u3

 =

 1 x1 y1
1 x2 y2
1 x3 y3

 ·
 b1

b2
b3


In order to obtain b1, b2, b3 we need to solve this system, or simply to compute the inverse of the
3× 3 M matrix, as explained in Appendix D.0.2. We define D = det(M ) and we get b1

b2
b3

 =
1

D
M̃ ·

 u1
u2
u3


The matrix M̃ is given by:

M̃ =

 x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1
y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1
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so that

b1 =
1

D
[(x2y3 − x3y2)u1 + (x3y1 − x1y3)u2 + (x1y2 − x2y1)u3]

b2 =
1

D
[(y2 − y3)u1 + (y3 − y1)u2 + (y1 − y2)u3]

b3 =
1

D
[(x3 − x2)u1 + (x1 − x3)u2 + (x2 − x1)u3] (5.66)

We then have

uh(x, y) = b1 + b2x+ b3y

=
1

D
[(x2y3 − x3y2)u1 + (x3y1 − x1y3)u2 + (x1y2 − x2y1)u3]

+
1

D
[(y2 − y3)u1 + (y3 − y1)u2 + (y1 − y2)u3]x

+
1

D
[(x3 − x2)u1 + (x1 − x3)u2 + (x2 − x1)u3]y

=
1

D
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]u1

+
1

D
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]u2

+
1

D
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]u3

= N1(x, y)u1 +N2(x, y)u2 +N3(x, y)u3 (5.67)

with the linear basis functions are given by:

N1(x, y) =
1

D
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]

N2(x, y) =
1

D
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]

N3(x, y) =
1

D
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]

We can then easily verify that for example

N2(x1, y1) =
1

D
[(x3y1 − x1y3) + (y3 − y1)x1 + (x1 − x3)y1] = 0 (5.68)

N2(x2, y2) =
1

D
[(x3y1 − x1y3) + (y3 − y1)x2 + (x1 − x3)y2] = 1 (5.69)

N2(x3, y3) =
1

D
[(x3y1 − x1y3) + (y3 − y1)x3 + (x1 − x3)y3] = 0 (5.70)

Note that the area A of the triangle is given by:

A =
1

2
D =

1

2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣
If we now consider the reference element in the reduced coordinates space (r, s):

(tikz P1ref.tex)
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x

y

1 2

3 (x1, y1) = (0, 0)

(x2, y2) = (1, 0)

(x3, y3) = (0, 1)

The basis polynomial is then
f(r, s) = a+ br + cs

and the basis functions:

N0(r, s) = 1− r − s (5.71)

N1(r, s) = r (5.72)

N2(r, s) = s (5.73)

Once again we can verify that Ni(xj, yj) = δij and
∑
i

Ni(r, s) = 1.

5.3.8 Linear basis functions for quadrilaterals in 2D (P1)

basis Pm1 2D.tex

On the reference element Ω = [−1, 1]× [−1, 1] we have three nodes placed as follows:

(tikz pm1 2D.tex)

r

s

1 2

3

Let us assume that the function f(r, s) is to be approximated on [−1, 1]× [−1, 1] by

fh(r, s) = a+ br + cs

Note that this is a linear function, not a bilinear one (a direct consequence of this is the fact that
this function cannot be continuous from one element to another). The function fh then must fulfill:

fh(r1, s1) = a = f1

fh(r2, s2) = a+
b

2
= f2

fh(r3, s3) = a+
c

2
= f3

This leads to :
a = f1 b = 2(f2 − f1) c = 2(f3 − f1)
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Then
f(r, s) = f1 + 2(f2 − f1)r + 2(f3 − f1)s

or,

f(r) =
3∑
i=1

Ni(r, s)fi

with

N1(r) = 1− 2(r + s)

N2(r) = 2r

N3(r) = 2s (5.74)

Note that we could also have placed the nodes at a different location:

(tikz pm1 2D bis.tex)

r

s

1 2

3

and we would then have

N1(r) = 1− r − s
N2(r) = r

N3(r) = s (5.75)

as obtained in Section 5.3.7.

5.3.9 Enriched linear basis functions in triangles (P+
1 )

basis p1p 2D.tex

As we will see in Section 7.3.14 the above P1 can be enriched with a so-called bubble function.
The bubble function of the MINI element is described in Arnold et al. (1984) [26] as being λ1λ2λ3
where λi are the so-called barycentric coordinates8.

λ1 =
(y2 − y3)(x− x3) + (x3 − x2)(y − y3)
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

λ2 =
(y3 − y1)(x− x3) + (x1 − x3)(y − y3)
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

λ3 = 1− λ1 − λ2
8https://en.wikipedia.org/wiki/Barycentric_coordinate_system
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Barycentric coordinates (λ1, λ2, λ3) on an equilateral triangle and on a right triangle.

In the reference triangle, the barycentric coordinates write

λ1 =
(s2 − s3)(r − r3) + (r3 − r2)(s− s3)
(s2 − s3)(r1 − r3) + (r3 − r2)(s1 − s3)

=
(−1)(r) + (−1)(s− 1)

(−1)(0) + (−1)(−1)
= −r − s+ 1

λ2 =
(s3− s1)(r − r3) + (r1− r3)(s− s3)
(s2− s3)(r1− r3) + (r3− r2)(s1− s3)

=
(1)(r) + (0)(s− 1)

(−1)(0) + (−1)(−1)
= r

λ3 = 1− λ1 − λ2 = 1− (−r − s+ 1)− r = s

As we have seen before the bubble function is given by λ1λ2λ3 = (1 − r − s)rs and the polynomial
form for the basis functions is given by:

f(r, s) = a+ br + cs+ d(1− r − s)rs

Setting the location of the bubble at r = s = 1/3, i.e. λ1λ2λ3 = 1/3, we then have

f(r1, s1) = f1 = a+ br1 + cs1 + d(1− r1 − s1)r1s1 = a

f(r2, s2) = f2 = a+ br2 + cs2 + d(1− r2 − s2)r2s2 = a+ b

f(r3, s3) = f3 = a+ br3 + cs3 + d(1− r3 − s3)r3s3 = a+ c

f(r4, s4) = f4 = a+ br4 + cs4 + d(1− r4 − s4)r4s4 = a+
b

3
+
c

3
+

1

27

where point 4 is the location of the bubble. This yields

a = f1 b = f2 − a = f2 − f1 c = f3 − a = f3 − f1
and

d = 27

(
f4 − a−

b

3
− c

3

)
= 27

(
f4 − f1 −

f2 − f1
3

− f3 − f1
3

)
= 27

(
f4 −

f1
3
− f2

3
− f3

3

)
Finally

f(r, s) = a+ br + cs+ d(1− r − s)rs

= f1 + (f2 − f1)r + (f3 − f1)s+ 27

(
f4 −

f1
3
− f2

3
− f3

3

)
(1− r − s)rs

= [1− r − s− 9(1− r − s)rs]f1 + [r − 9(1− r − s)rs]f2 + [s− 9(1− r − s)rs]f3 + [27(1− r − s)rs]f4
so that

f(r, s) =
4∑
i=1

Ni(r, s)fi

with

N1(r, s) = 1− r − s− 9(1− r − s)rs
N2(r, s) = r − 9(1− r − s)rs
N3(r, s) = s− 9(1− r − s)rs
N4(r, s) = 27(1− r − s)rs
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It is trivial to verify that
∑
i

Ni = 1 for all values of r, s and the gradients of the basis functions are:

∂N1

∂r
(r, s) = −1− 9(1− 2r − s)s (5.76)

∂N2

∂r
(r, s) = +1− 9(1− 2r − s)s (5.77)

∂N3

∂r
(r, s) = −9(1− 2r − s)s (5.78)

∂N4

∂r
(r, s) = 27(1− 2r − s)s (5.79)

(5.80)

∂N1

∂s
(r, s) = −1− 9(1− r − 2s)r (5.81)

∂N2

∂s
(r, s) = −9(1− r − 2s)r (5.82)

∂N3

∂s
(r, s) = +1− 9(1− r − 2s)r (5.83)

∂N4

∂s
(r, s) = 27(1− r − 2s)r (5.84)

We have two coordinate systems for the element: the global Cartesian coordinates (x, y) and the
natural/reduced coordinates (r, s). Inside the element, the relation between the two is given by

x = N1x1 +N2x2 +N3x3 +N4x4 =
∑
i

Ni(r, s)xi

y = N1y1 +N2y2 +N3y3 +N4y4 =
∑
i

Ni(r, s)yi (5.85)

or,

x = [1− r − s− 9(1− r − s)rs]x1 + [r − 9(1− r − s)rs]x2 + [s− 9(1− r − s)rs]x3 + [27(1− r − s)rs]x4
= x1 − r(x1 − x2)− s(x1 − x3) + (1− r − s)rs(−9x1 − 9x2 − 9x3 + 27x4)

= x1 − r(x1 − x2)− s(x1 − x3) + (1− r − s)rs(−9x1 − 9x2 − 9x3 + 27(x1 + x2 + x3)/3)

= x1 − r(x1 − x2)− s(x1 − x3)
= x1 − rx12 − sx13

y = [1− r − s− 9(1− r − s)rs]y1 + [r − 9(1− r − s)rs]y2 + [s− 9(1− r − s)rs]y3 + [27(1− r − s)rs]y4
= y1 − r(y1 − y2)− s(y1 − y3) + (1− r − s)rs(−9y1 − 9y2 − 9y3 + 27y4)

= y1 − r(y1 − y2)− s(y1 − y3) + (1− r − s)rs(−9y1 − 9y2 − 9y3 + 27(y1 + y2 + y3)/3)

= y1 − r(y1 − y2)− s(y1 − y3)
= y1 − ry12 − sy13

5.3.10 Quadratic basis functions for triangles in 2D (P2)

basis p2 2D.tex

(tikz P2.tex)
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x

y

1 2

3 (x1, y1) = (0, 0)

(x2, y2) = (1, 0)

(x3, y3) = (0, 1)

The basis polynomial is then

f(r, s) = c1 + c2r + c3s+ c4r
2 + c5rs+ c6s

2

We have

f1 = f(r1, s1) = c1

f2 = f(r2, s2) = c1 + c2 + c4

f3 = f(r3, s3) = c1 + c3 + c6

f4 = f(r4, s4) = c1 + c2/2 + c4/4

f5 = f(r5, s5) = c1 + c2/2 + c3/2 + c4/4 + c5/4 + c6/4

f6 = f(r6, s6) = c1 + c3/2 + c6/4

This can be cast as f⃗ = A · c⃗ where A is a 6× 6 matrix:

A =


1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 1/2 0 1/4 0 0
1 1/2 1/2 1/4 1/4 1/4
1 0 1/2 0 0 1/4


As it turns out it is rather trivial to compute the inverse of this matrix:

A−1 =


1 0 0 0 0 0
−3 −1 0 4 0 0
−3 0 −1 0 0 4
2 2 0 −4 0 0
4 0 0 −4 4 −4
2 0 2 0 0 −4


Using c⃗ = A−1 · f⃗ one then obtains:

c1 = f1

c2 = −3f1 − f2 + 4f4

c3 = −3f1 − f3 + 4f6

c4 = 2f1 + 2f2 − 4f4

c5 = 4f1 − 4f4 + 4f5 − 4f6

c6 = (2f1 + 2f3 − 4f6

and then

f(r, s) = f1 + (−3f1 − f2 + 4f4)r + (−3f1 − f3 + 4f6)s

+(2f1 + 2f2 − 4f4)r
2 + (4f1 − 4f4 + 4f5 − 4f6)rs+ (2f1 + 2f3 − 4f6)s

2

=
6∑
i=1

Ni(r, s)fi (5.86)
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with

N1(r, s) = 1− 3r − 3s+ 2r2 + 4rs+ 2s2

N2(r, s) = −r + 2r2

N3(r, s) = −s+ 2s2

N4(r, s) = 4r − 4r2 − 4rs

N5(r, s) = 4rs

N6(r, s) = 4s− 4rs− 4s2

The derivatives are as follows:

∂N1

∂r
(r, s) = −3 + 4r + 4s

∂N2

∂r
(r, s) = −1 + 4r

∂N3

∂r
(r, s) = 0

∂N4

∂r
(r, s) = 4− 8r − 4s

∂N5

∂r
(r, s) = 4s

∂N6

∂r
(r, s) = −4s

∂N1

∂s
(r, s) = −3 + 4r + 4s

∂N2

∂s
(r, s) = 0

∂N3

∂s
(r, s) = −1 + 4s

∂N4

∂s
(r, s) = −4r

∂N5

∂s
(r, s) = 4r

∂N6

∂s
(r, s) = 4− 4r − 8s

5.3.11 Enriched quadratic basis functions in triangles (P+
2 )

basis p2p 2D.tex

This is used by the Crouzeix-Raviart element, see Section 7.3.16.
TIKZ!

03 (r_1,s_1)=(0,0)

||\\ (r_2,s_2)=(1,0)

|| \\ (r_3,s_3)=(0,1)

|| \\ (r_4,s_4)=(1/2,0)

06 05 (r_5,s_5)=(1/2,1/2)
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|| 07 \\ (r_6,s_6)=(0,1/2)

|| \\ (r_7,s_7)=(1/3,1/3)

01==04==02

The basis functions are given by:
find reference

N1(r, s) = (1− r − s)(1− 2r − 2s+ 3rs) (5.87)

N2(r, s) = r(2r − 1 + 3s− 3rs− 3s2) (5.88)

N3(r, s) = s(2s− 1 + 3r − 3r2 − 3rs) (5.89)

N4(r, s) = 4(1− r − s)r(1− 3s) (5.90)

N5(r, s) = 4rs[−2 + 3r + 3s] (5.91)

N6(r, s) = 4(1− r − s)s(1− 3r) (5.92)

N7(r, s) = 27(1− r − s)rs (5.93)

It is then easy to verify that for all basis functions we have Ni(rj, sj) = δij where j denotes one of
the seven nodes. The derivatives are as follows:

∂N1

∂r
(r, s) = r(4− 6s)− 3s2 + 7s− 3 (5.94)

∂N2

∂r
(r, s) = r(4− 6s)− 3s2 + 3s− 1 (5.95)

∂N3

∂r
(r, s) = −3s(2r + s− 1) (5.96)

∂N4

∂r
(r, s) = 4(3s− 1)(2r + s− 1) (5.97)

∂N5

∂r
(r, s) = 4s(6r + 3s− 2) (5.98)

∂N6

∂r
(r, s) = 4s(6r + 3s− 4) (5.99)

∂N7

∂r
(r, s) = −27s(2r + s− 1) (5.100)

∂N1

∂s
(r, s) = −3r2 + r(7− 6s) + 4s− 3 (5.101)

∂N2

∂s
(r, s) = −3r(r + 2s− 1) (5.102)

∂N3

∂s
(r, s) = −3r2 + r(3− 6s) + 4s− 1 (5.103)

∂N4

∂s
(r, s) = 4r(3r + 6s− 4) (5.104)

∂N5

∂s
(r, s) = 4r(3r + 6s− 2) (5.105)

∂N6

∂s
(r, s) = 4(3r − 1)(r + 2s− 1) (5.106)

∂N7

∂s
(r, s) = −27r(r + 2s− 1) (5.107)
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Note that the basis functions can also be expressed as a function of the barycentric coordinates,
as in the MILAMIN code [299] or in Cuvelier et al. (1986) [298]9

TIKZ!

03

||\\

|| \\

|| \\

05 04

|| 07 \\

|| \\

01==06==02

N1(λ1, λ2, λ3) = η1(2η1 − 1) + 3η1η2η3 (5.108)

N2(λ1, λ2, λ3) = η2(2η2 − 1) + 3η1η2η3 (5.109)

N3(λ1, λ2, λ3) = η3(2η3 − 1) + 3η1η2η3 (5.110)

N4(λ1, λ2, λ3) = 4η2η3 − 12η1η2η3 (5.111)

N5(λ1, λ2, λ3) = 4η1η3 − 12η1η2η3 (5.112)

N6(λ1, λ2, λ3) = 4η1η2 − 12η1η2η3 (5.113)

N7(λ1, λ2, λ3) = 27η1η2η3 (5.114)

VERIFY that when η1 = 1− r − s, η2 = r and η3 = s we find the above r, s basis functions

5.3.12 Cubic basis functions for triangles (P3)

basis p3 2D.tex

TIKZ!

9

|\ (r_0,s_0)=(0,0) (r_5,s_5)=(1/3,1/3)

| \ (r_1,s_1)=(1/3,0) (r_6,s_6)=(2/3,1/3)

7 8 (r_2,s_2)=(2/3,0) (r_7,s_7)=(0,2/3)

| \ (r_3,s_3)=(1,0) (r_8,s_8)=(1/3,2/3)

4 5 6 (r_4,s_4)=(0,1/3) (r_9,s_9)=(0,1)

| \

0==1==2==3

The basis polynomial is then

f(r, s) = c0 + c1r + c2s+ c3r
2 + c4rs+ c5s

2 + c6r
3 + c7r

2s+ c8rs
2 + c9s

3

with the support nodes being given by

9Note that the numbering of the nodes in the book is different with respect to the one above.
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(r0, s0) = (0, 0) (5.115)

(r1, s1) = (1/3, 0) (5.116)

(r2, s2) = (2/3, 0) (5.117)

(r3, s3) = (1, 0) (5.118)

(r4, s4) = (0, 1/3) (5.119)

(r5, s5) = (1/3, 1/3) (5.120)

(r6, s6) = (2/3, 1/3) (5.121)

(r7, s7) = (0, 2/3) (5.122)

(r8, s8) = (1/3, 2/3) (5.123)

(r9, s9) = (0, 1) (5.124)

f0 = f(r0, s0) = c0

f1 = f(r1, s1) = c0 + c1 +
1

9
c3 +

1

27
c6

f2 = f(r2, s2) = c0 +
2

3
c1 +

4

9
c3 +

8

27
c6

f3 = f(r3, s3) = c0 + c1 + c3 + c6

f4 = f(r4, s4) = c0 +
1

3
c2 +

1

9
c5 +

1

27
c9

f5 = f(r5, s5) = c0 +
1

3
c1 +

1

3
c2 +

1

9
c3 +

1

9
c4 +

1

9
c5 +

1

27
c6r

3 +
1

27
c7 +

1

27
c8 +

1

27
c9

f6 = f(r6, s6) = c0 +
2

3
c1 +

1

3
c2 +

4

9
c3 +

2

9
c4 +

1

9
c5 +

8

27
c6 +

4

27
c7 +

2

27
c8 +

1

9
c9

f7 = f(r7, s7) = c0 +
2

3
c2 +

4

9
c5 +

8

27
c9

f8 = f(r8, s8) = c0 +
1

3
c1 +

2

3
c2 +

1

9
c3 +

2

9
c4 +

4

9
c5 +

1

27
c6 +

2

27
c7 +

4

27
c8 +

8

27
c9s

3

f9 = f(r9, s9) = c0 + c2 + c5 + c9

or, 

1 0 0 0 0 0 0 0 0 0
1 1

3
0 1

9
0 0 1

27
0 0 0

1 2
3

0 4
9

0 0 8
27

0 0 0
1 1 0 1 0 0 1 0 0 0
1 0 1

3
0 0 1

9
0 0 0 1

27

1 1
3

1
3

1
9

1
9

1
9

1
27

1
27

1
27

1
27

1 2
3

1
3

4
9

2
9

1
9

8
27

4
27

2
27

1
27

1 0 2
3

0 0 4
9

0 0 0 8
27

1 1
3

2
3

1
9

2
9

4
9

1
27

2
27

4
27

8
27

1 0 1 0 0 1 0 0 0 1


·



c0
c1
c2
c3
c4
c5
c6
c7
c8
c9


=



f0
f1
f2
f3
f4
f5
f6
f7
f8
f9
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or,

1

27



27 0 0 0 0 0 0 0 0 0
27 9 0 3 0 0 1 0 0 0
27 18 0 12 0 0 8 0 0 0
27 27 0 27 0 0 27 0 0 0
27 0 9 0 0 3 0 0 0 1
27 9 9 3 3 3 1 1 1 1
27 18 9 12 6 3 8 4 2 1
27 0 18 0 0 12 0 0 0 8
27 9 18 3 6 12 1 2 4 8
27 0 27 0 0 27 0 0 0 27


·



c0
c1
c2
c3
c4
c5
c6
c7
c8
c9


=



f0
f1
f2
f3
f4
f5
f6
f7
f8
f9


The inverse of the matrix is

1

2



2 0 0 0 0 0 0 0 0 0
−11 18 −9 2 0 0 0 0 0 0
−11 0 0 0 18 0 0 −9 0 2
18 −45 36 −9 0 0 0 0 0 0
36 −45 9 0 −45 54 −9 9 −9 0
18 0 0 0 −45 0 0 36 0 −9
−9 27 −27 9 0 0 0 0 0 0
−27 54 −27 0 27 −54 27 0 0 0
−27 27 0 0 54 −54 0 −27 27 0
−9 0 0 0 27 0 0 −27 0 9


so that the solution of the system A · c⃗ = f⃗ is c⃗ = A−1 · f⃗ , or:

c0 = 1

c1 =
1

2
(−11f0 + 18f1 − 9f2 + 2f3)

c2 =
1

2
(−11f0 + 18f4 − 9f7 + 2f9)

c3 = etc ... (5.125)

which we insert in

f(r, s) = c0 + c1r + c2s+ c3r
2 + c4rs+ c5s

2 + c6r
3 + c7r

2s+ c8rs
2 + c9s

3
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and we then obtain

f(r, s) =
1

2

(
2− 11r − 11s+ 18r2 + 36rs+ 18s2 − 9r3 − 27r2s− 27rs2 − 9s3

)
f0

+
1

2

(
18r − 45r2 − 45rs+ 27r3 + 54r2s+ 27rs2

)
f1

+
1

2

(
−9r + 36r2 + 9rs− 27r3 − 27r2s

)
f2

+
1

2

(
2r − 9r2 + 9r3

)
f3

+
1

2

(
18s− 45rs− 45s2 + 27r2s+ 54rs2 + 27s3

)
f4

+
1

2

(
54rs− 54r2s− 54rs2

)
f5

+
1

2

(
−9rs+ 27r2s

)
f6

+
1

2

(
−9s+ 9rs+ 36s2 − 27rs2 − 27s3

)
f7

+
1

2

(
−9rs+ 27rs2

)
f8

+
1

2

(
2s− 9s2 + 9s3

)
f9

=
9∑
i=0

Ni(r, s)fi

N0(r, s) =
1

2

(
2− 11r − 11s+ 18r2 + 36rs+ 18s2 − 9r3 − 27r2s− 27rs2 − 9s3

)
N1(r, s) =

1

2

(
18r − 45r2 − 45rs+ 27r3 + 54r2s+ 27rs2

)
N2(r, s) =

1

2

(
−9r + 36r2 + 9rs− 27r3 − 27r2s

)
N3(r, s) =

1

2

(
2r − 9r2 + 9r3

)
N4(r, s) =

1

2

(
18s− 45rs− 45s2 + 27r2s+ 54rs2 + 27s3

)
N5(r, s) =

1

2

(
54rs− 54r2s− 54rs2

)
N6(r, s) =

1

2

(
−9rs+ 27r2s

)
N7(r, s) =

1

2

(
−9s+ 9rs+ 36s2 − 27rs2 − 27s3

)
N8(r, s) =

1

2

(
−9rs+ 27rs2

)
N9(r, s) =

1

2

(
2s− 9s2 + 9s3

)
(5.126)
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and then

∂N0

∂r
(r, s) =

1

2
(−11 + 36r + 36s− 27r2 − 54rs− 27s2)

∂N1

∂r
(r, s) =

1

2
(18− 90r − 45s+ 81r2 + 108rs+ 27s2)

∂N2

∂r
(r, s) =

1

2
(−9 + 72r + 9s− 81r2 − 54rs)

∂N3

∂r
(r, s) =

1

2
(2− 18r + 27r2)

∂N4

∂r
(r, s) =

1

2
(−45s+ 54rs+ 54s2)

∂N5

∂r
(r, s) =

1

2
(54s− 108rs− 54s2)

∂N6

∂r
(r, s) =

1

2
(−9s+ 54rs)

∂N7

∂r
(r, s) =

1

2
(9s− 27s2)

∂N8

∂r
(r, s) =

1

2
(−9s+ 27s2)

∂N9

∂r
(r, s) = 0

∂N0

∂s
(r, s) =

1

2
(−11 + 36r + 36s− 27r2 − 54rs− 27s2)

∂N1

∂s
(r, s) =

1

2
(−45r + 54r2 + 54rs)

∂N2

∂s
(r, s) =

1

2
(9r − 27r2)

∂N3

∂s
(r, s) = 0

∂N4

∂s
(r, s) =

1

2
(18− 45r − 90s+ 27r2 + 108rs+ 81s2)

∂N5

∂s
(r, s) =

1

2
(54r − 54r2 − 108rs)

∂N6

∂s
(r, s) =

1

2
(−9r + 27r2)

∂N7

∂s
(r, s) =

1

2
(−9 + 9r + 72s− 54rs− 81s2)

∂N8

∂s
(r, s) =

1

2
(−9r + 54rs)

∂N9

∂s
(r, s) =

1

2
(2− 18s+ 27s2)

It is implemented in stone 120. See also python code in images/basis P3 which I wrote to
test these basis functions.

5.3.13 Quartic basis functions for triangles (P4)

basis p4 2D.tex

(tikz p4.tex)
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1 2 3 4 5

6 7 8 9

10 11 12

13 14

15

The support nodes coordinates are as follows:

i→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 0 1
4

1
2

3
4

1 0 1
4

1
2

3
4

0 1
4

1
2

0 1
4

0
si 0 0 0 0 0 1

4
1
4

1
4

1
4

1
2

1
2

1
2

3
4

3
4

1

Inside the element a field f is represented by a 4-th order polynomial:

fh(r, s) = c0 + c1r + c2s

+c3r
2 + c4rs+ c5s

2

+c6r
3 + c7r

2s+ c8rs
2 + c9s

3

+c10r
4 + c11r

3s+ c12r
2s2 + c13rs

3 + c14s
4 (5.127)

At each node the function takes a value fi, i ∈ [1, 15] so that we have:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1

4
0 1

16
0 0 1

64
0 0 0 1

256
0 0 0 0

1 1
2

0 1
4

0 0 1
8

0 0 0 1
16

0 0 0 0
1 3

4
0 9

16
0 0 27

64
0 0 0 81

256
0 0 0 0

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

1 0 1
4

0 0 1
16

0 0 0 1
64

0 0 0 0 1
256

1 1
4

1
4

1
16

1
16

1
16

1
64

1
64

1
64

1
64

1
256

1
256

1
256

1
256

1
256

1 1
2

1
4

1
4

1
8

1
16

1
8

1
16

1
32

1
64

1
16

1
32

1
64

1
128

1
256

1 3
4

1
4

9
16

3
16

1
16

27
64

9
64

3
64

1
64

81
256

27
256

9
256

3
256

1
256

1 0 1
2

0 0 1
4

0 0 0 1
8

0 0 0 0 1
16

1 1
4

1
2

1
16

1
8

1
4

1
64

1
32

1
16

1
8

1
256

1
128

1
64

1
32

1
16

1 1
2

1
2

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
16

1
16

1
16

1
16

1
16

1 0 3
4

0 0 9
16

0 0 0 27
64

0 0 0 0 81
256

1 1
4

3
4

1
16

3
16

9
16

1
64

3
64

9
64

27
64

1
256

3
256

9
256

27
256

81
256

1 0 1 0 0 1 0 0 0 1 0 0 0 0 1



·



c0

c1
c2

c3
c4
c5

c6
c7
c8
c9

c10
c11
c12
c13
c14



=



f0

f1
f2

f3
f4
f5

f6
f7
f8
f9

f10
f11
f12
f13
f14


or,
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1

256



256 0 0 0 0 0 0 0 0 0 0 0 0 0 0
256 64 0 16 0 0 4 0 0 0 1 0 0 0 0
256 128 0 64 0 0 32 0 0 0 16 0 0 0 0
256 192 0 144 0 0 108 0 0 0 81 0 0 0 0
256 256 0 256 0 0 256 0 0 0 256 0 0 0 0

256 0 64 0 0 16 0 0 0 4 0 0 0 0 1
256 64 64 16 16 16 4 4 4 4 1 1 1 1 1
256 128 64 64 32 16 32 16 8 4 16 8 4 2 1
256 192 64 144 48 16 108 36 12 4 81 27 9 3 1

256 0 128 0 0 64 0 0 0 32 0 0 0 0 16
256 64 128 16 32 64 4 8 16 32 1 2 4 8 16
256 128 128 64 64 64 32 32 32 32 16 16 16 16 16

256 0 192 0 0 144 0 0 0 108 0 0 0 0 81
256 64 192 16 48 144 4 12 36 108 1 3 9 27 81

256 0 256 0 0 256 0 0 0 256 0 0 0 0 256



·



c0

c1
c2

c3
c4
c5

c6
c7
c8
c9

c10
c11
c12
c13
c14



=



f0

f1
f2

f3
f4
f5

f6
f7
f8
f9

f10
f11
f12
f13
f14


The inverse of the matrix is:

1

3



3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−25 48 −36 16 −3 0 0 0 0 0 0 0 0 0 0
−25 0 0 0 0 48 0 0 0 −36 0 0 16 0 −3

70 −208 228 −112 22 0 0 0 0 0 0 0 0 0 0
140 −208 84 −16 0 −208 288 −96 16 84 −96 12 −16 16 0
70 0 0 0 0 −208 0 0 0 228 0 0 −112 0 22

−80 288 −384 224 −48 0 0 0 0 0 0 0 0 0 0
−240 576 −432 96 0 288 −672 480 −96 −48 96 −48 0 0 0
−240 288 −48 0 0 576 −672 96 0 −432 480 −48 96 −96 0
−80 0 0 0 0 288 0 0 0 −384 0 0 224 0 −48

32 −128 192 −128 32 0 0 0 0 0 0 0 0 0 0
128 −384 384 −128 0 −128 384 −384 128 0 0 0 0 0 0
192 −384 192 0 0 −384 768 −384 0 192 −384 192 0 0 0
128 −128 0 0 0 −384 384 0 0 384 −384 0 −128 128 0
32 0 0 0 0 −128 0 0 0 192 0 0 −128 0 32
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so that we obtain

f(r, s) =
1

3
(3− 25r − 25s+ 70r2 + 140rs+ 70s2 − 80r3 − 240r2s− 240rs2 − 80s3 + 32r4 + 128r3s+ 192r2s2 + 128rs3 + 32s4)f0

+
1

3
(48r − 208r2 − 208rs+ 288r3 + 576r2s+ 288rs2 − 128r4 − 384r3s− 384r2s2 − 128rs3)f1

+
1

3
(−36r + 228r2 + 84rs− 384r3 − 432r2s− 48rs2 + 192r4 + 384r3s+ 192r2s2)f2

+
1

3
(16r − 112r2 − 16rs+ 224r3 + 96r2s− 128r4 − 128r3s)f3

+
1

3
(−3r + 22r2 − 48r3 + 32r4)f4

+
1

3
(48s− 208rs− 208s2 + 288r2s+ 576rs2 + 288s3 − 128r3s− 384r2s2 − 384rs3 − 128s4)f5

+
1

3
(288rs− 672r2s− 672rs2 + 384r3s+ 768r2s2 + 384rs3)f6

+
1

3
(−96rs+ 480r2s+ 96rs2 − 384r3s− 384r2s2)f7

+
1

3
(16rs− 96r2s+ 128r3s)f8

+
1

3
(−36s+ 84rs+ 228s2 − 48r2s− 432rs2 − 384s3 + 192r2s2 + 384rs3 + 192s4)f9

+
1

3
(−96rs+ 96r2s+ 480rs2 − 384r2s2 − 384rs3)f10

+
1

3
(12rs− 48r2s− 48rs2 + 192r2s2)f11

+
1

3
(16s− 16rs− 112s2 + 96rs2 + 224s3 − 128rs3 − 128s4)f12

+
1

3
(16rs− 96rs2 + 128rs3)f13

+
1

3
(−3s+ 22s2 − 48s3 + 32s4)f14

=

14∑
i=0

Ni(r, s)fi (5.128)
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and then

∂N0

∂r
(r, s) =

1

3
(−25 + 140r + 140s− 240r2 − 480rs− 240s2 + 128r3 + 384r2s+ 384rs2 + 128s3)

∂N1

∂r
(r, s) =

1

3
(48− 416r − 208s+ 864r2 + 1152rs+ 288s2 − 512r3 − 1152r2s− 768rs2 − 128s3)

∂N2

∂r
(r, s) =

1

3
(−36 + 456r + 84s− 1152r2 − 864rs− 48s2 + 768r3 + 1152r2s+ 384rs2)

∂N3

∂r
(r, s) =

1

3
(16− 224r − 16s+ 672r2 + 192rs− 512r3 − 384r2s)

∂N4

∂r
(r, s) =

1

3
(−3 + 44r − 144r2 + 128r3)

∂N5

∂r
(r, s) =

1

3
(−208s+ 576rs+ 576s2 − 384r2s− 768rs2 − 384s3)

∂N6

∂r
(r, s) =

1

3
(288s− 1344rs− 672s2 + 1152r2s+ 1536rs2 + 384s3)

∂N7

∂r
(r, s) =

1

3
(−96s+ 960rs+ 96s2 − 1152r2s− 768rs2)

∂N8

∂r
(r, s) =

1

3
(16s− 192rs+ 384r2s)

∂N9

∂r
(r, s) =

1

3
(84s− 96rs− 432s2 + 384rs2 + 384s3)

∂N10

∂r
(r, s) =

1

3
(−96s+ 192rs+ 480s2 − 768rs2 − 384s3)

∂N11

∂r
(r, s) =

1

3
(12s− 96rs− 48s2 + 384rs2)

∂N12

∂r
(r, s) =

1

3
(−16s+ 96s2 − 128s3)

∂N13

∂r
(r, s) =

1

3
(16s− 96s2 + 128s3)

∂N14

∂r
(r, s) = 0
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∂N0

∂s
(r, s) =

1

3
(−25 + 140r + 140s− 240r2 − 480rs− 240s2 + 128r3 + 384r2s+ 384rs2 + 128s3)

∂N1

∂s
(r, s) =

1

3
(−208r + 576r2 + 576rs− 384r3 − 768r2s− 384rs2)

∂N2

∂s
(r, s) =

1

3
(84r − 432r2 − 96rs+ 384r3 + 384r2s)

∂N3

∂s
(r, s) =

1

3
(−16r + 96r2 − 128r3)

∂N4

∂s
(r, s) = 0

∂N5

∂s
(r, s) =

1

3
(48− 208r − 416s+ 288r2 + 1152rs+ 864s2 − 128r3 − 768r2s− 1152rs2 − 512s3)

∂N6

∂s
(r, s) =

1

3
(288r − 672r2 − 1344rs+ 384r3 + 1536r2s+ 1152rs2)

∂N7

∂s
(r, s) =

1

3
(−96r + 480r2 + 192rs− 384r3 − 768r2s)

∂N8

∂s
(r, s) =

1

3
(16r − 96r2 + 128r3)

∂N9

∂s
(r, s) =

1

3
(−36 + 84r + 456s− 48r2 − 864rs− 1152s2 + 384r2s+ 1152rs2 + 768s3)

∂N10

∂s
(r, s) =

1

3
(−96r + 96r2 + 960rs− 768r2s− 1152rs2)

∂N11

∂s
(r, s) =

1

3
(12r − 48r2 − 96rs+ 384r2s)

∂N12

∂s
(r, s) =

1

3
(16− 16r − 224s+ 192rs+ 672s2 − 384rs2 − 512s3)

∂N13

∂s
(r, s) =

1

3
(16r − 192rs+ 384rs2)

∂N14

∂s
(r, s) =

1

3
(−3 + 44s− 144s2 + 128s3)

It is implemented in stone 120. See also python code in images/basis P4 which I wrote to
test these basis functions.

5.3.14 Enriched linear basis functions in quadrilaterals (Q+
1 ) -WIP

basis q1p 2D.tex

4===========3

| | (r_1,s_1)=(-1,-1)

| | (r_2,s_2)=(1,-1)

| 5 | (r_3,s_3)=(1,1)

| | (r_4,s_4)=(-1,1)

| | (r_5,s_5)=(0,0)

1===========2

� In Bai [38] (1997): ”It is well known that the equal-order bilinear velocity-bilinear continuous
pressure element - the Q1 × Q1, element - exhibits a certain spurious pressure mode. In the
paper we propose a new stabilized Q1 × Q1 combination for the velocity and pressure with
three internal degrees of freedom added to the velocity space, that is, one degree of freedom
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for each component of the velocity and one degree of freedom shared by both components of
the velocity.”

Two versions are proposed, if I understand it correctly. The first one is given in Eq. (7) (three
extra dofs: u5, v5, w):

uh(r, s) =
4∑
i=1

Ni(r, s)ui +
[
u5 −

w

4
(1− s)

]
(1− r2)(1− s2)

vh(r, s) =
4∑
i=1

Ni(r, s)vi +
[
v5 −

w

4
(1− r)

]
(1− r2)(1− s2) (5.129)

The second one in Eq. (23) (four extra dofs: u5, v5, u6, v6):

uh(r, s) =
4∑
i=1

Ni(r, s)ui + [u5 + u6(r + s)] (1− r2)(1− s2)

vh(r, s) =
4∑
i=1

Ni(r, s)vi + [v5 + v6(r + s)] (1− r2)(1− s2) (5.130)

� In Franca, Oliveira, and Sarkis [411] (2007): ”Stabilized finite element method for Stokes
equations with piecewise continuous bilinear approximations for both velocity and pressure
variables. The velocity field is enriched with piecewise polynomial bubble functions with null
average at element edges.”

It looks like they are proposing (see their Eq. (2.6)):

uh(r, s) =
4∑
i=1

Ni(r, s)ui + (α + γs)
1

2
(r2 + s2 − 4

3
)

vh(r, s) =
4∑
i=1

Ni(r, s)vi + (β + γr)
1

2
(r2 + s2 − 4

3
) (5.131)

� In Kwon and Park [738] (2014): ”We introduce a new stable MINI-element pair for incom-
pressible Stokes equations on quadrilateral meshes, which uses the smallest number of bubbles
for the velocity. The pressure is discretized with the P1-midpoint-edge-continuous elements
and each component of the velocity field is done with the standard Q1-conforming elements
enriched by one bubble a quadrilateral.”

� In Lamichhane [741] (2017): ”We consider a quadrilateral MINI finite element for approximat-
ing the solution of Stokes equations using a quadrilateral mesh. We use the standard bilinear
finite element space enriched with element-wise defined bubble functions for the velocity and
the standard bilinear finite element space for the pressure space. With a simple modification
of the standard bubble function we show that a single bubble function is sufficient to ensure
the inf-sup condition. This is a refinement of Bai (1997) [38] where the author enriches the
velocity space with more than a single vector bubble function per element. In this article we
show that with a small modification of the standard bubble function we can get the stability
just by using a single vector bubble function per element.”

lamichhane2D.tex
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The two bubble functions are defined on the reference element [−1, 1]× [−1, 1]:

b(1)(r, s) = (1− r)(1− s) · (1− r2)(1− s2) (5.132)

b(2)(r, s) =

(
1 +

r + s

4

)
· (1− r2)(1− s2) (5.133)

Both bubble functions are exactly one in the middle of the element and exactly zero on the
edges of the element as expected from basis functions.

We then have

∂b(1)

∂r
(r, s) = (1− s)2(1 + s)[−2(1− r)(1 + r) + (1− r)2]

= (1− s)2(1 + s)[−2 + 2r2 + 1− 2r + r2]

= (1− s)2(1 + s)[−1− 2r + 3r2] (5.134)

∂b(1)

∂s
(r, s) = (1− r)2(1 + r)[−1− 2s+ 3s2] (5.135)

∂b(2)

∂r
(r, s) =

1

4
(1− s2)(1− r2 + (4 + r + s)(−2r))

=
1

4
(1− s2)(1− 8r − 3r2 − 2rs) (5.136)

∂b(2)

∂s
(r, s) =

1

4
(1− r2)(1− s2 + (4 + r + s)(−2s))

=
1

4
(1− r2)(1− 8s− 3s2 − 2rs) (5.137)

We postulate that a function f has the following representation in the element:

fh(r, s) = a+ br + cs+ drs+ e b(r, s)

where b(r, s) stands for the bubble function which is of the form b(r, s) = (1− r2)(1− s2)ϕ(r, s)
and ϕ is a (bi)-linear function of r, s.

We need

fh(r1, s1) = a− b− c+ d = f1 (5.138)

fh(r2, s2) = a+ b− c− d = f2 (5.139)

fh(r3, s3) = a+ b+ c+ d = f3 (5.140)

fh(r4, s4) = a− b+ c− d = f4 (5.141)

fh(r5, s5) = a+ e = f5 (5.142)

This can be written as a linear system:
1 −1 −1 1 0
1 1 −1 −1 0
1 1 1 1 0
1 −1 1 −1 0
1 0 0 0 1

 ·


a
b
c
d
e

 =


f1
f2
f3
f4
f5


and the solution is then:

a
b
c
d
e

 =
1

4


1 1 1 1 0
−1 1 1 −1 0
−1 −1 1 1 0
1 −1 1 −1 0
−1 −1 −1 −1 4

 ·


f1
f2
f3
f4
f5
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or,

a =
1

4
(f1 + f2 + f3 + f4)

b =
1

4
(−f1 + f2 + f3 − f4)

c =
1

4
(−f1 − f2 + f3 + f4)

d =
1

4
(f1 − f2 + f3 − f4)

e =
1

4
(−f1 − f2 − f3 − f4 + 4f5) (5.143)

Then

4fh(r, s) = 4[a+ br + cs+ drs+ e(1− r2)(1− s2)ϕ(r, s)]
= (f1 + f2 + f3 + f4)

+(−f1 + f2 + f3 − f4)r
+(−f1 − f2 + f3 + f4)s

+(f1 − f2 + f3 − f4)rs
+(−f1 − f2 − f3 − f4 + 4f5)(1− r2)(1− s2)ϕ(r, s)

= (1− r − s+ rs− b(r, s))f1
+(1 + r − s− rs− b(r, s))f2
+(1 + r + s+ rs− b(r, s))f3
+(1− r + s− rs− b(r, s))f4
+4b(r, s)f5 (5.144)

or,

fh(r, s) =

(
1

4
(1− r)(1− s)− 1

4
b(r, s)

)
︸ ︷︷ ︸

N1

f1 +

(
1

4
(1 + r)(1− s)− 1

4
b(r, s)

)
︸ ︷︷ ︸

N2

f2

+

(
1

4
(1 + r)(1 + s)− 1

4
b(r, s)

)
︸ ︷︷ ︸

N3

f3 +

(
1

4
(1− r)(1 + s)− 1

4
b(r, s)

)
︸ ︷︷ ︸

N4

f4

+ b(r, s)︸ ︷︷ ︸
N5

f5 (5.145)

As in the P+
1 case the resulting basis functions are a combination of the regular Q1 basis

functions and the bubble.

– Zeroth-order consistency check f(r, s) = C:

fh(r, s) =
5∑
i=1

Ni(r, s)fi = C
5∑
i=1

Ni(r, s) = C (5.146)
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– First-order consistency check f(r, s) = r (or f(r, s) = s):

fh(r, s) =
5∑
i=1

Ni(r, s)fi

= N1(r, s)(−1) +N2(r, s)(+1) +N3(r, s)(+1) +N4(r, s)(−1) +N5(r, s)(0)

= −N1(r, s) +N2(r, s) +N3(r, s)−N4(r, s)

= r (5.147)

– Second-order consistency check f(r, s) = rs (f1 = (−1)(−1) = 1, f2 = (+1)(−1) = −1,
etc ...)

fh(r, s) =
5∑
i=1

Ni(r, s)fi

= N1(r, s)(+1) +N2(r, s)(−1) +N3(r, s)(+1) +N4(r, s)(−1) +N5(r, s)(0)

= N1 −N2 +N3 −N4

=

(
1

4
(1− r)(1− s)− 1

4
b(r, s)

)
−
(
1

4
(1 + r)(1− s)− 1

4
b(r, s)

)
+

(
1

4
(1 + r)(1 + s)− 1

4
b(r, s)

)
−
(
1

4
(1− r)(1 + s)− 1

4
b(r, s)

)
=

1

4
(1− r)(1− s)− 1

4
(1 + r)(1− s) + 1

4
(1 + r)(1 + s)− 1

4
(1− r)(1 + s)

=
1

2
(−r)(1− s) + 1

2
(+r)(1 + s)

= rs (5.148)

We find that the basis functions can represent a bilinear field exactly.

Consistency check for quadratic terms, i.e. f(r, s) = r2 (or f(r, s) = s2):

fh(r, s) =
5∑
i=1

Ni(r, s)fi

= N1(r, s) · (+1) +N2(r, s) · (+1) +N3(r, s) · (+1) +N4(r, s) · (+1) +N5(r, s) · (0)

=

(
1

4
(1− r)(1− s)− 1

4
b(r, s)

)
+

(
1

4
(1 + r)(1− s)− 1

4
b(r, s)

)
+

(
1

4
(1 + r)(1 + s)− 1

4
b(r, s)

)
+

(
1

4
(1− r)(1 + s)− 1

4
b(r, s)

)
=

1

2
(1− s) + 1

2
(1 + s)− b(r, s)

= 1− b(r, s) (5.149)

We have∫ +1

−1

∫ +1

−1

(1− b1(r, s))drds =

∫ +1

−1

∫ +1

−1

[1− (1− r2)(1− s2)(1− r)(1− s)]drds = 20/9 ≃ 2.2222∫ +1

−1

∫ +1

−1

(1− b2(r, s, β))drds =

∫ +1

−1

∫ +1

−1

[1− (1− r2)(1− s2)(1 + β(r + s))]drds = 20/9 ∀β

Both bubbles yield the same average. This is not helpful.
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Let us now look at the (root) mean square:∫ +1

−1

∫ +1

−1

(1− b1(r, s))2drds = 21284/11025 ≃ 1.93052∫ +1

−1

∫ +1

−1

(1− b2(r, s, β))2drds =
4

1575
(128β2 + 623) (5.150)

The problem is that the minimum is reached for β = 0 which is not allowed so we cannot
choose β so as to minimise the error. For β = 0.25 as used in the paper:∫ +1

−1

∫ +1

−1

(1− b2(r, s))2drds = 2524/1575 ≃ 1.60254

On the other hand, this means that using the second bubble function does a better job at
representing square terms (r2, s2) than using the first one.

One can also revisit the second bubble function: in Lamichhane (2017) [741] it is postulated
to be defined by

b(2)(r, s) = (a+ br + cs)(1− r2)(1− s2) abc ̸= 0 (5.151)

on the reference element [−1, 1]×[−1, 1]. Then the author states that ’for simplicity we choose’:

b(2)(r, s) =
1

4
(4 + r + s)(1− r2)(1− s2) (5.152)

and that ’the factor 1/4 is used to force the value of the bubble function at the centroid of the
square to be 1’.

Looking closer, we see that forcing the bubble to be 1 in (r, s) = (0, 0) does impose a = 1 but
leaves b, c free, i.e. the bubble is then:

b(2)(r, s) = (1 + br + cs)(1− r2)(1− s2) bc ̸= 0 (5.153)

For symmetry reasons I would be tempted to indeed take b = c but I am then left with

b(2)(r, s) = [1 + b(r + s)](1− r2)(1− s2) b ̸= 0 (5.154)

which means that Lamichhane sets b = c = 1/4 in his paper.

Question: We know that b = 0 is not allowed, but could it not be possible to design an analytical
or numerical test or a theory to choose an ’optimal’ value (in some sense) for b?

——————————-
Let us consider a square mesh with nelx2 elements for simplicity. The number of V dofs for a

Q1 space would be (nelx + 1)2 = nelx2 + 2nelx + 1. The number of V dofs for a Q+
1 space would

be (nelx + 1)2 + nelx2 = 2nelx2 + 2nelx + 1. The number of V dofs for a Q2 space would be
(2 ∗ nelx + 1)2 = 4nelx2 + 4nelx + 1. Asymptotically, for large values of nelx, we find that a Q+

1

space requires twice as many dofs as Q1 while Q2 requires 4 times as many.
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Relevant Literature:

� Mons & Roge (1992) [892],

� Li et al. (2009) [781],

� Knobloch & Tobiska (2000) [714],

� Franca et al. (1993) [409],

� Idelsohn et al. (1995) [619].

5.3.15 The rotated Q1 (Rannacher-Turek element)

basis q1rc 2D.tex

The nodes are not on the corners of the element but in the middle of the element edges:

(tikz RTQ1P0.tex)

3 2

1

4

y

x

+======3======+

| |

| s |

| | |

4 +--r 2

| |

| |

| |

+======1======+

There are two types of basis functions: the Middle Point (MP) variant such that Ni(r⃗j) = δij and
the Mid Value (MV) variant such that 1

|Γi|

∫
Γi
NjdΓ = δij.

The Middle Point (MP) variant . We have Q̃1 = span{1, r, s, r2 − s2} so a function f ∈ Q̃1 is
such that

f(r, s) = a+ br + cs+ d(r2 − s2) (5.155)

This function must be so that

f1 = f(r = 0, s = −1) = a− c− d (5.156)

f2 = f(r = +1, s = 0) = a+ b+ d (5.157)

f3 = f(r = 0, s = +1) = a+ c− d (5.158)

f4 = f(r = −1, s = 0) = a− b+ d (5.159)
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and then 
f1
f2
f3
f4

 =


1 0 −1 −1
1 1 0 1
1 0 1 −1
1 −1 0 1

 ·


a
b
c
d


This system can easily be solved, and a, b, c, d are then replaced in Eq. (5.155), which yields

f(r, s) = N1(r, s)f1 +N2(r, s)f2 +N3(r, s)f3 +N4(r, s)f4 (5.160)

inside the element with

N1(r, s) =
1

4
(1− 2s− (r2 − s2))

N2(r, s) =
1

4
(1 + 2r + (r2 − s2))

N3(r, s) =
1

4
(1 + 2s− (r2 − s2))

N4(r, s) =
1

4
(1− 2r + (r2 − s2))

We of course recover the partition of unity property, i.e.
∑
Ni(r, s) = 1 for any coordinate r, s inside

the reference element.

Remark. These basis functions have been independently proposed by Donea, Giuliani, Morgan, and
Quartapelle [340] (1981). The authors prove herein that this element is checkerboard-free (although
they do no show any example of simulation carried out with this element).

∂N1

∂r
=

1

2
(−r) (5.161)

∂N2

∂r
=

1

2
(1 + r) (5.162)

∂N3

∂r
=

1

2
(−r) (5.163)

∂N4

∂r
=

1

2
(−1 + r) (5.164)

∂N1

∂s
=

1

2
(−1 + s) (5.165)

∂N2

∂s
=

1

2
(−s) (5.166)

∂N3

∂s
=

1

2
(1 + s) (5.167)

∂N4

∂s
=

1

2
(−s) (5.168)
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Graphical representation of the Q̃1 basis functions

The Mid Value (MV) variant .
These basis functions are implemented in deal.II 10 for x ∈ [0, 1] and y ∈ [0, 1]:

N1(x, y) = 0.75 + 1.5x− 2.5y − 1.5(x2 − y2) bottom (5.169)

N2(x, y) = −0.25− 0.5x+ 1.5y + 1.5(x2 − y2) right (5.170)

N3(x, y) = −0.25 + 1.5x− 0.5y − 1.5(x2 − y2) top (5.171)

N4(x, y) = 0.75− 2.5x+ 1.5y + 1.5(x2 − y2) left (5.172)

We then proceed to rewrite these for r ∈ [−1, 1] and t ∈ [−1 : 1]:

N1(r, s) =
1

4
− 1

2
s− 3

8
(r2 − s2) bottom (5.173)

N2(r, s) =
1

4
+

1

2
r +

3

8
(r2 − s2) right (5.174)

N3(r, s) =
1

4
+

1

2
s− 3

8
(r2 − s2) top (5.175)

N4(r, s) =
1

4
− 1

2
r +

3

8
(r2 − s2) left (5.176)

It is easy to verify that these functions verify the property

1

|Γi|

∫
Γi

NjdΓ = δij

These basis functions are used in Shipeng & Zhongci (2006) [1162] and mentioned in John [650,

10https://www.dealii.org/8.5.0/doxygen/deal.II/polynomials_rannacher_turek_8cc_source.html
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p.722].

∂N1

∂r
= −3

4
r

∂N2

∂r
=

1

2
+

3

4
r

∂N3

∂r
= −3

4
r

∂N4

∂r
= −1

2
+

3

4
r

∂N1

∂t
= −1

2
+

3

4
t

∂N2

∂t
= −3

4
t

∂N3

∂t
=

1

2
+

3

4
t

∂N4

∂t
= −3

4
t

5.3.16 The 2D enriched Q+
1 × P0 of Fortin

basis q1fortin 2D.tex

We here consider the enriched Q1×P0 element introduced first by Fortin (1981) [401]. The layout
of the degrees of freedom is as follows:

(tikz q1pp02D.tex)

x

y

u1, v1 u2, v2

u3, v3u4, v4

u5 u6

v5

v6

The approximation of the velocity components u and v inside the element is

uh(r, s) = au N1(r, s) + bu N2(r, s) + cu N3(r, s) + du N4(r, s) + d bu5(r, s) + e bu6(r, s)

vh(r, s) = av N1(r, s) + bv N2(r, s) + cv N3(r, s) + dv N4(r, s) + dvbv5(r, s) + evbv6(r, s)

where N1,2,3,4 are the standard Q1 basis functions in 2D and with

bu5(r, s) =
1

2
(1− r)(1− s2) bu6(r, s) =

1

2
(1 + r)(1− s2)

and

bv5(r, s) =
1

2
(1− r2)(1− s) bv6(r, s) =

1

2
(1− r2)(1 + s)

In the end one arrives at
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N u
1 (r, s) = N1(r, s)−

1

2
bu5(r, s)

N u
2 (r, s) = N2(r, s)−

1

2
bu6(r, s)

N u
3 (r, s) = N3(r, s)−

1

2
bu6(r, s)

N u
4 (r, s) = N4(r, s)−

1

2
bu5(r, s)

N u
5 (r, s) = bu5(r, s)

N u
6 (r, s) = bu6(r, s)

N v
1 (r, s) = N1(r, s)−

1

2
bv5(r, s)

N v
2 (r, s) = N2(r, s)−

1

2
bv5(r, s)

N v
3 (r, s) = N3(r, s)−

1

2
bv6(r, s)

N v
4 (r, s) = N4(r, s)−

1

2
bv6(r, s)

N v
5 (r, s) = bv5(r, s)

N v
6 (r, s) = bv6(r, s) (5.177)

We can check for the zero-th order consistency: Let u(r, s) = C, then

uh(r, s) =
6∑
i=1

N u
i (r, s)ui = C

6∑
i=1

N u
i (r, s) = C

4∑
i=1

Ni(r, s) = C (5.178)

5.3.17 The PNC
1 space

p1nc.tex

P1 P1NC

2 . (r0,s0)=(1/2,0)

| \ | \

| \ 2 1 (r1,s1)=(1/2,1/2)

| \ | \

0----1 .--0--. (r2,s2)=(0,1/2)

The basis functions are 1− 2λi, where λi are the barycentric coordinates, so we arrive at

N0(r, s) = 1− 2λ3 = 1− 2s

N1(r, s) = 1− 2λ1 = 1− 2(1− r − s) = −1 + 2r + 2s

N2(r, s) = 1− 2λ2 = 1− 2r

with of course

N0(r, s) +N1(r, s) +N2(r, s) = (1− 2s) + (−1 + 2r + 2s) + (1− 2r) = 1
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We have

N0(r0, s0) = 1− 2 · 0 = 1

N0(r1, s1) = 1− 2 · 1/2 = 0

N0(r2, s2) = 1− 2 · 1/2 = 0

N1(r0, s0) = 1− 2(1− 1/2− 0) = 0

N1(r1, s1) = 1− 2(1− 1/2− 1/2) = 1

N1(r2, s2) = 1− 2(1− 0− 1/2) = 0

N2(r0, s0) = 1− 2 · 1/2 = 0

N2(r1, s1) = 1− 2 · 1/2 = 0

N2(r2, s2) = 1− 2 · 0 = 1

Automatically,

∂rN0(r, s) = 0

∂rN1(r, s) = 2

∂rN2(r, s) = −2
∂sN0(r, s) = −2
∂sN1(r, s) = 2

∂sN2(r, s) = 0

Another way to obtain the basis functions is as follows.

fh(r, s) = a+ br + cs

f0 = fh(r0, s0) = a+ b/2

f1 = fh(r1, s1) = a+ b/2 + c/2

f2 = fh(r2, s2) = a+ c/2

or,  1 1/2 0
1 1/2 1/2
1 0 1/2

 ·
 a

b
c

 =

 f0
f1
f2


i.e.  a

b
c

 =

 1 −1 1
0 2 −2
−2 2 0

 ·
 f0

f1
f2


so

fh(r, s) = a+ br + cs

= (f0 − f1 + f2) + 2(f1 − f2)r + 2(−f0 + f1)s

= (1− 2s)f0 + (−1 + 2r + 2s)f1 + (1− 2r)f2

=
2∑
i=0

Ni(r, s)fi
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5.4 Elements and basis functions in 3D

elements3D.tex

5.4.1 Linear basis functions in tetrahedra (P1)

basis p1p 3D.tex

The location of the four notes are:

(r_0,s_0) = (0,0,0)

(r_1,s_1) = (1,0,0)

(r_2,s_2) = (0,1,0)

(r_3,s_3) = (0,0,1)

The basis polynomial is given by

f(r, s, t) = c0 + c1r + c2s+ c3t

and it needs to satisfy these four conditions:

f1 = f(r1, s1, t1) = c0 (5.179)

f2 = f(r2, s2, t2) = c0 + c1 (5.180)

f3 = f(r3, s3, t3) = c0 + c2 (5.181)

f4 = f(r4, s4, t4) = c0 + c3 (5.182)

which yields:
c0 = f1 c1 = f2 − f1 c2 = f3 − f1 c3 = f4 − f1

Finally,

f(r, s, t) = c0 + c1r + c2s+ c3t

= f1 + (f2 − f1)r + (f3 − f1)s+ (f4 − f1)t
= f1(1− r − s− t) + f2r + f3s+ f4t

=
∑
i

Ni(r, s, t)fi

Finally,

N1(r, s, t) = 1− r − s− t
N2(r, s, t) = r

N3(r, s, t) = s

N4(r, s, t) = t

Derivatives are trivial to obtain.
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5.4.2 Enriched linear in tetrahedra(P+
1 )

basis p1p 3D.tex

These basis functions would be used in the MINI element, see Section 7.3.14.
In 3D the bubble function lools like rst(1− r − s− t) so that

f(r, s, t) = a+ b r + c s+ d t+ e rst(1− r − s− t)

We have node 1 at location (r, s, t) = (0, 0, 0), node 2 at (r, s, t) = (1, 0, 0), node 3 at (r, s, t) = (0, 1, 0)
, node 4 at (r, s, t) = (0, 0, 1) and we set the location of the bubble (node 5) at r = s = t = 1/4 so
that

f(r1, s1, t1) = f1 = a+ b r1 + c s1 + d t1 + e r1s1t1(1− r1 − s1 − t1)
f(r2, s2, t2) = f2 = a+ b r2 + c s2 + d t2 + e r2s2t2(1− r2 − s2 − t2)
f(r3, s3, t3) = f3 = a+ b r3 + c s3 + d t3 + e r3s3t3(1− r3 − s3 − t3)
f(r4, s4, t4) = f4 = a+ b r4 + c s4 + d t4 + e r4s4t4(1− r4 − s4 − t4)
f(r5, s5, t5) = f5 = a+ b r5 + c s5 + d t5 + e r5s5t5(1− r5 − s5 − t5) (5.183)

i.e.,

f1 = a

f2 = a+ b

f3 = a+ c

f4 = a+ d

f5 = a+ b/4 + c/4 + d/4 + e/64(1− 1/4− 1/4− 1/4)

= a+ b/4 + c/4 + d/4 + e/256

Then

a = f1

b = f2 − f1
c = f3 − f1
d = f4 − f1
e = 256(f5 − a− b/4− c/4− d/4)

= 256(f5 − f1 − (f2 − f1)/4− (f3 − f1)/4− (f4 − f1)/4)
= 256(−f1/4− f2/4− f3/4− f4/4 + f5)

= 64(−f1 − f2 − f3 − f4 + 4f5) (5.184)

Finally:

f(r, s, t) = a+ br + cs+ dt+ erst(1− r − s− t)
= f1 + (f2 − f1)r + (f3 − f1)s+ (f4 − f1)t+ 64(−f1 − f2 − f3 − f4 + 4f5)rst(1− r − s− t)
= f1[1− r − s− t− 64rst(1− r − s− t)]
+ f2[r − 64rst(1− r − s− t)]
+ f3[s− 64rst(1− r − s− t)]
+ f4[t− 64rst(1− r − s− t)]
+ f5[256rst(1− r − s− t)]

=
5∑
i=1

Ni(r, s, t)fi (5.185)
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with

N1(r, s, t) = 1− r − s− t− 64rst(1− r − s− t) (5.186)

N2(r, s, t) = r − 64rst(1− r − s− t) (5.187)

N3(r, s, t) = s− 64rst(1− r − s− t) (5.188)

N4(r, s, t) = t− 64rst(1− r − s− t) (5.189)

N5(r, s, t) = +256rst(1− r − s− t) (5.190)

The derivatives are given by:

∂N1

∂r
(r, s, t) = −1− 64st(1− 2r − s− t)

∂N2

∂r
(r, s, t) = +1− 64st(1− 2r − s− t)

∂N3

∂r
(r, s, t) = −64st(1− 2r − s− t)

∂N4

∂r
(r, s, t) = −64st(1− 2r − s− t)

∂N5

∂r
(r, s, t) = 256st(1− 2r − s− t)

∂N1

∂s
(r, s, t) = −1− 64rt(1− r − 2s− t)

∂N2

∂s
(r, s, t) = −64rt(1− r − 2s− t)

∂N3

∂s
(r, s, t) = +1− 64rt(1− r − 2s− t)

∂N4

∂s
(r, s, t) = −64rt(1− r − 2s− t)

∂N5

∂s
(r, s, t) = 256rt(1− r − 2s− t)

∂N1

∂t
(r, s, t) = −1− 64rs(1− r − s− 2t)

∂N2

∂t
(r, s, t) = −64rs(1− r − s− 2t)

∂N3

∂t
(r, s, t) = −64rs(1− r − s− 2t)

∂N4

∂t
(r, s, t) = +1− 64rs(1− r − s− 2t)

∂N5

∂t
(r, s, t) = 256rs(1− r − s− 2t)

5.4.3 Triquadratic basis functions in 3D (Q2)

basis q2 3D.tex

(tikz q2.tex)

262



x

y

z

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

N1 = 0.5r(r − 1) · 0.5s(s− 1) · 0.5t(t− 1)

N2 = (1− r2) · 0.5s(s− 1) · 0.5t(t− 1)

N3 = 0.5r(r + 1) · 0.5s(s− 1) · 0.5t(t− 1)

N4 = 0.5r(r − 1) · (1− s2) · 0.5t(t− 1)

N5 = (1− r2) · (1− s2) · 0.5t(t− 1)

N6 = 0.5r(r + 1) · (1− s2) · 0.5t(t− 1)

N7 = 0.5r(r − 1) · 0.5s(s+ 1) · 0.5t(t− 1)

N8 = (1− r2) · 0.5s(s+ 1) · 0.5t(t− 1)

N9 = 0.5r(r + 1) · 0.5s(s+ 1) · 0.5t(t− 1)

N10 = 0.5r(r − 1) · 0.5s(s− 1) · (1− t2)
N11 = (1− r2) · 0.5s(s− 1) · (1− t2)
N12 = 0.5r(r + 1) · 0.5s(s− 1) · (1− t2)
N13 = 0.5r(r − 1) · (1− s2) · (1− t2)
N14 = (1− r2) · (1− s2) · (1− t2)
N15 = 0.5r(r + 1) · (1− s2) · (1− t2)
N16 = 0.5r(r − 1) · 0.5s(s+ 1) · (1− t2)
N17 = (1− r2) · 0.5s(s+ 1) · (1− t2)
N18 = 0.5r(r + 1) · 0.5s(s+ 1) · (1− t2)
N19 = 0.5r(r − 1) · 0.5s(s− 1) · 0.5t(t+ 1)

N20 = (1− r2) · 0.5s(s− 1) · 0.5t(t+ 1)

N21 = 0.5r(r + 1) · 0.5s(s− 1) · 0.5t(t+ 1)

N22 = 0.5r(r − 1) · (1− s2) · 0.5t(t+ 1)

N23 = (1− r2) · (1− s2) · 0.5t(t+ 1)

N24 = 0.5r(r + 1) · (1− s2) · 0.5t(t+ 1)

N25 = 0.5r(r − 1) · 0.5s(s+ 1) · 0.5t(t+ 1)

N26 = (1− r2) · 0.5s(s+ 1) · 0.5t(t+ 1)

N27 = 0.5r(r + 1) · 0.5s(s+ 1) · 0.5t(t+ 1)

5.4.4 Enriched quadratic basis functions in tetrahedra (P+
2 )

basis p2p 3D.tex

263



The velocity basis functions are:

ϕi = λi(2λi − 1) + 3(λiλjλk + λiλjλl + λiλkλl)− 4λiλjλkλl (5.191)

ϕij = 4λiλj − 12(λiλjλk + λiλjλl) + 32λiλjλkλl (5.192)

ϕijk = 27λiλjλk − 108λiλjλkλl (5.193)

ϕc = 256λiλjλkλl (5.194)

REFS ??? better definition of functions !

5.4.5 Linear basis functions for hexahedra (P1)

This is the Q2 × P−1 element. I choose the reduced coordinates of the pressure nodes to be :
point r s t
1 1/2 -1/2 -1/2
2 -1/2 1/2 -1/2
3 -1/2 -1/2 1/2
4 1/2 1/2 1/2

Inside the element the pressure is given as a linear function of the reduced coordinates r, s, t:

p(r, s, t) = a+ br + cs+ dt

This expression must exactly interpolate the pressure at all four pressure nodes:

p1 = p(r1, s1, t1) = a+ br1 + cs1 + dt1 = a+ b/2− c/2− d/2
p2 = p(r2, s2, t2) = a+ br2 + cs2 + dt2 = a− b/2 + c/2− d/2
p3 = p(r3, s3, t3) = a+ br3 + cs3 + dt3 = a− b/2− c/2 + d/2

p4 = p(r4, s4, t4) = a+ br4 + cs4 + dt4 = a+ b/2 + c/2 + d/2

or, 
1 1/2 −1/2 −1/2
1 −1/2 +1/2 −1/2
1 −1/2 −1/2 +1/2
1 1/2 +1/2 +1/2




a
b
c
d

 =


p1
p2
p3
p4


The matrix is invertible and we get:

a
b
c
d

 =


1/4 1/4 1/4 1/4
1/2 −1/2 −1/2 1/2
−1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 1/2




p1
p2
p3
p4
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so

p(r, s, t) = a+ br + cs+ dt

=
1

4
(p1 + p2 + p3 + p4) +

1

2
(p1 − p2 − p3 + p4)r +

1

2
(−p1 + p2 − p3 + p4)s+

1

2
(−p1 − p2 + p3 + p4)t

=
1

4
(1 + 2r − 2s− 2t)p1 +

1

4
(1− 2r + 2s− 2t)p2 +

1

4
(1− 2r − 2s+ 2t)p3 +

1

4
(1 + 2r + 2s+ 2t)p4

=
4∑
i=1

Ni(r, s, t)pi (5.195)

with

N1(r, s, t) =
1

4
(1 + 2r − 2s− 2t)

N2(r, s, t) =
1

4
(1− 2r + 2s− 2t)

N3(r, s, t) =
1

4
(1− 2r − 2s+ 2t)

N4(r, s, t) =
1

4
(1 + 2r + 2s+ 2t)

I could also have chosen
point r s t
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

This expression must exactly interpolate the pressure at all four pressure nodes:

p1 = p(r1, s1, t1) = a+ br1 + cs1 + dt1 = a

p2 = p(r2, s2, t2) = a+ br2 + cs2 + dt2 = a+ b

p3 = p(r3, s3, t3) = a+ br3 + cs3 + dt3 = a+ c

p4 = p(r4, s4, t4) = a+ br4 + cs4 + dt4 = a+ d

i.e.
a = p1 b = p2 − p1 c = p3 − p1 d = p4 − p1

or,

ph(r, s) = a+ br+ cs+dt = p1+(p2−p1)r+(p3−p1)r+(p4−p1)t = p1(1−r−s− t)+rp2+sp3+ tp4

so

N1(r, s, t) = 1− r − s− t (5.196)

N2(r, s, t) = r (5.197)

N3(r, s, t) = s (5.198)

N4(r, s, t) = t (5.199)
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5.4.6 20-node serendipity basis functions in 3D (Q
(20)
2 )

The serendipity elements are those rectangular elements which have no interior nodes [1051, p91].

t

|

.--s

/

r

05=====20=====08

| |

| |

17 - - - - - -19 13 16

. . | |

. . | |

06=====18=====07 . . 01=====12=====04 @ r=-1

| | . .

| | . .

14 15 09 - - - - - -11 @ r=0

| |

| |

02=====10=====03 @ r=+1

find/build basis functions!

5.4.7 The rotated Q1

The nodes are not on the corners of the element but in the middle of the element faces:

Node numbering and connectivity pattern of the reference element. Taken from [445]

We have Q̃1 = span{1, r, s, t, r2 − s2, s2 − t2}.

The Middle Point (MP) variant .
The basis functions are given by (see Georgiev et al. (2008) [445]):

N1(r, s, t) =
1

6
(1− 3r + 2r2 − s2 − t2) (5.200)

N2(r, s, t) =
1

6
(1 + 3r + 2r2 − s2 − t2) (5.201)

N3(r, s, t) =
1

6
(1− r2 − 3s+ 2s2 − t2) (5.202)

N4(r, s, t) =
1

6
(1− r2 + 3s+ 2s2 − t2) (5.203)

N5(r, s, t) =
1

6
(1− r2 − s2 − 3t+ 2t2) (5.204)

N6(r, s, t) =
1

6
(1− r2 − s2 + 3t+ 2t2) (5.205)
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∂N1

∂r
=

1

6
(−3 + 4r) (5.206)

∂N2

∂r
=

1

6
(3 + 4r) (5.207)

∂N3

∂r
=

1

6
(−2r) (5.208)

∂N4

∂r
=

1

6
(−2r) (5.209)

∂N5

∂r
=

1

6
(−2r) (5.210)

∂N6

∂r
=

1

6
(−2r) (5.211)

∂N1

∂s
=

1

6
(−2s) (5.212)

∂N2

∂s
=

1

6
(−2s) (5.213)

∂N3

∂s
=

1

6
(−3 + 4s) (5.214)

∂N4

∂s
=

1

6
(3 + 4s) (5.215)

∂N5

∂s
=

1

6
(−2s) (5.216)

∂N6

∂s
=

1

6
(−2s) (5.217)

∂N1

∂t
=

1

6
(−2t) (5.218)

∂N2

∂t
=

1

6
(−2t) (5.219)

∂N3

∂t
=

1

6
(−2t) (5.220)

∂N4

∂t
=

1

6
(−2t) (5.221)

∂N5

∂t
=

1

6
(−3 + 4t) (5.222)

∂N6

∂t
=

1

6
(3 + 4t) (5.223)

The Mid Value (MV) variant .
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N1(r, s, t) =
1

12
(2− 6r + 6r2 − 3s2 − 3t2) (5.224)

N2(r, s, t) =
1

12
(2 + 6r + 6r2 − 3s2 − 3t2) (5.225)

N3(r, s, t) =
1

12
(2− 3r2 − 6s+ 6s2 − 3t2) (5.226)

N4(r, s, t) =
1

12
(2− 3r2 + 6s+ 6s2 − 3t2) (5.227)

N5(r, s, t) =
1

12
(2− 3r2 − 3s2 − 6t+ 6t2) (5.228)

N6(r, s, t) =
1

12
(2− 3r2 − 3s2 + 6t+ 6t2) (5.229)

∂N1

∂r
=

1

12
(−6 + 12r) =

1

2
(−1 + 2r) (5.230)

∂N2

∂r
=

1

12
(6 + 12r) =

1

2
(1 + 2r) (5.231)

∂N3

∂r
=

1

12
(−6r) = −1

2
r (5.232)

∂N4

∂r
=

1

12
(−6r) = −1

2
r (5.233)

∂N5

∂r
=

1

12
(−6r) = −1

2
r (5.234)

∂N6

∂r
=

1

12
(−6r) = −1

2
r (5.235)

∂N1

∂s
=

1

12
(−6s) = −1

2
s (5.236)

∂N2

∂s
=

1

12
(−6s) = −1

2
s (5.237)

∂N3

∂s
=

1

12
(−6 + 12s) =

1

2
(−1 + 2s) (5.238)

∂N4

∂s
=

1

12
(6 + 12s) =

1

2
(1 + 2s) (5.239)

∂N5

∂s
=

1

12
(−6s) = −1

2
s (5.240)

∂N6

∂s
=

1

12
(−6s) = −1

2
s (5.241)
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∂N1

∂t
=

1

12
(−6t) = −1

2
t (5.242)

∂N2

∂t
=

1

12
(−6t) = −1

2
t (5.243)

∂N3

∂t
=

1

12
(−6t) = −1

2
t (5.244)

∂N4

∂t
=

1

12
(−6t) = −1

2
t (5.245)

∂N5

∂t
=

1

12
(−6 + 12t) =

1

2
(−1 + 2t) (5.246)

∂N6

∂t
=

1

12
(6 + 12t) =

1

2
(1 + 2t) (5.247)

5.4.8 The 3D enriched Q+
1 × P0 of Fortin

This element is mentioned on p249 of Cuvelier, Segal & van Steenhoven [298]: ”The enriched trilinear
velocity-constant pressure element is probably the simplest admissible 3D element.” Fortin [401]
designed a simple LBB-stable Q1 element to which mid-face nodes are added, i.e. a ’bubble’ Q2

function is added on each face. However, only ν⃗ · n⃗ is present on these mid-face nodes:

(tikz q1pp0.tex)

x

y

z

u2, v2, w2
u3, v3, w3

u4, v4, w4

u5, v5, w5

u6, v6, w6

u8, v8, w8

u9

u10
v9

v10

w9

w10

Fortin states: ”this element satisfies the B.B. condition and is probably the simplest 3-D element
to do So. This unfortunately does not mean that it is more accurate (at least on regular meshes).”
and ”the element satisfies the B.B. condition. It can therefore be used in a non-regular mesh without
fear. The number of degrees of freedom is approximately double with respect to the Q1×P0 element
and this is reflected by an increased number of vortices and a reduction of their size. However, there
seems to be a qualitative deficiency of these vortices since they do not easily assemble into complex
flows. Only numerical experiments can give the final answer.” This element is mentioned/used in
[1080, 84, 1303].

Considering a single element, we have

� Q1: 2× 2× 2× 3 = 24 velocity dofs

� Q+
1 : 2× 2× 2× 3 + 6 = 30 velocity dofs:

V⃗ T = (u1, v1, w1, . . . , u8, v8, w8︸ ︷︷ ︸
Q1 dofs

, u9, v9, w9, u10, v10, w10︸ ︷︷ ︸
bubble dofs

)
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The big difference with all other elements so far is the fact that the dofs u9, v9, w9 are not
colocated (same for the other three). u9 lives in the middle of the r = −1 face, v9 lives in the
middle of the s = −1 face and w9 lives in the middle of the t = −1 face.

� Q2: 3× 3× 3× 3 = 81 velocity dofs

Considering a 3D mesh composed of nel = nelx× nely × nelz elements:

� Q1: the total number of Velocity dofs is NfemV = (nelx+ 1)× (nely + 1)× (nelz + 1)× 3

� Q+
1 : the total number of nodes is

NfemV = (nelx+1)×(nely+1)×(nelz+1)×3+(nelx+1)×nely×nelz+nelx×(nely+1)×nelz+nelx×nely×(nelz+1)

� Q2: the total number of Velocity dofs is NfemV = (2nelx+1)× (2nely+1)× (2nelz+1)× 3

When nelx = nely = nelz = n >> 1 then the numbers above converge to 3n3, 6n3 and 24n3

respectively. This means that for large meshes the enriched Q1 uses twice as many dofs as the
standard Q1 while the Q2 element uses 8 times more.

x-component of velocity The polynomial representation of the velocity in the element is given
by

uh(r, s, t) = a+ br + cs+ dt+ ers+ frt+ gst+ hrst+ kb9(r, s, t) + lb10(r, s, t)

where the two bubble functions are:

bu9(r, s, t) =
1

2
(1− r)(1− s2)(1− t2) bu10(r, s, t) =

1

2
(1 + r)(1− s2)(1− t2)

The coordinates of the u9 dof is (-1,0,0) and the coordinate of the u10 dof is (1, 0, 0). We see that
the bubble functions are 1 at their nodes and zero at all other nodes. We can actually use a different
basis for 1, r, s, t, rs, rt, st, rst and we instead choose the standard Q1 functions so that uh becomes:

uh(r, s, t) = aN1 + bN2 + cN3 + dN4 + eN5 + fN6 + gN7 + hN8 + kb9(r, s, t) + lb10(r, s, t)

We then must find the set of coefficients {a . . . l} and we will do so by requiring that uh(ri, si, ti) = ui
for i = 1, 10.

The coordinates of all 10 nodes and the values of basis functions at these locations are:

node # r s t N1 N2 N3 N4 N5 N6 N7 N8 bu9 bu10
1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0
2 +1 -1 -1 0 1 0 0 0 0 0 0 0 0
3 +1 +1 -1 0 0 1 0 0 0 0 0 0 0
4 -1 +1 -1 0 0 0 1 0 0 0 0 0 0
5 -1 -1 +1 0 0 0 0 1 0 0 0 0 0
6 +1 -1 +1 0 0 0 0 0 1 0 0 0 0
7 +1 +1 +1 0 0 0 0 0 0 1 0 0 0
8 -1 +1 +1 0 0 0 0 0 0 0 1 0 0
9 -1 0 0 1/4 0 0 1/4 1/4 0 0 1/4 1 0
10 +1 0 0 0 1/4 1/4 0 0 1/4 1/4 0 0 1
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We then have the following ten equations:

u1 = uh(r1, s1, t1) = a

u2 = uh(r1, s1, t1) = b

u3 = uh(r1, s1, t1) = c

u4 = uh(r1, s1, t1) = d

u5 = uh(r1, s1, t1) = e

u6 = uh(r1, s1, t1) = f

u7 = uh(r1, s1, t1) = g

u8 = uh(r1, s1, t1) = h

u9 = uh(r9, s9, t9) =
1

4
(a+ d+ e+ h) + k

u10 = uh(r10, s10, t10) =
1

4
(b+ c+ f + g) + l

or, 

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1/4 0 0 1/4 1/4 0 0 1/4 1 0
0 1/4 1/4 0 0 1/4 1/4 0 0 1


·



a
b
c
d
e
f
g
h
k
l


=



u1
u2
u3
u4
u5
u6
u7
u8
u9
u10


This yields

a = u1

b = u2

c = u3

d = u4

e = u5

f = u6

g = u7

h = u8

k = u9 −
1

4
(u1 + u4 + u5 + u8)

l = u10 −
1

4
(u2 + u3 + u6 + u7)
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and then

uh(r, s, t) = aN1 + bN2 + cN3 + dN4 + eN5 + fN6 + gN7 + hN8 + kbu9(r, s, t) + lbu10(r, s, t)

= u1N1 + u2N2 + u3N3 + u4N4 + u5N5 + u6N6 + u7N7 + u8N8

+

[
u9 −

1

4
(u1 + u4 + u5 + u8)

]
bu9(r, s, t) +

[
u10 −

1

4
(u2 + u3 + u6 + u7)

]
bu10(r, s, t)

=

(
u1 −

1

4
b9

)
N1 +

(
u2 −

1

4
b10

)
N2 +

(
u3 −

1

4
b10

)
N3 +

(
u4 −

1

4
b9

)
N4 +(

u5 −
1

4
b9

)
N5 +

(
u6 −

1

4
b10

)
N6 +

(
u7 −

1

4
b10

)
N7 +

(
u8 −

1

4
b9

)
N8 +

bu9(r, s, t)u9 + bu10(r, s, t)u10

Finally, we can write the basis functions for the u field:

Nu
1 (r, s, t) = N1(r, s, t)−

1

4
bu9(r, s, t)

Nu
2 (r, s, t) = N2(r, s, t)−

1

4
bu10(r, s, t)

Nu
3 (r, s, t) = N3(r, s, t)−

1

4
bu10(r, s, t)

Nu
4 (r, s, t) = N4(r, s, t)−

1

4
bu9(r, s, t)

Nu
5 (r, s, t) = N5(r, s, t)−

1

4
bu9(r, s, t)

Nu
6 (r, s, t) = N6(r, s, t)−

1

4
bu10(r, s, t)

Nu
7 (r, s, t) = N7(r, s, t)−

1

4
bu10(r, s, t)

Nu
8 (r, s, t) = N8(r, s, t)−

1

4
bu9(r, s, t)

Nu
9 (r, s, t) = bu9(r, s, t)

Nu
10(r, s, t) = bu10(r, s, t)

And it is easy to verify that
10∑
i=1

Nu
i (r, s, t) = 1 ∀r, s, t

During the implementation phase we will need the derivatives of the basis functions, which are trivial
for the standard Q1 basis functions Ni. Remain then
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∂rb
u
9(r, s, t) =

∂

∂r

(
1

2
(1− r)(1− s2)(1− t2)

)
= −1

2
(1− s2)(1− t2)

∂sb
u
9(r, s, t) =

∂

∂s

(
1

2
(1− r)(1− s2)(1− t2)

)
= −(1− r)s(1− t2)

∂tb
u
9(r, s, t) =

∂

∂t

(
1

2
(1− r)(1− s2)(1− t2)

)
= −(1− r)(1− s2)t

∂rb
u
10(r, s, t) =

∂

∂r

(
1

2
(1 + r)(1− s2)(1− t2)

)
=

1

2
(1− s2)(1− t2)

∂sb
u
10(r, s, t) =

∂

∂s

(
1

2
(1 + r)(1− s2)(1− t2)

)
= −(1 + r)s(1− t2)

∂tb
u
10(r, s, t) =

∂

∂t

(
1

2
(1 + r)(1− s2)(1− t2)

)
= −(1 + r)(1− s2)t

y-component of velocity The bubbles are given by

bv9(r, s, t) =
1

2
(1− r2)(1− s)(1− t2) bv10(r, s, t) =

1

2
(1− r2)(1 + s)(1− t2)

The coordinates of all 10 nodes and the values of basis functions at these locations are:

node # r s t N1 N2 N3 N4 N5 N6 N7 N8 bv9 bv10
1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0
2 +1 -1 -1 0 1 0 0 0 0 0 0 0 0
3 +1 +1 -1 0 0 1 0 0 0 0 0 0 0
4 -1 +1 -1 0 0 0 1 0 0 0 0 0 0
5 -1 -1 +1 0 0 0 0 1 0 0 0 0 0
6 +1 -1 +1 0 0 0 0 0 1 0 0 0 0
7 +1 +1 +1 0 0 0 0 0 0 1 0 0 0
8 -1 +1 +1 0 0 0 0 0 0 0 1 0 0
9 0 -1 0 1/4 1/4 0 0 1/4 1/4 0 0 1 0
10 0 +1 0 0 0 1/4 1/4 0 0 1/4 1/4 0 1

Then
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N v
1 (r, s, t) = N1(r, s, t)−

1

4
bv9(r, s, t)

N v
2 (r, s, t) = N2(r, s, t)−

1

4
bv9(r, s, t)

N v
3 (r, s, t) = N3(r, s, t)−

1

4
bv10(r, s, t)

N v
4 (r, s, t) = N4(r, s, t)−

1

4
bv10(r, s, t)

N v
5 (r, s, t) = N5(r, s, t)−

1

4
bv9(r, s, t)

N v
6 (r, s, t) = N6(r, s, t)−

1

4
bv9(r, s, t)

N v
7 (r, s, t) = N7(r, s, t)−

1

4
bv10(r, s, t)

N v
8 (r, s, t) = N8(r, s, t)−

1

4
bv10(r, s, t)

N v
9 (r, s, t) = bv9(r, s, t)

N v
10(r, s, t) = bv10(r, s, t) (5.248)

z-component of velocity The bubbles are given by

bw9 (r, s, t) =
1

2
(1− r2)(1− s2)(1− t) bw10(r, s, t) =

1

2
(1− r2)(1− s2)(1 + t)

The coordinates of all 10 nodes and the values of basis functions at these locations are:

node # r s t N1 N2 N3 N4 N5 N6 N7 N8 bw9 bw10
1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0
2 +1 -1 -1 0 1 0 0 0 0 0 0 0 0
3 +1 +1 -1 0 0 1 0 0 0 0 0 0 0
4 -1 +1 -1 0 0 0 1 0 0 0 0 0 0
5 -1 -1 +1 0 0 0 0 1 0 0 0 0 0
6 +1 -1 +1 0 0 0 0 0 1 0 0 0 0
7 +1 +1 +1 0 0 0 0 0 0 1 0 0 0
8 -1 +1 +1 0 0 0 0 0 0 0 1 0 0
9 0 0 -1 1/4 1/4 1/4 1/4 0 0 0 0 1 0
10 0 0 +1 0 0 0 0 1/4 1/4 1/4 1/4 0 1
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Nw
1 (r, s, t) = N1(r, s, t)−

1

4
bw9 (r, s, t)

Nw
2 (r, s, t) = N2(r, s, t)−

1

4
bw9 (r, s, t)

Nw
3 (r, s, t) = N3(r, s, t)−

1

4
bw9 (r, s, t)

Nw
4 (r, s, t) = N4(r, s, t)−

1

4
bw9 (r, s, t)

Nw
5 (r, s, t) = N5(r, s, t)−

1

4
bw10(r, s, t)

Nw
6 (r, s, t) = N6(r, s, t)−

1

4
bw10(r, s, t)

Nw
7 (r, s, t) = N7(r, s, t)−

1

4
bw10(r, s, t)

Nw
8 (r, s, t) = N8(r, s, t)−

1

4
bw10(r, s, t)

Nw
9 (r, s, t) = bw9 (r, s, t)

Nw
10(r, s, t) = bw10(r, s, t)

A word about the B matrix We have

uh(r, s, t) =
10∑
i=1

Nu
i (r, s, t)ui (5.249)

vh(r, s, t) =
10∑
i=1

N v
i (r, s, t)vi (5.250)

wh(r, s, t) =
10∑
i=1

Nw
i (r, s, t)wi (5.251)

Normally we do not make a distinction between the basis functions associated to u, v, w but
because of the bubbles on the faces we now have to.

We have previously established that the strain rate vector ⃗̇ε is:

⃗̇ε =



∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y
+ ∂v
∂x

∂u
∂z
+ ∂w

∂x

∂v
∂z
+ ∂w

∂y



=



∑
i

∂Nu
i

∂x
ui

∑
i

∂Nv
i

∂y
vi

∑
i

∂Nw
i

∂z
wi

∑
i

(
∂Nu

i

∂y
ui+

∂Nv
i

∂x
vi)

∑
i

(
∂Nu

i

∂z
ui+

∂Nw
i

∂x
wi)

∑
i

(
∂Nv

i

∂z
vi+

∂Nw
i

∂y
wi)



=



∂Nu
1

∂x
0 0 · · · ∂Nu

10

∂x
0 0

0
∂Nv

1

∂y
0 · · · 0

∂Nv
10

∂y
0

0 0
∂Nw

1

∂z
· · · 0 0

∂Nw
10

∂z

∂Nu
1

∂y

∂Nv
1

∂x
0 · · · ∂Nu

10

∂x

∂Nv
10

∂x
0

∂Nu
1

∂z
0

∂Nw
1

∂x
· · · ∂Nu

10

∂z
0

∂Nw
mv

∂x

0
∂Nv

1

∂z

∂Nw
1

∂y
· · · 0

∂Nv
10

∂z

∂Nw
10

∂y


︸ ︷︷ ︸

B

·



u1
v1
w1

u2
v2
w2

u3
v3
. . .
u10
v10
w10


︸ ︷︷ ︸

V⃗
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5.4.9 The Q++
1 ×Q1 of Karabelas et al (2020)

q1q13D 2bubbles.tex

This element is implemented in stone 82. The two bubble functions are given in Karabelas et
al. (2020) [670]:

b9(r, s, t) =

(
27

32

)3

(1− r2)(1− s2)(1− t2) · (1− r)(1− s)(1− t) = β9(r) · β9(s) · β9(t)

b10(r, s, t) =

(
27

32

)3

(1− r2)(1− s2)(1− t2) · (1 + r)(1 + s)(1 + t) = β10(r) · β10(s) · β10(t)

where I have chosen nodes 1 (r⃗1 = (−1,−1,−1)) and 7 (r⃗7 = (+1,+1,+1)) as diagonally opposed
nodes (a requirement from the paper), and with

β9(x) =
27

32
(1− x2)(1− x) β10(x) =

27

32
(1− x2)(1 + x)

I have added the (27/32)3 coefficients so that these functions are exactly 1 a their corresponding
nodes. The term (1− r2)(1− s2)(1− t2) makes sure that the two bubbles are conforming and exactly
zero on the 6 faces of the element. In what follows Ñ1..8 are the standard Q1 basis functions.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.666667 -0.333333  0  0.333333  0.666667  1

x

β9(x)
β10(x)

Representation of bubbles β9(x) and β10(x)

Remark. Bubble function 9 is not zero at node 10 and vice versa!

The authors state: ”This also allows for a straightforward inclusion in combination with existing
finite element codes since all required implementations are purely on the element level”. This is
especially true if static condensation is used (the authors explain static condensation for the bubbles
in the appendix of the paper).

The ten nodes are the standard 8 corners of the Q1 element as well as r⃗9 = (−1/3,−1/3,−1/3)
for b9 and r⃗10 = (1/3, 1/3, 1/3) for b10. We have the following approximation of function f inside the
element:

fh(r, s, t) =
8∑
i=1

aiÑi(r, s, t) + a9b9(r, s, t) + a10b10(r, s, t)

We notice that bubble functions are exactly zero at the corners of the reference element and we can
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compute the values of the ten polynomials (Ñ1−8(r, s, t), b9(r, s, t), b10(r, s, t)) at the ten nodes:

Ñ1 Ñ2 Ñ3 Ñ4 Ñ5 Ñ6 Ñ7 Ñ8 b9 b10

r⃗1 = (−1,−1,−1) 1 0 0 0 0 0 0 0 0 0
r⃗2 = (+1,−1,−1) 0 1 0 0 0 0 0 0 0 0
r⃗3 = (+1,+1,−1) 0 0 1 0 0 0 0 0 0 0
r⃗4 = (−1,+1,−1) 0 0 0 1 0 0 0 0 0 0
r⃗5 = (−1,−1,+1) 0 0 0 0 1 0 0 0 0 0
r⃗6 = (+1,−1,+1) 0 0 0 0 0 1 0 0 0 0
r⃗7 = (+1,+1,+1) 0 0 0 0 0 0 1 0 0 0
r⃗8 = (−1,+1,+1) 0 0 0 0 0 0 0 1 0 0
r⃗9 = (−1

3
,−1

3
,−1

3
) 8/27 4/27 2/27 4/27 4/27 2/27 1/27 2/27 1 1/8

r⃗10 = (+1
3
,+1

3
,+1

3
) 1/27 2/17 4/27 2/27 2/27 4/27 8/27 4/27 1/8 1

We then require that the polynomial representation of fh of f inside the element is such that
fh(r⃗i) = fi, i.e.:

f1 = fh(r1, s1, t1) = a1

f2 = fh(r2, s1, t1) = a2

f3 = fh(r3, s1, t1) = a3

f4 = fh(r4, s1, t1) = a4

f5 = fh(r5, s1, t1) = a5

f6 = fh(r6, s1, t1) = a6

f7 = fh(r7, s1, t1) = a7

f8 = fh(r8, s1, t1) = a8

f9 = fh(r9, s9, t9) =
1

27
(8a1 + 4a2 + 2a3 + 4a4 + 4a5 + 2a6 + a7 + 2a8) + a9 + a10/8

f10 = fh(r10, s10, t10) =
1

27
(a1 + 2a2 + 4a3 + 2a4 + 2a5 + 4a6 + 8a7 + 4a8) + a9/8 + a10

or, 

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

8/27 4/27 2/27 4/27 4/27 2/27 1/27 2/27 1 1/8
1/27 2/17 4/27 2/27 2/27 4/27 8/27 4/27 1/8 1


·



a1
a2
a3
a4
a5
a6
a7
a8
a9
a10


=



f1
f2
f3
f4
f5
f6
f7
f8
f9
f10


which yields ai = fi for i = 1, ...8 and

a9 + a10/8 = f9−
1

27
(8f1 + 4f2 + 2f3 + 4f4 + 4f5 + 2f6 + f7 + 2f8)︸ ︷︷ ︸

f̃9

a9/8 + a10 = f10−
1

27
(f1 + 2f2 + 4f3 + 2f4 + 2f5 + 4f6 + 8f7 + 4f8)︸ ︷︷ ︸

f̃10
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8a9 + a10 = 8f9 + 8f̃9

a9 + 8a10 = 8f10 + 8f̃10

and then

a9 =
1

63
(64f9 − 8f10) +

1

63
(64f̃9 − 8f̃10)

=
8

63
(8f9 − f10) +

8

63
(8f̃9 − f̃10)

=
8

63
(8f9 − f10)−

1

27

8

63
[8(8f1 + 4f2 + 2f3 + 4f4 + 4f5 + 2f6 + f7 + 2f8)

−(f1 + 2f2 + 4f3 + 2f4 + 2f5 + 4f6 + 8f7 + 4f8)]

=
8

63
(8f9 − f10)−

1

27

8

63
(63f1 + 30f2 + 12f3 + 30f4 + 30f5 + 12f6 + 12f8)

a10 =
1

63
(64f10 − 8f9) +

1

63
(64f̃10 − 8f̃9)

=
8

63
(8f10 − f9) +

8

63
(8f̃10 − f̃9)

=
8

63
(8f10 − f9)−

1

27

8

63
[8(f1 + 2f2 + 4f3 + 2f4 + 2f5 + 4f6 + 8f7 + 4f8)

−(8f1 + 4f2 + 2f3 + 4f4 + 4f5 + 2f6 + f7 + 2f8)]

=
8

63
(8f10 − f9)−

1

27

8

63
(12f2 + 30f3 + 12f4 + 12f5 + 30f6 + 63f7 + 30f8)

We can then write
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fh(r, s, t) = f1N1(r, s, t) + f2N2(r, s, t) + f3N3(r, s, t) + f4N4(r, s, t)

+ f5N5(r, s, t) + f6N6(r, s, t) + f7N7(r, s, t) + f8N8(r, s, t)

+

[
8

63
(8f9 − f10)−

1

27

8

63
(63f1 + 30f2 + 12f3 + 30f4 + 30f5 + 12f6 + 12f8)

]
b9(r, s, t)[

8

63
(8f10 − f9)−

1

27

8

63
(12f2 + 30f3 + 12f4 + 12f5 + 30f6 + 63f7 + 30f8)

]
b10(r, s, t)

=

(
N1(r, s, t)−

23

33
b9(r, s, t)

)
f1

+

(
N2(r, s, t)−

23

33
10

21
b9(r, s, t)−

23

33
4

21
b10(r, s, t)

)
f2

+

(
N3(r, s, t)−

23

33
4

21
b9r, s, t)−

23

33
10

21
b10(r, s, t)

)
f3

+

(
N4(r, s, t)−

23

33
10

21
b9r, s, t)−

23

33
4

21
b10(r, s, t)

)
f4

+

(
N5(r, s, t)−

23

33
10

21
b9r, s, t)−

23

33
4

21
b10(r, s, t)

)
f5

+

(
N6(r, s, t)−

23

33
4

21
b9(r, s, t)−

23

33
10

21
b10(r, s, t)

)
f6

+

(
N7(r, s, t)−

23

33
b10(r, s, t)

)
f7

+

(
N8(r, s, t)−

23

33
4

21
b9(r, s, t)−

23

33
10

21
b10(r, s, t)

)
f8

+

(
64

63
b9(r, s, t)−

8

63
b10(r, s, t)

)
f9 +

(
− 8

63
b9(r, s, t) +

64

63
b10(r, s, t)

)
f10 (5.252)

and finally arrive at the basis functions:
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N1(r, s, t) = Ñ1(r, s, t)−
23

33
b9(r, s, t)

N2(r, s, t) = Ñ2(r, s, t)−
23

33
10

21
b9(r, s, t)−

23

33
4

21
b10(r, s, t)

N3(r, s, t) = Ñ3(r, s, t)−
23

33
4

21
b9(r, s, t)−

23

33
10

21
b10(r, s, t)

N4(r, s, t) = Ñ4(r, s, t)−
23

33
10

21
b9(r, s, t)−

23

33
4

21
b10r, s, t)

N5(r, s, t) = Ñ5(r, s, t)−
23

33
10

21
b9(r, s, t)−

23

33
4

21
b10(r, s, t)

N6(r, s, t) = Ñ6(r, s, t)−
23

33
4

21
b9(r, s, t)−

23

33
10

21
b10(r, s, t)

N7(r, s, t) = Ñ7(r, s, t)−
23

33
b10(r, s, t)

N8(r, s, t) = Ñ8(r, s, t)−
23

33
4

21
b9(r, s, t)−

23

33
10

21
b10(r, s, t)

N9(r, s, t) =
64

63
b9(r, s, t)−

8

63
b10(r, s, t)

N10(r, s, t) = − 8

63
b9(r, s, t) +

64

63
b10(r, s, t)

These are somewhat complex forms for the basis functions so we wish to verify the simple property∑
Ni(r, s, t) = 1 for all (r, s, t) inside the element:

10∑
i=1

Ni(r, s, t) =
8∑
i=1

Ñi(r, s, t)

+

[
23

33

(
−1− 10

21
− 4

21
− 10

21
− 10

21
− 4

21
− 4

21

)
+

64

63
− 8

63

]
b9(r, s, t)

+

[
23

33

(
− 4

21
− 10

21
− 4

21
− 4

21
− 10

21
− 1− 10

21

)
− 8

63
+

64

63

]
b10(r, s, t)

= 1 +

[
23

33
(−1− 42/21) +

56

63

]
b9(r, s, t) +

[
23

33
(−42/21− 1) +

56

63

]
b10(r, s, t)

= 1 +

[
23

33
(−3) + 8

9

]
b9(r, s, t) +

[
23

33
(−3) + 8

9

]
b10(r, s, t)

= 1 (5.253)

Let us move to first order consistency with f(r) = r:

fh(r, s, t) =
10∑
i=1

Ni(r, s, t)fi =
10∑
i=1

Ni(r, s, t)ri (5.254)
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It has been established for the Ñi functions so we are left with

fh(r, s, t) =
8∑
i=1

Ñiri︸ ︷︷ ︸
=r

−23

33
b9(r, s, t)(−1)

−23

33
10

21
b9(r, s, t)(+1)− 23

33
4

21
b10(r, s, t)(+1)

−23

33
4

21
b9(r, s, t)(+1)− 23

33
10

21
b10(r, s, t)(+1)

−23

33
10

21
b9(r, s, t)(−1)−

23

33
4

21
b10r, s, t)(−1)

−23

33
10

21
b9(r, s, t)(−1)−

23

33
4

21
b10(r, s, t)(−1)

−23

33
4

21
b9(r, s, t)(+1)− 23

33
10

21
b10(r, s, t)(+1)

−23

33
b10(r, s, t)(+1)

−23

33
4

21
b9(r, s, t)(−1)−

23

33
10

21
b10(r, s, t)(−1)

+
64

63
b9(r, s, t)(−1/3)−

8

63
b10(r, s, t)(−1/3)

− 8

63
b9(r, s, t)(+1/3) +

64

63
b10(r, s, t)(+1/3)

= r + b9(r, s, t)

(
8

27
− 8

27

10

21
− 8

27

4

21
+

8

27

10

21
+

8

27

10

21
− 8

27

4

21
+

8

27

4

21
− 64

189
− 8

189

)
+ b10(r, s, t)

(
− 8

27

4

21
− 8

27

10

21
+

8

27

4

21
+

8

27

4

21
− 8

27

10

21
− 8

27
+

8

27

10

21
+

8

189
+

64

189

)
= r + b9(r, s, t)

8

27

(
1− 10

21
− 4

21
+

10

21
+

10

21
− 9

7

)
︸ ︷︷ ︸

=0

+b10(r, s, t)
8

27

(
− 4

21
− 10

21
+

4

21
+

4

21
− 10

21
− 1 +

10

21
+

9

7

)
︸ ︷︷ ︸

=0

= r (5.255)

which proves first-order consistency.
The derivatives of the Ñi basis functions are already established so we only focus on the spatial
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derivatives of the bubble functions:

∂b9
∂r

=

(
27

32

)3

(1− s2)(1− t2)(1− s)(1− t)(−1− 2r + 3r2)

∂b9
∂s

=

(
27

32

)3

(1− r2)(1− t2)(1− r)(1− t)(−1− 2s+ 3s2)

∂b9
∂t

=

(
27

32

)3

(1− r2)(1− s2)(1− r)(1− s)(−1− 2t+ 3t2)

∂b10
∂r

=

(
27

32

)3

(1− s2)(1− t2)(1 + s)(1 + t)(1− 2r − 3r2)

∂b10
∂s

=

(
27

32

)3

(1− r2)(1− t2)(1 + r)(1 + t)(1− 2s− 3s2)

∂b10
∂t

=

(
27

32

)3

(1− r2)(1− s2)(1 + r)(1 + s)(1− 2t− 3t2)

Relevant Literature: Fortin and Fortin [403] (1985), Soulaimani, Fortin, Ouellet, Dhatt, and
Bertrand [1181] (1987)

Bishnu talksabout Nitsche bc ? press error near boundary in fofo85
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5.4.10 The DSSY element

What follows is mostly from From Jang et al. (2005) [633].
The non-conforming finite element space is defined based on the reference cubic element Ql on

[−1, 1]3 :
Ql = Span {1, r, s, t, θl(r)− θl(s), θl(r)− θl(t)} l = 1, 2

with11

θ1(r) = r2 − 5

3
r4

θ2(r) = r2 − 25

6
r4 +

7

2
r6 (5.256)

The dimension of Ql is six and the θl functions are as follows:

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-1 -0.5  0  0.5  1

θ
1(

r)

r

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-1 -0.5  0  0.5  1

θ
2(

r)

r

Representation of functions θ1 (left) and θ2 (right).

We have:

� θ1(r = −1) = θ1(r = +1) = −2
3
, θ1(r = 0) = 0

� θ2(r = −1) = θ2(r = +1) = 1
3
, θ2(r = 0) = 0

These functions have the property that their average on an edge is zero:

1

1− (−1)

∫ +1

−1

θ1(r)dr =
1

2

∫ +1

−1

(
r2 − 5

3
r4
)
dr

=
1

2

(
2

3
− 5

3

2

5

)
= 0

1

1− (−1)

∫ +1

−1

θ2(r)dr =
1

2

∫ +1

−1

(
r2 − 25

6
r4 +

7

2
r6
)
dr

=
1

2

(
2

3
− 25

6

2

5
+

7

2

2

7

)
dr

= 0

The element has 6 nodes that are located at the face centers of a cube or a brick. The pointwise
continuity between interfacing elements is guaranteed only at the face centers, so the field quantities
are not conforming along the interface [633].

(tikz dssy3D.tex)

11Douglas et al. [345], Eq. 2.20
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1

2

3 4

5

6

x

y

z

(axis should actually be in the middle of the cube!)
The six nodes of the reference element are

r⃗1 −1 0 0
r⃗2 +1 0 0
r⃗3 0 −1 0
r⃗4 0 + 0
r⃗5 0 0 −1
r⃗6 0 0 +1

and their corresponding basis functions:

N
(l)
1 (r, s, t) =

1

6
− 1

2
r +

1

6θl(1)
(2θl(r)− θl(s)− θl(t))

N
(l)
2 (r, s, t) =

1

6
+

1

2
r +

1

6θl(1)
(2θl(r)− θl(s)− θl(t))

N
(l)
3 (r, s, t) =

1

6
− 1

2
s+

1

6θl(1)
(2θl(s)− θl(t)− θl(r))

N
(l)
4 (r, s, t) =

1

6
+

1

2
s+

1

6θl(1)
(2θl(s)− θl(t)− θl(r))

N
(l)
5 (r, s, t) =

1

6
− 1

2
t+

1

6θl(1)
(2θl(t)− θl(r)− θl(s))

N
(l)
6 (r, s, t) =

1

6
+

1

2
t+

1

6θl(1)
(2θl(t)− θl(r)− θl(s)) (5.257)

These basis functions are also in [345]. We can easily verify that
∑

iNi(r, s, t) = 1 and that Ni(r⃗j) =
δij:

N
(l)
1 (r1, s1, t1) =

1

6
− 1

2
(−1) + 1

6θl(1)
(2θl(−1)− θl(0)− θl(0)) = 1

N
(l)
1 (r2, s2, t2) =

1

6
− 1

2
(+1) +

1

6θl(1)
(2θl(+1)− θl(0)− θl(0)) = 0

N
(l)
1 (r3, s3, t3) =

1

6
− 1

2
(0) +

1

6θl(1)
(2θl(0)− θl(−1)− θl(0)) = 0

N
(l)
1 (r4, s4, t4) =

1

6
− 1

2
(0) +

1

6θl(1)
(2θl(0)− θl(+1)− θl(0)) = 0

N
(l)
1 (r5, s5, t5) =

1

6
− 1

2
(0) +

1

6θl(1)
(2θl(0)− θl(0)− θl(−1)) = 0

N
(l)
1 (r6, s6, t6) =

1

6
− 1

2
(0) +

1

6θl(1)
(2θl(0)− θl(0)− θl(+1)) = 0
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etc ...

∂rN
(l)
1 (r, s, t) = −1

2
+

1

3θl(1)
θ′l(r)

∂rN
(l)
2 (r, s, t) = +

1

2
+

1

3θl(1)
θ′l(r)

∂rN
(l)
3 (r, s, t) = − 1

6θl(1)
θ′l(r)

∂rN
(l)
4 (r, s, t) = − 1

6θl(1)
θ′l(r)

∂rN
(l)
5 (r, s, t) = − 1

6θl(1)
θ′l(r)

∂rN
(l)
6 (r, s, t) = − 1

6θl(1)
θ′l(r) (5.258)

∂sN
(l)
1 (r, s, t) = − 1

6θl(1)
θ′l(s)

∂sN
(l)
2 (r, s, t) = − 1

6θl(1)
θ′l(s)

∂sN
(l)
3 (r, s, t) = −1

2
+

1

3θl(1)
θ′l(s)

∂sN
(l)
4 (r, s, t) = +

1

2
+

1

3θl(1)
θ′l(s)

∂sN
(l)
5 (r, s, t) =

1

6θl(1)
θ′l(s)

∂sN
(l)
6 (r, s, t) =

1

6θl(1)
θ′l(s) (5.259)

∂tN
(l)
1 (r, s, t) = − 1

6θl(1)
θl(t)

∂tN
(l)
2 (r, s, t) = − 1

6θl(1)
θl(t)

∂tN
(l)
3 (r, s, t) = − 1

6θl(1)
θl(t)

∂tN
(l)
4 (r, s, t) = − 1

6θl(1)
θl(t)

∂tN
(l)
5 (r, s, t) = −1

2
t+

1

3θl(1)
θl(t)

∂tN
(l)
6 (r, s, t) = +

1

2
t+

1

3θl(1)
θl(t) (5.260)

Relevant Literature: Douglas et al. (1999) [345],
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5.5 Low order elements recap

Let us assume a Cartesian domain discretised in nelx × nely elements in 2D and nelx × nely × nelz
elements in 3D. Focusing only on the total number of velocity dofs (the values indicated after the
arrows are the limits when nelx = nely = nelz >> 1):

� Q1 × P0, Q1 ×Q1

ndof2D = 2(nelx + 1) · (nely + 1) → 2 · nel2x (5.261)

ndof3D = 3(nelx + 1) · (nely + 1) · (nelz + 1) → 3 · nel3x (5.262)

� Q2 × P−1, Q2 ×Q1

ndof2D = 2(2nelx + 1) · (2nely + 1) → 8 · nel2x
ndof3D = 3(2nelx + 1) · (2nely + 1) · (2nelz + 1) → 24 · nel3x

� Q+
1 × P0

ndof2D = 2(nelx + 1) · (nely + 1) + (nelx + 1) · nely + nelx · (nely + 1) → 4 · nel2x
ndof3D = 3(nelx + 1) · (nely + 1) · (nelz + 1)

+ (nelx + 1) · nely · nelz + nelx · (nely + 1) · nelz + nelx · nely · (nelz + 1) → 6 · nel3x

� Q1 ×Q1+1 bubble

ndof2D = 2[(nelx + 1) · (nely + 1) + ·nelx · nely] → 4 · nel2x

� Q1 ×Q1+2 bubbles

ndof3D = 3[(nelx + 1) · (nely + 1) · (nelz + 1) + 2 · nelx · nely · nelz] → 9 · nel3x

� Rannacher-turek or DSSY:

ndof2D = 2[(nely + 1) · nelx + nely · (nelx + 1)] → 4 · nel2x
ndof3D = 3[nelx · (nely + 1) · nelz + (nelx + 1) · nely · nelz + nelx · nely · (nelz + 1)] → 9 · nel3x

If we now assume nelx = nely = nelz, we can then plot the values above as a function of nelx:

 10

 100
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 10000

 10

nd
of
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Q1xP0, Q1xQ1
Q1

+xQ1
Q1

+xP0
Q2xQ1, Q2xP-1

2nelx2

4nelx2

8nelx2

 100

 1000

 10000

 100000

 1x106

 10

nd
of
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Q1xP0, Q1xQ1
Q1

+xQ1
Q1

+xP0
Q2xQ1, Q2xP-1

3nelx3

6nelx3

24nelx3
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We see that the Q+
1 ×Q1 and Q+

1 × P0 actually yield the same number of velocity dofs.
Simply based on the dof count and wishing for a (bi/tri)linear approximation for pressure, we

must conclude that the Q1 ×Q1+2 bubbles is the most desirable since it is also LBB stable.

Q1 × P0, Q1 ×Q1 Q+
1 ×Q1 Q+

1 × P0 (NC) Q1 × P0

Q2 ×Q1

Q1 × P0, Q1 ×Q1 Q+
1 ×Q1 ?? Q+

1 × P0

Q2 ×Q1, Q2 × P−1 (NC) Q1 × P0

u,v,w u,v,w on face u,v,w on edge u or v or w on face

Add DSSY, RT, Q1Q1+2 bubbles

2D
Rannacher-Turek NCQ1P0 stone 77 pb with buoyancy-driven flow
Lamichhane Q1+Q1 stone 72, stone 74
DSSY stone 77 pb with buoyancy-driven flow
Fortin stone 80

3D
Rannacher-Turek NCQ1P0 Elefant
Lamichhane Q1+Q1 stone Does not work
DSSY
Fortin stone 81
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5.6 On the meaning of basis functions

basis functions meaning.tex.tex

In one dimension

Let us consider a 1D domain subdivided in 3 elements. We then consider the four linear basis
functions attached to each node. On the following sketch these are not depicted on a single element
with reduced coordinates but instead for the whole domain in the natural coordinate x:

(tikz basisfunctions.tex)

289



N1(x)

N2(x)

N3(x)

N4(x)
x

1 2 3 4

a)

fh(x) = N1(x) +N2(x) +N3(x) +N4(x)

b)

fh(x) = 1 · N1(x) +
1
2
· N2(x) + 2 · N3(x) + (−1) · N4(x)

c)

fh(x) = −2 · N1(x)− 1 · N2(x) + 0 · N3(x) + 1 · N4(x)

d)

fh(x) = −2 · N1(x)− 1.66 · N2(x)− 0.66 · N3(x) + 1 · N4(x)

The four cases a,b,c,d are examples of combinations of these basis functions:

fh(x) =
4∑
i=1

Ni(x)fi

Where fi are the values associated to the four nodes. We assume that the distance h between nodes
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is 1.
Example a) illustrates the fact that the sum of all basis functions must be strictly equal to one

everywhere in the domain. Failing to do so would mean that the basis functions cannot represent a
constant field (see Section 5.3.1).

Example b) illustrates a somewhat random combination of the basis functions, yielding a broken
line.

Example c) illustrates the fact that these linear basis functions can exactly represent a linear
function. When f(x) = x − 2, then f1 = f(0) = −2, f2 = f(1) = −1, f3 = f(2) = 0 and
f4 = f(3) = +1, then fh(x) is exactly f(x) on the domain.

Example d) illustrates the fact that linear basis functions cannot represent a parabola. Smaller
and smaller elements will do an increasingly better job and will get closer to the curve but a systematic
error will subsist.

Note that these drawings are trivial to produce since Ni(xj) = δij by definition, so that fh(xj) =
fj.

In two dimensions
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Chapter 6

Solving the heat transport equation with
linear Finite Elements

chapter5.tex

6.1 The diffusion equation in 1D

diff1D.tex

Let us consider the following one-dimensional grid:

Its spans the domain Ω of length Lx. It is discretised by means of nnx nodes and nelx = nnx − 1
elements. Zooming in on the element e which is bounded by two nodes k and k + 1, its size (also
sometimes called diameter) is hx = xk+1 − xk, and the temperature field we wish to compute is
located on those nodes so that they are logically called Tk and Tk+1:

Remark. In what follows I will indicate mathematical functions1 by this color.

Remark. In what follows
∫
Ωe

should be understood as
∫ xk+1

xk
.

1https://en.wikipedia.org/wiki/Function_(mathematics)
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From the strong form to the weak form

We focus here on the 1D diffusion equation (no advection, no heat sources, see Section 2.6):

ρCp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(6.1)

where ρ is the density, Cp the heat capacity and k the heat conductivity. All three coefficients are
assumed to be constant in space and time.

This is the strong form of the PDE to solve. I can multiply this equation by a function2 f(x) and
integrate it over Ω: ∫

Ω

f(x) ρCp
∂T

∂t
dx =

∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx (6.2)

Looking at the right hand side, it is of the form
∫
uv′ so that I integrate it by parts3:∫

Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx =

[
f(x) k

∂T

∂x

]
∂Ω

−
∫
Ω

∂f

∂x
k
∂T

∂x
dx (6.3)

Assuming there is no heat flux on the boundary4 (i.e. qx = −k∂T/∂x = 0 ), then∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx = −

∫
Ω

∂f

∂x
k
∂T

∂x
dx (6.4)

We then obtain the weak form of the diffusion equation in 1D:∫
Ω

f(x)ρCp
∂T

∂t
dx+

∫
Ω

∂f

∂x
k
∂T

∂x
dx = 0 (6.5)

We then use the additive property of the integral
∫
Ω
· · · =

∑
elts

∫
Ωe
. . . so that the equation above

becomes

∑
elts


∫
Ωe

f(x)ρCp
∂T

∂t
dx︸ ︷︷ ︸

Λef

+

∫
Ωe

∂f

∂x
k
∂T

∂x
dx︸ ︷︷ ︸

Υef

 = 0 (6.6)

From the weak form to a linear system

In order to compute these integrals (analytically or by means of a numerical quadrature), we will need
to evaluate T inside the element. However, inside the element, the temperature is not known: all we
hope to have at some point is the temperature at the nodes ( this is what the code will compute).

For x ∈ [xk, xk+1] we need to come up with a way to formulate the temperature in this element
and we coin this T h. It makes sense to think that T h(x) will then be a function of the temperature
at the nodes, i.e. T h(x) = αTk+βTk+1 where α and β are coefficients. One over-simplified approach
would be to assign T h(x) = (Tk + Tk+1)/2 (i.e. T h is a zero-th order polynomial) but this would
make the temperature discontinuous from element to element so we discard this option. A rather
logical and simple solution to this problem is a linear temperature field between Tk and Tk+1:

2This function should be well-behaved with special properties, but we here assume it is a polynomial function.
3
∫
Ω
uv′ =

∫
∂Ω
uv −

∫
Ω
u′v

4This is of course not always the case and we will revisit this at a later stage in the course.
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T h(x) =
xk+1 − x

hx︸ ︷︷ ︸
Nθ
k(x)

Tk +
x− xk
hx︸ ︷︷ ︸

Nθ
k+1(x)

Tk+1

where N θ
k(x) is the (temperature) basis function associated to node k and N θ

k+1(x) is the basis
function associated to node k + 1.

Rather reassuringly, we have:

� x = xk yields T h(xk) = Tk

� x = xk+1 yields T h(xk+1) = Tk+1

� x = x1/2 = (xk + xk+1)/2 yields T h(x1/2) = (Tk + Tk+1)/2

In what follows we abbreviate ∂T h/∂t by Ṫ h(x). Let us compute Λef and Υe
f separately.

Λef =

∫ xk+1

xk

f(x)ρCpṪ
h(x)dx

=

∫ xk+1

xk

f(x)ρCp [N θ
k(x)Ṫk +N θ

k+1(x)Ṫk+1] dx

=

∫ xk+1

xk

f(x)ρCpN θ
k(x)Ṫkdx+

∫ xk+1

xk

f(x)ρCpN θ
k+1(x)Ṫk+1dx

=

(∫ xk+1

xk

f(x)ρCpN θ
k(x)dx

)
Ṫk +

(∫ xk+1

xk

f(x)ρCpN θ
k+1(x)dx

)
Ṫk+1

Taking f(x) = N θ
k(x) and omitting ’(x)’ in the rhs:

ΛeNθ
k
=

(∫ xk+1

xk

ρCpN θ
kN θ

kdx

)
Ṫk +

(∫ xk+1

xk

ρCpN θ
kN θ

k+1dx

)
Ṫk+1

Taking f(x) = N θ
k+1(x) and omitting ’(x)’ in the rhs:

ΛeNθ
k+1

=

(∫ xk+1

xk

ρCpN θ
k+1N

θ
kdx

)
Ṫk +

(∫ xk+1

xk

ρCpN θ
k+1N

θ
k+1dx

)
Ṫk+1

We can rearrange these last two equations as follows: ΛeNθ
k

ΛeNθ
k+1

 =


∫ xk+1

xk
N θ

kρCpN θ
kdx

∫ xk+1

xk
N θ

kρCpN θ
k+1dx∫ xk+1

xk
N θ

k+1ρCpN θ
kdx

∫ xk+1

xk
N θ

k+1ρCpN θ
k+1dx

 ·
 Ṫk

Ṫk+1


and we can take the integrals outside of the matrix: ΛeNθ

k

ΛeNθ
k+1

 =

∫ xk+1

xk

ρCp

 Nθ
kN θ

k N θ
kN

θ
k+1

Nθ
k+1N θ

k N θ
k+1N

θ
k+1

 dx

 ·
 Ṫk

Ṫk+1


Finally, we can define the vectors

N⃗
T
=

 N θ
k(x)

N θ
k+1(x)
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and

T⃗ e =

 Tk

Tk+1

 ˙⃗
T e =

 Ṫk

Ṫk+1


so that  ΛeNθ

k

ΛeNθ
k+1

 =

(∫ xk+1

xk

N⃗
T
ρCpN⃗dx

)
· ˙⃗T e

Let us now go back to the diffusion term:

Υe
f =

∫ xk+1

xk

∂f

∂x
k
∂T h

∂x
dx

=

∫ xk+1

xk

∂f

∂x
k
∂(N θ

k(x)Tk +N θ
k+1(x)Tk+1)

∂x
dx

=

(∫ xk+1

xk

∂f

∂x
k
∂N θ

k

∂x
dx

)
Tk +

(∫ xk+1

xk

∂f

∂x
k
∂N θ

k+1

∂x
dx

)
Tk+1

Taking f(x) = N θ
k(x)

Υe
Nθ
k
=

(∫ xk+1

xk

k
∂N θ

k

∂x

∂N θ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂N θ

k

∂x

∂N θ
k+1

∂x
dx

)
Tk+1

Taking f(x) = N θ
k+1(x)

Υe
Nθ
k+1

=

(∫ xk+1

xk

k
∂N θ

k+1

∂x

∂N θ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

k
∂N θ

k+1

∂x

∂N θ
k+1

∂x
dx

)
Tk+1

 Υe
Nθ
k

Υe
Nθ
k+1

 =


∫ xk+1

xk

∂Nθ
k

∂x
k
∂Nθ

k

∂x
dx

∫ xk+1

xk

∂Nθ
k

∂x
k
∂Nθ

k+1

∂x
dx

∫ xk+1

xk

∂Nθ
k+1

∂x
k
∂Nθ

k

∂x
dx

∫ xk+1

xk

∂Nθ
k+1

∂x
k
∂Nθ

k+1

∂x
dx

 ·
 Tk

Tk+1


or,  Υe

Nθ
k

Υe
Nθ
k+1

 =

∫ xk+1

xk

k

 ∂Nθ
k

∂x

∂Nθ
k

∂x

∂Nθ
k

∂x

∂Nθ
k+1

∂x

∂Nθ
k+1

∂x

∂Nθ
k

∂x

∂Nθ
k+1

∂x

∂Nθ
k+1

∂x

 dx

 ·
 Tk

Tk+1


Finally, we can define the vector

B⃗
T
=


∂Nθ

k

∂x

∂Nθ
k+1

∂x


so that  Υe

Nθ
k

Υe
Nθ
k+1

 =

(∫ xk+1

xk

B⃗
T
kB⃗dx

)
· T⃗ e

The weak form discretised over 1 element becomes(∫ xk+1

xk

N⃗
T
ρCpN⃗dx

)
︸ ︷︷ ︸

Me

· ˙⃗T e +
(∫ xk+1

xk

B⃗
T
kB⃗dx

)
︸ ︷︷ ︸

Ke
d

·T⃗ e = 0
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or,

M e · ˙⃗T e +Ke
d · T⃗ e = 0

or,

M e · ∂T⃗
e

∂t
+Ke

d · T⃗ e = 0

M e is commonly called the mass matrix, or capacitance matrix [1051, p103]. Note that the matrices
are not coloured: the x dependence has disappeared when the integration was carried out.

In what follows I will omit the e superscript on the T⃗ term to simplify notations.
We use a first order in time discretisation for the time derivative:

˙⃗
T =

∂T⃗

∂t
=
T⃗ new − T⃗ old

δt

and in the context of an implicit scheme we get

M e · T⃗
new − T⃗ old

δt
+Ke

d · T⃗ new = 0

or,

(M e +Ke
dδt) · T⃗ new = M e · T⃗ old

with

M e =

∫ xk+1

xk

N⃗
T
ρCpN⃗dx Ke

d =

∫ xk+1

xk

B⃗
T
kB⃗dx

Computing the elemental matrices

Let us compute M e for an element:

M e =

∫ xk+1

xk

N⃗
T
ρCpN⃗dx =


∫ xk+1

xk
ρCpN θ

kN θ
kdx

∫ xk+1

xk
ρCpN θ

kN θ
k+1dx∫ xk+1

xk
ρCpN θ

k+1N θ
kdx

∫ xk+1

xk
ρCpN θ

k+1N θ
k+1dx

 =

(
M11 M12

M21 M22

)

with

N⃗
T
=

 N θ
k(x)

N θ
k+1(x)

 =

 xk+1−x
hx

x−xk
hx


We only need to compute 3 integrals since M12 =M21. Let us start with M11:

M11 =

∫ xk+1

xk

ρCpN θ
k(x)N θ

k(x)dx =

∫ xk+1

xk

ρCp
xk+1 − x

hx

xk+1 − x
hx

dx

It is then customary to carry out the change of variable x→ r where r ∈ [−1 : 1] as shown hereunder:
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The relationships between x and r are:

r =
2

hx
(x− xk)− 1 x =

hx
2
(1 + r) + xk

In what follows we assume for simplicity that ρ and Cp are constant within each element so that:

M11 = ρCp

∫ xk+1

xk

xk+1 − x
hx

xk+1 − x
hx

dx =
ρCphx

8

∫ +1

−1

(1− r)(1− r)dr = ρCp
hx
3

Similarly we arrive at

M12 = ρCp

∫ xk+1

xk

xk+1 − x
hx

x− xk
hx

dx =
ρCphx

8

∫ +1

−1

(1− r)(1 + r)dr = ρCp
hx
6

M22 = ρCp

∫ xk+1

xk

x− xk
hx

x− xk
hx

dx =
ρCphx

8

∫ +1

−1

(1 + r)(1 + r)dr = ρCp
hx
3

Finally

M e = ρCp
hx
3

(
1 1/2
1/2 1

)
In the new coordinate system, the basis functions

N θ
k(x) =

xk+1 − x
hx

N θ
k+1(x) =

x− xk
hx

become

N θ
k(r) =

1

2
(1− r) N θ

k+1(r) =
1

2
(1 + r)

Also,
∂N θ

k

∂x
= − 1

hx

∂N θ
k+1

∂x
=

1

hx

so that

B⃗
T
=


∂Nθ

k

∂x

∂Nθ
k+1

∂x

 =

 − 1
hx

1
hx


We here also assume that the heat conductivity k is constant within the element:

Ke
d =

∫ xk+1

xk

B⃗
T
kB⃗dx = k

∫ xk+1

xk

B⃗
T
B⃗dx

simply becomes

Ke
d = k

∫ xk+1

xk

1

h2x

(
1 −1
−1 1

)
dx

and then

Ke
d =

k

hx

(
1 −1
−1 1

)
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In practice

Let us consider this very simple grid consisting of 4 elements/5 nodes5:

For each element we have
(M e +Ke

d δt)︸ ︷︷ ︸
Ae

·T⃗ new = M e · T⃗ old︸ ︷︷ ︸
b⃗e

with

T⃗ new =

(
T newk

T newk+1

)
We can write this equation very explicitely for each element:

� element 0

A0 ·
(
T new0

T new1

)
= b⃗0 →

{
A0

00T
new
0 + A0

01T
new
1 = b00

A0
10T

new
0 + A0

11T
new
1 = b01

Element 0 is made of nodes 0 and 1, so it will contributes to lines and columns 0,1 of the FE
matrix: 

A0
00 A0

01 0 0 0
A0

10 A0
11 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ·


T new0

T new1

T new2

T new3

T new4

 =


b00
b01
0
0
0


� element 1

A1 ·
(
T new1

T new2

)
= b⃗1 →

{
A1

00T
new
1 + A1

01T
new
2 = b10

A1
10T

new
1 + A1

11T
new
2 = b11

Element 1 is made of nodes 1 and 2, so it will contributes to lines and columns 1,2 of the FE
matrix: 

0 0 0 0 0
0 A1

00 A1
01 0 0

0 A1
10 A1

11 0 0
0 0 0 0 0
0 0 0 0 0

 ·


T new0

T new1

T new2

T new3

T new4

 =


0
b10
b11
0
0


� element 2

A2 ·
(
T new2

T new3

)
= b⃗2 →

{
A2

00T
new
2 + A2

01T
new
3 = b20

A2
10T

new
2 + A2

11T
new
3 = b21

Element 2 is made of nodes 2 and 3, so it will contributes to lines and columns 2,3 of the FE
matrix:

5I have here adopted the illogical numbering of python – the language used by my students– so that python
programmers can benchmark their code against this simple example
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0 0 0 0 0
0 0 0 0 0
0 0 A2

00 A2
01 0

0 0 A2
10 A2

11 0
0 0 0 0 0

 ·


T new0

T new1

T new2

T new3

T new4

 =


0
0
b20
b21
0


� element 3

A3 ·
(
T new3

T new4

)
= b⃗3 →

{
A3

00T
new
3 + A3

01T
new
4 = b30

A3
10T

new
3 + A3

11T
new
4 = b31

Element 3 is made of nodes 3 and 4, so it will contributes to lines and columns 3,4 of the FE
matrix: 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A3

00 A3
01

0 0 0 A3
10 A3

11

 ·


T new0

T new1

T new2

T new3

T new4

 =


0
0
0
b30
b31


All equations can be cast into a single linear system: this is the assembly phase. The process

can also be visualised as shown hereunder. Because nodes 2,3,4 belong to two elements elemental
contributions will be summed in the matrix and the rhs:

The assembled matrix and rhs are then (I have dropped the new superscripts):

A0
00 A0

01 0 0 0

A0
10 A0

11+A
1
00 A1

01 0 0

0 A1
10 A1

11+A
2
00 A2

01 0

0 0 A2
10 A2

11+A
3
00 A3

01

0 0 0 A3
10 A3

11





T0

T1

T2

T3

T4


=



b00

b01 + b10

b11 + b20

b21 + b30

b31
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Ultimately the assembled matrix system also takes the form

A00 A01 0 0 0

A10 A11 A12 0 0

0 A21 A22 A23 0

0 0 A32 A33 A34

0 0 0 A43 A44





T0

T1

T2

T3

T4


=



b0

b1

b2

b3

b4


and we see that it is sparse. Its sparsity structure is easy to derive: each row corresponds to a dof,
and since nodes 1 and 2 ’see’ each other (they belong to the same element) there will be non-zero
entries in the first and second column. Likewise, node 2 ’sees’ node 1 (in other words, there is an
edge linking nodes 1 and 2), itself, and node 3, so that there are non-zero entries in the second row
at columns 1, 2, and 3.

Before we solve the system, we need to take care of boundary conditions. Let us assume that we
wish to fix the temperature at node 2, or in other words we wish to set

T2 = T o

This equation can be cast as

(
0 1 0 0 0

)


T1
T2
T3
T4
T5

 =


0
T o

0
0
0


This replaces the second line in the previous matrix equation:

A11 A12 0 0 0

0 1 0 0 0

0 A32 A33 A34 0

0 0 A43 A44 A45

0 0 0 A54 A55





T1

T2

T3

T4

T5


=



b1

T o

b3

b4

b5


That’s it, we have a linear system of equations which can be solved!

The following figure presents a hand-drawn template of how a typical 1D FE code is structured:
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Additional comments: A and b should be zeroed at every time step. Convergence should be tested before Told received T.

redo this for 2D

Exercise FEM-01

Write a code which solves the 1D diffusion equation in time. The initial
temperature field is as follows:

T (x, t = 0) = 200 x < Lx/2 T (x, t = 0) = 100 x ≥ Lx/2

The domain is Lx = 100km and the properties of the material are ρ =
3000kg/m3, k = 3W/m/K, Cp = 1000J/K. Boundary conditions are:

T (t, x = 0) = 200◦C T (t, x = Lx) = 100◦C

There are nelx elements and nnx nodes. All elements are hx long. The code

will carry out nstep timesteps of length dt with δt = 0.5h
2
x

κ
.

Bonus: add a small random perturbation up to ±20% of hx to each node
position inside the domain and make sure that the recovered steady state
solution is unchanged.

6.2 The advection-diffusion equation in 1D

adv diff1D.tex
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We start with the 1D advection-diffusion equation

ρCp

(
∂T

∂t
+ u

∂T

∂x

)
=

∂

∂x

(
k
∂T

∂x

)
+H (6.7)

This is the strong form of the ODE to solve. As in the previous section, I multiply this equation by
a function f(x) and integrate it over the domain Ω:∫

Ω

f(x)ρCp
∂T

∂t
dx+

∫
Ω

f(x)ρCpu
∂T

∂x
dx=

∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx+

∫
Ω

f(x)Hdx

As in the previous section I integrate the r.h.s. by parts:∫
Ω

f(x)
∂

∂x

(
k
∂T

∂x

)
dx =

[
f(x)k

∂T

∂x

]
∂Ω

−
∫
Ω

∂f

∂x
k
∂T

∂x
dx

Disregarding the boundary term for now, we then obtain the weak form of the diffusion equation in
1D: ∫

Ω

f(x)ρCp
∂T

∂t
dx+

∫
Ω

f(x)ρCpu
∂T

∂x
dx+

∫
Ω

∂f

∂x
k
∂T

∂x
dx =

∫
Ω

f(x)Hdx

We then use the additive property of the integral
∫
Ω
· · · =

∑
elts

∫
Ωe
. . .

∑
elts


∫
Ωe

f(x)ρCp
∂T

∂t
dx︸ ︷︷ ︸

Λef

+

∫
Ωe

f(x)ρCpu
∂T

∂x
dx︸ ︷︷ ︸

Σef

+

∫
Ωe

∂f

∂x
k
∂T

∂x
dx︸ ︷︷ ︸

Υef

−
∫
Ωe

f(x)Hdx︸ ︷︷ ︸
Ωef

 = 0

replace omega by other letter for source term

In the element, we have seen that the temperature can be written:

T h(x) = N θ
k(x)Tk +N θ

k+1(x)Tk+1

In the previous presentation we have computed Λef and Υe
f . Let us now turn to Σe

f and Ωe
f .

Σe
f =

∫ xk+1

xk

f(x)ρCpu
∂T h

∂x
dx

=

∫ xk+1

xk

f(x)ρCpu
∂[N θ

k(x)Tk +N θ
k+1(x)Tk+1]

∂x
dx

=

∫ xk+1

xk

f(x)ρCpu
∂N θ

k

∂x
Tkdx+

∫ xk+1

xk

f(x)ρCpu
∂N θ

k+1

∂x
Tk+1dx

=

(∫ xk+1

xk

f(x)ρCpu
∂N θ

k

∂x
dx

)
Tk +

(∫ xk+1

xk

f(x)ρCpu
∂N θ

k+1

∂x
dx

)
Tk+1

Taking f(x) = N θ
k(x) and omitting ’(x)’ in the rhs:

Σe
Nθ
k
=

(∫ xk+1

xk

ρCpuN
θ
k

∂N θ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

ρCpuN
θ
k

∂N θ
k+1

∂x
dx

)
Tk+1

Taking f(x) = N θ
k+1(x) and omitting ’(x)’ in the rhs:

Σe
Nθ
k+1

=

(∫ xk+1

xk

ρCpuN
θ
k+1

∂N θ
k

∂x
dx

)
Tk +

(∫ xk+1

xk

ρCpuN
θ
k+1

∂N θ
k+1

∂x
dx

)
Tk+1
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 ΣNθ
k

ΣNθ
k+1

=


∫ xk+1

xk
ρCpuN

θ
k
∂Nθ

k

∂x
dx

∫ xk+1

xk
ρCpuN

θ
k

∂Nθ
k+1

∂x
dx

∫ xk+1

xk
ρCpuN

θ
k+1

∂Nθ
k

∂x
dx

∫ xk+1

xk
ρCpuN

θ
k+1

∂Nθ
k+1

∂x
dx

·
 Tk

Tk+1


or,  ΣNθ

k

ΣNθ
k+1

=

∫ xk+1

xk

ρCpu

 N θ
k
∂Nθ

k

∂x
N θ
k

∂Nθ
k+1

∂x

N θ
k+1

∂Nθ
k

∂x
N θ
k+1

∂Nθ
k+1

∂x

 dx

 ·
 Tk

Tk+1


Finally, we have already defined the vectors

N⃗T =

 N θ
k(x)

N θ
k+1(x)

 B⃗T =


∂Nθ

k

∂x

∂Nθ
k+1

∂x

 T⃗ e =

 Tk

Tk+1


so that  ΣNθ

k

ΣNθ
k+1

 =

(∫ xk+1

xk

N⃗
T
ρCpuB⃗dx

)
· T⃗ e = Ka · T⃗ e

One can easily show that

Ke
a = ρCpu

 −1/2 1/2

−1/2 1/2


Note that the matrix Ke

a is not symmetric.
Let us now look at the source term:

Ωe
f =

∫ xk+1

xk

f(x)H(x)dx

Taking f(x) = N θ
k(x):

ΩNθ
k
=

∫ xk+1

xk

N θ
k(x)H(x)dx

Taking f(x) = N θ
k+1(x):

ΩNθ
k+1

=

∫ xk+1

xk

N θ
k+1(x)H(x)dx

We can rearrange both equations as follows: ΩNθ
k

ΩNθ
k+1

 =


∫ xk+1

xk
N θ
k(x)H(x)dx

∫ xk+1

xk
N θ
k+1(x)H(x)dx


or,  ΩNθ

k

ΩNθ
k+1

 =

∫ xk+1

xk

 N θ
k(x)H(x)

N θ
k+1(x)H(x)

 dx =

(∫ xk+1

xk

N⃗
T
H(x)dx

)
The weak form discretised over 1 element becomes(∫ xk+1

xk

N⃗
T
ρCpN⃗dx

)
︸ ︷︷ ︸

Me

· ˙⃗T e +
(∫ xk+1

xk

N⃗
T
ρCpuB⃗dx

)
︸ ︷︷ ︸

Ke
a

·T⃗ e +
(∫ xk+1

xk

B⃗
T
kB⃗dx

)
︸ ︷︷ ︸

Ke
d

·T⃗ e =
(∫ xk+1

xk

N⃗
T
H(x)dx

)
︸ ︷︷ ︸

F⃗ e
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or,

M e · ˙⃗T e + (Ke
d +Ke

a) · T⃗ e = F⃗ e

or,

M e · ∂T⃗
e

∂t
+ (Ke

a +Ke
d) · T⃗ e = F⃗ e

As in the diffusion case of the previous section these matrices and vectors will need to be assembled
into M , Ka, Kd, T⃗ and F⃗ :

M · ∂T⃗
∂t

+ (Ka +Kd) · T⃗ = F⃗

We can revisit the time discretisation again, assuming for simplicity that the coefficients of the
PDE are not time-dependent. Choosing a fully explicit approach would have us write

M · T⃗
n+1 − T⃗ n

δt
+ (Ka +Kd) · T⃗ n = F⃗ ⇒ M · T⃗ n+1 = [M − (Ka +Kd)δt] · T⃗ n = F⃗ (6.8)

while choosing a fully implicit approach would have us write

M · T⃗
n+1 − T⃗ n

δt
+ (Ka +Kd) · T⃗ n+1 = F⃗ ⇒ [M + (Ka +Kd)δt] · T⃗ n+1 = M · T⃗ n + F⃗ δt (6.9)

We can also consider a more generic approach and write:

M · T⃗
n+1 − T⃗ n

δt
+ (Ka +Kd) · (αT⃗ n+1 + (1− α)T⃗ n) = F⃗ (6.10)

[M + α(Ka +Kd)δt] · T⃗ n+1 = [M − (1− α)(Ka +Kd)δt] · T⃗ n + F⃗ δt (6.11)

When α = 0 we recover the explicit scheme, when α = 1 we recover the implicit one, and when
α = 1/2 we get a so-called mid-point algorithm (Crank-Nicolson).
Write about SUPG
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Exercise FEM-2

Let us consider the domain [0, 1]. The temperature field at t = 0 is given by
T = 1 for x < 0.25 and T = 0 otherwise. The prescribed velocity is u = 1
and we set nnx = 51. Boundary conditions are T = 1 at x = 0 and T = 0 at
x = 1. Only advection is present, no heat source nor diffusion.

0 0.25 0.5 0.75 1

T

x

Set ρ = Cp = 1. Run the model for 250 time steps with δt = 0.002. Implement
a fully implicit, explicit and Crank-Nicolson time discretisation.
When using Crank-Nicolson, you should then be able to recover the green line
of the following figure:

Taken from Thieulot (2011) [1258]. Note that τ = γh/u.

Finally, implement the SUPG method and recover the red and turquoise lines.

6.3 The advection-diffusion equation in 2D

We start from the ’bare-bones’ heat transport equation (source terms are omitted):

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= ∇⃗ ·

(
k∇⃗T

)
(6.12)

305



In what follows we assume that the velocity vield ν⃗ is known so that temperature is the only unknown.
Let N θ be the temperature basis functions so that the temperature inside an element is given by6:

T h(r⃗) =

mT∑
i=1

N θ
i (r⃗)Ti = N⃗ θ · T⃗ (6.13)

where T⃗ is a vector of length mT The weak form is then∫
Ω

N θ
i

[
ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)]
dΩ =

∫
Ω

N θ
i ∇⃗ · k∇⃗TdΩ (6.14)

∫
Ω

N θ
i ρCp

∂T

∂t
dΩ︸ ︷︷ ︸

I

+

∫
Ω

N θ
i ρCpν⃗ · ∇⃗TdΩ︸ ︷︷ ︸

II

=

∫
Ω

N θ
i ∇⃗ · k∇⃗TdΩ︸ ︷︷ ︸

III

i = 1,mT (6.15)

Looking at the first term:∫
Ω

N θ
i ρCp

∂T

∂t
dΩ =

∫
Ω

N θ
i ρCpN⃗ θ · ˙⃗TdΩ (6.16)

(6.17)

so that when we assemble all contributions for i = 1,mT we get:

I =

∫
Ω

N⃗ θρCpN⃗ θ · ˙⃗TdΩ =

(∫
Ω

ρCpN⃗ θN⃗ θdΩ

)
· ˙⃗T = MT · ˙⃗T (6.18)

where MT is the mass matrix of the system of size (mT ×mT ) with

MT
ij =

∫
Ω

ρCpN θ
i N θ

j dΩ (6.19)

Turning now to the second term:∫
Ω

N θ
i ρCpν⃗ · ∇⃗TdΩ =

∫
Ω

N θ
i ρCp(u

∂T

∂x
+ v

∂T

∂y
)dΩ (6.20)

=

∫
Ω

N θ
i ρCp(u

∂N⃗ θ

∂x
+ v

∂N⃗ θ

∂y
) · T⃗ dΩ (6.21)

(6.22)

so that when we assemble all contributions for i = 1,mT we get:

II =

(∫
Ω

ρCpN⃗ θ(u
∂N⃗ θ

∂x
+ v

∂N⃗ θ

∂y
)dΩ

)
· T⃗ = Ka · T⃗

where Ka is the advection term matrix of size (mT ×mT ) with

(Ka)ij =

∫
Ω

ρCpN θ
i

(
u
∂N θ

j

∂x
+ v

∂N θ
j

∂y

)
dΩ

6the θ superscript has been chosen to denote temperature so as to avoid confusion with the transpose operator
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Now looking at the third term, we carry out an integration by part and neglect the surface term for
now, so that ∫

Ω

N θ
i ∇⃗ · k∇⃗TdΩ = −

∫
Ω

k∇⃗N θ
i · ∇⃗TdΩ (6.23)

= −
∫
Ω

k∇⃗N θ
i · ∇⃗(N⃗ θ · T⃗ )dΩ (6.24)

(6.25)

with

∇⃗N⃗θ =

 ∂xN θ
1 ∂xN θ

2 . . . ∂xN θ
mT

∂yN θ
1 ∂yN θ

2 . . . ∂yN θ
mT


so that finally:

III = −
(∫

Ω

k(∇⃗N⃗ θ)T · ∇⃗N⃗ θdΩ

)
· T⃗ = −Kd · T⃗

where Kd is the diffusion term matrix:

Kd =

∫
Ω

k(∇⃗N⃗ θ)T · ∇⃗N⃗ θdΩ

Ultimately terms I, II, III together yield:

M θ · ˙⃗T + (Ka +Kd) · T⃗ = 0⃗

add source term!!

add something about computing Kd,Ka with quadrature!

On steady states

It is said that a system is in a steady state if the (state) variables which define the behavior of
the system are unchanging in time. In continuous time, this means that the partial derivative with
respect to time is zero and remains so:

∂

∂t
= 0 ∀t

This is irrelevant for the Stokes equations which do not contain an explicit time dependence but the
heat transport equation can reach a steady state. Note that if one is only interested in the steady
state solution (and not how the system gets there in time) then the heat transport equation should
be solved with ∂T/∂t set to zero.

Dealing with the time discretisation

time discretisation.tex

Essentially we have to solve a PDE of the type:

∂T

∂t
= F(ν⃗, T, ∇⃗T,∆T )

with F = 1
ρCp

(−ν⃗ · ∇⃗T + ∇⃗ · k∇⃗T ). The (explicit) forward Euler method is:

T n+1 − T n

δt
= Fn(T, ∇⃗T,∆T )
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The (implicit) backward Euler method is:

T n+1 − T n

δt
= Fn+1(T, ∇⃗T,∆T )

and the (implicit) Crank-Nicolson algorithm is:

T n+1 − T n

δt
=

1

2

[
Fn(T, ∇⃗T,∆T ) + Fn+1(T, ∇⃗T,∆T )

]
where the superscript n indicates the time step. The Crank-Nicolson is obviously based on the
trapezoidal rule, with second-order convergence in time.

In what follows, I omit the superscript on the mass matrix to simplify notations: M θ = M . In
terms of Finite Elements, these become:

� Explicit Forward euler:

1

δt
(Mn+1 · T⃗ n+1 −Mn · T⃗ n) = −(Kn

a +Kn
d ) · T⃗ n

or,

Mn+1 · T⃗ n+1 = (Mn − (Kn
a +Kn

d )δt) · T⃗ n

� Implicit Backward euler:

1

δt
(Mn+1 · T⃗ n+1 −Mn · T⃗ n) = −(Kn+1

a +Kn+1
d ) · T⃗ n+1

or, (
Mn+1 + (Kn+1

a +Kn+1
d )δt

)
· T⃗ n+1 = Mn · T⃗ n (6.26)

� Crank-Nicolson

1

δt

(
Mn+1 · T⃗ n+1 −Mn · T⃗ n

)
=

1

2

[
−(Kn+1

a +Kn+1
d ) · T⃗ n+1 − (Kn

a +Kn
d ) · T⃗ n

]
or, (

Mn+1 + (Kn+1
a +Kn+1

d )
δt

2

)
· T⃗ n+1 =

(
Mn − (Kn

a +Kn
d )
δt

2

)
· T⃗ n

Note that in benchmarks where the domain/grid does not deform, the coefficients do not change
in space and the velocity field is constant in time, or in practice out of convenience, the K and
M matrices do not change and the r.h.s. can be constructed with the same matrices as the
FE matrix.

The Backward differentiation formula (see for instance Hairer & Wanner [520] or Wikipedia7.
See also step-31 of deal.II8. The second-order BDF (or BDF-2) as shown in Kronbichler et al. (2012)
[732] is as follows: it is a finite-difference quadratic interpolation approximation of the ∂T/∂t term
which involves tn, tn−1 and tn−2:

∂T

∂t
(tn) ≃ 1

δtn

(
2δtn + δtn−1

δtn + δtn−1

T n − δtn + δtn−1

δtn−1

T n−1 +
δt2n

δtn−1(δtn + δtn−1)
T n−2

)
(6.27)

7https://en.wikipedia.org/wiki/Backward_differentiation_formula
8https://www.dealii.org/current/doxygen/deal.II/step_31.html
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where δtn = tn − tn−1. We also then have the approximation

T n ≃ T n−1 + δtn
∂T

∂t
≃ T n−1 + δtn

T n−1 − T n−2

δtn−1

=

(
1 +

δtn
δtn−1

)
T n−1 +

δtn
δtn−1

T n−2

Starting again from M θ · ˙⃗T + (Ka +Kd) · T⃗ = 0⃗, we write

M θ · 1

δtn

(
2δtn + δtn−1

δtn + δtn−1

T⃗ n − δtn + δtn−1

δtn−1

T⃗ n−1 +
δt2n

δtn−1(δtn + δtn−1)
T⃗ n−2

)
+ (Ka +Kd) · T⃗ n = 0⃗

and finally:[
2δtn + δtn−1

δtn + δtn−1

M θ + δtn(Ka +Kd)

]
· T⃗ n =

δtn + δtn−1

δtn−1

M θ · T⃗ n−1 − δt2n
δn−1(δtn + δtn−1)

M θ · T⃗ n−2

(6.28)
For practical reasons one may wish to bring the advection term to the rhs (i.e. fully implicit) so that
the matrix is symmetric. In this case the equation becomes[
2δtn + δtn−1

δtn + δtn−1

M θ + δtnKd

]
· T⃗ n =

δtn + δtn−1

δtn−1

M θ · T⃗ n−1− δt2n
δn−1(δtn + δtn−1)

M θ · T⃗ n−2−δtnK⋆
a · T⃗ n,⋆

with

(·)⋆ =
(
1 +

δtn
δtn−1

)
(·)n−1 +

δtn
δtn−1

(·)n−2

which denotes the extrapolation of a quantity to time n. Be aware that the K⋆
a matrix contains the

velocity ν⃗⋆.
Note that if all timesteps are equal, i.e. δtn = δtn−1 = δt, Eq. (6.28) becomes:[

3

2
M θ + δt(Ka +Kd)

]
· T⃗ n = M θ ·

(
2T⃗ n−1 − 1

2
T⃗ n−2

)
or, [

M θ +
2

3
δt(Ka +Kd)

]
· T⃗ n = M θ ·

(
4

3
T⃗ n−1 − 1

3
T⃗ n−2

)
When the timestep δt is kept constant (which may be a bad idea with regards to the CFL

condition), the backward differenciation formula family of implicit methods for the integration of
ODEs are simplified. The BDF-1 is simply the backward Euler method as seen above:

T n+1 − T n = δt Fn+1

The BDF-2 is given by

T n+2 − 4

3
T n+1 +

1

3
T n =

2

3
δt Fn+2

The BDF-3 is given by

T n+3 − 18

11
T n+2 +

9

11
T n+1 − 2

11
T n =

6

11
δt Fn+3

The BDF-4 is given by

T n+4 − 48

25
T n+1 +

36

25
T n+1 − 16

25
T n+1 +

3

25
T n =

12

25
δt Fn+4

Each BDF-s method achieves order s.
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Anisotropic heat conduction

It is most often assumed that the heat conductivity is isotropic so that one speaks of heat conductivity
as a scalar k. However many materials are orthotropic and in that case the heat conductivity is a
tensor k which (in 2D) writes (see Reddy [1051, p121]):

k =

(
kxx kxy
kyx kyy

)
=

(
cos θ sin θ
− sin θ cos θ

)
·
(
k1 0
0 k2

)
·
(

cos θ − sin θ
sin θ cos θ

)
where k1 and k2 are the conductivities in the principal axes system and θ is the local orientation. In
that case the diffusion term in the heat transport equation becomes ∇⃗ · (k · ∇⃗T ).

About the assembly

Let us consider for simplicity the following grid composed of 9 nodes and 4 Q1 elements. Each node
carries a single degree of freedom.

There are four elements:

� element 1 is composed of nodes (1, 2, 5, 4) = T⃗ el1

� element 2 is composed of nodes (2, 3, 6, 5) = T⃗ el2

� element 3 is composed of nodes (4, 5, 8, 7) = T⃗ el3

� element 4 is composed of nodes (5, 6, 9, 8) = T⃗ el4

For each element one has computed an elemental matrix Ael and a right hand side b⃗el.

Ael1 · T el1 = bel1

Ael2 · T el2 = bel2

Ael3 · T el3 = bel3

Ael4 · T el4 = bel4

As seen in the 1D case, these four linear systems must be assembled in a single large matrix of size
9× 9 as shown in the figure above.
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6.4 Another approach to solving the advection diffusion

As we have seen above, one usually solves the heat transport equation (i.e. an advection-diffusion
equation) in this form (source terms are neglected):

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= ∇⃗ · k∇⃗T (6.29)

As we have seen in Section 2.6, the diffusion term is actually the divergence of the heat flux q⃗ =
−k∇⃗T . We could then choose to keep the heat flux as an unknown and solve a coupled system of
equations instead:

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= −∇⃗ · q⃗

q⃗ = −k∇⃗T

or,

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
+ ∇⃗ · q⃗ = 0 (6.30)

q⃗ + k∇⃗T = 0⃗ (6.31)

We have seen that the two left hand side terms of the first equation become M θ · ˙⃗T and Ka · T⃗ . Let
N θ(r⃗) be the temperature basis functions so that the temperature inside an element is given by

T h(r⃗) =

mT∑
i=1

N θ
i (r⃗)Ti = N⃗ θ · T⃗ (6.32)

where T⃗ is a vector of length mT . Let N q(r⃗) be the heat flux basis functions, and let us define (in
2D) q⃗ = (q

x
, q
y
) so that

q
x

h(r⃗) =

mq∑
i=1

N q
i (r⃗) q

xi

= N⃗ q · q⃗
x

(6.33)

q
y

h(r⃗) =

mq∑
i=1

N q
i (r⃗) q

yi

= N⃗ q · q⃗
y

(6.34)

where N⃗ q, q⃗
x
and q⃗

y
are vectors of length mq. The weak form of the third term of Eq. (6.30) is then

∫
Ω

N θ
i ∇ · q⃗ dΩ = −

∫
Ω

N θ
i

(
∂

∂x
q
x
+

∂

∂y
q
y

)
dΩ

=

∫
Ω

N θ
i

(
∂N⃗ q

∂x
· q⃗
x
+
∂N⃗ q

∂y
· q⃗
y

)
dΩ

=

∫
Ω

N θ
i

∂N⃗ q

∂x
· q⃗
x
dΩ +

∫
Ω

N θ
i

∂N⃗ q

∂y
· q⃗
y
dΩ

Writing this last equation for i = 1, ...mT yields(∫
Ω

N⃗ θ∂N⃗ q

∂x
dΩ

)
︸ ︷︷ ︸

Hx

·⃗q
x
+

(∫
Ω

N⃗ θ∂N⃗ q

∂y
dΩ

)
︸ ︷︷ ︸

Hy

·⃗q
y
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In the end, we obtain:

M θ · ˙⃗T +Ka · T⃗ +Hx · q⃗
x
+Hy · q⃗

y
= 0⃗ (6.35)

Turning now to Eq. (6.31), its weak form is∫
Ω

N q
i

(
q⃗ + k∇⃗T

)
dΩ = 0⃗

and we can decompose it in its x and y components:

0 =

∫
Ω

N q
i

(
q
x

h + k
∂T h

∂x

)
dΩ

=

∫
Ω

N q
i

(
N⃗ q · q⃗

x
+ k

∂N⃗ θ

∂x
· T⃗

)
dΩ

=

∫
Ω

N q
i N⃗ q · q⃗

x
dΩ +

∫
Ω

kN q
i

∂N⃗ θ

∂x
· T⃗ dΩ

0 =

∫
Ω

N q
i

(
q
y

h + k
∂T h

∂y

)
dΩ

=

∫
Ω

N q
i

(
N⃗ q · q⃗

y
+ k

∂N⃗ θ

∂y
· T⃗

)
dΩ

=

∫
Ω

N q
i N⃗ q · q⃗

y
dΩ +

∫
Ω

kN q
i

∂N⃗ θ

∂y
· T⃗ dΩ (6.36)

Writing these equations for i = 1, ...mq yields:

0 =

∫
Ω

N⃗ qN⃗ q · q⃗
x
dΩ +

∫
Ω

kN⃗ q ∂N⃗ θ

∂x
· T⃗ dΩ

=

(∫
Ω

N⃗ qN⃗ qdΩ

)
︸ ︷︷ ︸

Mq

·⃗q
x
+

(∫
Ω

kN⃗ q ∂N⃗ θ

∂x
dΩ

)
︸ ︷︷ ︸

Gx

·T⃗ (6.37)

0 =

∫
Ω

N⃗ qN⃗ q · q⃗
y
dΩ +

∫
Ω

kN⃗ q ∂N⃗ θ

∂y
· T⃗ dΩ

=

(∫
Ω

N⃗ qN⃗ qdΩ

)
︸ ︷︷ ︸

Mq

·⃗q
y
+

(∫
Ω

kN⃗ q ∂N⃗ θ

∂y
dΩ

)
︸ ︷︷ ︸

Gy

·T⃗ (6.38)

Finally Eqs. (6.35,6.37,6.38) can be combined and yield the following system (assuming an implicit
backward Euler time scheme): M θ +Kaδt Hxδt Hyδt

Gx M q 0
Gy 0 M q

 ·


T⃗ n+1

q⃗
x

n+1

q⃗
y

n+1

 =

 M θ · T⃗ n
0⃗

0⃗


If we choose mq = mT and N q = N θ then M θ = M q = M so that M +Kaδt Hxδt Hyδt

Gx M 0
Gy 0 M

 ·


T⃗ n+1

q⃗
x

n+1

q⃗
y

n+1

 =

 M · T⃗ n
0⃗

0⃗


312



Also, if k is constant in space thenGx,y = kHx,y. Rather interestingly, one could write Eqs. (6.37,6.38)
as

q⃗
x

n+1 = −(M q)−1 ·Gx · T⃗ n+1 (6.39)

q⃗
y

n+1 = −(M q)−1 ·Gy · T⃗ n+1 (6.40)

and inject it in Eq. (6.35) to yield:

M θ · ˙⃗T + [Ka −Hx · (M q)−1 ·Gx −Hy · (M q)−1 ·Gy] · T⃗ n+1 = 0⃗ (6.41)

which means that we can directly solve for temperature! Rather interestingly, it is not equivalent to
Eq. (6.26). Food for thought ...

We will see that this approach bears a lot of resemblance to the one taken in the context of
Discontinuous Galerkin methods.

6.5 The advection-diffusion eq in axisymmetric cylindrical

coordinates

hte axisymm.tex

We start from

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= k∆T

The temperature gradient in cylindrical coordinates is

∇⃗T =

 ∂rT
1
r
∂θT
∂zT


Since νθ = 0 and also ∂θT = 0 then

ν⃗ · ∇⃗T = νr
∂T

∂r
+ νz

∂T

∂z

and we have the Laplace operator (terms in ∂θ have been left out):

∆T =
1

r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂z2

However for the FE formulation we will formulate the equation as

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= ∇⃗ · (k∇⃗T )

After multiplying this equation by a test function and integrating over the domain, the diffusion
term is integrated by parts (surface terms are per usual discarded), and we finally obtain

M · ∂T⃗
∂t

+ (Ka +Kd) · T⃗ = 0⃗
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with

Ka =

∫
ρCpN⃗

T (ν⃗ ·B) dV (6.42)

Kd =

∫
kBT ·B dV (6.43)

where the matrix B is identical in this case to the 2D Cartesian one.
It looks like switching from 2D Cartesian to 3D cylindrical axisymmetric does not introduce any

change in the formulation. A bit too good to be true ?
Relevant Literature: check section 2.9 of J.N. Reddy and D.K. Gartling. The Finite Element

Method in Heat Transfer and Fluid Dynamics. CRC Press, 2010. isbn: 978-1-4200-8598-3.

6.6 The SUPG formulation for the energy equation

supg.tex

As abondantly documented in the literature advection needs to be stabilised as it otherwise
showcases non-negligible under- and overshoots. A standard approach is the Streamline Upwind
Petrov Galerkin (SUPG) method.

A nice overview of upwind techniques and how SUPG came to be is to be found in Chapter 2 of
Donea & Huerta [341] or in Brooks and Hughes (1982) [154]. Hughes et al. (1986) [610] present a
review of the SUPG method and discuss a additional discontinuity-capturing term. So do Tezduyar
and Park [1251] (1986). Note that the idea of upwind goes back to the seventies Heinrich, Huyakorn,
Zienkiewicz, and Mitchell [559] (1977)

TODO? It is compared to other methods in the context of mantle convection in Malevsky & Yuen
(1991) [826].

Linear elements - artificial diffusion

We have seen in Section 3.9 that the discretised advection-diffusion equation in 1D is given by:

u

2h

[(
1− 1

Pe

)
Ti+1 +

2

Pe
Ti −

(
1 +

1

Pe

)
Ti−1

]
= f

and we show in Stone ?? that the solution is far from accurate for Pe > 1. Let us ask ourselves the
following question: could come up with a modified version of the equation above which guarantees
an exact solution on a uniform mesh of linear elements?

Essentially, we are looking for A, B and C such that

ATi+1 +BTi + CTi−1 = f

One can show (see Donea & Huerta [341]) that a successful candidate formulation is9:

u

2h
[(1− coth(Pe))Ti+1 + 2 coth(Pe)Ti − (1 + coth(Pe))Ti−1] = f

which can be arranged into the following form:

u
Ti+1 − Ti−1

2hx
− (κ+ κ̃)

Ti−1 − 2Ti + Ti+1

h2x
=

f

ρ0Cp
(6.44)

9coth(x) = (exp(x)− exp(−x))/(exp(x) + exp(−x))
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where κ̃ is known as artificial (numerical) diffusion (dissipation) given by

κ̃ = β
uh

2
= βκPe with β = coth(Pe)− 1

Pe

where Pe is the (dimensionless) Peclet number defined as:

Pe =
uh

2κ

If Pe > 1 we say the problem is advection-dominated, else if Pe < 1 we say the problem is diffusion-
dominated.

One can also define k̃ = ρ0Cpκ̃ so that the discretised 1D advection-diffusion becomes:

ρ0Cpu
Ti+1 − Ti−1

2hx
− (k + k̃)

Ti−1 − 2Ti + Ti+1

h2x
= f (6.45)

or, in its continuous formulation:

ρ0Cpu
dT

dx
− (k + k̃)

d2T

dx2
= f

The β factor is shown in the following figure as a function of the Peclet number:
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Note that the value of β is positive only for Pe > 1.

Linear elements - bubble functions & Petrov-Galerkin formulation

Let us assume that u > 0, i.e. advection goes from left to right. Node i − 1 is said to be on the
upstream side of node i, and node i+1 is on the downstream side of node . In Petrov FEM, instead
of selecting the weight functions to be the same as the standard basis functions, we distort them as
shown below.

The distortion is based on so-called bubble functions since they have zero values on the nodes
and they are nonzero on elements’ interiors. For instance one can take

N ⋆
1 (r) =

1

2
(1− r)− 3

4
β(1− r2) (6.46)

N ⋆
2 (r) =

1

2
(1 + r) +

3

4
β(1− r2) (6.47)

as test/weight functions where β is a parameter that controls the amount of upwinding.
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Left: standard Q1 test functions; Right: modified (Q1+bubble) functions for β = 0.25
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Ke
a =

∫ xk+1

xk

(N⃗ ⋆)TρCpν⃗ ·B dx

= ρCpu

 −1/2 1/2

−1/2 1/2

+
h

2

∫ +1

−1

ρCpu

(
−3

4
β(1− r2)

+3
4
β(1− r2)

)(
dN1

dr

dN2

dr

)
dr (6.48)

=
ρCpu

2

 −1 1

−1 1

+
u

2

 β −β

−β β

 (6.49)

VERIFY
We see that this additional matrix is akin to Ke

d so that

Ke = Ke
a +Ke

d =
ρCpu

2

 −1 1

−1 1

+ (
k

h
+
uβρCp

2
)

 1 −1

−1 1


VERIFY!!
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The SUPG method

We start from the ’bare-bones’ heat transport equation (source terms are omitted):

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= ∇⃗ · k∇⃗T (6.50)

which we once again write

ρCp

(
Ṫ + ν⃗ · ∇⃗T

)
= ∇⃗ · k∇⃗T (6.51)

In what follows we assume that the velocity vield ν⃗ is known so that temperature is the only
unknown. Let Nθ

i be the temperature basis function at node i so that the temperature inside an
element is given by10:

T h(r⃗) =

mT∑
i=1

N θ
i (r⃗) Ti = N⃗ θ · T⃗ (6.52)

where T⃗ and N⃗ θ are vectors of length mT . Also:

∇⃗N⃗ θ =

 ∂xN θ
1 ∂xN θ

2 . . . ∂xN θ
mT

∂yN θ
1 ∂yN θ

2 . . . ∂yN θ
mT


The weak form is then ∫

Ωe

N θ
i

[
ρCp

(
Ṫ + ν⃗ · ∇⃗T

)]
dΩ =

∫
Ωe

N θ
i ∇⃗ · k∇⃗TdΩ (6.53)

or, ∫
Ωe

N θ
i ρCpṪ

hdΩ︸ ︷︷ ︸
I

+

∫
Ωe

N θ
i ρCpν⃗ · ∇⃗T hdΩ︸ ︷︷ ︸

II

=

∫
Ωe

N θ
i ∇⃗ · k∇⃗T hdΩ︸ ︷︷ ︸

III

i = 1,mT

The streamline upwind Petrov-Galerkin (SUPG) method adds the following stabilisation term to the
left hand side of this equation (see Section 2.4 in Donea & Huerta [341]):∫

Ωe

(ν⃗ · ∇⃗N θ
i )τR(ν⃗) dΩ

where R is the residual defined as

R(T h) = ρCp(Ṫ
h + ν⃗ · ∇⃗T h)− ∇⃗ · k∇⃗T h

and τ is a stabilisation parameter (see Section 6.6).
We have already worked out in Section 6.3 the final forms of I, II and III, so we here focus on

the additional SUPG terms.
We then have three terms to deal with:

IV =

∫
Ωe

τ(ν⃗ · ∇N θ
i )(ρCpṪ

h)dΩ (6.54)

V =

∫
Ωe

τ(ν⃗ · ∇N θ
i )(ρCpν⃗ · ∇⃗T h)dΩ (6.55)

V I =

∫
Ωe

τ(ν⃗ · ∇N θ
i )(−∇⃗ · k∇⃗T h)dΩ (6.56)

10the θ superscript has been chosen to denote temperature so as to avoid confusion with the transpose operator
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We can compute the quantity I + IV :

I + IV =

∫
Ωe

N θ
i ρCpṪ

hdΩ +

∫
Ωe

(ν⃗ · ∇⃗N θ
i )τ(ρCpṪ

h)dΩ

=

∫
Ωe

(N θ
i + τ ν⃗ · ∇⃗N θ

i )(ρCpṪ
h)dΩ (6.57)

and also II + V :

II + V =

∫
Ωe

N θ
i ρCpν⃗ · ∇⃗T hdΩ +

∫
Ωe

(ν⃗ · ∇⃗N θ
i )τ(ρCpν⃗ · ∇⃗T h)dΩ (6.58)

=

∫
Ωe

(N θ
i + τ ν⃗ · ∇⃗N θ

i )(ρCpν⃗ · ∇⃗T h)dΩ (6.59)

Remark. Because of the integration by parts which will be applied to III, the terms III and V I
cannot be summed together.

Remark. If the equation is a pure advection equation, then k = 0 so III = V I = 0.

We see that both I + IV and II + V contain the term N θ
i + τ ν⃗ · ∇⃗N θ

i which we can interpret as
a ’modified’ basis function:

N θ
i = N θ

i + τ ν⃗ · ∇⃗N θ
i

This yields the following modified elemental matrices

M θ → M θ =

∫
ρCpN⃗

θ
N⃗ θ dΩ

Ka → Ka =

∫
ρCpN⃗

θ
(ν⃗ · ∇⃗N⃗ θ) dΩ

Remark. The modified mass matrix is not symmetrical anymore.

Under the assumption that k is constant within the element, we have

V I =

∫
Ωe

τ(ν⃗ · ∇N θ
i )(−k∆T h)dΩ

with

∆T h = ∆

mT∑
i=1

N θ
i (r⃗)Ti =

mT∑
i=1

∆N θ
i (r⃗)Ti = ∆N⃗ θ · T⃗

Remark. If the basis functions are first-order ones, then V I = 0 since ∆N⃗ θ = 0⃗.

The SUPG-stabilised pure advection equation is extensively tested in the Stone ??.

About the choice of the parameter τ

� The approach used in step-63 and subsequently in Aspect is the one in John & Knobloch
[654, 715] which is also to be found in early 80’s papers [154, 605]:

τ1 =
h

2|ν⃗|p

(
coth(Pe)− 1

Pe

)
where τ is computed on each cell, h being its diameter in the direction of ν⃗, and p is the order
of the approximation (i.e. the maximum degree of polynomials). Note that Hughes & Brooks
[605] replace the costly ’coth’ term by an asymptotic curve:
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Taken from [605]. Here α is the Peclet number and the vertical axis is the term coth(Pe)− 1/Pe.

� Codina (2000) (see Eq.39 of [270]) defines τ as follows:

τ2 =

(
2|ν⃗|
h

+
4κ

h2
+ σ

)−1

where σ is a reaction term (which we neglect in what follows). This equation can be re-written:

τ2 =
h

2|ν⃗|

(
1 +

1

Pe

)−1

� Shakib et al. (1991) (see Eq. 3.59 of [1152]) propose another formula:

τ3 =
h

2|ν⃗|

(
1 +

9

Pe2

)−1

� Braun [135] uses

τ4 =
h

|ν⃗|
√
15

=
h

2|ν⃗|
2√
15

This formula is independent of Pe and is also in Bochev et al. (2004) [104]. It is also used in
Hughes & Brooks (1982) [605] for pure advection problems in 1D and this value is attributed
to Raymond & Garder (1976) [1049].

� Following [1250] (see also Appendix A of Thieulot (2011) [1258]):

τ5 =

(
2|ν⃗|
h

+
1

θδt
+

κ

h2

)−1

Crank-Nicolson: θ = 1/2, CFL condition yields δt = C h
|ν⃗| so

τ5 =

(
2|ν⃗|
h

+
2

δt
+

κ

h2

)−1

=

(
2|ν⃗|
h

+
2v

Ch
+

κ

h2

)−1

=
h

2|ν⃗|

(
1 +

1

C
+

1

4Pe

)−1

Note that the velocity in the CFL criterion is the maximum velocity in the domain, while in all
other expressions above for τi it is the velocity in the cell/element. By doing so, the relationship
for τ5 is actually only valid for the cell with the highest velocity. Also, this has been used in the
context of SUPG methods for the Navier-Stokes equations, not advection-diffusion equations!
This approach is then not considered further.

� Franca et al. (2004) [413] use the following formula which originates from Franca et al. (1992)
[412]: if 0 ≤ Pe < 1 then τ = h

2|ν⃗|Pe and if Pe ≥ 1 then τ = h
2|ν⃗| . Note however that their

definition of the Peclet number includes a scalar parameter m which is the minimum between
1/3 and and 2Ck where the calculation of this parameter is discussed in Remarks 4 and 5 of
[412]. The authors conclude that for linear quadrilaterals the value 1/3 should be used while
for biquadratic elements 1/12 should be preferred. The same approach is found in Brezzi et
al. (1992) [150].
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� Knobloch [715] discusses other choices of τ .

Quoting Donea & Huerta: ”It is obvious that τ must vanish when the mesh is refined (no
stabilisation is necessary for a fine enough mesh)” and ”Numerical experiments seem to indicate that
for finite elements of order p the value of the stabilisation parameter should be approximately τ/p.”

Let us define γ = τ
h/2|ν⃗| (dimensionless quantity) and plot this quantity against the Peclet number:
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In the case when the equation to be stabilised is a pure advection equation, then Pe→∞ so

γ1 → 1 γ2 → 1 γ3 → 1 γ4 ≃ 0.52 γ5 → (1 + C−1)−1

Some remarks about Appendix A of Thieulot (2011) [1258]

In the Douar paper [136] or the Fantom paper [1258], The advection matrix is simply modified
and computed as follows:

(Ke
a)SUPG =

∫ xk+1

xk

(N⃗ ⋆)TρCpν⃗ ·Bdx with N⃗ ⋆ = N⃗ + τ ν⃗ ·B

Note that we can also write

(Ke
a)SUPG =

∫ xk+1

xk

N⃗ TρCpν⃗ ·Bdx+
∫ xk+1

xk

τ(ν⃗ ·B)TρCp(ν⃗ ·B)dx

and we see that the SUPG method introduces and additional term that is akin to a diffusion term
in the direction of the flow. This can be seen by looking at the advection matrix a regular grid of
1D elements of size h:

(Ke
a)SUPG = Ke

a + ρCp
τu2

h

 1 −1

−1 1


The additional matrix has the same structure as the 1D diffusion matrix matrix in 6.1.

The parameter τ is chosen as follows [1250]:

τ =

(
1

τ1
+

1

τ2
+

1

τ3

)−1

τ1 =
h

2|ν⃗|
, τ2 = θ δt, τ3 =

h2ρCp
k

(6.60)

where h is a measure of the element size and θ is related to the time discretisation scheme (θ =
1/2 corresponds to a mid-point implicit scheme), and we can define γ = τ |ν⃗|/h (see Appendix A of
[1258]).

A typical test case for testing an advection scheme is the step advection benchmark (see for
instance Donea & Huerta (2003) [341]). At t = 0, a field T (x) is prescribed in a 1D domain of unit
length. For x ≤ 1/4 we have T (x) = 1 and T (x) = 0 everywhere else as shown on the following
figure:
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Taken and modified from Thieulot (2011) [1258]

The prescribed velocity is ν = 1, 50 elements are used (h = 0.02) and 250 time steps are carried
out with δt = 0.1h/ν = 0.002 (CFL number of 0.1). Then it follows that τ3 = ∞ (no diffusion, i.e.
k = 0) and

τ =

(
2

0.02
+

2

0.002

)−1

=

(
1

0.01
+

1

0.001

)−1

=

(
1

0.01
(1 +

1

10
)

)−1

= 0.01

(
11

10

)−1

≃ 0.009091

which yields γ = 0.00909/0.02 = 0.4545... Using this value leads to a desired removal of the
oscillations through a small amount of numerical diffusion. Braun [135] argues for a constant
γ = 1/

√
15 = 0.258 (citing Hughes & Brooks (1982) [605]), which effect is also shown in the figure

above. This value is arguably too large and introduces an undesirable diffusion. Note that this same
value is to be found in Bochev et al. (2004) [104]. The authors then state that ”for 1D pure advection
problems, this choice maximizes the phase accuracy in the semidiscrete equation” and cite Raymond
& Gardner (1976) [1049] as source.

Another classic example of advection testing is a 2D problem where (for example) a cylinder, a
Gaussian and a cone are prescribed and advected with a velocity field (see for instance [341]).

After a 2π rotation and in the absence of stabilisation we see that the temperature field showcases clearly visible ripples.

Remark. Note that Aspect originally did not rely on the SUPG formulation to stabilise the
advection(-diffusion) equations[732]. It instead relied on the Entropy Viscosity formulation [502,
501]. It is only during the 6th Hackathon in May 2019 that the SUPG was introduced on the code.
Note that the Aspect implementation is based on the deal.II step 6311.

11https://www.dealii.org/developer/doxygen/deal.II/step_63.html
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Chapter 7

Solving the Stokes equations with the
FEM

chapter fem2.tex

7.1 A quick tour of similar literature

� Treatise on Geophysics, Volume 7, Edited by D. Bercovici and G. Schubert: ”Numerical Meth-
ods for Mantle Convection”, by S.J. Zhong, D.A. Yuen, L.N. Moresi and M.G. Knepley. Note
that it is a revision of the previous edition chapter by S.J. Zhong, D.A. Yuen and L.N. Moresi,
Volume 7, pp. 227-252, 2007.

� Computational Science I, Lecture Notes for CAAM 519, M.G. Knepley, 2017. https://cse.

buffalo.edu/~knepley/classes/caam519/

� Numerical Modeling of Earth Systems - An introduction to computational methods with focus
on solid Earth applications of continuum mechanics, Th.W. Becker and B.J.P. Kaus, 2018.
http://www-udc.ig.utexas.edu/external/becker/Geodynamics557.pdf

� Myths and Methods in Modeling, M. Spiegelman, 2000. https://earth.usc.edu/~becker/

teaching/557/reading/spiegelman_mmm.pdf

In the case of an incompressible flow, we have seen that the continuity (mass conservation)

equation takes the simple form ∇⃗ · ν⃗ = 0. In other words flow takes place under the constraint
that the divergence of its velocity field is exactly zero eveywhere (solenoidal constraint), i.e. it is
divergence free.

We see that the pressure in the momentum equation is then a degree of freedom which is needed
to satisfy the incompressibilty constraint (and it is not related to any constitutive equation) (see for
example Donea and Huerta [341]). In other words the pressure is acting as a Lagrange multiplier of
the incompressibility constraint.

Various approaches have been proposed in the literature to deal with the incompressibility con-
straint but we will only focus on the penalty method (section 7.4) and the so-called mixed finite
element method 7.5.
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7.2 Strong and weak forms

strongweak.tex

As we have seen in Section 6.1 the strong form consists of the governing equation and the boundary
conditions, i.e. the mass, momentum and energy conservation equations supplemented with Dirichlet
and/or Neumann boundary conditions on (parts of) the boundary. Ultimately we have two main
unknowns that we wish to solve for: velocity (a vector) and pressure (a scalar).

To develop the finite element formulation, the partial differential equations must be restated in an
integral form called the weak form. In essence the PDEs are first multiplied by an arbitrary function
and integrated over the domain.
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7.3 Which velocity-pressure pair for Stokes?

The success of a mixed finite element formulation crucially depends on a proper choice of the local
interpolations of the velocity and the pressure.

7.3.1 The compatibility condition (or LBB condition, or inf-sup condi-
tion)

lbb.tex

WARNING: I am not comfortable (yet) writing about this topic. What follows is a rough attempt
at making sense of it.

The Ladyžhenskaya-Babuška-Brezzi (LBB1) condition is a sufficient condition for a saddle point
problem to have a unique solution. For saddle point problems coming from the Stokes equations,
many discretizations (i.e. choices for the velocity and pressure polynomial spaces) are unstable,
giving rise to artifacts such as spurious oscillations. The LBB condition gives criteria for when a
discretization of a saddle point problem is stable. It also assures convergence at the optimal rate.

Bochev & Gunzburger [103] state: “ The terminology ’LBB’ originates from the facts that this
condition was first explicitly discussed in the finite element setting for saddle point problems by
Brezzi2 [149] and that it is a special case of the general weak-coercivity condition first discussed
for finite element methods by Ivo Babuška3 [37] and that, in the continuous setting of the Stokes
equation, this condition was first proved to hold by Olga Ladyzhenskaya4; see [740].”

Unfortunately, to quote Donea & Huerta [341]: “In the finite element context, it is by no means
easy to prove whether or not a given velocity-pressure pair satisfies the LBB compatibility condition.”
Elman et al. state: “[...] Choosing spaces for which the discrete inf-sup condition holds and is a
delicate matter, and seemingly natural choices of velocity and pressure approximation do not work.
[...] In general, care must be taken to make the velocity space rich enough compared to the pressure
space.” By rich enough the authors essentially mean that the order of the polynomials used to
represent velocity must be higher than the one used for pressure.

The LBB condition, or inf-sup condition can be proven in different ways, and standard techniques
have been designed as listed in Boffi et al. (2008) [108].

Elman et al. [371] state that “The inf-sup condition is a sufficient condition for the pressure to be
unique up to constant in the case of an enclosed flow.” This can also be proven for other boundary
conditions. This approach, based on the macro-element technique [1207] is explored in Appendix K.

It can be shown that, provided the kernel (null space) of matrix G is zero, the Stokes matrix is

non-singular, that is V⃗ and P⃗ are uniquely defined, and the Schur complement matrix S is positive
definite. Simply put, taking V⃗ = 0⃗ in the discretised Stokes system without body forces yields
G · P⃗ = 0⃗ and implies that any pressure solution is only unique up to the null space of the matrix G.

We know that the Schur complement matrix S is positive definite if and only if all of its eigenvalues
are positive. One could then (numerically) compute the eigenvalues of S and check that these are
indeed strictly positive to show that S is positive definite but that would prove very costly.

Another way is to see that S is positive definite only if ker(G) = {0}. Again to quote Donea &
Huerta [341]: “If this is the case, the partitioned Stokes matrix is non-singular and delivers uniquely
defined velocity and pressure fields. If this is not the case, a stable and convergent velocity field
might be obtained, but the pressure field is likely to present spurious and oscillatory results.” Note

1https://en.wikipedia.org/wiki/Ladyzhenskaya-Babuska-Brezzi_condition
2https://en.wikipedia.org/wiki/Franco_Brezzi
3https://en.wikipedia.org/wiki/Ivo_Babuska
4https://en.wikipedia.org/wiki/Olga_Ladyzhenskaya
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that in the case of the Q1 × P0 element it has been shown that the multiple families of checkboard
pressure modes actually lie in the kernel of G. [1108, 1109]

We can look at this in a different manner, as explained in Elman, Silvester, and Wathen [371]:
the unique solvability of the matrix system(

K G
GT 0

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
(7.1)

is determined by looking at the homogeneous system(
K G
GT 0

)
·
(
V⃗
P⃗

)
=

(
0⃗

0⃗

)
(7.2)

or,

K · V⃗ +G · P⃗ = 0⃗

GT · V⃗ = 0⃗ (7.3)

To start, premultiply the first equation by V⃗T and the second by P⃗T . The second yields P⃗T ·GT · V⃗ =
(V⃗T ·G · P⃗)T = 0⃗ which is present in the first equation so that it simplifies to V⃗T ·K · V⃗ = 0⃗. Since

K is positive definite, it follows that V⃗ = 0⃗, implying unique solvability with respect to the velocity.
On the other hand, unique solvability with respect to the pressure is problematic. Substituting

V⃗ = 0⃗ in the system above gives G ·P⃗ = 0⃗, and implies that any pressure solution is only unique up to
the nullspace of the matrixG. The bottom line is that if Eq. (7.1) is to properly represent a continuous
Stokes problem, then the mixed approximation spaces need to be chosen carefully. Specifically, we
have to ensure that null(G) = {1} in the case of enclosed flow, and that null(G) = {0}, otherwise.

Gresho and Sani [488] state: “LBB stable elements assure the existence of a unique solution to
Stokes flow and assure convergence at optimal rate. [...] LBB-unstable elements may not converge,
and if they do, they may not do so at the optimal rate.”

7.3.2 Families

The family of Taylor-Hood finite element spaces on triangular/tetrahedral grids is given by Pk×Pk−1

with k ≥ 2, and on quadrilateral/hexahedral grids by Qk × Qk−1 with k ≥ 2. This means that the
pressure is then approximated by continuous functions.

These finite elements are very popular, in particular the pairs for k = 2, i.e. Q2×Q1 and P2×P1.
The reason why k ≥ 2 comes from the fact that the Q1 × Q0 (often referred to as Q1 × P0) and
P1 × P0 are not stable elements (they are not inf-sup stable), as shown in John [650, p64] and [650,
p67].

Remark. Note that a similar element to Q2 × Q1 has been proposed and used succesfully used in
Tayloor and Hood [1240] (1973) and Hood and Taylor [589] (1974): it is denoted by Q

(8)
2 ×Q1 since

the center node (’x2y2’) and its associated degrees of freedom have been removed. It has also been
proved to be LBB stable. These are also called Serendipity elements.

7.3.3 The bi/tri-linear velocity - constant pressure element (Q1 × P0)

pair q1p0.tex
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(tikz q1p0.tex)

0 1

23

ν⃗ p

4 vel. nodes, 1 press. node

ν⃗ p

8 vel. nodes, 1 press. node

However simple it may look, the element is one of the hardest elements to analyze and many
questions are still open about its properties. The element does not satisfy the inf-sup condition [604,
p211]. In Gresho & Sani [488] it is labeled as follows: “slightly unstable but highly usable”.

The Q1×P0 mixed approximation is the lowest order conforming approximation method defined
on a rectangular grid. It also happens to be the most famous example of an unstable mixed approx-
imation method [371, p235]. Boland and Nicolaides [111] (1984) and Boland and Nicolaides [112]
(1985) show that it is not stable.

This element is discussed in Fortin (1981) [401], Fortin & Fortin (1985) [403] and in Pitkäranta
& Saarinen (1985) [1001] in the context of multigrid use.

This element is plagued by so-called pressure checkerboard modes which have been thoroughly
analysed, see for example Griffiths and Silvester [495] (1994), Chen, Pan, and Chang [221] (1995),
Sani, Gresho, Lee, and Griffiths [1108] and Sani, Gresho, Lee, Griffiths, and Engelman [1109] (1981).
These can be filtered out, see for example Chen, Pan, and Chang [221] (1995) or Lee, Gresho, and
Sani [759] (1997), and explained in Section 9.7.

Relevant Literature: Fortin and Boivin [402] (1990), [491] (1985), LeTallec and Ruas [774]
(1986), Oden and Jacquotte [950] (1984).

7.3.4 The bi/tri-quadratic velocity - bi/tri-linear pressure element (Q2×
Q1)

pair q2q1.tex

(tikz q2q1.tex)
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ν⃗ p

9 vel. nodes, 4 press. nodes

ν⃗ p

27 vel. nodes, 8 press. nodes

It belongs to the Taylor-Hood family of elements and satisfies the inf-sup (LBB) condition [604,
p215]. Gresho & Sani [488, p554] write that in their opinion div(v⃗) = 0 is not strong enough. This
element, implemented in penalised form, is discussed in Bercovier & Engelman (1979) [79] and the
follow-up paper [80].

It is the default of theAspect code (see Appendix ??). It is implemented in stone 18,21,48,91,120,...
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7.3.5 The bi/tri-quadratic velocity - discontinuous linear pressure ele-
ment (Q2 × P−1)

pair q2pm1.tex

According to Boffi, Brezzi, and Fortin [108] “This element was apparently discovered around a
blackboard at the Banff Conference on Finite Elements in Flow Problems (1979)”.

(tikz p2pm1.tex)

0 1

23

ν⃗ p

9 vel. nodes, 3 press. nodes

This element is crowned “probably the most accurate 2D element” in Gresho and Sani [488].
It is characterised by piecewise bi/triquadratic velocities, and piecewise linear discontinuous poly-

nomial pressure. The element satisfies the inf-sup condition, see p. 211 of Hughes [604], or p. 138
of Elman, Silvester, and Wathen [371]. It is used in Vosse, Steenhoven, Segal, and Janssen [1330]
(1989) for steady laminar flow in a curved tube.

When using this element one must be aware of the fact that there are two possible choices for
the definitions of the pressure space (mapped and un-mapped) as explained in Boffi and Gastaldi
[107] (2002) See stone 76,120 for their implementation. Boffi, Brezzi, and Fortin [108] state: “On
a general quadrilateral mesh, the [pressure] space can be defined in two different ways: either [it]
consists of (discontinuous) piecewise linear functions, or it is built by considering three linear shape
functions on the reference unit square and mapping them to the general elements like it is usually
done for continuous finite elements. [...] We shall refer to the first possibility as unmapped pressure
approach and to the second one as mapped pressure approach.” Furthermore they state “So far,
we have shown that either the unmapped and the mapped pressure approach gives rise to a stable
Q2 × P−1 scheme. However, as a consequence of the results proved in Arnold, Boffi, and Falk [27]
(2002), we have that the mapped pressure approach cannot achieve optimal approximation order.
Namely, the unmapped pressure space provides a second-order convergence in L2, while the mapped
one achieves only O(h) in the same norm.” See also discussion about mapped/unmapped in Boffi,
Brezzi, and Fortin [109].

This element is mentioned in Kaus [679] (2010) and Pelletier, Fortin, and Camarero [984] (1989)
and it is used in Frehner [417] (2014) to study 3D fold growth rates (see online supplementary
material) and in Schmalholz [1118] (2008).

Note that the serendipity version of this pair, i.e. Q
(20)
2 × P−1 is also LBB stable as shown in

p180 of Reddy [1051].

7.3.6 The biquadratic velocity - discontinuous bilinear pressure element
(Q2 ×Q−1)

This element is shown in Table 3.13-2 of Gresho & Sani’s book [488], and discussed in Section 3.13.6b
of the book too. It is not LBB stable and has one chequerboard pressure mode.

It is used (alongside many other element pairs) in Christon, Gresho, and Sutton [256] (2002) in
the context of a flow benchmark in a 2D box. The authors conclude that “[...] the Q2-Q-1 element
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fared slightly better than the Q2-P-1 . Most surprising, though, were the good results obtained with
the ’old’ Taylor–Hood element, Q2-Q1 .”

It is also used in Gresho and Sutton [489] (2002) on a similar benchmark setup (8:1 thermal
cavity problem) along with Q1 × P0, Q2 × P−1 and Q2 × Q1. The authors state that Q2Q-1 has
div- stability problems but “produces excellent results and is still useful in general.” They also state
“If the pesky-mode instability could be eciently dealt with, then the Q2xQ-1 element should be
employed over the Q2xP-1 -especially in 3D (we believe).” Authors mention that it was also used in
Vahl Davis and Jones [1300] and that it “performed EXTREMELY WELL.”

7.3.7 The stabilised bi/tri-linear velocity - constant pressure element
(Q1 × P0-stab)

pair q1p0stab.tex

Much has been written about the Q1 × P0 element and the fact that it is not LBB-stable and that
the pressure field contains a chequerboard mode that needs to be filtered out. It was the principal
element used in computational geodynamics in codes such as Sopale, Citcom, Fantom, ... before
being superseded by LBB-stable elements such as Q2 ×Q1 or Q2 × P−1 [1260].

Many techniques have been proposed to stabilise this element but I here focus on those which
keep the number of degrees of freedom unchanged, i.e. a matrix C is added to the Stokes matrix:(

K G
GT −C

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)

More specifically I will focus on the pressure jump methods.
Note that in 3D the physical dimension of the C matrix is that of hdim/η (i.e. M−1L4T ) where

h is the element size and η a viscosity. The Schur complement S = GT · K−1 · G has obviously the
same dimensions with [G] = L2 and [K] =MT−1.

As explained in Silvester & Kechkar [1167]: “ The system [without the C matrix] is not strictly
positive definite because of the zero coefficients on the diagonal. This fact makes pivoting necessary
when solving [the system] by direct methods and limits the applicability of almost all iterative solution
techniques. What is also well-known is that for certain combinations of the approximation velocity
and pressure spaces, the uniqueness of the discrete solution may not be guaranteed. This is due to
the occurrence of spurious pressure modes in the pressure approximation space.”

The stability of mixed finite element methods boils down to properties of the null space of the
matrix G. An approximation is unstable if G · P⃗ = 0⃗ where P⃗ corresponds to some spurious pressure
mode different from the constant value pressure. Note that if G · P⃗ = 0⃗, then (⃗0, P⃗)T is a null vector
of the homogeneous system.

The basic idea behind stabilization is to relax the incompressibility constraint in a special way
so that this vector is no longer a null vector of the resulting coefficient matrix, and the discrete
solutions satisfy rigorous error bounds. In other words the idea consists in regularising the system
by replacing the zero block by an appropriate positive semi-definite matrix −C [1167].

We will here look at so-called local and global jump methods (and their various flavours), the
macro-element method, as well as the penalty method (which is not really a stabilisation method, as
we will see).

� global jump stabilisation: Hughes, Franca, and Balestra [607] (1987), Norburn and Silvester
[945] (1998), Douglas and Wang [344] (1989), Christon and Cook [255] (2001), Cao [207] (2003),
Eguchi [362] (2003), Y. Cao [1376] (2006)
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� local jump stabilisation: Silvester and Kechkar [1167] (1990), Kechkar and Silvester [686]
(1992), Vincent and Boyer [1326] (1992), Cao [207] (2003), Qin and Zhang [1025] (2007),
Christon [254] (2002), Christon and Cook [255] (2001), Liao and Silvester [787] (2013), Y. Cao
[1376] (2006)

� stabilisation through macro-elements: Fortin and Boivin [402] (1990), LeTallec and Ruas [774]
(1986), LeTallec [773] (1981)

In effect, these jump stabilisation techniques provide an a-priori filter for the weakly unstable
pressure modes associated with the Q1 × P0 element.

Consistency: in Barth, Bochev, Gunzburger, and Shadid [50]:“we should define what we mean
by a consistent method; perhaps a more apt terminology would be variationally consistent. In
standard usage, consistency of numerical schemes for partial differential equations requires that the
pointwise truncation error vanish as the grid size goes to zero; i.e., if one substitutes a smooth solution
of the partial differential equation into the numerical scheme, then the residual is at least o(h), where
h denotes the grid size. Finite element schemes are not, in general, consistent in this sense. However,
for standard finite element methods, sufficiently smooth exact solutions of the partial differential
equations exactly satisfy the variational equation that defines the discrete finite element equations.
This is what we mean by a consistent finite element scheme. This allows us to differentiate between
the methods we consider in this paper and methods which are not consistent in this latter sense. For
example, penalty methods for the Stokes problem are not consistent finite element methods since
substitution of an exact solution into the discrete equations leaves a residual that is proportional
to the penalty parameter. Thus, we consider only methods that do not suffer from this type of
variational inconsistency.”

As explained in Elman book: “to ensure consistency we require 1⃗ ∈ null(C) (this precludes the
use of inconsistent ’penalty methods’) and we require p⃗T · C · p⃗ > 0 for all spurious pressure modes
p⃗ ̸= 1⃗ in null(G).”
define jump operator !! looking at sike90, I realise that I don’t understand how the(ir) jump operator works in practice. Eq on page 78?

The driving question behind all this, besides my wanting to understand these stabilisation schemes
better, is the fact that 1) none of the existing publishing literature seems to address the problem of
large and/or sharp viscosity contrasts/variations; 2) almost all papers deal with regular meshes and
rectangular elements.

Penalty The conventional way of computing a regularisation matrix C is to use a penalty formu-
lation. In the framework presented in Silvester and Kechkar [1167] (1990), the standard penalty
method corresponds to the specific choice of

C(qh, ph) = ϵ

∫
Ω

qhph dV = ϵMp (7.4)

with ϵ > 0 and Mp is the pressure mass matrix. For a regular grid of squares with size h, it follows
that

Cij = 0 if i ̸= j and Cii = ϵ

∫
Ωi

dV = h2ϵ

so that the stabilisation matrix is diagonal:
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

1 5 9 13 17 21

1

5

9

13

17

21

Two-dimensional grid composed of 6× 4 elements on the left and the resulting sparsity pattern of the C matrix on the right.

In Zienkiewicz & Taylor (Section 4.8.2) the matrix is also written as C = ϵh21 where 1 is the
unit matrix.

It is stressed here that the penalty technique does not stabilise an unstable mixed method [1167].
A small penalty parameter means that the original problem is solved quite accurately.

See Cuvelier, Segal, and Steenhoven [298] (1986) for some more details about the penalty method.
The approach above is similar to the one presented in Section ??. The only difference is that instead
of replacing the pressure in the momentum equation by p = λ∇⃗·ν⃗ we keep both velocity and pressure
as unknowns and we take ϵ = λ−1. Since normally λ >> η then ϵ = λ−1 must be small. As explained
in Silvester & Kechkar [1167], “despite its theoretical attraction, the penalty technique breaks down
in practice because of its sensitivity to the particular choice of penalty parameter”.

The Stokes system for a single element then writes(
K G
GT −C

)
·
(
V⃗
P⃗

)
=

(
K G
GT −ϵMp

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
The second line yields

GT · V⃗ − ϵMp · P⃗ = h⃗

or,

P⃗ =
1

ϵ
M−1

p · (GT · V⃗ − h⃗)

which can be re-introduced in the first line:

K · V⃗ +G · 1
ϵ
M−1

p · (GT · V⃗ − h⃗) = f⃗

or, (
K+

1

ϵ
G ·M−1

p ·GT

)
· V⃗ = f⃗ +

1

ϵ
G ·M−1

p · h⃗

This elimination could be carried out element by element so that one only solves for the velocity
degrees of freedom.

- reduced integration? sike90 does not say anything about it.
- condition number explodes since 1

ϵ
>> η

Dohrmann and Bochev [336] (2004) state: “Penalty methods are another category of non-residual
based regularizations. They, however, differ from stabilized methods in the sense that application of a
penalty does not circumvent the inf–sup condition and only serves to uncouple pressure from velocity.
In this sense, penalty methods should be viewed as solution, rather then stabilization procedures for
the mixed equations.”
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Global jump This method is explained in Silvester & Kechkar (1990) and the authors state that
it was introduced by Hughes & Franca [607] in which a general theoretical framework for analysing
global stabilisation techniques is presented. Using this framework, optimum rates of convergence for
the Q1 × P0 method stabilised with global jumps are established.

The global jump stabilisation formulation introduces a pressure diffusion operator that perturbs
the incompressibility constraint. The global jump formulation insures mass conservation in a global
sense since the null space of the stabilising matrix constrains the constant-pressure vector. However,
the global jump stabilisation smears the div-free constraint over a small region, i.e., the divergence
is not zero at the element level [257].

Consider the stabilisation term

C(qh, ph) = βh
Ns∑
s=1

∫
∂Ωs

JqhKJphKds (7.5)

in which h is the mesh parameter (defined locally), J.K is the jump operator, and β > 0 is a stabilising
parameter. The summation is over all interior inter-element edges.

To illustrate, consider element 9 in the mesh consisting of equally sized squares represented here:

(tikz globaljump.tex)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Element 9 has four direct neighbours: 3, 8, 10, and 15. The stabilisation term for this element
involves the sum over its four neighbours:

βh
4∑
s=1

∫
∂Ωs

[[qh]][[ph]]ds = βh2[(p9 − p3) + (p9 − p8) + (p9 − p10) + (p9 − p15)]

= βh2(4p9 − p3 − p8 − p10 − p15)

The integral along each edge is simply the pressure difference across the edge multiplied by the edge
surface/length which happens to be constant in this case. This means that the in the matrix C,
there will be entries on the 9th line at columns 3, 8, 10, and 15.

Be careful, let us now turn to element 6: it has 2 neighbours (5 and 12), so that the stabilisation
term for this element involves the sum over its two neighbours:

βh2[(p6 − p5) + (p6 − p12)] = βh2(2p6 − p5 − p12)

And looking now at element 23: it has three neighbours (17, 22, and 24), so that the stabilisation
term for this element involves the sum over its three neighbours:

βh2[(p23 − p17) + (p23 − p22) + (p23 − p24)] = βh2(3p23 − p17 − p22 − p24)

The resulting assembled C matrix is shown here:
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

1 5 9 13 17 21

1

5

9

13

17

21

2 -1 -1

3 -1-1-1

3 -1-1-1

3 -1-1-1

3 -1-1-1

2 -1 -1-1

3 -1 -1-1

4 -1-1-1-1

4 -1-1-1-1

4 -1-1-1-1

4 -1-1-1-1

3 -1-1-1

3 -1-1-1-1

4 -1-1-1-1

4 -1-1-1-1

4 -1-1-1-1

4 -1-1-1-1

3 -1-1-1-1

2 -1-1-1

3 -1-1-1

3 -1-1-1

3 -1-1-1

3 -1-1-1

2-1-1

As stated in [1167], “for a natural numbering strategy the stabilisation matrix C is pentadiagonal”.
The global jump stabilisation is effective in practice, although a careful choice of the parameter β

is required in order to prevent a loss of accuracy in the solution. According to Silvester and Kechkar
[1167] the only other deficiency is the fact that the global nature of the jump terms makes the method
awkward to implement into existing codes 5.

Let us now consider the following chequerboard pressure mode:

(tikz chequerboard.tex)

-1 +1 -1 +1 -1 +1

+1 -1 +1 -1 +1 -1

-1 +1 -1 +1 -1 +1

+1 -1 +1 -1 +1 -1

We find

βh2(4p9 − p3 − p8 − p10 − p15) = βh2(4 · (+1)− (−1)− (−1)− (−1)− (−1)) = 8βh2 ̸= 0

Remark. In Cao [207] (2003) the parameter β is set to 1.

Remark. Note that this approach is somewhat linked to the idea of a pressure smoother via a discrete
Laplace6: The Discrete Laplace operator is often used in image processing e.g. in edge detection and
motion estimation applications. The discrete Laplacian is defined as the sum of the second derivatives
Laplace and calculated as sum of differences over the nearest neighbours of the central pixel. Here
is an example of a 2D filter and it is of course similar in nature to the Global stabilisation stensil
matrix:

D(1) =

 0 −1 0
−1 +4 −1
0 −1 0


Note that other filters can also be found although we will not use them here in this context:

D(2) =

 −0.5 −1 −0.5−1 +6 −1
−0.5 −1 −0.5

 D(3) =

 −1 −1 −1−1 +8 −1
−1 −1 −1

 D(4) =

 1 −2 1
−2 4 −2
1 −2 1


5I don’t understand this remark
6http://en.wikipedia.org/wiki/Discrete_Laplace_operator
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Eguchi (2003) adds a linear form to the global stab C to suppress the pressure nullspace.

Local jump According to Silvester and Kechkar [1167], the deficiencies of the global jump method
can be overcome by a straightforward modification. Assume that the elements in can now be assem-
bled into Nm disjoint macro-elements of 2× 2 elements, as shown in grey on the following figure:

(tikz localjump.tex)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Consider now the bilinear form given by

C(qh, ph) = βh
Nm∑
m=1

4∑
i=1

∫
∂Ωm

JqhKJphKds

where the first summation is over all 2× 2 macroelements, and the second summation runs over all
inter element edges strictly within each macroelelement.

The form of the stabilisation matrix C is similar to that above except that there is now a local
basis.

For instance, considering again element 9, it now belongs to the second macro-element and there-
fore only ’sees’ neighbours 3 and 10. The resulting C matrix is shown on the figure here after and
its structure is obviously different than in the global stabilisation case, albeit also pentadiagonal.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

1 5 9 13 17 21

1

5

9

13

17

21

2 -1 -1

2 -1-1-1

2 -1-1-1

2 -1-1-1

2 -1-1-1

2 -1 -1-1

2 -1 -1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1-1

2 -1-1-1

2 -1-1-1

2 -1-1-1

2 -1-1-1

2 -1-1-1

2-1-1

Remark. Obviously, one could re-number the elements so that matrix C is block diagonal: macroele-
ment 1 would contain elements 1,2,3,4, macroelement 2 would contain elements 5,6,7,8, etc ...

According to Silvester and Kechkar [1167] or Chibani and Kechkar [233], the advantages of this
local method over the global jump formulation are:

1. implementation is more straightforward because for assembly purposes each 2 × 2 block of
elements can be treated as a single macroelement 7

7same here, not sure what they mean by this
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2. mass is conserved locally (over a macroelement), using the global jump formulation mass is
only conserved globally

3. robustness is improved in the sense that the discrete velocity solution is less sensitive to the
magnitude of β, the influence of the stabilisation matrix being localised (will need to be tested
numerically!).

Remark. The globally stabilised formulation corresponds to the extreme case of a local stabilisation
based on a single macro-element [488].

One of the features of the local stabilisation is that if the discrete incompressibility constraints
are added together then the jump terms sum to zero in each macro element. Indeed, let us consider
the following macro element:

(tikz macro.tex)

1 2

3 4

The corresponding matrix (making abstraction of the β term) writes:

h2


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2




p1
p2
p3
p4


and the row/column sum of its entries is always null. Also, C is obviously positive semi-definite
[1167].

Gresho & Sani [488] state:“ This is crucially important to the success of the method since it
implies that the local incompressibility of the Q1 × P0 method is retained after stabilisation (albeit
over macro-elements). It also suggests that a good strategy when constructing the partition is to form
macro-elements containing as few elements as possible. Once a suitable macro-element partitioning
has been formed, the local stabilisation matrices can be calculated by running through the component
elements, summing jump contributions corresponding to the internal edges.”

If one now considers the following irregular macro-element,

(tikz macro2.tex)

1 2

3 4

the corresponding matrix is given by8

h̃


h12 + h13 −h12 −h13 0
−h12 h12 + h24 0 −h24
−h13 0 h13 + h34 −h34
0 −h24 −h34 h24 + h34




p1
p2
p3
p4


where hij is the length/surface of the edge betweens elements i and j. The reference length h̃ may
be computed by simply defining it to be the average diameter of the constituent elements.

8I suspect it should involve the normal vectors to the edges ...?
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Remark. In three dimensions, the 2×2×2 block is the obvious starting point for stabilising Q1×P0

[488].

Perhaps the most serious potential drawback of the local framework is that stability is only
guaranteed if the stabilisation parameter β is bigger than some critical value β0, which needs to be
estimated.

It can be estimated that β = 1/4 in 2D and β = 1/6 in 3D (see Gresho & Sani [488, p636] for a
detailed derivation, see also Vincent and Boyer [1326] (1992)).

Silvester & Kechkar state: “ The advantages of the stabilisation procedures over the penalty
method are especially relevant to the discretisation of 3D incompressible flow problems, since iterative
solution methods have to be used. Similar stabilisation techniques to those described here are
applicable to the three-dimensional version of the Q1 × P0 mixed method ”.

The conclusion in [1167] is as follows: The local jump formulation proves to be an efficient
method for a priori filtering of spurious pressure modes. It cleanly stabilises the Q1 × P0 mixed
method without compromising its simplicity and resulting efficiency; in particular, it is very robust
with respect to the magnitude of the stabilisation parameter.

It is reported in Gresho & Sani [488] that when using an iterative solver, iteration counts are only
independent of the grid in the stabilised cases: using the raw Q1 × P0 method the iteration counts
significantly increase with decreasing h. Note that the deterioration of the condition number of the
matrix with decreasing h is worse in 3D than in 2D (but bear in mind that one almost always use
higher resolutions in 2D than in 3D, so it does not help). 3D is also discussed in [chsu97].

A way to look at the global vs. local stabilisation schemes is presented on the following figure
from Christon (2002) [254]:

Element configuration for pressure stabilization: (a) global jump; (b) local jump.

Remark. The locally stabilised Q1P0 and P1P0 elements have been analysed in Kechkar & Silvester
[686]. Penalty, global and local approaches are mentioned in Vincent & Boyer (1992) but only the
local jump stabilisation is used.

Silvester (1994) investigates the value for β for Q1P0 and arrives at 0.0615 ≤ β ≤ 0.25. Chang &
Sugiyama (1997) report that “a value between 0.01 and 0.1 appears to work well for most applications
conducted so far”. In [371] the authors state that β = 1

4
is an idea value which “ensures stability

independently of the rectangle aspect ratio”.
Norburn & Silvester (1998) state: “Although the ‘optimal parameter’ (the value of β which

minimises the discretisation error on a given mesh) is impossible to determine a priori, good parameter
choices (usually over-estimating the optimal parameter) can be found by minimising the condition
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number of the pressure Schur complement matrix. [...] The motivation for choosing the parameter
value β which minimises the condition number (ratio of largest to smallest eigenvalue) of the pressure
Schur complement is that this quantity roughly determines the rate of convergence of Uzawa type
iteration methods.” They conclude that β ≃ 0.1 is appropriate for P1P0.

Rather interestingly we see that choosing the ’best’ β is primarily based in the literature on
the Schur complement condition number, and less on the accuracy of the solutions (although it is
sometimes assessed, see Fig. 4 of Norburn and Silvester [945] (1998)).

Finally it is worth mentioning a recent paper by Chibani and Kechkar [233] (2020) who present
modified local jump stabilisation schemes which effectively only take 2 or 1 one pressure jump into
account instead of 4 per macro-element.

In three dimensions the matrix S is obtained by assembling the submatrices for the macroelements
which, in general, are made up of 8 (i.e., 2 × 2 × 2) adjacent elements, as shown in the following
sketch [chsu97]:

Numbering of hexahedrons in a macroelement.

Element No. 3 is behind No. 1 and below No. 7.

For a macroelement of 8 elements as ordered in the above sketch, the submatrix is defined below:

S =



h12 + h13 + hh15 −h12 −h13 0 −h15 0 0 0
−h21 h21 + h24 + h26 0 −h24 0 −h26 0 0
−h31 ...
0 ...
−h51 ...
0 ...
0 ...
0 ...


in which hij is the length scale for elements ‘i’ and ‘j’ in the macroelement. The matrix S is symmetric,
since hij = hji.

Two approaches are possible for computing the length scale hij:

� the square root of the interior inter-element surface area between elements ‘i’ and ‘j’

� the quotient of the interior inter-element surface area divided by the cube root of the average
element volume of the macroelement.

Macro-element One source for this stabilisation approach is Section 5.3.2 of the book by Elman,
Silvester and Wathen [371]. The C matrix for the 2D macroelement is shown to be:

C = β


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


and the authors suggest β = 1

4
hxhy.

Also see [402] (1990) .
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Numerical scaling of C Since the matrix K contains the viscosity, it is to be expected that the
magnitude of the entries in matrix C must somehow follows the values in the GT · K−1 · G term.
Indeed the Schur complement is GT · K−1 · G + C so if the entries in C are wrongly scaled it will
either have no effect at all or will alter the solution too much. This is indeed what is advocated in
Christon (2002) [254]:

In the paper S stands for C, and C stands for G. Also, because Christon is solving the N-S equations,
and because of his algorithmic choice to do so, there is a velocity mass matrix where our K block resides. As such
his implementation showcases the lumped mass matrix in the equation above rather than the lumped K matrix.

In the paper Christon states that the PPE term CTM−1
L C is symmetric. This is obviously true

since it is a scalar for the Q1 × P0 element. Am I missing something here?
Using our notations, the off-diagonal entries of the stabilisation matrix C for the global approach

becomes:

Cef = −β(GT ·K−1
L ·G)e

1

Γef

∫
Γef

JψeK JψfKdΓ for e ̸= f (7.6)

where e and f identify adjacent elements that share a common face, Γef represents the shared inter-
element boundary (a length in 2D, a surface in 3D), β is a non-dimensional scaling parameter, and
KL is the row-wise lumped K matrix9. For the Q1 × P0 element, the pressure approximation is
piecewise constant with ψi = 1 inside the element and zero outside.

The inclusion of the GT · K−1
L · G term in the stabilisation yields proper dimensionality of the

stabilization matrix (the integrand is dimensionless so that the dimensions of C are those of the
elemental Schur complement block), accounts for scaling due to irregular elements, and still preserves
the symmetry [254].

Finally, the diagonal element of C for element e is computed as

Cee = β(GT ·K−1
L ·G)e

∑
f ̸=e

1

Γef

∫
Γef

JψeK JψfKdΓ

We find that the sum of the terms on the row corresponding to e is indeed zero, consistency is ensured
even for non-rectangular elements.

There is however a major problem with this approach: even when the viscosity is constant in the
domain, Eq. (7.6) does not yield a symmetric matrix if elements are not identical in shape. Since
Cef ∝ (GT ·K−1

L ·G)e then Cef ̸= Cfe! I then suspect that Christon’s notation |CTM−1
L C|IJ indicates

that some care must be taken so as to ensure SIJ = SJI but it is not further specified. We will then
have to figure this out.

Let us consider the case of square elements of size hx = hy = h. Then the Ke and Ge matrices

9The quantity GT · K−1 · G for Q1 × P0 elements is a scalar, which is rather convenient as it gives in a simple
way the scaling for the stabilisation term. However the inverse of K is costly so there is a cheaper alternative which
consists in lumping it so that it becomes diagonal and its inverse is then trivial.
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are given by:

Ke =



1 0.25 −0.5 −0.25 −0.5 −0.25 0 0.25
0.25 1 0.25 0 −0.25 −0.5 −0.25 −0.5
−0.5 0.25 1 −0.25 0 −0.25 −0.5 0.25
−0.25 0 −0.25 1 0.25 −0.5 0.25 −0.5
−0.5 −0.25 0 0.25 1 0.25 −0.5 −0.25
−0.25 −0.5 −0.25 −0.5 0.25 1 0.25 0

0 −0.25 −0.5 0.25 −0.5 0.25 1 −0.25
0.25 −0.5 0.25 −0.5 −0.25 0 −0.25 1


Ge = h



+1/2
+1/2
−1/2
+1/2
−1/2
−1/2
+1/2
−1/2


so that the Schur complement is

Se = GT
e · K̃−1

e ·Ge =
2

3
h2

In that case we almost recover the expression of for example the macro-element.

Dealing with viscosity contrasts/large variations This topic is almost never discussed as
many papers consider the standard Stokes equations with η = 1 (and also regular meshes made of
identical elements). This is not problematic in engineering where often the fluid in question has a
constant viscosity (or the equations have been rendered dimensionless). However, in geodynamical
applications we know that the viscosity field can showcase very sharp gradients (sinking/rising ob-
jects, shear bands, free surface, ...). In what follows we assume that each element e has an effective
viscosity ηe.

The scaling of the C matrix in the previous section is not formulated when viscosity contrasts
from one element to the other are present. For example scaling the row entries of the C matrix by
the element viscosity still yields a structurally symmetric matrix, but not a numerically symmetric
one which is problematic since we have seen that C must be semi-positive definite. Some form of
viscosity averaging must then take place between adjacent elements so that the contribution from
element e to f is exactly the same as f to e

In order for the stabilisation to remain consistent it must satisfy C · 1⃗ = 0, i.e. it should have zero
effect on a constant pressure field, which then forces the sum of the entries for each row (or column)
to be null. This requirement makes the above viscosity averaging idea very difficult in practice in
the global case (satisfying both symmetry and consistency).

Let us start by defining the elemental Schur complement

S̃e = |(GT ·K−1
L ·G)e|

and then
S̃ef = ϕ(S̃e, S̃f )

where ϕ is a function to be specified later such that ϕ(x, y) = ϕ(y, x). The local and global jump
stabilisation can then be formulated as follows:

Cef = −βS̃ef
1

Γef

∫
Γef

JψeK JψfKdΓ for e ̸= f (7.7)

supplemented by

Cee = β
∑
f ̸=e

S̃ef
1

Γef

∫
Γef

JψeK JψfKdΓ

In this case the matrix C is symmetric and consistent!
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Recap : For each element compute its (scalar) Schur complement

S̃e = |(GT
e · K̃−1

e ·G)|

We here assume that elements can have different viscosities and/or shape so that Se varies from
element to element.

� Global jump Assuming elements e and f share and edge, build the C matrix as follows:

Cef = −βS̃ef
1

Γef

∫
Γef

JψeK JψfKdΓ for e ̸= f (7.8)

supplemented by

Cee = β
∑
f ̸=e

S̃ef
1

Γef

∫
Γef

JψeK JψfKdΓ

� Local jump Let Me be the macroelement that element e is in. Assuming elements e and f
share and edge, build the C matrix as follows:

Cef = −βS̃ef
1

Γef

∫
Γef

JψeK JψfKdΓ for e ̸= f and f ∈Me (7.9)

supplemented by

Cee = β
∑

f ̸=e,f∈Me

S̃ef
1

Γef

∫
Γef

JψeK JψfKdΓ

� Macroelement stab LetMe be the macroelement that element e is in.

(tikz macro2.tex)

1 2

3 4

This is less straighforward than the local jump since (for example) elements 1 and 4 do not
have an edge in common so that the jump operator cannot be used. One could think of
assigning all four elements a single effective viscosity but elements shapes/sizes can differ and
the matrix is then not necessarily consistent. One should probably go back to the derivations in
Elman, Silvester, and Wathen [371] and see whether a more generic form of the macroelement
stabilisation matrix C could be derived?

7.3.8 The stabilised bi/tri-linear velocity - bi/tri-linear pressure element
(Q1 ×Q1-stab)

pair q1q1stab.tex

0 1

23

ν⃗ p

4 vel. nodes, 4 press. nodes

ν⃗ p

8 vel. nodes, 8 press. nodes
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The Q1 × Q1 element is not LBB-stable but it can be stabilised. Despite some applications in
geodynamics (it is used in Burstedde, Ghattas, Stadler, Tu, and Wilcox [188] (2009) and Burstedde et
al. [189] (2013)), it is not appropriate for buoyancy-driven flows, as shown in Thieulot and Bangerth
[1260].

See Norburn and Silvester [944] (2001) for a fourier analysis of the normal and stablised (a la
Hughes, Franca, and Balestra [606] (1986)) Q1 × Q1 element. Stabilisation is worked out out in
Dohrmann and Bochev [336] (2004), Bochev, Dohrmann, and Gunzburger [101] (2006), and Bochev
and Dohrmann [102] (2006).

� Q1×P0-stab. Pro: stabilisation can be switched off; Con: stabilisation for deformed elements?
problem near boundaries: incomplete stencil? choice of parameter β.

� Q1×Q1-stab. Pro: easier to implement than Q1×P0-stab, stabilisation local to element, easier
when elements are not rectangular, no free parameter; Con: stabilisation cannot be switched
off.

Relevant Literature: Schneider, Raithby, and Yovanovich [1130], Tezduyar, Mittal, Ray, and
Shih [1249], Tezduyar [1247], Gresho, Chan, Christon, and Hindmarsch [485], Idelsohn, Storti, and
Nigro [619], Knobloch and Tobiska [714], Franca, Oliveira, and Sarkis [411], and Li, He, and Chen
[781]. See Braack and Lube [127] for a review of local projection stabilisation for incompressible flow
problems.

This unstable pair is also used in ice sheet modelling Helanow and Ahlkrona [561] , Zhang, Ju,
Gunzburger, Ringler, and Price [1405], Zwinger, Greve, Gagliardini, Shiraiwa, and Lyly [1444]. A
P1 × P1 version of it is used in Karabelas, Haase, Plank, and Augustin [670] (2020).

7.3.9 The Rannacher-Turek element - rotated Q1 × P0

This element is the natural quadrilateral analogue of the well-known triangular P nc
1 Stokes element

of Crouzeix-Raviart [290]. This element is sometimes called Qrot
1 × Q0 or the Rannacher-Turek

element [650, Section 3.6.5] (see also Appendix B.4, example B.53 of John [650]). This rectangular
nonconforming [289] element is termed the rotated Q1 element because of the fact that r2 − s2 can
be generated from rs (occurring in the bilinear Q1 element) by a rotation of 45◦ [224, p93]. The
velocity approximation is achieved by rotated dim-linear functions that have continuous degrees of
freedom on the faces of the mesh cells as we have seen in Section 5.3.15. This element was introduced
in Rannacher & Turek (1992) [1045] has been proven to satisfy the inf-sup condition. It has been
studied comprehensively in Schieweck (1997)10, [1162] and in Turek [1293, 1291]. Superconvergence
properties have also been reported [875, 874]. It has been used in 2D [824] and 3D [710, 445] and
forms the basis of the FeatFlow software11. It is used in the PhD thesis of Gastaldo [441] and
Ouazzi [965]. It has been successfully coupled to multigrid solvers [226, 1295]. This element has
been compared to the stabilised Q1 × P0 element [787]. It is mentioned in [527]

It essentially comes in two flavours, the Middle Point (MP) and the Mid Value (MV) one.

Remark. John [650] explains that: ”For the point-value-oriented non-conforming finite element
spaces (MP), the value of the Dirichlet boundary condition in the barycenter of the faces at the
boundary is taken. Using the mean- value-oriented spaces (MV), one computes the integrals of the
boundary condition on these faces and normalizes with the area of the faces to set the boundary
values. In the case of homogeneous Dirichlet boundary conditions, the boundary values computed in
both ways are zero.”

10Habilitation thesis in German
11http://www.featflow.de/en/index.html
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Remark. John also makes a very important point: ”There are also unmapped (non-parametric)
versions of these finite element spaces, which define the polynomials directly on the mesh cell K. It is
shown in Rannacher and Turek (1992) [1045] that these versions are inf-sup stable on more general
meshes than the mapped (parametric) version of the Qrot

1 × Q0 finite element, e.g., on strongly
nonuniform meshes. Considering all four types of Qrot

1 × Q0 finite elements, the optimal order of
convergence on perturbed meshes is achieved only by the mean- value-oriented version of the unmapped
Qrot

1 ×Q0 finite element.

Mahmood et al. [824] mention a very important fact: ”The chosen nonconforming element re-
quires additional stabilization for handling the deformation tensor formulation due to missing Korn’s
inequality [592, 713, 144]. To this end we employ the standard edge oriented stabilization [1295,
1294] in our simulations.” This is a rather unfortunate fact that although LBB stable this element
needs an additional term in the weak form (see Turek et al. (2002) [1295]) so as to suppress parasitic
velocity modes when the div-grad formulation of the Stokes equation is used (as opposed to the
Laplace formulation – see [341, Section 6.5.2]).

This element is used in Hansbo, Larson, and Larson [528] (2001) in the context of near incom-
pressible elasticity. It is mentioned that it does not fulfill the discrete Korn’s inequality. It is then
stabilised in a discontinuous Galerkin framework.

Relevant LiteratureSheen [1155] (2020), chen92 (1992) , chen93 (1993)

7.3.10 The P1 × P0 pair

example 3.70 in John [650] (book),
Elman Silvester Wathen say (5.3.3) that “it can be readily stabilized using the pressure jump

stabilization together with an appropriate macroelement subdivision.” See Norburn and Silvester
[945] (1998) for globally and locally stabilised versions.

Qin and Zhang [1026] (2007) states: “the element is unstable for any mesh since the dimension
of the discrete velocity space is always less than that of the pressure space (with Dirichlet boundary
condition).” The authors explain a filter algorithm to make the element usable.

Arnold [28] (1993) states: ”Unfortunately, this simplest possible Stokes element is notoriously
unstable. On any tri- angulation with at least three vertices on the boundary the dimension of the
pressure space exceeds that of the velocity space [...] and the finite dimensional problem is singular.
Moreover, while the discrete velocity field uh is uniquely determined (as it is for any conforming
method for the Stokes problem), for this choice of elements uh belongs to the space of divergence-free
fields piecewise linear fields, and on many meshes, for example on a uniform diagonal mesh of the
square [...], this space is known to reduce to zero. So even after accounting for the indeterminancy
of the pressure we have no convergence.”

Example 3.2 of Boffi, Brezzi, and Fortin [108] (2008) explains neatly the locking phenomenon and
how to circumvent it via a so-called cross-grid macroelement. See also Hong, Kim, and Lee [588]
(2003).

In his lecture notes12, Guermond states “A simple alternative to the Q1 × P0 element consists of
using the P1×P0 element. Let Th be a mesh of D composed of affine simplices, and approximate the
velocity with continuous piecewise linear polynomials and the pressure with (discontinuous) piecewise
constants. Since the velocity is piecewise linear, its divergence is constant on each simplex. As a
result, testing the divergence of the velocity with piecewise constants enforces the divergence to be
zero everywhere. That is to say, the P1 × P0 finite element yields a velocity approximation that is
exactly divergence-free [...]. Unfortunately, this pair does not satisfy the inf-sup condition.”

I have not found a paper yet which showcases its accuracy on a manufactured solution and
compares it to other element pairs.

12https://www.math.tamu.edu/~guermond/
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7.3.11 The P2 × P0 pair

[108], [cakp18] stable (Kanschat book)
compared with P1NC-P0 and BR element in Carstensen, Köhler, Peterseim, and Schedensack

[212] (2015).

7.3.12 The Q2 ×Q0 pair

Quadratic velocities, constant pressure. The element satisfies the inf-sup condition, but the constant
pressure assumption may require fine discretisation. source?

I have implemented it in stone ?? using the penalty method.

7.3.13 The P1 × P1-stabilised pair

Like its quadrilateral counterpart Q1 ×Q1, the P1 × P1 pair is not stable and needs to be stabilised
[945, 1224]. TerraNeo code uses stabilised with PSPG [56].

Norburn and Silvester [945]

7.3.14 The P+
1 × P1 (MINI) pair in 2D & 3D

pair mini.tex

The MINI element was first introduced in
Arnold, Brezzi, and Fortin [26] (1984). It is also
discussed in Section 3.6.1 of John [650] (2016)
and in Section 6.1 of Boffi, Brezzi, and Fortin
[108] (2008). It is thoroughly studied in Cioncol-
ini and Boffi [258] (2019).
As explained in Braess [128], since the support of
the cubic bubble is restricted to the element, the
associated variable (dofs living on the bubble)
can be eliminated from the resulting system of
linear equations by static condensation. Also,
the MINI element is cheaper than the Taylor-
Hood element but it is commonly accepted that
it yields a poorer approximation of the pressure.

(tikz mini.tex)

ν⃗ p

4 vel. nodes, 3 press. nodes

Remark. Note that Franca and Oliveira [410] (2003) propose an equal-order-linear-continuous velocity-
pressure variables which is enriched with velocity and pressure bubble functions to model the Stokes
problem. They show by static condensation that these bubble functions give rise to a stabilized method
involving least-squares forms of the momentum and of the continuity equations. In some cases their
approach recovers the MINI element. Also check Ganesan, Matthies, and Tobiska [434] (2008).

The 3D MINI element is not very common but it is used for instance in Pichelin and Coupez [997]
(1998) or Tommasi, Knoll, Vauchez, Signorelli, Thoraval, and Logé [1271] (2009). It is also said to
be LBB stable in Reddy [1051, p180]. It is used in [427] phd thesis in the context of microstructures
deformation modeling, which itself cites Cao, Montmitonnet, and Bouchard [206] (2013).
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Velocity and pressure nodes for the 3D MINI element, taken from [997]

Note that this element is used in Braess & Wriggers (2000) [130] in the context of Arbitrary
Lagrangian Eulerian finite element analysis of free surface flows, and also in Zlotnik, Diez, Fernandez,
and Verges [1440] (2007) for subduction with X-FEM technique. . It is also mentioned in Nafa and
Thatcher [920] (1993).

The 2D element is implemented in stone ??.

7.3.15 The P2 × P1 pair

pair p2p1.tex

From Segal [1147]: “Taylor-Hood elements [1240] are
characterized by the fact that the pressure is continu-
ous in the region Ω. A typical example is the quadratic
triangle (P2 × P1 element). In this element the veloc-
ity is approximated by a quadratic polynomial and the
pressure by a linear polynomial. One can easily ver-
ify that both approximations are continuous over the
element boundaries.”
It can be shown, Segal (1979), that this element is ad-
missible if at least 3 elements are used. The quadrilat-
eral counterpart of this triangle is theQ2×Q1 element.
Reddy and Gartling [1051, p179] also report this ele-
ment to be LBB stable. It is also mentioned in Nafa
and Thatcher [920].

Relevant Literature: Schubert & Anderson [1141],
Leng et al. [771], Cuffaro et al. [293]

(tikz p2p1.tex)

ν⃗ p

6 vel. nodes, 3 press. nodes

7.3.16 The P+
2 × P−1 pair (Crouzeix-Raviart)

pair crouzeixraviart.tex

Since the P2 × P−1 pair is not LBB stable [1051, p179], (see also table 3.13-1 of Gresho and Sani
[488]) it is enhanced by a cubic bubble and is therefore called P+

2 × P−1.
This element was first introduced in [290]. It is the element used in the MILAMIN code [299]. It

is a seven-node triangle with quadratic velocity shape functions enhanced by a cubic bubble function
and discontinuous linear interpolation for the pressure field [298]. This element is LBB stable and
no additional stabilization techniques are required[371]. The ’+’ in its name stands for the bubble
while the ’-’ stands for the discontinuous character of the pressure field: once again, it is P1 over the
element, but discontinuous across element edges.

Remark. Cuvelier et al. , 1986 [298] recommend a 6-point or 7-point quadrature rule for this element.
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Remark. Segal [1147] explains for output purposes (printing, plotting etc.) the discontinuous pres-
sures are averaged in vertices for all the adjoining elements. See also Fig. 7.3 of [298].

Remark. The simplest Crouzeix-Raviart element is the non-conforming linear triangle with constant
pressure [298], see Section 7.3.27.

It is worth noting that this element has more degrees of freedom than the Taylor-Hood element for
the same order of accuracy. However, since the bubble can be eliminated, one can design a modified
version of this element.
Check Cuvelier book chapter 8 for modified element

Remark. I have once asked the (main) author of MILAMIN why he chose this element, for example
over the P2 × P1. His answer is as follows: ”Elements with continuous pressure are incapable of
converging in the Linf norm for mechanical problems exhibiting pressure jumps such as the inclusion-
host setup. During my MSc and PhD I was focusing on sharp heterogeneities, so this is why I decided
to choose P+

2 × P−1. You will see that it is also easy to invert the pressure mass matrix for such
elements, which is really useful (both for the augmentation and preconditioning).”

This element is used by Poliakov and Podlachikov [1008] to study the deformation of the surface
above a rising diapir. Note that they actually use a “13 point integration formula (Hughes 1987)
for calculation of the stiffness matrix was used in order t o conserve detailed information from the
marker field in the coarse FEM mesh”. It is also used in [24] in the context of a new free-surface
stabilization scheme. It is the element used in LaCoDe [322]. It is mentioned in Section 6.2 in Boffi,
Brezzi, and Fortin [108] (2008). It is compared to the P2×P1 element for the Navier-Stokes equations
in Krahl and Bänsch [729] (2005).

Relevant Literature: Hansbo and Larson [529]

7.3.17 The P+
2 × P1 pair

This element pair is not to be mistaken for the Crouzeix-Raviart. Both share the same P+
2 space

for the velocity but this element has a continuous linear pressure. It is mentioned in Table 3.13-1
of Gresho and Sani [488]: “LBB stable. Second order. cubic bubble. good element”. It is also
mentioned in Soulaimani, Fortin, Ouellet, Dhatt, and Bertrand [1181] (1987).

Implemented in stone 120.

7.3.18 The P2 × (P1 + P0) pair

pair p2p1p0.tex

This element pair is discussed in 5.3.3 of Elman, Silvester and Wathen:
“[Another] possibility is to construct a hybrid pressure approximation by combining the contin-

uous linear pressure approximation with the discontinuous constant pres- sure approximation. The
resulting mixed method is referred to as the P2 − P−1∗ approximation and enjoys the best of both
worlds; it has locally incompressibility, and yet it does not have its accuracy compromised by the
lower order pressure [of P2 × P0]. Perhaps surprisingly, this element is also uniformly stable.”

Taken from Elman, Silvester, and Wathen [371].
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In Gresho & Sani table 3.13-1: “LBB stable yes. Better than P2P1, element mass balance. more
work than P2P1. 2 hydrostatic modes. Second order.”

Taken from Gresho and Sani [488]. Unfortunately they do not provide a source for its origin, for the LBB-stability proof, or any source at all, actually.

Looking at the figure above, it is clear that the P1 space is to be understood as a continuous
pressure space, with an additional constant bubble.

For the continuous P1 space, we have the following reference element

r

s

1 2

3 (r1, s1) = (0, 0)

(r2, s2) = (1, 0)

(r3, s3) = (0, 1)

and the basis functions are simply

N1(r, s) = 1− r − s (7.10)

N2(r, s) = r (7.11)

N3(r, s) = s (7.12)

with the interpolation requirement Ni(rj, sj) = δij fulfilled, as well as
∑

iNi = 1.
Now, following the figure by Gresho and Sani, I build the reference element for the P1+P0 space:

r

s

1 2

3

4

(r1, s1) = (0, 0)

(r2, s2) = (1, 0)

(r3, s3) = (0, 1)

(r4, s4) = (0.33, 0.33)

P1 + P0 means that the pressure inside the element is given by

ph(r, s) = aN1(r, s) + bN2(r, s) + cN3(r, s) + dN4(r, s)

Note that it is then impossible to find a, b, c, d such that the interpolation requirement Ni(rj, sj) = δij
is fulfilled. In other words, the element is not interpolatory, i.e., there is no δij property.

With regards to the ’element mass balance’, W.B. states : “the mass conservation requires that
the function that is constant 1 on one cell and zero on all other cells is part of the function space.
That is indeed true – it’s the N4 function. Indeed, that’s the purpose of the enrichment with the P0

part. It is not necessary that all shape functions are discontinuous.”
Boffi, Cavallini, Gardini, and Gastaldi [110] (2012) state: “[...] the pressure space Qh is defined

as the sum of two finite element spaces, namely Pk+P0 (k ≥ d−1) [...]for the enhanced Hood–Taylor
[...]. However, it can be easily observed that the sum is not direct, since globally constant functions
can be represented exactly by means of piecewise P0 or continuous Pk (k ≥ 1) elements. Concerning
the implementation of the method, we avoid the computation of the basis functions of such a finite
element by testing the discrete problem (2.3) with the basis functions of the two subspaces separately.
By the above discussion it turns out that the resulting matrix is rank-deficient, with kernel of
dimension 1.”

345



7.3.19 The Q2 × (Q1 +Q0) pair

It is a rather peculiar element pair (triplet?). The velocity space is the standard Q2 space but the
pressure space is the sum of two spaces, i.e. Q1 and Q0. Please see Section 7.3.18 on the P2×(P1+P0)
element.

Taken from Gresho and Sani [488]’s book.

It is implemented in stone 120.

7.3.20 The P3 × P2 pair

pair p3p2.tex

P3×P2 mentioned in Stenberg [1207]. The P3 basis functions are presented in Section 5.3.12 and
the P2 basis functions in Section 5.3.10. See stone ??.

7.3.21 The Raviart-Thomas family

- Raviart Thomas 0 RT0 [1048] ? mentioned/defined/drawn in 4.2.2 of Kanschat book. Also exist
for quads see 4.2.37 Hanert, Legat, and Deleersnijder [526]: “P⊥

1 × P0 symbol denotes an element
with normal velocity nodes in the middle of each edge of the triangulation [...]. This element, also
called low order Raviart–Thomas element (Raviart and Thomas, 1977), is based on flux conservation
on elements edges and the resulting scheme is very close to a finite volume scheme.”

Mentioned in John [650], appendix B.3, example B.45: “the normal component of v on each face
is a constant. The normal component of functions from RT0 is continuous across faces of the mesh
cells.”

Check Brezzi and Fortin [148]
Mentioned in Chen [223] (1993).

7.3.22 The Bernaudi-Raugel pair

pair bernaudi raugel.tex

In Carstensen, Köhler, Peterseim, and Schedensack [212] (2015) we find: “The BR-FEM after
Bernardi and Raugel [83] is a modification of the P2 × P0 FEM. It is sometimes also called reduced
P2 × P0 FEM”. They also state that this element also exists in 3D.

It is also mentioned in Boffi, Brezzi, and Fortin [109] although it seems it is there called the
SMALL element (p474).

In Lederer: ”Consider the case d = 2. [...] we only need to control the normal velocity at the
edge, i.e. adding the edge bubble for both components of the velocity seems to be sub optimal (with
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respect to computational costs and the expected approximation properties). The idea now is to only
add the normal edge bubble.”

According to John, Linke, Merdon, Neilan, and Rebholz [655] (2017) (example 6.3), “ the velocity
space in the Bernardi-Raugel element consists of P1 functions which are enriched with edge bubble
functions”. The authors also speak of ’reconstructing the test functions’ and state: “the results of the
method with reconstruction are generally more accurate. In summary, the use of an appropriately
reconstructed test function in the Bernardi– Raugel pair of spaces led to a clear improvement of the
accuracy of the computed results compared with the standard method.”

7.3.23 The Scott-Vogelius pair

It originates in Scott and Vogelius [1146] (1985).

Taken from John [650, p70].

See also John, Linke, Merdon, Neilan, and Rebholz [655] (2017).
Chen [ref?!] says: (P k, P k−1) : stable if k ≥ 4 in R2 and for meshes without singular-vertex.

Exact divergence free. Not easy to code due to the high degree.

7.3.24 The BDM (Brezzi-Douglas-Marini) pair

BDM (Brezzi-Douglas-Marini) element mentioned in Kanschat book, section 4.2.14. Also exist for
quads see section 4.2.39. Mentioned in Chen [223] (1993), Also check Brezzi and Fortin [148]

7.3.25 The DSSY pair

This element is often referred to as the ’DSSY’ element because of the four authors of the original
paper: Douglas, Santos, sheen and Ye (1999) [345].

The non-conforming finite element space Ql is defined based on the reference square element on
[−1, 1]2 :

Ql = Span {1, r, s, θl(r)− θl(s)} l = 1, or 2
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with

θ1(r) = r2 − 5

3
r4

θ′1(r) = 2r − 20

3
r3

θ2(r) = r2 − 25

6
r4 +

7

2
r6 (7.13)

θ′2(r) = 2r − 50

3
r3 + 21r5 (7.14)

The dimension of Ql is four and the θl functions look like:
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We have:

� θ1(r = −1) = θ1(r = +1) = −2
3
, θ1(r = 0) = 0

� θ2(r = −1) = θ2(r = +1) = 1
3
, θ2(r = 0) = 0

The nodes are situated at the mid-edges of the quadrilateral:

(tikz dssy2D.tex)

1 2

3

4

y

x

The basis function corresponding to the node (1, 0) is given by

N1(r, s)
(l) =

1

4
− 1

2
r +

θl(r)− θl(s)
4θl(1)

N2(r, s)
(l) =

1

4
+

1

2
r +

θl(r)− θl(s)
4θl(1)

N3(r, s)
(l) =

1

4
− 1

2
s− θl(r)− θl(s)

4θl(1)

N4(r, s)
(l) =

1

4
+

1

2
s− θl(r)− θl(s)

4θl(1)
(7.15)
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We can easily verify that
∑
i

Ni(r, s, t) = 1 and that Ni(r⃗j) = δij:

N (l)
1 (r1, s1) =

1

4
− 1

2
(−1) + θl(−1)− θl(0)

4θl(1)
=

1

4
+

1

2
+
θl(−1)
4θl(1)

=
1

4
+

1

2
+

1

4
= 1

N (l)
1 (r2, s2) =

1

4
− 1

2
(+1) +

θl(+1)− θl(0)
4θl(1)

=
1

4
− 1

2
+
θl(+1)

4θl(1)
=

1

4
− 1

2
+

1

4
= 0

N (l)
1 (r3, s3) =

1

4
− 1

2
(0) +

θl(0)− θl(−1)
4θl(1)

=
1

4
− 1

4
= 0

N (l)
1 (r4, s4) =

1

4
− 1

2
(0) +

θl(0)− θl(+1)

4θl(1)
=

1

4
− 1

4
= 0

N (l)
2 (r1, s1) =

1

4
+

1

2
(−1) + θl(−1)− θl(0)

4θl(1)
=

1

4
− 1

2
+

1

4
= 0

N (l)
2 (r2, s2) =

1

4
+

1

2
(+1) +

θl(+1)− θl(0)
4θl(1)

=
1

4
+

1

2
+

1

4
= 1

N (l)
2 (r3, s3) =

1

4
+

1

2
(0) +

θl(0)− θl(−1)
4θl(1)

=
1

4
− 1

4
= 0

N (l)
2 (r4, s4) =

1

4
+

1

2
(0) +

θl(0)− θl(+1)

4θl(1)
=

1

4
− 1

4
= 0

N (l)
3 (r1, s1) =

1

4
− 1

2
(0)− θl(−1)− θl(0)

4θl(1)
=

1

4
− 1

4
= 0

N (l)
3 (r2, s2) =

1

4
− 1

2
(0)− θl(+1)− θl(0)

4θl(1)
=

1

4
− 1

4
= 0

N (l)
3 (r3, s3) =

1

4
− 1

2
(−1)− θl(0)− θl(−1)

4θl(1)
=

1

4
+

1

2
+

1

4
= 1

N (l)
3 (r4, s4) =

1

4
− 1

2
(+1)− θl(0)− θl(+1)

4θl(1)
=

1

4
− 1

2
+

1

4
= 0

N (l)
4 (r1, s1) =

1

4
+

1

2
(0)− θl(−1)− θl(0)

4θl(1)
=

1

4
− 1

4
= 0

N (l)
4 (r2, s2) =

1

4
+

1

2
(0)− θl(+1)− θl(0)

4θl(1)
=

1

4
− 1

4
= 0

N (l)
4 (r3, s3) =

1

4
+

1

2
(−1)− θl(0)− θl(−1)

4θl(1)
=

1

4
− 1

2
+

1

4
= 0

N (l)
4 (r4, s4) =

1

4
+

1

2
(1)− θl(0)− θl(1)

4θl(1)
=

1

4
+

1

2
+

1

4
= 1

The basis functions can also be explicitly written for θ1 as in Cai et al. [203]:

N1(r, s)
(l) =

1

4
− 1

2
r − 3

8

[(
r2 − 5

3
r4
)
−
(
s2 − 5

3
s4
)]

N2(r, s)
(l) =

1

4
+

1

2
r − 3

8

[(
r2 − 5

3
r4
)
−
(
s2 − 5

3
s4
)]

N3(r, s)
(l) =

1

4
− 1

2
s+

3

8

[(
r2 − 5

3
r4
)
−
(
s2 − 5

3
s4
)]

N4(r, s)
(l) =

1

4
+

1

2
s+

3

8

[(
r2 − 5

3
r4
)
−
(
s2 − 5

3
s4
)]

(7.16)
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The derivatives of the basis functions are as follows:

∂rN1(r, s)
(l) = −1

2
+

θ′l(r)

4θl(1)

∂rN2(r, s)
(l) = +

1

2
+

θ′l(r)

4θl(1)

∂rN3(r, s)
(l) = − θ′l(r)

4θl(1)

∂rN4(r, s)
(l) = − θ′l(r)

4θl(1)
(7.17)

∂sN1(r, s)
(l) = − θ′l(s)

4θl(1)

∂sN2(r, s)
(l) = − θ′l(s)

4θl(1)

∂sN3(r, s)
(l) = −1

2
+

θ′l(s)

4θl(1)

∂sN4(r, s)
(l) = +

1

2
+

θ′l(s)

4θl(1)
(7.18)

Note that a correction was issued in Cai, Douglas Jr, Santos, Sheen, and Ye [202] (2000) if a
true quadrilateral (i.e., one having two opposite, nonparallel edges) is included in the partition. The
authors state that in the case of rectangles the original method is fine.

Relevant Literature: Park & Sheen (2003) [974], Jeon et al. (2013) [645], Park, Sheen & Shin
(2013) [975], Bangerth et al. (2017) [43], Sheen (2020) [1155]

7.3.26 The Han pair

It is based on Han [524] (also mentioned in Sheen (2020) [1155]). The nodes are at the same location
as for the RT element above, but there is an additional bubble function in the middle:

(tikz han.tex)

1 2

34

5

Inside the reference element we assume that a field f can be represented by

fh(r, s) = a+ br + cs+ d
5r4 − 3r2

2︸ ︷︷ ︸
ϕ(r)

+e
5s4 − 3s2

2︸ ︷︷ ︸
ϕ(s)

We then must have

f1 = fh(r = 1, s = 0) = a+ b+ d

f2 = fh(r = 0, s = 1) = a+ c+ e

f3 = fh(r = −1, s = 0) = a− b+ d

f4 = fh(r = 0, s = −1) = a− c+ e

f5 = fh(r = 0, s = 0) = a
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and we easily get
a = f5 f1 − f3 = 2b f2 − f4 = 2c

followed by

d = f1 − a− b = f1 − f5 −
1

2
(f1 − f3) =

f1 − 2f5 + f3
2

and

e = f2 − a− c = f2 − f5 −
1

2
(f2 − f4) =

f2 − 2f5 + f4
2

Finally:

f(r, s) = f5 +
1

2
(f1 − f3)r +

1

2
(f2 − f4)s+

f1 − 2f5 + f3
2

ϕ(r) +
f2 − 2f5 + f4

2
ϕ(s)

i.e.

f(r, s) =

(
r + ϕ(r)

2

)
f1+

(
s+ ϕ(s)

2

)
f2+

(
−r − ϕ(r)

2

)
f3+

(
−s− ϕ(s)

2

)
f4+(1− ϕ(r)− ϕ(s)) f5

which has us define

N1(r, s) =
r + ϕ(r)

2

N2(r, s) =
s+ ϕ(s)

2

N3(r, s) = −r − ϕ(r)
2

N4(r, s) = −s− ϕ(s)
2

N5(r, s) = 1− ϕ(r)− ϕ(s)

We have of course the following properties
5∑
i=1

Ni(r, s) = 1 and Ni(rj, sj) = δij, i, j ∈ 1, 5. The

partial derivatives of the basis functions are as follows

∂rN1(r, s) =
1 + ϕ′(r)

2
∂rN2(r, s) = 0

∂rN3(r, s) = −1− ϕ′(r)

2
∂rN4(r, s) = 0

∂rN5(r, s) = −ϕ′(r)

∂sN1(r, s) = 0

∂sN2(r, s) =
1 + ϕ′(s)

2
∂sN3(r, s) = 0

∂sN4(r, s) = −1− ϕ′(s)

2
∂sN5(r, s) = −ϕ′(s)

This element is implemented in the stone han.py file in stone 77 and also in stone 120.
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7.3.27 The Divergence-free nonconforming PNC
1 × P0 pair

It belongs to the Crouzeix-Raviart family. The midside nodes are used as degrees of freedom for
the velocities. It is mentioned in Section 6.3 of Boffi, Brezzi, and Fortin [108] (2008): “[...] It is
exactly divergence free. Another important feature of this element is that it can be seen as a ”mass
conservation” scheme. The present element has been generalized to second order in Fortin and Soulie
[404] (1983). It must also be said that coerciveness may be a problem for the PNC

1 × P0 element, as
it does not satisfy the discrete version of Korn’s inequality. This issue has been deeply investigated
and clearly illustrated in Arnold [28] (1993).”

(tikz p1ncp0.tex)

ν⃗ p

At page 170 of [128] it is stated that “an analogous quadrilateral element was developed and
studied by Rannacher and Turek [1045] (1992)”.

In Boffi, Brezzi, and Fortin [109] we find: “We consider the classical (almost13) stable noncon-
forming triangular element introduced in Crouzeix and Raviart [290], in which mid-side nodes are
used as degrees of freedom for the velocities. This generates a piecewise linear nonconforming approx-
imation; pressures are taken constant on each element. It is also possible to build a three-dimensional
version of this element, using mid-face nodes as degrees of freedom.” Also: “It must also be recalled
that coercivity is a problem for the PNC

1 × P0 element. The trouble is that the bilinear form (8.2.1)
is not coercive on the nonconforming space Vh and we do not have the discrete version of Korn’s
inequality.”

It is also mentioned in John [650], appendix B.3, example B.43, in 2D and 3D, in Brezzi and
Fortin [148] (example 8.1), and studied extensively in John [649] (1998).

13What does that mean?!
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Taken from John [649].

In John, Linke, Merdon, Neilan, and Rebholz [655] (2017) the authors show results obtained
with this element (fig 6) but also explain that these are obtained with so-called reconstructed test
functions.

7.3.28 The Chen nonconforming Q1 ×Q0 pair (?)

pair chen.tex

What follows is tentative!
This space is proposed in Chen [225] (1993), albeit not in the context of the Stokes equations.
It is based on the mid-point variant of the RT basis functions,

N1(r, s) =
1

4
(1− 2s− (r2 − s2))

N2(r, s) =
1

4
(1 + 2r + (r2 − s2))

N3(r, s) =
1

4
(1 + 2s− (r2 − s2))

N4(r, s) =
1

4
(1− 2r + (r2 − s2))

to which a P2 bubble is added

ϕ(r, s) = 1− 3

4
(r2 + s2)

Note thath this function is zero at locations ±1/
√
3 on all four edges and exactly 1 in the middle.

A field f is represented inside the element by

fh(r, s) = aN1(r, s) + bN2(r, s) + cN3(r, s) + dN4(r, s) + eϕ(r, s)

We immediately see that this space is not interpolatory, i.e. the basis function ϕ(r, s) cannot be 1 in
the middle and 0 at the other four nodes.
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Chen [224] also extends this to 3D in the paper.
This space is used for velocity and a Q0 space is used for pressure in stone 120 (only because

the basis functions above are based on the Rannacher-Turek ones).

7.3.29 Other FE element pairs

� Q2 × Q2: This element is never used, probably because a) it is unstable, b) it is very costly.
There is one reference to it in Hughes, Franca, and Balestra [606] (1986).

� Q1 × P−1 Bilinear velocities, piecewise linear discontinuous polynomial pressure.

� See Fortin [401] for various stable low order elements other than the enriched Q+
1 × P0

� Q1 ×Q1 + nonconforming null edge average [411]

� check Dhatt and Hubert [332] (1986) many flavours of triangles and quads.

� Bercovier-Pironneau element pair, or P1isoP2.See Boffi, Cavallini, Gardini, and Gastaldi [110]
(2012).

7.3.30 A note about incompressibility and standard mixed methods

What follows is nicely explained and demonstrated in John et al. [655]. In their example 1.1 they
look at the velocity error of benchmark VJ2 (see Section 12.1.9) which analytical solution is a zero
velocity field. They show that for the MINI, Taylor-Hood and Crouzeix-Raviart triangular elements
the velocity error grows with the magnitude of the rhs. They also make this statement: “there
are important applications, e.g., natural convection problems, where the pressure is larger than the
velocity by orders of magnitude. In such situations, one cannot expect to compute accurate velocity
fields with classical mixed methods, at least for low order methods.”
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7.4 The penalty approach for viscous flow

penalty.tex

In order to impose the incompressibility constraint, two widely used procedures are available,
namely the Lagrange multiplier method and the penalty method [53, 604]. The latter allows for the
elimination of the pressure variable from the momentum equation (resulting in a reduction of the
matrix size).

Mathematical details on the origin and validity of the penalty approach applied to the Stokes
problem can for instance be found in Cuvelier et al. [298], Reddy [1050] or Gunzburger [507].

The penalty formulation of the mass conservation equation is based on a relaxation of the incom-
pressibility constraint and writes

∇⃗ · ν⃗+
p

λ
= 0 (7.19)

where λ is the penalty parameter, that can be interpreted (and has the same dimension) as a bulk
viscosity. It is equivalent to say that the material is weakly compressible. It can be shown that if one
chooses λ to be a sufficiently large number, the continuity equation ∇⃗ · ν⃗ = 0 will be approximately
satisfied in the finite element solution. The value of λ is often recommended to be 6 to 7 orders of
magnitude larger than the shear viscosity [341, 608].

Equation (7.19) can be used to eliminate the pressure in the momentum equation so that the
mass and momentum conservation equations fuse to become :

∇⃗ · (2ηε̇(ν⃗)) + λ∇⃗(∇⃗ · ν⃗) + ρg⃗ = 0⃗ (7.20)

Malkus & Hughes (1978) [830] have established the equivalence for incompressible problems be-
tween the reduced integration of the penalty term and a mixed Finite Element approach if the
pressure nodes coincide with the integration points of the reduced rule.

In the end, the elimination of the pressure unknown in the Stokes equations replaces the original
saddle-point Stokes problem [72] by an elliptical problem, which leads to a symmetric positive definite
(SPD) FEM matrix. This is the major benefit of the penalized approach over the full indefinite solver
with the velocity-pressure variables. Indeed, the SPD character of the matrix lends itself to efficient
solving stragegies and is less memory-demanding since it is sufficient to store only the upper half of
the matrix including the diagonal [473].

The penalty approach for example is used in the Sopale , Douar , ConMan, Fantom and
Elefant geodynamical codes.

Remark. FEM codes relying on the penalty approach all rely on direct solvers, because as explained
in Brezzi & Fortin [148]: ”Using a penalty method is, for instance, almost impossible if an iterative
method is used for the solution of the linear system, iterative methods being in general quite sensitive
to the condition number of the matrix at hand.”

Since the penalty formulation is only valid for incompressible flows, then ε̇(ν⃗) = ε̇d(ν⃗) so that the
d superscript is omitted in what follows. We here focus on Cartesian coordinates only and because
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the stress tensor is symmetric one can also rewrite it the following vector format:
σxx
σyy
σzz
σxy
σxz
σyz

 =


−p
−p
−p
0
0
0

+ 2η


ε̇xx
ε̇yy
ε̇zz
ε̇xy
ε̇xz
ε̇yz



= λ


ε̇xx + ε̇yy + ε̇zz
ε̇xx + ε̇yy + ε̇zz
ε̇xx + ε̇yy + ε̇zz

0
0
0

+ 2η


ε̇xx
ε̇yy
ε̇zz
ε̇xy
ε̇xz
ε̇yz



=


λ


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

K

+η


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

C


·



∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y


Remember that

∂uh

∂x
=

mν∑
i=1

∂Ni
∂x

ui
∂vh

∂y
=

mν∑
i=1

∂Ni
∂y

vi
∂wh

∂z
=

mν∑
i=1

∂Ni
∂z

wi

and

∂uh

∂y
+
∂vh

∂x
=

mν∑
i=1

∂Ni
∂y

ui +
mν∑
i=1

∂Ni
∂x

vi

∂uh

∂z
+
∂wh

∂x
=

mν∑
i=1

∂Ni
∂z

ui +
mν∑
i=1

∂Ni
∂x

wi

∂vh

∂z
+
∂wh

∂y
=

mν∑
i=1

∂Ni
∂z

vi +
mν∑
i=1

∂Ni
∂y

wi
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so that, since in mν = 8 in 3D:



∂uh

∂x

∂vh

∂y

∂wh

∂z

∂uh

∂y
+ ∂vh

∂x

∂uh

∂z
+ ∂wh

∂x

∂vh

∂z
+ ∂wh

∂y



=



∂N1

∂x
0 0 ∂N2

∂x
0 0 ∂N3

∂x
0 0 . . . ∂N8

∂x
0 0

0 ∂N1

∂y
0 0 ∂N2

∂y
0 0 ∂N3

∂y
0 . . . 0 ∂N8

∂y
0

0 0 ∂N1

∂z
0 0 ∂N2

∂z
0 0 ∂N3

∂z
. . . 0 0 ∂N8

∂z

∂N1

∂y
∂N1

∂x
0 ∂N2

∂y
∂N2

∂x
0 ∂N3

∂y
∂N3

∂x
0 . . . ∂N8

∂y
∂N8

∂x
0

∂N1

∂z
0 ∂N1

∂x
∂N2

∂z
0 ∂N2

∂x
∂N3

∂z
0 ∂N3

∂x
. . . ∂N8

∂z
0 ∂N8

∂x

0 ∂N1

∂z
∂N1

∂y
0 ∂N2

∂z
∂N2

∂y
0 ∂N3

∂z
∂N3

∂y
. . . 0 ∂N8

∂z
∂N8

∂y


︸ ︷︷ ︸

B(6×24)

·



u1
v1
w1
u2
v2
w2
u3
v3
w3
. . .
u8
v8
w8


︸ ︷︷ ︸
V⃗ (24×1)

Finally,

σ⃗ =


σxx
σyy
σzz
σxy
σxz
σyz

 = (λK + ηC) ·B · V⃗

We will now establish the weak form of the momentum conservation equation. We start again from

∇⃗ · σ + b⃗ = 0⃗

For the Ni’s ’regular enough’, we can write:∫
Ωe

Ni∇⃗ · σ dV +

∫
Ωe

Ni⃗b dV = 0

We can integrate by parts and drop the surface term14:∫
Ωe

∇⃗Ni · σ dV =

∫
Ωe

Ni⃗b dV

or,

∫
Ωe


∂Ni
∂x

0 0 ∂Ni
∂y

∂Ni
∂z

0

0 ∂Ni
∂y

0 ∂Ni
∂x

0 ∂Ni
∂z

0 0 ∂Ni
∂z

0 ∂Ni
∂x

∂Ni
∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dV =

∫
Ωe

Ni⃗b dV

14We will come back to this at a later stage
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Let i = 1, 2, 3, 4, . . . 8 and stack the resulting eight equations on top of one another.

∫
Ωe


∂Ni
∂x

0 0 ∂Ni
∂y

∂Ni
∂z

0

0 ∂Ni
∂y

0 ∂Ni
∂x

0 ∂Ni
∂z

0 0 ∂Ni
∂z

0 ∂Ni
∂x

∂Ni
∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dV =

∫
Ωe

N1

 bx
by
bz

 dV

∫
Ωe


∂Ni
∂x

0 0 ∂Ni
∂y

∂Ni
∂z

0

0 ∂Ni
∂y

0 ∂Ni
∂x

0 ∂Ni
∂z

0 0 ∂Ni
∂z

0 ∂Ni
∂x

∂Ni
∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dV =

∫
Ωe

N2

 bx
by
bz

 dV

. . .

∫
Ωe


∂N8

∂x
0 0 ∂N8

∂y
∂N8

∂z
0

0 ∂N8

∂y
0 ∂N8

∂x
0 ∂N8

∂z

0 0 ∂N8

∂z
0 ∂N8

∂x
∂N8

∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dV =

∫
Ωe

N8

 bx
by
bz

 dV (7.21)

We easily recognize BT inside the integrals! Let us define

N⃗ T
b = (N1bx,N1by,N1bz...N8bx,N8by,N8bz)

then we can write

∫
Ωe

BT ·


σxx
σyy
σzz
σxy
σxz
σyz

 dV =

∫
Ωe

N⃗b dV

and finally: ∫
Ωe

BT · [λK + ηC] ·B · V⃗ dV =

∫
Ωe

N⃗b dV

Since V⃗ is the vector of unknowns (i.e. the velocities at the corners), it does not depend on the x, y
or z coordinates so it can be taken outside of the integral (rememberdV = dx dy dz here):(∫

Ωe

BT · [λK + ηC] ·B dV

)
︸ ︷︷ ︸

Ael(24×24)

· V⃗︸︷︷︸
(24×1)

=

∫
Ωe

N⃗b dV︸ ︷︷ ︸
B⃗el(24×1)

or, 
(∫

Ωe

λBT ·K ·B dV

)
︸ ︷︷ ︸

Aλ
el(24×24)

+

(∫
Ωe

ηBT ·C ·B dV

)
︸ ︷︷ ︸

Aη
el(24×24)

 · V⃗︸︷︷︸
(24×1)

=

∫
Ωe

N⃗b dV︸ ︷︷ ︸
B⃗el(24×1)
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Once the elemental matrix and rhs have been computed for an element its contribution is added
to the global FEM matrix. The linear system is then solved and the velocity field at all nodes is
obtained. From this velocity field the elemental pressure can be recovered by means of Eq. (7.19):

p = −λ∇⃗ · ν⃗.

In two dimensions the equations above are very similar. Let us assume that the flow is taking
place in the xy-plane and that the domain is infinite in the z-direction. Then w = 0 and ∂z → 0.
From the 6 terms of the strain rate tensor only three remain: ε̇xx, ε̇yy and ε̇xy. Then, since mν = 4
(each element has 4 velocity nodes), we have

K =

 1 1 0
1 1 0
0 0 0

 and C =

 2 0 0
0 2 0
0 0 1


Conversely the matrix B has size 3× 8, etc ... Note that we will come across matrix C again when
we solve the (non penalty-formulated) Stokes equations in the following sections.

As stated before the implementation is rather straightforward since only one FE matrix must be
computed and assembled. However, there is one specific point which needs to be addressed: reduced
integration.

To quote Hughes et al. (1979) [608]: When a quadrature rule of lower order than the “standard”
one is employed, this is called reduced integration. If all terms employ the same reduced integration,
this is called uniform reduced integration; if reduced integration is used on some terms while standard
integration is used on others, this is called selective reduced integration.

Selective Gauss-Legendre integration rules for 2-dimensional isoparametric Lagrange elements. Taken from Hughes et al. (1979) [608].

In the context of penalty-based codes, it has been shown [830] that it is crucial to resort to a
selective reduced integration approach. The viscosity term Aη

el is integrated on 2ndim points but the
penalty term Aλ

el must be integrated on a single quadrature point. Finally, when the pressure is
computed from the velocity via Eq. (7.19), the divergence term must also be computed at a single
point in the middle of the element.

See stone 01 for a concrete example of a 2D penalty-based Stokes solver.
Relevant Literature: Oden et al. [951], Dhatt & Hubert[332].
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7.5 The mixed FEM for viscous flow

mixed.tex

7.5.1 In three dimensions

The FEM formulation of the Stokes equation is quite complex so we simplify things as much as
possible for now by assuming the flow to be incompressible, isoviscous and isothermal.

The methodology to derive the discretised equations of the mixed system is quite similar to the
one we have used in the case of the penalty formulation. The big difference comes from the fact that
we are now solving for both velocity and pressure at the same time, and that we therefore must solve
the mass and momentum conservation equations together. As before, velocity inside an element is
given by

ν⃗h(r⃗) =
mv∑
i=1

N ν
i (r⃗) ν⃗i (7.22)

where N ν
i are the polynomial basis functions for the velocity, and the summation runs over the mv

velocity nodes composing the element. A similar expression is used for pressure:

ph(r⃗) =

mp∑
i=1

N p
i (r⃗) pi (7.23)

Note that the velocity is a vector while pressure (and temperature) is a scalar. There are then
ndofv = ndim velocity degrees of freedom per node and ndofp = 1 pressure degrees of freedom. It
is also very important to remember that the numbers of velocity nodes and pressure nodes for a
given element are more often than not different and that velocity and pressure nodes need not be
colocated. Indeed, unless so-called ’stabilised elements’ are used, we have mv > mp, which means
that the polynomial order of the velocity field is higher than the polynomial order of the pressure
field (usually by value 1).

Other notations will be sometimes used for Eqs. (7.22) and (7.23):

uh(r⃗) = N⃗ ν · u⃗ vh(r⃗) = N⃗ ν · v⃗ wh(r⃗) = N⃗ ν · w⃗ ph(r⃗) = N⃗ p · p⃗ (7.24)

where ν⃗ = (u, v, w) and N⃗ ν is the vector containing all basis functions evaluated at location r⃗:

N⃗ v =
(
N ν

1 (r⃗),N ν
2 (r⃗),N ν

3 (r⃗), . . .N ν
mv(r⃗)

)
(7.25)

N⃗ p =
(
N p

1 (r⃗),N
p
2 (r⃗),N

p
3 (r⃗), . . .N p

mp(r⃗)
)

(7.26)

and with

u⃗ = (u1, u2, u3, . . . umv) (7.27)

v⃗ = (v1, v2, v3, . . . vmv) (7.28)

w⃗ = (w1, w2, w3, . . . wmv) (7.29)

p⃗ =
(
p1, p2, p3, . . . pmp

)
(7.30)

We will now establish the weak form of the momentum conservation equation. We start again from

∇⃗ · σ + b⃗ = 0⃗ (7.31)

∇⃗ · ν⃗ = 0 (7.32)
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For the N ν
i ’s and N

p
i ’regular enough’, we can write:∫

Ωe

N ν
i ∇⃗ · σ dV +

∫
Ωe

N ν
i b⃗ dV = 0⃗ (7.33)∫

Ωe

N p
i ∇⃗ · v⃗ dV = 0 (7.34)

We can integrate by parts and drop the surface term15:∫
Ωe

∇⃗N ν
i · σdV =

∫
Ωe

N ν
i b⃗ dV (7.35)∫

Ωe

N p
i ∇⃗ · v⃗ dV = 0 (7.36)

or,

∫
Ωe


∂Nν

i

∂x
0 0

∂Nν
i

∂y

∂Nν
i

∂z
0

0
∂Nν

i

∂y
0

∂Nν
i

∂x
0

∂Nν
i

∂z

0 0
∂Nν

i

∂z
0

∂Nν
i

∂x

∂Nν
i

∂y

 ·


σxx
σyy
σzz
σxy
σxz
σyz

 dΩ =

∫
Ωe

N ν
i b⃗ dV (7.37)

The above equation can ultimately be written:

∫
Ωe

BT ·


σxx
σyy
σzz
σxy
σxz
σyz

 dV =

∫
Ωe

N⃗b dV (7.38)

We have previously established that the strain rate vector ⃗̇ε is:

⃗̇ε =



∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y
+ ∂v
∂x

∂u
∂z
+ ∂w

∂x

∂v
∂z
+ ∂w

∂y



=



∑
i

∂Nν
i

∂x
ui

∑
i

∂Nν
i

∂y
vi

∑
i

∂Nν
i

∂z
wi

∑
i

(
∂Nν

i

∂y
ui+

∂Nν
i

∂x
vi)

∑
i

(
∂Nν

i

∂z
ui+

∂Nν
i

∂x
wi)

∑
i

(
∂Nν

i

∂z
vi+

∂Nν
i

∂y
wi)



=



∂Nν
1

∂x
0 0 · · · ∂Nν

mv

∂x
0 0

0
∂Nν

1

∂y
0 · · · 0

∂Nν
mv

∂y
0

0 0
∂Nν

1

∂z
· · · 0 0

∂Nν
mv

∂z

∂Nν
1

∂y

∂Nν
1

∂x
0 · · · ∂Nν

mv

∂y

∂Nν
mv

∂x
0

∂Nν
1

∂z
0

∂Nν
1

∂x
· · · ∂Nν

mv

∂z
0

∂Nν
mv

∂x

0
∂Nν

1

∂z

∂Nν
1

∂y
· · · 0

∂Nν
mv

∂z

∂Nν
mv

∂y


︸ ︷︷ ︸

B

·



u1
v1
w1

u2
v2
w2

u3
v3
. . .
umv
vmv
wmv


︸ ︷︷ ︸

V⃗
(7.39)

or, ⃗̇ε = B · V⃗ where B is the gradient matrix and V⃗ is the vector of all velocity degrees of freedom
for the element. The matrix B is then of size 6× (mv · ndofv) and the vector V⃗ is mv · ndofv long.

15We will come back to this at a later stage
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we have

σxx = −p+ 2ηε̇dxx (7.40)

σyy = −p+ 2ηε̇dyy (7.41)

σzz = −p+ 2ηε̇dzz (7.42)

σxy = 2ηε̇dxy (7.43)

σxz = 2ηε̇dxz (7.44)

σyz = 2ηε̇dyz (7.45)

Since we here only consider incompressible flow, we have ε̇d = ε̇ so

σ⃗ = −


1
1
1
0
0
0

 p+C · ⃗̇ε = −


1
1
1
0
0
0

 N⃗p · P⃗ +C ·B · V⃗ (7.46)

with

C = η


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ⃗̇ε =


ε̇xx
ε̇yy
ε̇zz
2ε̇xy
2ε̇xz
2ε̇yz

 (7.47)

Let us define matrix N p of size 6×mp:

N p =


1
1
1
0
0
0

 N⃗
p =



N⃗ p

N⃗ p

N⃗ p

0
0
0

 (7.48)

so that
σ⃗ = −N p · P⃗ +C ·B · V⃗ (7.49)

finally ∫
Ωe

BT · [−N p · P⃗ +C ·B · V⃗ ] dΩ =

∫
Ωe

N b dΩ (7.50)

or, (
−
∫
Ωe

BT ·N p dΩ

)
︸ ︷︷ ︸

G

·P⃗ +

(∫
Ωe

BT ·C ·B dΩ

)
︸ ︷︷ ︸

K

·V⃗ =

∫
Ωe

N⃗b dΩ︸ ︷︷ ︸
f⃗

(7.51)

where the matrix K is of size (mv ·ndofv×mv ·ndofv), and matrix G is of size (mv ·ndofv×mp ·ndofp).
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Turning now to the mass conservation equation:

0⃗ =

∫
Ωe

N⃗ p∇⃗ · v⃗ dΩ

=

∫
Ωe

N⃗ p

mv∑
i=1

(
∂N ν

i

∂x
ui +

∂N ν
i

∂y
vi +

∂N ν
i

∂z
wi

)
dΩ

=

∫
Ωe



N p
1

(
mv∑
i=1

∂Nν
i

∂x
ui +

mv∑
i=1

∂Nν
i

∂y
vi +

mv∑
i=1

∂Nν
i

∂z
wi

)
N p

2

(
mv∑
i=1

∂Nν
i

∂x
ui +

mv∑
i=1

∂Nν
i

∂y
vi +

mv∑
i=1

∂Nν
i

∂z
wi

)
N p

3

(
mv∑
i=1

∂Nν
i

∂x
ui +

mv∑
i=1

∂Nν
i

∂y
vi +

mv∑
i=1

∂Nν
i

∂z
wi

)
. . .

N p
mp

(
mv∑
i=1

∂Nν
i

∂x
ui +

mv∑
i=1

∂Nν
i

∂y
vi +

mv∑
i=1

∂Nν
i

∂z
wi

)


dV

=

∫
Ωe



N p
1 N p

1 N p
1 0 0 0

N p
2 N p

2 N p
2 0 0 0

N p
3 N p

3 N p
3 0 0 0

...
...

...
...

...
...

N p
mp N

p
mp N

p
mp 0 0 0


·



∑
i

∂Nν
i

∂x
ui

∑
i

∂Nν
i

∂y
vi

∑
i

∂Nν
i

∂z
wi

∑
i

(
∂Nν

i

∂y
ui+

∂Nν
i

∂x
vi)

∑
i

(
∂Nν

i

∂z
ui+

∂Nν
i

∂x
wi)

∑
i

(
∂Nν

i

∂z
vi+

∂Nν
i

∂y
wi)



dV

=

∫
Ωe


N p

1 N p
1 N p

1 0 0 0
N p

2 N p
2 N p

2 0 0 0
N p

3 N p
3 N p

3 0 0 0
...

...
...

...
...

...
N p
mp N

p
mp N

p
mp 0 0 0


︸ ︷︷ ︸

(N p)T

·⃗̇ε dV

=

(∫
(N p)T ·B dV

)
· V⃗

= −GT
e · V⃗ (7.52)

Note that it is common to actually start from −∇⃗ · v⃗ = 0 (see Eq.(3) in [848]) so as to arrive at

GT
e · V⃗ = 0⃗
Ultimately we obtain the following system for each element:(

Ke Ge

−GT
e 0

)
·
(
V⃗

P⃗

)
=

(
f⃗e
0

)
Such a matrix is then generated for each element and then must me assembled into the global F.E.
matrix. Note that in this case the elemental Stokes matrix is antisymmetric. One can also define
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the following symmetric modified Stokes matrix:(
Ke Ge

GT
e 0

)
·
(
V⃗

P⃗

)
=

(
f⃗e
0

)
(7.53)

This matrix is symmetric, but indefinite. It is non-singular if ker(GT ) = 0, which is the case if the
compatibility condition holds.

CHECK: Matrix K is the viscosity matrix. Its size is (ndofv∗Nv)×(ndofv∗Nv) where ndofv is the
number of velocity degrees of freedom per node (typically 1,2 or 3) and Nv is the number of velocity
nodes. The size of matrix G is (ndofv ∗Nv)×(ndofp∗Np) where ndofp(= 1) is the number of velocity
degrees of freedom per node and Np is the number of pressure nodes. Conversely, the size of matrix
GT is (ndofp ∗Np)× (ndofv ∗Nv). The size of the global FE matrix is N = ndofv ∗Nv + ndofp ∗Np

Note that matrix K is analogous to a discrete Laplacian operator, matrix G to a discrete gradient
operator, and matrix GT to a discrete divergence operator.

On the physical dimensions of the Stokes matrix blocks

We start from the Stokes equations:

−∇⃗p+ ∇⃗ · (2ηε̇) + ρg⃗ = 0⃗ (7.54)

∇⃗ · ν⃗ = 0 (7.55)

We have [p] = ML−1T−2, [∇⃗] = L−1, so the dimensions of the terms in the first equation are:
ML−2T−2. The blocks K and G stem from the weak form which is obtained by multiplying the
strong form equations by the (dimensionless) basis functions and integrating over the 3D domain, so
that it follows that

[K · V⃗ ] = [G · P⃗ ] = [f⃗ ] = (ML−2T−2) · L3 =MLT−2

We can then easily deduce:
[K] =MT−1 [G] = L2

Turning to the mass conservation equation, we have [∇⃗ · ν⃗] = L−1LT−1 = T−1, which yields the

discretised weak form G · V⃗ = 0 so that [G · V⃗ ] = L3T−1 and we of course recover [G] = L2.
If we wanted both equations to have the same dimensions, we would need to multiply the second

one by a characteristic quantity which dimension is ML−2T−1, i.e. for example η/L (since [η] =
ML−1T−1). This is indeed what we end up doing in practice, see Section 7.5.4.

On elemental level mass balance

Note that in what is above no assumption has been made about whether the pressure basis functions
are continuous or discontinuous from one element to another.

Indeed, as mentioned in Gresho & Sani [488], since the weak formulation of the momentum

equation involves integration by parts of ∇⃗p, the resulting weak form contains no derivatives of
pressure. This introduces the possibility of approximating it by functions (piecewise polynomials, of
course) that are not C0-continuous, and indeed this has been done and is quite popular/useful (e.g.
P0 or P−1).

It is then worth noting that only discontinuous pressure elements assure an element-level mass
balance [488]: if for instance N p

i is piecewise-constant on element e (of value 1), the elemental weak
form of the mass conservation equation is∫

Ωe

Np
i ∇⃗ · ν⃗ =

∫
Ωe

∇⃗ · ν⃗ =

∫
Γe

n⃗ · ν⃗ = 0
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One potentially unwelcome consequence of using discontinuous pressure elements is that they do not
possess uniquely defined pressure on the element boundaries; they are dual valued there, and often
multi-valued at certain velocity nodes.

On the C matrix

The relationship between deviatoric stress and deviatoric strain rate tensor is

τ = 2ηε̇d (7.56)

= 2η

(
ε̇− 1

3
(∇⃗ · ν⃗)1

)
(7.57)

= 2η

 ε̇xx ε̇xy ε̇xz
ε̇yx ε̇yy ε̇yz
ε̇zx ε̇zy ε̇zz

− 1

3
(ε̇xx + ε̇yy + ε̇zz)

 1 0 0
0 1 0
0 0 1

 (7.58)

=
2

3
η

 2ε̇xx − ε̇yy − ε̇zz 3ε̇xy 3ε̇xz
3ε̇yx −ε̇yy + 2ε̇yy − ε̇yy 3ε̇yz
3ε̇zx 3ε̇zy −ε̇xx − ε̇yy + 2ε̇zz

 (7.59)

so that

τ⃗ =
2

3
η


2ε̇xx − ε̇yy − ε̇zz
−ε̇yy + 2ε̇yy − ε̇yy
−ε̇xx − ε̇yy + 2ε̇zz

3ε̇xy
3ε̇xz
3ε̇yz

 =
η

3


4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


︸ ︷︷ ︸

Cd

·


ε̇xx
ε̇yy
ε̇zz
2ε̇xy
2ε̇xz
2ε̇yz

 = Cd · ⃗̇ε (7.60)

which is identical to the one in the Appendix A of Schmalholz (2008) [1118]. In two dimensions, we
have

τ⃗ =
1

3
η

 4 −2 0
−2 4 0
0 0 3


︸ ︷︷ ︸

Cd

·

see for instance Andres-Martinez et al. (2015) [24].
In the case where we assume incompressible flow from the beginning, i.e. ε̇ = ε̇d, then

τ⃗ = η


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

C

·


ε̇xx
ε̇yy
ε̇zz
2ε̇xy
2ε̇xz
2ε̇yz

 = C · ⃗̇ε (7.61)

A slightly different formulation

The momentum conservation equation can be written as follows:

∇⃗ · (2ηε̇(ν⃗))− ∇⃗p+ b⃗ = 0⃗
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When the viscosity η is constant and the flow is incompressible this equation becomes

η∆ν⃗− ∇⃗p+ b⃗ = 0⃗

In this case the matrix B takes a different form (See Donea & Huerta [341, Eq. 6.24]) and one should
be aware that this can have consequences for the Neumann boundary conditions.

In Burstedde et al. (2009) [188] the authors state that when the Laplacian formulation is used
it has the computational advantage that the velocity components are coupled only through the
incompressibility condition. While the two formulations are equivalent only for constant viscosity,
they state that they employ the Laplacian approach formulation as a preconditioner for the viscous
term.

Concretely, we apply the same method as above, i.e. we reorganise the terms of the velocity
gradient tensor in a vector:

∇⃗ν⃗ →



∂xu
∂yu
∂zu
∂xv
∂yv
∂zv
∂xw
∂yw
∂zw


=



∑
i ∂xNiui∑
i ∂yNiui∑
i ∂zNiui∑
i ∂xNivi∑
i ∂yNivi∑
i ∂zNivi∑
i ∂xNiwi∑
i ∂yNiwi∑
i ∂zNiwi



=



∂xN ν
1 0 0 ∂xN ν

2 0 0 · · · ∂xN ν
mν

0 0
∂yN ν

1 0 0 ∂yN ν
2 0 0 · · · ∂yN ν

mν
0 0

∂zN ν
1 0 0 ∂zN ν

2 0 0 · · · ∂zN ν
mν

0 0
0 ∂xN ν

1 0 0 ∂xN ν
2 0 · · · 0 ∂xN ν

mν
0

0 ∂yN ν
1 0 0 ∂yN ν

2 0 · · · 0 ∂yN ν
mν

0
0 ∂zN ν

1 0 0 ∂zN ν
2 0 · · · 0 ∂zN ν

mν
0

0 0 ∂xN ν
1 0 0 ∂xN ν

2 · · · 0 0 ∂xN ν
mν

0 0 ∂yN ν
1 0 0 ∂yN ν

2 · · · 0 0 ∂yN ν
mν

0 0 ∂zN ν
1 0 0 ∂zN ν

2 · · · 0 0 ∂zN ν
mν


︸ ︷︷ ︸

B

·



u1
v1
w1

u2
v2
w2

u3
v3
. . .
umv
vmv
wmv


︸ ︷︷ ︸

V⃗

and in two dimensions:

∇⃗ν⃗→


∂xu
∂yu
∂xv
∂yv

 =


∑

i ∂xNiui∑
i ∂yNiui∑
i ∂xNivi∑
i ∂yNivi

 =


∂xN ν

1 0 ∂xN ν
2 0 · · · ∂xN ν

i mν 0
∂yN ν

1 0 ∂yN ν
2 0 · · · ∂yN ν

i mν 0
0 ∂xN ν

1 0 ∂xN ν
2 · · · 0 ∂xN ν

i mν

0 ∂yN ν
1 0 ∂yN ν

2 · · · 0 ∂yN ν
i mν


︸ ︷︷ ︸

B

·



u1
v1
u2
v2
u3
v3
. . .
umv
vmv


︸ ︷︷ ︸

V⃗

If such a formulation is used, it makes more sense to actually group the unknowns as follows:

V⃗ = (u1, . . . , umν , v1, . . . , vmν , w1, . . . , wmν)
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We start from
η∆ν⃗− ∇⃗p+ ρg⃗ = 0⃗

In 2D Cartesian coordinates this becomes:

η∆u− ∂xp+ ρgx = 0 (7.62)

η∆v − ∂yp+ ρgy = 0 (7.63)

or,

η

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂xp+ ρgx = 0 (7.64)

η

(
∂2v

∂x2
+
∂2v

∂y2

)
− ∂yp+ ρgy = 0 (7.65)

Assuming that we prescribe the normal velocity on all sides (i.e. no Neumann boundary conditions),
we can establish the weak form of these equations:(∫

Ω

η(
∂N⃗ ν

∂x

∂N⃗ ν

∂x
+
∂N⃗ ν

∂y

∂N⃗ ν

∂y
) dV

)
︸ ︷︷ ︸

N

·V⃗x +

(
−
∫
Ω

∂N⃗ ν

∂x
N⃗ p dV

)
︸ ︷︷ ︸

Gx

·P⃗ =

∫
Ω

N⃗ νρgx dV︸ ︷︷ ︸
f⃗x

(7.66)

(∫
Ω

η(
∂N⃗ ν

∂x

∂N⃗ ν

∂x
+
∂N⃗ ν

∂y

∂N⃗ ν

∂y
) dV

)
︸ ︷︷ ︸

N

·V⃗y +

(
−
∫
Ω

∂N⃗ ν

∂y
N⃗ p dV

)
︸ ︷︷ ︸

Gy

·P⃗ =

∫
Ω

N⃗ νρgy dV︸ ︷︷ ︸
f⃗y

(7.67)

Turning now to the continuity equation
−∇⃗ · ν⃗ = 0

or,

−∂u
∂x
− ∂v

∂y
= 0

Its weak form then is (
−
∫
Ω

N⃗ p∂N⃗ ν

∂x
dV

)
· V⃗x︸ ︷︷ ︸

GTx

+

(
−
∫
Ω

N⃗ p∂N⃗ ν

∂y
dV

)
︸ ︷︷ ︸

GTy

·V⃗y = 0

In the end:  N 0 Gx

0 N Gy

Gx Gy 0

 ·
 V⃗xV⃗y
P⃗

 =

 f⃗x
f⃗y
0


This approach is implemented in stone 48.

On the ’forgotten’ surface terms

FINISH write
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7.5.2 Revisiting the penalty method

We have just seen that the discretised Stokes equation yield the following saddle point system:(
K G
GT 0

)
·
(
V⃗
P⃗

)
=

(
f⃗

0⃗

)
One can perturb the continuity equation by a term Cϵ = ϵMp where Mp is the pressure mass matrix.
This yields (

K G
GT −Cϵ

)
·
(
V⃗
P⃗

)
=

(
f⃗

0⃗

)
or,

P⃗ =
1

ϵ
M−1

p ·GT · V⃗

Substituting pressure in the first equation yields:

(K+
1

ϵ
G ·M−1

p ·GT ) · V⃗ = f⃗ (7.68)

If we want to solve these equations, it is necessary that the matrix M−1
p can be computed easily.

This is for example the case if Mp is a lumped mass matrix (often done for Taylor-Hood elements).
When discontinuous pressure elements are used, Mp is in a block diagonal matrix, i.e. a diagonal
matrix consisting of small matrices as diagonal elements. One can easily verify that these small
matrices have the size of the number of pressure unknowns per element. Note that this is all carried
out at the elemental level.

7.5.3 A much more compact derivation of the Stokes matrix blocks

What follows is inspired by chapter 6 of Donea and Huerta [341]. One can easily show that the weak
form of the Stokes system can be written∫

Ω

∇⃗ω⃗ : σ dΩ =

∫
Ω

ω⃗ · b⃗ dΩ +

∫
Γ

ω⃗ · t⃗ dΓ (7.69)∫
Ω

q∇⃗ · ν⃗ dΩ = 0 (7.70)

where ω⃗ and q are the velocity and pressure test functions respectively, and with

∇⃗ω⃗ : σ =
ndim∑
i,j

∂ωi

∂xj
σij

Assuming the Cauchy stress σ is given by the linear Stokes’ law σ = −p1 + τ with τ = 2ηϵ̇(ν⃗) =

C : ∇⃗ν⃗ where C is a fourth-order tensor with Cijkl = η(δikδjl + δilδjk). Then∫
Ω

∇⃗ω⃗ : σ dΩ =

∫
Ω

∇⃗ω⃗ : (−p1+ τ ) dΩ

= −
∫
Ω

p ∇⃗ω⃗ : 1 dΩ +

∫
Ω

∇⃗ω⃗ : τ dΩ

= −
∫
Ω

p ∇⃗ · ω⃗ dΩ +

∫
Ω

∇⃗ω⃗ : C : ∇⃗ν⃗ dΩ (7.71)
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The weak form of the Stokes system now takes the form

−
∫
Ω

p ∇⃗ · ω⃗ dΩ +

∫
Ω

∇⃗ω⃗ : C : ∇⃗ν⃗ dΩ =

∫
Ω

ω⃗ · b⃗ dΩ +

∫
Γ

ω⃗ · t⃗ dΓ (7.72)∫
Ω

q∇⃗ · ν⃗ dΩ = 0 (7.73)

Actually, the bilinear form with the two double dot products is not particularly convenient so it is
always rewritten in terms of the strain rate vector

⃗̇ε(ν⃗) =


ε̇xx(ν⃗)
ε̇yy(ν⃗)
ε̇zz(ν⃗)
2ε̇xy(ν⃗)
2ε̇xz(ν⃗)
2ε̇yz(ν⃗)


as one can easily show that

∇⃗ω⃗ : C : ∇⃗ν⃗ = ⃗̇ε(ω⃗)T ·Cη · ⃗̇ε(ν⃗)

with

Cη = η


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and since ⃗̇ε(ν⃗) = B · V⃗ and ⃗̇ε(ω⃗) = B · W⃗ then∫

Ω

∇⃗ω⃗ : C : ∇⃗ν⃗ dΩ =

∫
Ω

⃗̇ε(ω⃗)T ·Cη · ⃗̇ε(ν⃗) dΩ

=

∫
Ω

W⃗T ·BT ·Cη ·B · V⃗ dΩ

= W⃗T ·
∫
Ω

BT ·Cη ·B dΩ · V⃗

= W⃗T ·K · V⃗ (7.74)

Let us now turn to the mass conservation equation:∫
Ω

q∇⃗ · ν⃗ dΩ =

∫
Ω

Q⃗T N⃗ p∇⃗ · ν⃗ dΩ = Q⃗T ·
∫
Ω

N⃗ p∇⃗ · ν⃗ dΩ

We have ∇⃗ · ν⃗ = Tr[ε̇(ν⃗)] but also

∇⃗ · ν⃗ =
(
1 1 1 0 0 0

)
·


ε̇xx(ν⃗)
ε̇yy(ν⃗)
ε̇zz(ν⃗)
2ε̇xy(ν⃗)
2ε̇xz(ν⃗)
2ε̇yz(ν⃗)


=

(
1 1 1 0 0 0

)
· ⃗̇ε(ν⃗)

=
(
1 1 1 0 0 0

)
·B · V⃗ (7.75)
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so that

N⃗ p∇⃗ · ν⃗ = N⃗ p
(
1 1 1 0 0 0

)
·B · V⃗

=
(
N⃗ p N⃗ p N⃗ p 0 0 0

)
·B · V⃗

= N T ·B · V⃗ (7.76)

Finally ∫
Ω

q∇⃗ · ν⃗ dΩ = Q⃗T ·
∫
Ω

N T ·B dΩ · V⃗

= −Q⃗T ·GT · V⃗ (7.77)

where

G = −
∫
Ω

BT ·N dΩ

Obviously the term −
∫
Ω
p ∇⃗ω⃗ : 1 dΩ = −

∫
Ω
p ∇⃗·ω⃗ dΩ will take the form P⃗T ·GT ·W⃗ = W⃗T ·G·P⃗

so that

−
∫
Ω

p ∇⃗ · ω⃗ dΩ +

∫
Ω

∇⃗ω⃗ : C : ∇⃗ν⃗ dΩ = W⃗T ·G · P⃗ + W⃗T ·K · V⃗ = W⃗T ·
(
G · P⃗ +K · V⃗

)
The rhs are handled as shown previously. Since these relationships must work for any test function
then it means that what multiplies W⃗ and Q⃗ must be null and we recover Eq. (7.53).

Note that this approach is quite versatile since it does not require to specify the coordinate
system. The vector ⃗̇ε will contain the components of the strain rate tensor and in the end the matrix
B will reflect the exact form of the strain rate tensor terms (see axisymmetric formulation).

7.5.4 Pressure scaling

pressure scaling.tex

As nicely explained in the step 32 of deal.ii16, we often need to scale the G block since it is many
orders of magnitude smaller than K (especially in geodynamics where viscosities are ∼ 1022), which
introduces large inaccuracies in the solving process to the point that the solution is nonsensical. This
scaling coefficient is η/L where η and L are representative viscosities and lengths. We start from(

K G
GT −C

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
and introduce the scaling coefficient as follows (which in fact does not alter the solution at all):(

K η
L
G

η
L
GT − η2

L2C

)
·

(
V⃗
L
η
P⃗

)
=

(
f⃗
η
L
h⃗

)
We then end up with the modified Stokes system:(

K G
GT C

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
where

G =
η

L
G P⃗ =

L

η
P⃗ C =

η2

L2
C h⃗ =

η

L
h⃗

After the solve phase, we recover the real pressure with P⃗ = η
L
P⃗ .

16https://www.dealii.org/9.0.0/doxygen/deal.II/step_32.html
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7.5.5 Going from 3D to 2D

The world is three-dimensional. However, for many different reasons one may wish to solve problems
which are two-dimensional.

Following ASPECT manual, we will think of two-dimensional models in the following way:

� We assume that the domain we want to solve on is a two-dimensional cross section (in the x−y
plane) that extends infinitely far in both negative and positive z direction.

� We assume that the velocity is zero in the z direction and that all variables have no variation
in the z direction.

As a consequence, two-dimensional models are three-dimensional ones in which the z component
of the velocity is zero and so are all z derivatives. This allows to reduce the momentum conservation
equations from 3 equations to 2 equations. However, contrarily to what is often seen, the 3D definition
of the deviatoric strain rate remains, i.e. in other words:

ε̇d = ε̇− 1

3
(∇⃗ · v⃗)1 (7.78)

and not 1/2. In light of all this, the full strain rate tensor and the deviatoric strain rate tensor in
2D are given by:

ε =

 ε̇xx ε̇xy ε̇xz
ε̇yx ε̇yy ε̇yz
ε̇zx ε̇zy ε̇zz

 =


∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)
0

1
2

(
∂u
∂y

+ ∂v
∂x

)
∂v
∂y

0

0 0 0

 (7.79)

ε̇d =
1

3


2∂u
∂x
− ∂v

∂y
1
2

(
∂u
∂y

+ ∂v
∂x

)
0

1
2

(
∂u
∂y

+ ∂v
∂x

)
−∂u
∂x

+ 2∂v
∂y

0

0 0 −∂u
∂x
− ∂v

∂y

 (7.80)

Although the bottom right term may be surprising, it is of no consequence when this expression of
the deviatoric strain rate is used in the Stokes equation:

∇⃗ · 2ηε̇d =

FINISH!
In two dimensions the velocity is then ν⃗ = (u, v) and the FEM building blocks and matrices are

simply:

⃗̇ε =


ε̇xx

ε̇yy

2ε̇xy

 =


∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x

 =


∂Nν

1

∂x
0

∂Nν
2

∂x
0

∂Nν
3

∂x
0 . . .

∂Nν
mv

∂x
0

0
∂Nν

1

∂y
0

∂Nν
2

∂y
0

∂Nν
3

∂y
. . . 0

∂Nν
mv

∂x

∂Nν
1

∂y

∂Nν
1

∂x

∂Nν
2

∂y

∂Nν
2

∂x

∂Nν
3

∂y

∂Nν
3

∂x
. . .

∂Nν
mv

∂y

∂Nν
mv

∂x


︸ ︷︷ ︸

B

·



u1
v1
u2
v2
u3
v3
. . .
umv
vmv


︸ ︷︷ ︸

V⃗

(7.81)

371



we have

σxx = −p+ 2ηε̇xx (7.82)

σyy = −p+ 2ηε̇yy (7.83)

σxy = +2ηε̇xy (7.84)

so

σ⃗ = −

 1
1
0

 p+C · ⃗̇ε = −

 1
1
0

 N⃗p · P⃗ +C ·B · V⃗ (7.85)

with

C = η

 2 0 0
0 2 0
0 0 1

 or C =
η

3

 4 −2 0
−2 4 0
0 0 3

 (7.86)

check the right C
Finally the matrix N p is of size 3×mp:

N p =

 1
1
0

 N⃗p =

 N⃗p

N⃗p

0

 (7.87)
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7.5.6 The cylindrical axisymmetric case

mixed axisymmetric.tex

In cylindrical coordinates the velocity gradient is given by

∇⃗ν⃗ =


∂ νr
∂ r

1
r
∂ νr
∂ θ
− νθ

r
∂ νr
∂z

∂ νθ
∂ r

1
r
∂ νθ
∂ θ

+ νr
r

∂ νθ
∂z

∂ νz
∂ r

1
r
∂ νz
∂ θ

∂ νz
∂z

 (7.88)

In the case of axisymmetry, and in this case symmetry about the z axis, there is invariance with
respect to the rotation around the axis so stresses and other quantities are independent of the θ
coordinate, or simply put ∂θ → 0. The velocity gradient simplifies to:

∇⃗ν⃗ =


∂ νr
∂ r

−νθ
r

∂ νr
∂z

∂ νθ
∂ r

νr
r

∂ νθ
∂z

∂ νz
∂ r

0 ∂ νz
∂z

 (7.89)

Also, it follows logically that νθ = 0 so that ultimately:

∇⃗ν⃗ =


∂νr
∂r

0 ∂νr
∂z

0 νr
r

0

∂νz
∂r

0 ∂νz
∂z

 (7.90)

and the strain rate tensor is then given by

ε̇(ν⃗) =
1

2

(
∇⃗ν⃗+ ∇⃗ν⃗T

)
=


∂ νr
∂ r

0 1
2
(∂νz
∂r

+ ∂νr
∂z

)

0 νr
r

0

1
2
(∂νz
∂r

+ ∂νr
∂z

) 0 ∂νz
∂z

 (7.91)

The velocity divergence ∇⃗ · ν⃗ is simply the trace of ε̇(ν⃗) so

∇⃗ · ν⃗ =
∂νr
∂r

+
νr

r
+
∂νz
∂z

The components of the ⃗̇ε(v⃗) vector are

⃗̇ε(ν⃗) =


ε̇rr
ε̇θθ
ε̇zz
2ε̇rθ
2ε̇rz
2ε̇θz

 =



∂νr
∂r
νr
r
∂νz
∂z

0
∂νz
∂r

+ ∂νr
∂z

0


We see that there are two zeroes and consequently we only keep the four non zero components:

⃗̇ε(ν⃗) =


∂νr
∂r
νr
r
∂νz
∂z

∂νz
∂r

+ ∂νr
∂z
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Only displacements in the r and z directions remain (note that ε̇θθ is in fact equal to νr/r). In what
follows I rename u = νr and w = νz to simplify notations. Then, inside an element we have

uh(r, z) =
mν∑
i=1

N ν
i (r, z)ui (7.92)

wh(r, z) =
mν∑
i=1

N ν
i (r, z)wi (7.93)

where N ν
i are the velocity basis functions attached to the mν nodes of the element. We compute the

elements of the ⃗̇ε(ν⃗) vector as follows:

ε̇rr =
∂uh

∂r
=

m∑
i=1

∂Ni
∂r

(r, z) ui (7.94)

ε̇θθ =
uhr
r

=
1

r

m∑
i=1

Ni(r, z) ui (7.95)

ε̇zz =
∂wh

∂z
=

m∑
i=1

∂Ni
∂z

(r, z) wi (7.96)

2ε̇rz =
∂uh

∂z
+
∂wh

∂r
=

m∑
i=1

∂Ni
∂z

(r, z)ui +
m∑
i=1

∂Ni
∂r

(r, z)wi (7.97)

and then

⃗̇εh =



∂uh

∂r

uh

r

∂wh

∂z

∂uh

∂z
+ ∂wh

∂r


=



∂N1

∂r
0 ∂N2

∂r
0 · · · · · · ∂Nmν

∂r
0

N1

r
0 N2

r
0 · · · · · · Nmν

r
0

0 ∂N1

∂z
0 ∂N2

∂z
· · · · · · 0 ∂Nmν

∂z

∂N1

∂z
∂N1

∂r
∂N2

∂z
∂N2

∂r
· · · · · · ∂Nmν

∂z
∂Nmν

∂r


︸ ︷︷ ︸

B(4×2mν)

·



u1
w1

u2
w2
...

umν

wmν


︸ ︷︷ ︸
V⃗(2mν×1)

(7.98)

or ⃗̇εh = B · V⃗ , where V⃗ is the vector of velocity dofs for an element.
Following the presentation of Section 7.5.3, we know that we will obtain(

−
∫
Ωe

BT ·N p dV

)
︸ ︷︷ ︸

Ge

·P⃗ +

(∫
Ωe

BT ·C ·B dV

)
︸ ︷︷ ︸

Ke

·V⃗ =

∫
Ωe

N⃗b dV︸ ︷︷ ︸
f⃗e

(7.99)

with

Cη = η


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1
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Note: We have in cylindrical coordinates dV = rdrdθdz. The integral over the θ coordi-
nate yields a factor 2π so for instance

Ke = 2π

∫∫
Ωe

BT ·C ·B rdrdz (7.100)

Note the r term in the integrand. The integration can now be performed as simply as was
the case in the plane strain problem.

Note that it is common to actually start from −∇⃗ · v⃗ = 0 (see Eq. (3) in [848]) so as to arrive at

GT
e · V⃗ = 0⃗. Ultimately we obtain the following system for each element:(

Ke Ge

GT
e 0

)
·
(
V⃗
P⃗

)
=

(
f⃗e
0

)
Such a matrix is then generated for each element and then must me assembled into the global F.E.
matrix.

Unfortunately there is not much teaching/practical material to be found in the literature with
regards to axisymmetric flow. For example Donea and Huerta [341] do not even mention this problem.
In Hughes [604] we find:
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Taken from pages 101 of T.J.R. Hughes. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover Publications, Inc., 2000. isbn:

0-486-41181-8.

Also check page 469 of Gresho & Sani’s book, and see their remark on axisymmetric case for the
N-S equations on page 545.
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7.6 Mappings & Jacobians

mappings.tex

The name isoparametric derives from the fact that the same (’iso’) functions are used as basis
functions and for the mapping to the reference element.

More generally, if ne denotes the number of nodes of an element and ng denotes the number
of nodes describing the geometry of the element, then the element is termed subparametric when
ng < ne and superparametric when ng > ne.

7.6.1 General case

What follows is written for the 2d case but extending it to 3d is trivial.
Any variable defined on the element can be approximated using the basis functions:

fh(r, s) =
∑
i

Ni(r, s)fi. (7.101)

If we treat the coordinate variables x and y themselves as functions, then the basis functions can be
used to construct the mapping:

x =
4∑
i=1

Ni(r, s)xi (7.102)

y =
4∑
i=1

Ni(r, s)yi (7.103)

This is a relationship between the reduced coordinates r, s and the ’real’ coordinates x, y.
Let us compute the space derivatives of these quantities:

∂x

∂r
=

∑
i

∂Ni
∂r

xi (7.104)

∂x

∂s
=

∑
i

∂Ni
∂s

xi (7.105)

∂y

∂r
=

∑
i

∂Ni
∂r

yi (7.106)

∂y

∂s
=

∑
i

∂Ni
∂s

yi (7.107)

We also have

∂f

∂r
=

∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
(7.108)

∂f

∂s
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
(7.109)

or in matrix form:  ∂f
∂r

∂f
∂s

 =

 ∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s


︸ ︷︷ ︸

J

·

 ∂f
∂x

∂f
∂y
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where J is called the Jacobian of the transformation By inverting the Jacobian matrix, the desired
derivatives with respect to x and y can be obtained: ∂f

∂x

∂f
∂y

 = J−1 ·

 ∂f
∂r

∂f
∂s


The inverse of the Jacobian matrix can be simply obtained in 2D (Cramer’s rule for 2×2 matrices17):

J−1 =
1

|J |

 ∂y
∂s

−∂y
∂r

−∂x
∂s

∂x
∂r


The presence of the determinant in the denominator implies that it cannot be zero anywhere, or in
other words: the mapping is not valid if |J | is zero anywhere over the element.

Remark. Problems also arise when the Jacobian matrix is nearly singular due to round-off errors.
To avoid problems linked to badly shaped elements, it is recommended that the inside angles of an
element are larger than 15◦ and less than 165◦.

From Eq. (??), we can also write:

dx =
∂x

∂r
dr +

∂x

∂s
ds (7.110)

dy =
∂y

∂r
dr +

∂y

∂s
ds (7.111)

or, (
dx
dy

)
= J ·

(
dr
ds

)
(7.112)

This means that integrating over the ’real’ element in (x, y) space can be simply done by integrating
of the reference element in the (r, s) space. This is the cornerstone of most of the implementation of
the Finite Element Method, the second integral being carried out by means of the Gauss-Legendre
quadrature. ∫∫

Ωe

... dxdy =

∫ +1

−1

∫ +1

−1

...|J | drds (7.113)

7.6.2 Linear mapping on a triangle

x =
3∑
i=1

Ni(r, s)xi

= N1(r, s)x1 +N2(r, s)x2 +N3(r, s)x3

= (1− r − s)x1 + (r)x2 + (s)x3

= x1 + (x2 − x1)r + (x3 − x1)s
= ax + bxr + cxs

y =
3∑
i=1

Ni(r, s)yi

= N1(r, s)y1 +N2(r, s)y2 +N3(r, s)y3

= (1− r − s)y1 + (r)y2 + (s)y3

= y1 + (y2 − y1)r + (y3 − y1)s
= ay + byr + cys

17https://en.wikipedia.org/wiki/Cramers_rule
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Let us compute the space derivatives of these quantities:

∂x

∂r
= x2 − x1 = bx

∂x

∂s
= x3 − x1 = cx

∂y

∂r
= y2 − y1 = by

∂y

∂s
= y3 − y1 = cy

The jacobian matrix is then given by

J =

(
x2 − x1 y2 − y1
x3 − x1 y3 − y1

)
=

(
bx by
cx cy

)
and its inverse

J−1 =
1

bxcy − cxby

(
cy −by
−cx bx

)
=

1

2A

(
cy −by
−cx bx

)
where A = (bxcy − cxby)/2 is actually the area of the triangle!

The Cartesian basis function derivatives are then ∂N1

∂x

∂N1

∂y

 = J−1 ·

 ∂N1

∂r

∂N1

∂s

 =
1

2A

(
cy −by
−cx bx

)
·

 −1
−1

 =
1

2A

(
by − cy
cx − bx

)
 ∂N2

∂x

∂N2

∂y

 = J−1 ·

 ∂N2

∂r

∂N2

∂s

 =
1

2A

(
cy −by
−cx bx

)
·
(

1
0

)
=

1

2A

(
cy
−cx

)
 ∂N3

∂x

∂N3

∂y

 = J−1 ·

 ∂N3

∂r

∂N3

∂s

 =
1

2A

(
cy −by
−cx bx

)
·
(

0
1

)
=

1

2A

(
−by
bx

)

7.6.3 Bilinear mapping (Q1) on a quadrilateral

The reference element is in the (r, s) space. It is a square of size 2×2 centered around the origin, i.e.
(r, s) ∈ [−1, 1]× [−1, 1]. We wish to map it to the quadrilateral in the (x, y) space (and vice versa):

The coordinates of the vertices are (x1, y1), (x2, y2), (x3, y3) and (x4, y4). We then simply have
the following relationship, i.e. any point of the reference element can be mapped to the physical
quadrilateral as follows:

x = N1(r, s)x1 +N2(r, s)x2 +N3(r, s)x3 +N4(r, s)x4 (7.114)

y = N1(r, s)y1 +N2(r, s)y2 +N3(r, s)y3 +N4(r, s)y4 (7.115)

where the Q1 basis functions Ni(r, s) are defined in Section 5.2.
In the following example the program randomly generates 10000 points inside the reference ele-

ment and computes their mapping into the (x, y) space.
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x1==1 ; y1==2
x2=3 ; y2==1
x3=2 ; y3=2
x4==3 ; y4=1

npts=10000
r=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
s=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
x=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
y=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )

f o r i in range (0 , npts ) :
# compute random r , s coord ina t e s
r [ i ]=random . uniform (=1. ,+1)
s [ i ]=random . uniform (=1. ,+1)
# compute b a s i s f unc t i on va l u e s at r , s
N1=0.25*(1= r [ i ] ) *(1= s [ i ] )
N2=0.25*(1+ r [ i ] ) *(1= s [ i ] )
N3=0.25*(1+ r [ i ] ) *(1+s [ i ] )
N4=0.25*(1= r [ i ] ) *(1+s [ i ] )
# compute x , y coord ina t e s
x [ i ]=N1*x1+N2*x2+N3*x3+N4*x4
y [ i ]=N1*y1+N2*y2+N3*y3+N4*y4

np . save txt ( ’ r s . a s c i i ’ , np . array ( [ r , s ] ) .T)
np . save txt ( ’ xy . a s c i i ’ , np . array ( [ x , y ] ) .T)
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There is also an inverse map, which is not so easily computed (see Section 9.11). However, if the
quadrilateral in the (x, y) space is a rectangle of size (hx, hy), the inverse mapping is trivial:

r =
x− x1
x2 − x1

(7.116)

s =
y − y1
y4 − y1

(7.117)

Also in the case of rectangular elements of size (hx, hy) the basis functions can easily be written as
functions of (x, y):

N1(x, y) =

(
x3 − x
hx

)(
y3 − y
hy

)
N2(x, y) =

(
x− x1
hx

)(
y3 − y
hy

)
N3(x, y) =

(
x− x1
hx

)(
y − y1
hy

)
N4(x, y) =

(
x3 − x
hx

)(
y − y1
hy

)
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From Eq. (7.115) and using the expressions for the Q1 basis functions, we can write

x =
1

4
(x1 + x2 + x3 + x4) +

1

4
(−x1 + x2 + x3 − x4)r +

1

4
(−x1 − x2 + x3 + x4)s+

1

4
(x1 − x2 + x3 − x4)rs

y =
1

4
(y1 + y2 + y3 + y4) +

1

4
(−y1 + y2 + y3 − y4)r +

1

4
(−y1 − y2 + y3 + y4)s+

1

4
(y1 − y2 + y3 − y4)rs

Let us compute the space derivatives of these quantities:

∂x

∂r
=

1

4
(−x1 + x2 + x3 − x4) +

1

4
(x1 − x2 + x3 − x4)s = A1 + A2s

∂x

∂s
=

1

4
(−x1 − x2 + x3 + x4) +

1

4
(x1 − x2 + x3 − x4)r = A3 + A4r

∂y

∂r
=

1

4
(−y1 + y2 + y3 − y4) +

1

4
(y1 − y2 + y3 − y4)s = B1 +B2s

∂y

∂s
=

1

4
(−y1 − y2 + y3 + y4) +

1

4
(y1 − y2 + y3 − y4)r = B3 +B4r

The jacobian matrix is then given by

J =

(
A1 + A2s B1 +B2s
A3 + A4r B3 +B4r

)
and its inverse

J−1 =
1

C

(
B3 +B4r −B1 −B2s
−A3 − A4r A1 + A2s

)
with C being the determinant given by

C = (A1 + A2s)(B3 +B4r)− (A3 + A4r)(B1 +B2s)

A concrete example

Let us look at this by means of a simple example and let us consider the following element:

Then a Q1 mapping yields:

x(r, s) =
∑
i

Ni(r, s)xi = N2 + 2N3 =
1

4
(3 + 3r + s+ rt)

y(r, s) =
∑
i

Ni(r, s)yi = 2N3 +N4 =
1

4
(3 + r + 3s+ rt) (7.118)

The Jacobian matrix is then

J =

 ∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

 =
1

4

(
3 + s 1 + s
1 + r 3 + r

)
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and its determinant is

|J | = 1

4
[(3 + s)(3 + r)− (1 + s)(1 + r)] =

1

2
+

1

8
r +

1

8
s (7.119)

It is clear that |J | > 0 for −1 ≤ r ≤ +1 and −1 ≤ s ≤ +1.
Let us now consider another example, the following element:

It follows that

x(r, s) =
∑
i

Ni(r, s)xi =
1

4
(1 + r)(7 + 5s) (7.120)

y(r, s) =
∑
i

Ni(r, s)yi =
1

4
(17 + 5r + 7s− 5rs) (7.121)

and the determinant:

|J | = 3

2
− 15r

4
+

15s

4

is zero for r − s = 2/5. This mapping is invalid!

the special case of squares, quadrilaterals and parallelograms

In this case the parameters A2, A4, B2, B4 are all equal to zero. which yields:

J−1 =
1

C

(
B3 −B1

−A3 A1

)
with C = A1B3 − A3B1

Indeed, let us draw such quadrilaterals:
redo with tikz

-------3

------- /

4------3 4------------3 4------- /

| | | | / -------2

h | | hy | | / -------

1------2 1------------2 1-------

h hx

For the square of size h we have

4A2 = x1 − x2 + x3 − x4 = x1 − (x1 + h) + (x4 + h)− x4) = 0

4A4 = x1 − x2 + x3 − x4 = x1 − (x1 + h) + (x4 + h)− x4 = 0

4B2 = y1 − y2 + y3 − y4 = y1 − y2 + (y2 + hy)− (y1 + hy) = 0

4B4 = y1 − y2 + y3 − y4 = y1 − y2 + (y2 + hy)− (y1 + hy) = 0
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For the rectangle of size hx, hy we have

4A2 = x1 − x2 + x3 − x4 = x1 − (x1 + hx) + (x4 + hx)− x4) = 0

4A4 = x1 − x2 + x3 − x4 = x1 − (x1 + hx) + (x4 + hx)− x4 = 0

4B2 = y1 − y2 + y3 − y4 = y1 − y2 + (y2 + hy)− (y1 + hy) = 0

4B4 = y1 − y2 + y3 − y4 = y1 − y2 + (y2 + hy)− (y1 + hy) = 0

and the same for the parallelogram.
In the case of a rectangle we also have

A1 =
1

4
(−x1 + x2 + x3 − x4) =

1

4
(−x1 + (x1 + hx) + (x4 + hx)− x4) =

hx
2

(7.122)

A3 =
1

4
(−x1 − x2 + x3 + x4) =

1

4
(−x1 − (x1 + hx) + (x4 + hx) + x4) = 0 (7.123)

B1 =
1

4
(−y1 + y2 + y3 − y4) =

1

4
(−y1 + y2 + (y2 + hy)− (y1 + hy)) = 0 (7.124)

B3 =
1

4
(−y1 − y2 + y3 + y4) =

1

4
(−y1 − y2 + (y2 + hy) + (y1 + hy)) =

hy
2

(7.125)

so that the jacobian matrix is

J =

(
A1 B1

A3 B3

)
=

(
hx
2

0

0 hy
2

)
The determinant is then C = hxhy

4
and the inverse:

J−1 =
1

C

(
B3 −B1

−A3 A1

)
=

4

hxhy

(
hy
2

0
0 hx

2

)
=

( 2
hx

0

0 2
hy

)
Remark. Hua [599] (1990) has published analytical inverse transformation for quadrilateral isopara-
metric elements, i.e. how to compute J−1 as a function of space coordinates and not just at the
quadrature points.

7.6.4 Biquadratic mapping of a straight-edge face Q2 element

The reference element now contains 9 nodes: 1,3,7,9 are the corners, nodes 2,4,6,8 are the mid-
face points and node 5 is in the middle18. The mapping from the (r, s) space to the (x, y) space is
then as follows:(

x(r, s)
y(r, s)

)
= N1(r, s)

(
x1
y1

)
+N2(r, s)

(
x2
y2

)
+N3(r, s)

(
x3
y3

)
+N4(r, s)

(
x4
y4

)
+ N5(r, s)

(
x5
y5

)
+N6(r, s)

(
x6
y6

)
+N7(r, s)

(
x7
y7

)
+N8(r, s)

(
x4
y8

)
+ N9(r, s)

(
x9
y9

)
18Note that this numbering is quite arbitrary
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where the Q2 basis functions have been obtained in Section 5.3.2:

N1(r, t) = 0.5r(r − 1)0.5t(t− 1)

N2(r, t) = (1− r2)0.5t(t− 1)

N3(r, t) = 0.5r(r + 1)0.5t(t− 1)

N4(r, t) = 0.5r(r − 1)(1− t2)
N5(r, t) = (1− r2)(1− t2)
N6(r, t) = 0.5r(r + 1)(1− t2)
N7(r, t) = 0.5r(r − 1)0.5t(t+ 1)

N8(r, t) = (1− r2)0.5t(t+ 1)

N9(r, t) = 0.5r(r + 1)0.5t(t+ 1)

x1==1 ; y1==2
x3=3 ; y3==1
x9=2 ; y9=2
x7==3 ; y7=1
x2=0.5*( x1+x3 ) ; y2=0.5*( y1+y3 )
x4=0.5*( x1+x7 ) ; y4=0.5*( y1+y7 )
x6=0.5*( x3+x9 ) ; y6=0.5*( y3+y9 )
x8=0.5*( x7+x9 ) ; y8=0.5*( y7+y9 )
x5=0.25*( x1+x3+x7+x9 ) ; y5=0.25*( y1+y3+y7+y9 )

npts=10000
r=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
s=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
xQ1=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
yQ1=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
xQ2=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )
yQ2=np . z e ro s ( npts , dtype=np . f l o a t 6 4 )

f o r i in range (0 , npts ) :
# compute random r , s coord ina t e s
r [ i ]=random . uniform (=1. ,+1)
s [ i ]=random . uniform (=1. ,+1)
# compute Q2 ba s i s f unc t i on va l u e s at r , s
N1= 0.5* r [ i ] * ( r [ i ]=1.) * 0 .5* s [ i ] * ( s [ i ]=1.)
N2= (1.= r [ i ]**2 ) * 0 .5* s [ i ] * ( s [ i ]=1.)
N3= 0.5* r [ i ] * ( r [ i ]+1 . ) * 0 .5* s [ i ] * ( s [ i ]=1.)
N4= 0.5* r [ i ] * ( r [ i ]=1.) * (1.= s [ i ]**2 )
N5= (1.= r [ i ]**2 ) * (1.= s [ i ]**2 )
N6= 0.5* r [ i ] * ( r [ i ]+1 . ) * (1.= s [ i ]**2 )
N7= 0.5* r [ i ] * ( r [ i ]=1.) * 0 .5* s [ i ] * ( s [ i ]+1 . )
N8= (1.= r [ i ]**2 ) * 0 .5* s [ i ] * ( s [ i ]+1 . )
N9= 0.5* r [ i ] * ( r [ i ]+1 . ) * 0 .5* s [ i ] * ( s [ i ]+1 . )
# compute x , y coord ina t e s
xQ2 [ i ]=N1*x1+N2*x2+N3*x3+N4*x4+N5*x5+N6*x6+N7*x7+N8*x8+N9*x9
yQ2 [ i ]=N1*y1+N2*y2+N3*y3+N4*y4+N5*y5+N6*y6+N7*y7+N8*y8+N9*y9
# compute Q1 ba s i s f unc t i on va l u e s at r , s
N1=0.25*(1= r [ i ] ) *(1= s [ i ] )
N2=0.25*(1+ r [ i ] ) *(1= s [ i ] )
N3=0.25*(1+ r [ i ] ) *(1+s [ i ] )
N4=0.25*(1= r [ i ] ) *(1+s [ i ] )
# compute x , y coord ina t e s
xQ1 [ i ]=N1*x1+N2*x3+N3*x9+N4*x7
yQ1 [ i ]=N1*y1+N2*y3+N3*y9+N4*y7

np . save txt ( ’ r s . a s c i i ’ , np . array ( [ r , s ] ) .T)
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np . save txt ( ’xyQ1 . a s c i i ’ , np . array ( [ xQ1 , yQ1 ] ) .T)
np . save txt ( ’xyQ2 . a s c i i ’ , np . array ( [ xQ2 , yQ2 ] ) .T)

The code is available in /images/mappings/biquadratic Note that the coordinates of point 5
are defined being those of the barycenter of the quadrilateral. More on this choice later.
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a) 10,000 random points in the reference element; b,c) image of these points by means of a bilinear and biquadratic mapping respectively.

When the sides of the element are straight we see that a Q1 mapping is sufficient.

7.6.5 Biquadratic mapping of a not-so straight-line face Q2 element

We now carry out the same exercise as before but nodes 2 and 8 are no more in the middle of nodes
1-3 and 7-9 respectively. The code is available in /images/mappings/biquadratic2.
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a) 10,000 random points in the reference element; b,c) image of these points by means of a bilinear and biquadratic mapping respectively.

In this case we see that the Q2 mapping manages to better capture the ’real’ shape of the element.
Since nodes 2 and 8 have moved, we could now ask ourselves where we should place node 5? In this
example we set it as follows but it is somewhat arbitrary.

x5=(x1+x2+x3+x4+x6+x7+x8+x9 ) /8 .
y5=(y1+y2+y3+y4+y6+y7+y8+y9 ) /8 .

We will come back to this later.

7.6.6 Bilinear, biquadratic and bicubic mapping in an annulus

In the light of what precedes, we can now ask ourselves how this translates to a real geodynamic
case. Let us then consider the case of an annular domain, a cross section of a hollow sphere. When
using quadrilateral elements, the mesh will look similar to this:
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We here focus on Q1, Q2 and Q3 mappings. We single out an element, and arbitrarily define it
as follows in polar coordinates:

theta1 =23./180.*np . p i
theta2 =52./180.*np . p i
R1=1.
R2=1.5

The Q1 mapping requires four points, the Q2 nine points and the Q3 sixteen points. The code used
in the following is available at ./images/mappings/curved/. These are placed equidistantly in the
r, θ coordinate system, as shown hereunder:
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Left to right: position of the nodes for the Q1, Q2 and Q3 mappings. Q4 is not shown.

As before, we randomly shoot 10,000 points inside the reference element and map these out in
the x, y space. Resulting swarms of points are shown in the following figures:
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Left to right: position of the mapped points for the Q1, Q2 and Q3 mappings. Q4 is not shown.

The image of a square with a Q1 mapping is obviously a quadrilateral so that it looks like quite a
few points land outside of the domain R1 ≤ r ≤ R2. Note that points are well within 23◦ ≤ θ ≤ 52◦,
which can simply be explained by the fact that the faces of the element joining R1 to R2 are straight
lines.

However, it looks like the biquadratic and bicubic mappings are doing a much better job at
mapping the region of space R1 ≤ r ≤ R2. In order to characterise this better, we now place 10,000
points on the bottom face of the reference element (i.e. s = −1) and once again compute their
coordinates in the the x, y space:
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Position of the mapped points for the Q1, Q2, Q3 and Q4 mappings.

For each point i we now compute the distance ri to the origin, which, if the mapping was perfect,
would be exactly equal to R1 = 1. On the following plots are shown the error ri − 1 for all points,
from r = −1 to r = +1.
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Radius error of the mapped points for the Q1, Q2, Q3 and Q4 mappings.

We see that the amplitude of the error decreases with the order of the mapping used, which is
why for instance Aspect uses a Q4 mapping by default19. Actually, in this particular case, the
equation which describes the circle is not a polynomial so that no high-order mapping will ever be
able to exactly represent the curved boundary of the element!

19I find it also quite striking that the Q4 mapping outperforms the Q3 one by two orders of magnitude...
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Another interesting point to keep in mind is that the location of the quadrature points in the x, y
space is also determined by the mapping used, which can have consequences on the accuracy of the
integration and it will be reflected (for instance) on the error convergence rate.

As already mentioned previously, the coordinates of the nodes of the element in the x, y are
uniquely determined when they are on the convex hull of the element ( for instance nodes 0-7 for Q2)
but we need to choose the position of the last nodes which are inside the element. Unfortunately,
this choice is not neutral.

Finally, we can explore the importance of the mapping in combination with numerical quadrature.
For each mapping we compute the area of the element by means of a 3x3, 4x4 or 5x5 quadrature.

**********Q1*********

nqperdim= 3 0.3030060126539606 rel. error -0.04215361698430029

nqperdim= 4 0.3030060126539606 rel. error -0.04215361698430012 ~ 4%

nqperdim= 5 0.3030060126539606 rel. error -0.04215361698430012

**********Q2*********

nqperdim= 3 0.3162980025394154 rel. error -0.00013569026611326453

nqperdim= 4 0.3162980025394155 rel. error -0.00013569026611308905 ~ 0.01%

nqperdim= 5 0.3162980025394154 rel. error -0.00013569026611326453

**********Q3*********

nqperdim= 3 0.3163472223929359 rel. error 1.9900899402587318e-05

nqperdim= 4 0.316347222392936 rel. error 1.9900899402938278e-05 ~ 0.002%

nqperdim= 5 0.316347222392936 rel. error 1.9900899402938278e-05

**********Q4*********

nqperdim= 3 0.3163409410866220 rel. error 4.477021014282521e-08

nqperdim= 4 0.3163409541901677 rel. error 8.619243716974044e-08 ~ 0.000008%

nqperdim= 5 0.316340954190168 rel. error 8.619243804713484e-08

Here again the Q4 mapping makes quite the difference.
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7.6.7 Biquadratic mapping - the middle node conundrum

Python code at images/mappings/biquadratic3.
As mentioned before, unless the element is a straight-edge quadrilateral, determining the (best)

position of the middle node is not trivial. Or is it?

4--7--3

| |

8 9 6 (reference element)

| |

1--5--2

We will here consider 5 different elements:

From left to right: element 0,1,2,3,4.

We can think of multiple ways to come up with the ’center’ of the element, i.e. the location of
point I.

� center=0:
x9 = (x1 + x2 + x3 + x4)/4 y9 = (y1 + y2 + y3 + y4)/4

� center=1:

x9 = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)/8 y9 = (y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8)/8

� center=2:

x9 = (x1+x2+x3+x4+3x5+3x6+3x7+3x8)/16. y9 = (y1+y2+y3+y4+3y5+3y6+3y7+3y8)/16.

� center=3: (only element=4)

x9 =
1

2
(R1 +R2) cos(3π/8) y9 =

1

2
(R1 +R2) sin(3π/8)

� center=4: I is the center of mass. The element is defined by R1 < r < R2 and θ1 < θ < θ2.
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We need to compute20

R⃗ =
1

M

∫
r⃗ρ(r⃗)dV

=
1

M
ρ0

∫
r⃗dV

=
1

M

M

V

∫
r⃗dV

=
1

V

∫
r⃗dV

=
1

V

∫ (
x
y

)
dV

=
1

V

∫ (
r cos θ
r sin θ

)
dV

=
1

V

∫ R2

R1

∫ θ2

θ1

(
r cos θ
r sin θ

)
rdrdθ

=
1

1
2
(R2

2 −R2
1)(θ2 − θ1)

1

3
(R3

2 −R3
1)

(
sin θ2 − sin θ1
− cos θ2 + cos θ1

)
≃

(
0.5801028000103104
1.4004920473554983

)
(7.126)

which corresponds to r = 1.5158816686291174 and θ = 67.5o = 3π/8.

� center=5: variable position

isoparametric mapping.
At each point (r, s) we compute the error |

∑
iNi(r, s)x

2
i − (

∑
iNi(r, s)xi)

2|.
position of edges (setting r=+- 1, s=+-1) independent of position of middle node since shape

functions are zero there
area indep of position middle node ?

Element 0 In this case all only center=0,1,2,4 are applicable but they all lead to the same point
I with xI = 0, yI = 0. This means that the position of quadrature points is also independent of the
center parameter.

10,000 points at random.

20https://en.wikipedia.org/wiki/Center_of_mass
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Element 1 In this case all only center=0,1,2,4 are applicable but they all lead to the same point
I with xI = 0, yI = 0. This means that the position of quadrature points is also independent of the
center parameter.

10,000 points at random.

Element 2 .
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50,000 points at random. From left to right: center=0,1,2.

Element 3 .

50,000 points at random. From left to right: center=0,1,2.

Element 4
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50,000 points at random. From left to right: center=0,1,2,3,4.
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Left: position of the nodes. Right position of quadrature points with nqperdim=3.

Area does not depend on position of middle node?!

Relevant Literature

� K.Y. Yuan, Y.S. Huang, H.T. Yang, and T.H.H. Pian. “The inverse mapping and distortion
measures for 8-node hexahedral isoparametric elements”. In: Computational Mechanics 14
(1994), pp. 189–199

7.6.8 The Double Jacobian approach

What follows is 90% borrowed from Morgan, Taramón, and Hasenclever [906] (2020) with slight
changes in the notations.

The basic idea behind this approach is to compute the local to Cartesian mapping as a two-stage
process, hence the name “Double Jacobian”.

1. The first stage maps from local to polar/spherical coordinates and back. This mapping is
typically to a straight-edged polar or spherical element for which the Jacobian partial derivatives
are constant within the element. The mapping and its inverse are given by straightforward
analytical matrix expressions.

2. The second stage maps from polar/spherical to Cartesian coordinates (and back) and is also a
simple analytical mapping.
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The net Jacobian from local finite element coordinates to a cylindrical or spherical element in Carte-
sian geometry (or any other analytically mapped geometry) is simply the matrix product of two
easy-to-compute inverse Jacobian matrices. Because the net Jacobian has an analytical form, it can
be more rapidly computed than a general isoparametric or superparametric finite element mapping.

Remark: in what follows I will denote the polar coordinates by ρ, θ so as to avoid confusion with
the reduced/local coordinates r, s.

As we have seen so far the standard approach is as follows: The relationship between the deriva-
tives of the basis functions with respect to the Cartesian coordinates and the same derivatives with
respect to the local coordinates is given by: ∂Ni

∂x

∂Ni
∂z

 =

 ∂r
∂x

∂s
∂x

∂r
∂z

∂s
∂z


︸ ︷︷ ︸

JLC

·

 ∂Ni
∂r

∂Ni
∂s



whereN are the shape functions, i is the local node numbering of the element, (x, z) are the Cartesian
coordinates, and (r, s) are the local coordinates within the reference element.

J_LC

--------->

local (r,s) Cartesian (x,z)

<---------

J_CL

DJ: First Jacobian

J_LP

---------> ---------->

local (r,s) linear Polar (r,theta) cartesian (x,z)

<--------- <----------

J_PL

The Double Jacobian approach uses the standard finite element approach to first map from local
to linear polar coordinates (i.e. ρ, θ). The first Jacobian for a cylindrical (polar) mapping is analogous
to the standard Jacobian, where x and z are now changed to θ and ρ, respectively, θ being the angle
measured from the positive z-axis in clockwise direction (i.e. the colatitude) and ρ being the radius.
The global derivatives may be expressed in matrix form as ∂Ni

∂θ

∂Ni
∂ρ

 =

 ∂r
∂θ

∂s
∂θ

∂r
∂ρ

∂s
∂ρ


︸ ︷︷ ︸

JLP

·

 ∂Ni
∂r

∂Ni
∂s

 (7.127)

where Ni are the shape functions and JLP is the Jacobian of the transformation from local to polar
coordinates.

The derivatives of these shape functions with respect to local coordinates r, s (i.e. the rhs vector)
can be computed explicitly since the basis functions are chosen/built for a given element type and
formulated as a function of the local coordinates. However, the terms of the Jacobian JLP cannot be
directly computed since explicit expressions for r(θ, ρ) and s(θ, ρ) do not exist. A wonderful “trick”
in finite element programming (discovered by Bruce Irons in the mid-60s [379]) is to make use of the
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inverse coordinate transformation ∂Ni
∂r

∂Ni
∂s

 =

 ∂θ
∂r

∂ρ
∂r

∂θ
∂s

∂ρ
∂s


︸ ︷︷ ︸

JPL

·

 ∂Ni
∂θ

∂Ni
∂ρ

 (7.128)

where JPL is the Jacobian of the transformation from polar to local coordinates.
From Equations (7.127) and (7.128), we have JLP = J−1

PL. Using Cramer’s rule, the inverse of the
Jacobian from polar to local coordinates is given by

JLP = J−1
PL =

1

|JPL|

 ∂ρ
∂s

−∂ρ
∂r

−∂θ
∂s

∂θ
∂r


The polar coordinates for each element are related with local coordinates through the shape

functions:

θ(r, s) =
m∑
i=1

Ni(r, s) θi (7.129)

ρ(r, s) =
m∑
i=1

Ni(r, s) ρi (7.130)

where m is the number of nodes in the element. Then

∂θ

∂r
(r, s) =

m∑
i=1

∂Ni
∂r

(r, s) θi (7.131)

∂θ

∂s
(r, s) =

m∑
i=1

∂Ni
∂s

(r, s) θi (7.132)

∂ρ

∂r
(r, s) =

m∑
i=1

∂Ni
∂r

(r, s) ρi (7.133)

∂ρ

∂s
(r, s) =

m∑
i=1

∂Ni
∂s

(r, s) ρi (7.134)

DJ: Second jacobian

The second Jacobian in the DJ method is the analytical mapping from polar coordinates to Cartesian
coordinates. The derivatives expressed in matrix form are given by ∂Ni

∂x

∂Ni
∂z

 =

 ∂θ
∂x

∂ρ
∂x

∂θ
∂z

∂ρ
∂z


︸ ︷︷ ︸

JPC

·

 ∂Ni
∂θ

∂Ni
∂ρ

 (7.135)

where JPC is the Jacobian from polar to Cartesian coordinates. The analytical expressions for θ(x, z)
and ρ(x, z) are known; however, it is again easier to use the inverse transformation ∂Ni

∂θ

∂Ni
∂ρ

 =

 ∂x
∂θ

∂z
∂θ

∂x
∂ρ

∂z
∂ρ


︸ ︷︷ ︸

JCP

·

 ∂Ni
∂x

∂Ni
∂y

 (7.136)
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where JCP is the Jacobian from Cartesian to polar coordinates. From Equations (7.135) and (7.136),
JPC = J−1

CP . The inverse of the Jacobian from Cartesian to polar coordinates is given by

JPC = J−1
CP =

1

|JCP |

 ∂z
∂ρ

−∂z
∂θ

−∂x
∂ρ

∂x
∂θ


Cartesian coordinates are related with polar coordinates by:

x(θ, ρ) = ρ sin θ (7.137)

z(θ, ρ) = ρ cos θ (7.138)

so that

∂x

∂θ
(θ, ρ) = ρ cos θ (7.139)

∂x

∂ρ
(θ, ρ) = sin θ (7.140)

∂z

∂θ
(θ, ρ) = −ρ sin θ (7.141)

∂z

∂ρ
(θ, ρ) = cos θ (7.142)

The inverse of the Jacobian from Cartesian coordinates to polar coordinates can then be written as
a function of polar coordinates:

J−1
CP =

1

ρ

(
cos θ ρ sin θ
− sin θ ρ cos θ

)
(7.143)

where θ and ρ are evaluated at each integration point (ip).
Remark: this Jacobian is independent of the choice of basis functions.

DJ: Combining both

Making use of the matrix product of the two inverse Jacobians, global Cartesian derivatives can be
expressed as a matrix product of the local derivatives in the local to polar and polar to Cartesian
coordinate mappings. Substituting Equation (7.127) into Equation (7.135) yields ∂Ni

∂x

∂Ni
∂z

 = JPC ·

 ∂Ni
∂θ

∂Ni
∂ρ

 = JPC · JLP ·

 ∂Ni
∂r

∂Ni
∂s

 = J−1
CP · J

−1
PL ·

 ∂Ni
∂r

∂Ni
∂s


Note that the 2D DJ approach will ensure a perfect mapping to the circular-arc edges of the

elements of a cylindrical annulus mesh. Any point on the edge of a boundary element of the mesh is
mapped to its true position along a circular arc.

The major drawback from this is the fact that (as we will see) the Jacobian is no more a polynomial
so special care must be taken with regards to the integration.

Triangles

For linear triangles (P1) the basis functions are

N1(r, s) = 1− r − s (7.144)

N2(r, s) = r (7.145)

N3(r, s) = s (7.146)
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and their derivatives:
∂θ

∂r
(r, s) = θ2 − θ1 = θ21 (7.147)

∂θ

∂s
(r, s) = θ3 − θ1 = θ31 (7.148)

∂ρ

∂r
(r, s) = ρ2 − ρ1 = ρ21 (7.149)

∂ρ

∂s
(r, s) = ρ3 − ρ1 = ρ31 (7.150)

In this case we have

JLP = J−1
PL =

1

θ21ρ31 − ρ21θ31

(
ρ31 −ρ21

−θ31 θ21

)
(7.151)

Substituting Equations (7.151) and (7.143) into the equation above, the analytical expression for
this mapping is ∂Ni

∂x

∂Ni
∂z

 =
1

ρ

(
cos θ ρ sin θ
− sin θ ρ cos θ

)
· 1

θ21ρ31 − ρ21θ31

(
ρ31 −ρ21

−θ31 θ21

)

=
1

θ21ρ31 − ρ21θ31

 ρ31
ρ
cos θ− θ31 sin θ −ρ21

ρ
cos θ+ θ21 sin θ

−ρ31
ρ
sin θ− θ31 cos θ

ρ21
ρ
sin θ+ θ21 cos θ

 ·
 ∂Ni

∂r

∂Ni
∂s

(7.152)
which is Eq. (19) of Morgan, Taramón, and Hasenclever [906]. This expression could be problematic
if ρ = 0 but since it will be evaluated at the quadrature points this case is extremely unlikely.

Based on Fig 2 of Morgan, Taramón, and Hasenclever [906], we consider an annulus of outer
diameter 6371km. Visually from 2A we infer ρ1 = 4700km, ρ2 = ρ3 = 6371km, and θ1 = 14.5,
θ2 = 22 and θ3 = 0.

If quadratic basis functions are used, we’ll define r4 =
1
2
(r1 + r2), r5 =

1
2
(r2 + r3), r6 =

1
2
(r3 + r1),

and likewise for the θ4,5,6 values.
We’ll then proceed to generate 1000 random points in the reference triangle and plot their image

in the Cartesian plane, either using the DJ method, a linear mapping P1 or a quadratic mapping P2.
Unsurprisingly the P1 mapping yields a triangle which 2-3 edge does not conform to the edge of

the domain. The P2 mapping does a much better job and so does the DJ mapping.
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Let us now generate 1000 points on the 2-3 edge of the reference triangle and study their image
with the three mappings:
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We cannot see any different between P2 and DJ. Let us now plot the error, i.e. the distance of the
image point to the true surface ρ = 6371km as a function of x:
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We find that the maximum error for P1 is about 120km, the error for P2 is about 260m, and the
error for DJ is effectively about 10−9m.

Quadrilaterals

For linear quadrilaterals (Q1) the basis functions are:

N1(r, s) =
1

4
(1− r)(1− s) (7.153)

N2(r, s) =
1

4
(1 + r)(1− s) (7.154)

N3(r, s) =
1

4
(1 + r)(1 + s) (7.155)

N4(r, s) =
1

4
(1− r)(1 + s) (7.156)

∂θ

∂r
(r, s) = −1

4
θ1 +

1

4
θ2 +

1

4
θ3 −

1

4
θ4 =

1

4
(−θ1 + θ2 + θ3 − θ4) = θ̃1234 (7.157)

∂θ

∂s
(r, s) = −1

4
θ1 −

1

4
θ2 +

1

4
θ3 +

1

4
θ4 =

1

4
(−θ1 − θ2 + θ3 + θ4) = θ̄1234 (7.158)

∂ρ

∂r
(r, s) = −1

4
ρ1 +

1

4
ρ2 +

1

4
ρ3 −

1

4
ρ4 =

1

4
(−ρ1 + ρ2 + ρ3 − ρ4) = ρ̃1234 (7.159)

∂ρ

∂s
(r, s) = −1

4
ρ1 −

1

4
ρ2 +

1

4
ρ3 +

1

4
ρ4 =

1

4
(−ρ1 − ρ2 + ρ3 + ρ4) = ρ̄1234 (7.160)

In this case we have

JLP = J−1
PL =

1

θ̃1234ρ̄1234 − θ̄1234ρ̃1234

(
ρ̄1234 −ρ̃1234

−θ̄1234 θ̃1234

)
(7.161)

SPECIAL CASE: In the element we have θ1 = θ4, θ2 = θ3, θ2 − θ1 = θ3 − θ4 = θ̃. Likewise,
ρ1 = ρ2, ρ3 = ρ4 and ρ4 − ρ1 = ρ3 − ρ2 = ρ̃ In this case:

∂θ

∂r
(r, s) =

1

4
(−θ1 + θ2 + θ3 − θ4) =

1

2
θ̃ (7.162)

∂θ

∂s
(r, s) =

1

4
(−θ1 − θ2 + θ3 + θ4) = 0 (7.163)

∂

∂r
ρ(r, s) =

1

4
(−ρ1 + ρ2 + ρ3 − ρ4) = 0 (7.164)

∂

∂s
ρ(r, s) =

1

4
(−ρ1 − ρ2 + ρ3 + ρ4) =

1

2
ρ̄ (7.165)
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and

JLP = J−1
PL =

1
1
2
ρ̄1
2
θ̃

(
1
2
ρ̄ 0

0 1
2
θ̃

)
= 2

(
θ̃−1 0
0 ρ̄−1

)
(7.166)

 ∂Ni
∂x

∂Ni
∂z

 =
1

ρ

(
cos θ ρ sin θ
− sin θ ρ cos θ

)
· 2
(

θ̃−1 0
0 ρ̄−1

)
·

 ∂Ni
∂r

∂Ni
∂s


=

2

ρ

 θ̃−1 cos θ ρρ̄−1 sin θ

−θ̃−1 sin θ ρρ̄−1 cos θ

 ·
 ∂Ni

∂r

∂Ni
∂s

 (7.167)
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7.7 Solving the elastic equations

This will be moved to Section 16.7
NOW BEING REWORKED IN OVERLEAF
In what follows ν⃗ now stands for the displacement vector, i.e. with units of length, not velocity.

As before, the displacement inside an element is given by

ν⃗h(r⃗) =
mv∑
i=1

Ni(r⃗) ν⃗i (7.168)

where Ni are the polynomial basis functions for the displacement. Pressure does not appear in the
equations so this is not a case of mixed FE as for the viscous Stokes flow.

Other notations are sometimes used for Eqs.(7.168):

uh(r⃗) = N⃗ · u⃗ vh(r⃗) = N⃗ · v⃗ wh(r⃗) = N⃗ · w⃗ (7.169)

where ν⃗ = (u, v, w) and N⃗ is the vector containing all basis functions evaluated at location r⃗:

N⃗ v = (N1(r⃗), N2(r⃗), N3(r⃗), . . . Nmv(r⃗)) (7.170)

N⃗p =
(
Np

1 (r⃗), N
p
2 (r⃗), N

p
3 (r⃗), . . . N

p
mp(r⃗)

)
(7.171)

and with

u⃗ = (u1, u2, u3, . . . umv) (7.172)

v⃗ = (v1, v2, v3, . . . vmv) (7.173)

w⃗ = (w1, w2, w3, . . . wmv) (7.174)

(7.175)

In three dimensions We start from

σ = λ(∇⃗ · ν⃗)1+ 2µε

where µ is the shear modulus and λ the Lamé parameter.

σxx = (λ+ 2µ)εxx + λεyy + λεzz

σyy = λεxx + (λ+ 2µ)εyy + λεzz

σzz = λεxx + λεyy + (λ+ 2µ)εzz

σxy = 2µεxy

σxz = 2µεxz

σyz = 2µεyz (7.176)

or,

σ⃗ =


σxx
σyy
σzz
σxy
σxz
σyz

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 ·


εxx
εyy
εzz
2εxy
2εxz
2εyz

 = ε⃗

The rest of the procedure is pretty straightforward since it follows the same ideas as for the mixed
viscous case, except that we here build the K matrix only as follows:

K =

∫
Ωe

BT ·D ·B dV
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In two dimensions The above relationships simplify to

σxx = (λ+ 2µ)εxx + λεyy (7.177)

σyy = λεxx + (λ+ 2µ)ε̇yy (7.178)

σxy = 2µε̇xy (7.179)

so

σ⃗ =

 σxx
σyy
σxy

 =

 λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 ·
 εxx

εyy
2εxy

 = ε⃗

The axisymmetric case

We start from
σ = λ∇⃗ · u⃗ 1+ 2µε(u⃗) (7.180)

In cylindrical coordinates the velocity gradient is given by

∇⃗u⃗ =


∂ ur
∂ r

1
r
∂ ur
∂ θ
− uθ

r
∂ ur
∂z

∂ uθ
∂ r

1
r
∂ uθ
∂ θ

+ ur
r

∂ uθ
∂z

∂ uz
∂ r

1
r
∂ uz
∂ θ

∂ uz
∂z


In the case of axisymmetry, and in this case symmetry about the z axis, there is invariance with
respect to the rotation around the axis so stresses and other quantities are independent of the θ
coordinate, or simply put ∂θ → 0. The velocity gradient simplifies to:

∇⃗u⃗ =


∂ ur
∂ r

−uθ
r

∂ ur
∂z

∂ uθ
∂ r

ur
r

∂ uθ
∂z

∂ uz
∂ r

0 ∂ uz
∂z


Also, it follows logically that uθ = 0 so that ultimately:

∇⃗u⃗ =


∂ur
∂r

0 ∂ur
∂z

0 ur
r

0

∂uz
∂r

0 ∂uz
∂z


and the strain tensor is then given by

ε(u⃗) =
1

2

(
∇⃗u⃗+ ∇⃗u⃗T

)
=


∂ ur
∂ r

0 1
2
(∂uz
∂r

+ ∂ur
∂z

)

0 ur
r

0

1
2
(∂uz
∂r

+ ∂ur
∂z

) 0 ∂uz
∂z

 (7.181)

The term ∇⃗ · u⃗ is simply the trace of ε(u⃗) so

∇⃗ · u⃗ =
∂ur
∂r

+
ur
r

+
∂uz
∂z
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Finally the full stress tensor is then

σ =


λ(∂ur

∂r
+ ur

r
+ ∂uz

∂z
) + 2µ∂ur

∂r
0 µ(∂uz

∂r
+ ∂ur

∂z
)

0 λ(∂ur
∂r

+ ur
r
+ ∂uz

∂z
) + 2µur

r
0

µ(∂uz
∂r

+ ∂ur
∂z

) 0 λ(∂ur
∂r

+ ur
r
+ ∂uz

∂z
) + 2µ∂uz

∂z



=


(λ+ 2µ)∂ur

∂r
+ λ(ur

r
+ ∂uz

∂z
) 0 µ(∂uz

∂r
+ ∂ur

∂z
)

0 (λ+ 2µ)ur
r
+ λ(∂ur

∂r
+ ∂uz

∂z
) 0

µ(∂uz
∂r

+ ∂ur
∂z

) 0 (λ+ 2µ)∂uz
∂z

+ λ(∂ur
∂r

+ ur
r
)


As we did in the 2D case, we rewrite the six independent stress terms in to a vector σ⃗ and we

use Eq. (7.180) to arrive at:

σ⃗ =


σrr
σθθ
σzz
σrθ
σrz
σθz

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 ·


εrr
εθθ
εzz
2εrθ
2εrz
2εθz

 = ε⃗(u⃗)

or σ⃗ = D · ε⃗(u⃗). Notice the similarity of matrix D with the one of Section (XXX) in the 3D penalty
formulation case. The components of the ε⃗ vector are

ε⃗(u⃗) =


εrr
εθθ
εzz
2εrθ
2εrz
2εθz

 =



∂ur
∂r
ur
r
∂uz
∂z

0
∂uz
∂r

+ ∂ur
∂z

0


We see that there are two zeroes and consequently we’ll find that σrθ and σθz are also identically
zero, so we discard these and end up with only four stress components :

σ⃗ =


σrr
σθθ
σzz
σrz

 =


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ

 ·


εrr
εθθ
εzz
2εrz


Note that in the literature the above relationship is often written

σrr
σθθ
σzz
σrz

 =
E

(1 + ν)(1− 2ν)


1− ν λ ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 (1− 2ν)/2

 ·


εrr
εθθ
εzz
2εrz


which is equivalent since E = 2µ(1+ ν) and λ = νE

(1+ν)(1−2ν)
(see for instance Section 5.2.4 in [1430]).

Only displacements in the r and z directions remain (note that εθθ is in fact equal to ur/r). In
what follows I rename u = ur and uz = w to simplify notations. Then, inside an element we have

uh(r, z) =
m∑
i=1

Ni(r, z)ui

wh(r, z) =
m∑
i=1

Ni(r, z)wi (7.182)
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where Ni are the basis functions attached to the m nodes of the element. We compute the elements
of the ε tensor of Eq. (7.181) as follows:

εrr =
∂uh

∂r
=

m∑
i=1

∂Ni

∂r
(r, z) ui (7.183)

εθθ =
uhr
r

=
1

r

m∑
i=1

Ni(r, z) ui (7.184)

εzz =
∂wh

∂z
=

m∑
i=1

∂Ni

∂z
(r, z) wi (7.185)

εrz =
1

2

∂uh

∂z
+

1

2

∂wh

∂r
=

m∑
i=1

∂Ni

∂z
(r, z)ui +

m∑
i=1

∂Ni

∂r
(r, z)wi (7.186)

Let us take m = 3, i.e. linear triangles, for simplicity. Then the strain vector ε⃗h is given by

ε⃗h =



∂uh

∂r

uh

r

∂wh

∂z

∂uh

∂z
+ ∂wh

∂r


=



∂N1

∂r
0 ∂N2

∂r
0 ∂N3

∂r
0

N1

r
0 N2

r
0 N3

r
0

0 ∂N1

∂z
0 ∂N2

∂z
0 ∂N3

∂z

∂N1

∂z
∂N1

∂r
∂N2

∂z
∂N2

∂r
∂N3

∂z
∂N3

∂r


︸ ︷︷ ︸

B(4×6)

·


u1
w1
u2
w2
u3
w3


︸ ︷︷ ︸
U⃗(6×1)

or ε⃗h = B · U⃗ and finally


σrr
σθθ
σzz
σrz


︸ ︷︷ ︸

σ⃗

=


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ


︸ ︷︷ ︸

D

·



∂N1

∂r
0 ∂N2

∂r
0 ∂N3

∂r
0

N1

r
0 N2

r
0 N3

r
0

0 ∂N1

∂z
0 ∂N2

∂z
0 ∂N3

∂z

∂N1

∂z
∂N1

∂r
∂N2

∂z
∂N2

∂r
∂N3

∂z
∂N3

∂r


︸ ︷︷ ︸

B(4×6)

·


u1
w1
u2
w2
u3
w3


︸ ︷︷ ︸
U⃗(6×1)

or,

σ⃗ = D ·B · U⃗

Note that in 2D, the matrix D is 3× 3 and B is 3× 6.
I do not know yet how to arrive at what follows

The 6× 6 stiffness matrix is then

K =

∫∫∫
BT ·D ·B dV

with dV = rdrdθdz in cylindrical coordinates. The integral over the θ coordinate yields a factor 2π
so

K = 2π

∫∫
BT ·D ·B rdrdz

The integration can now be performed as simply as was the case in the plane stress problem.
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write the derivation for the rhs

Note that in practice the matrix D is computed as follows (see for example Stone 63):

D =


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ

 = λ


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+ µ


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1


The divergence of the stress tensor is given by

∇⃗ · σ =

[
1

r

∂

∂ r
(r σrr) +

1

r

∂ σrθ
∂ θ

+
∂ σrz
∂z
− σθθ

r

]
e⃗r (7.187)

+

[
1

r

∂

∂ r
(r σrθ) +

1

r

∂ σθθ
∂ θ

+
∂ σθz
∂z

+
σrθ
r

]
e⃗θ (7.188)

+

[
1

r

∂

∂ r
(r σrz) +

1

r

∂ σθz
∂ θ

+
∂ σzz
∂z

]
e⃗z (7.189)

Since σrθ = σθr = 0 and σzθ = σθz = 0 and since ∂θ → 0 then

∇⃗ · σ =

[
1

r

∂

∂ r
(r σrr) +

∂ σrz
∂z
− σθθ

r

]
e⃗r (7.190)

+

[
1

r

∂

∂ r
(r σrz) +

∂ σzz
∂z

]
e⃗z (7.191)

Then

∇⃗ · σ|r =
1

r

∂

∂ r
(r σrr) +

∂ σrz
∂z
− σθθ

r
(7.192)

=
∂σrr
∂r

+
1

r
(σrr − σθθ) +

∂σrz
∂z

(7.193)

=
∂σrr
∂r

+
2µ

r
(
∂ ur
∂ r
− ur

r
) +

∂σrz
∂z

(7.194)

∇⃗ · σ|z =
∂σrz
∂r

+
σrz
r

+
∂ σzz
∂z

(7.195)
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7.8 The case against the Q1 × P0 element

What follows was written by Dave May and sent to me by email in May 2014. It captures so well
the problem at hand that I have decided to reproduce it hereunder.

In the case of the incompressible Stokes equations, we would like to solve(
K G
GT 0

)(
V⃗
P⃗

)
=

(
f⃗
0

)
with an iterative method which is algorithmically scalable and optimal. Scalable here would mean
that the number of iterations doesn’t grow as the mesh is refined. Optimal means the solution
time varies linearly with the total number of unknowns. When using a stable element, If we right
precondition the above system with

P =

(
K G
0 −S

)
then convergence will occur in 2 iterations, however this requires an exact solve on K and on S =
GT ·K−1 ·G (S is the pressure schur complement). In practice, people relax the ideal ”two iteration”

scenario by first replacing S via S∗ =
∫
η−1N⃗T N⃗ dv (e.g. the pressure mass matrix scaled by the

local inverse of viscosity).

P ∗ =

(
K G
0 −S∗

)
Using P ∗, we obtain iteration counts which are larger than 2, but likely less than 10 - however,

the number of iterations is independent of the mesh size. Replacing the exact K solve in P ∗ again
increases the iterations required to solve Stokes, but it’s still independent of the number of elements.
When you have this behaviour, we say the preconditioner (P ∗) is spectrally equivalent to the operator
(which here is Stokes)

The problem with Q1×P0 is that there are no approximations for S which can be generated that
ensure a spectrally equivalent P ∗. Thus, as you refine the mesh using Q1×P0 elements, the iteration
count ALWAYS grows. I worked on this problem during my thesis, making some improvements to
the situation - however the problem still remains, it cannot be completely fixed and stems entirely
from using unstable elements.

Citcom solvers works like this:

1. Solve S · P = f⃗ ′ for pressure

2. Solve K · V = f⃗ −G · P for velocity

To obtain a scalable method, we need the number of iterations performed in (1) and (2) to be
independent of the mesh. This means we need a spectrally equivalent preconditioner for S and K.
Thus, we have the same issue as when you iterate on the full stokes system.

When we don’t have a scalable method, it means increasing the resolution requires more cpu time
in a manner which cannot be predicted. The increase in iteration counts as the mesh is refined can
be dramatic.

If we can bound the number of iterations, AND ensure that the cost per iteration is linearly related
to the number of unknowns, then we have a good method which can run on any mesh resolution with
a predictable cpu time. Obtaining scalable and optimal preconditioners for K is somewhat easier.
Multi-grid will provide us with this.

The reason citcom doesn’t run with 4003 elements is exactly due to this issue. I’ve added petsc
support in citcom (when i was young and naive) - but the root cause of the non-scalable solve is
directly caused by the element choice. Note that many of the high resolution citcom jobs are single
time step calculations— there is a reason for that.
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For many lithosphere dynamics problems, we need a reasonable resolution (at least 2003 and
realistically 4003 to 8003). Given the increase in cost which occurs when using Q1P0, this is not
achievable, as the citcom code has demonstrated. Note that citcom is 20 years old now and for its
time, it was great, but we know much more now and we know how to improve on it. As a result of
this realization, I dumped all my old Q1P0 codes (and Q1Q1 codes, but for other reasons) in the
trash and started from scratch. The only way to make something like 8003 tractable is via iterative,
scalable and optimal methods and that mandates stable elements. I can actually run at something
like 10003 (nodal points) these days because of such design choices.
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7.9 Isoviscous Stokes for incompressible flow

isoviscous stokes.tex

We start from the momentum equation:

−∇⃗p+ ∇⃗ · (2ηε̇d(ν⃗)) + ρg⃗ = 0⃗ (7.196)

When the viscosity is constant in space, it can be taken out of the divergence operator:

−∇⃗p+ 2η∇⃗ · ε̇d(ν⃗) + ρg⃗ = 0⃗ (7.197)

Let us for simplicity look at a 2D Cartesian formulation of this equation and for incompressible
flow:

2∇⃗ · ε̇d(ν⃗) = ∇⃗ ·
(
∇⃗ν⃗+ ∇⃗ν⃗T

)
= (∂x ∂y) ·

(
∂xu ∂xv
∂yu ∂yv

)
+ (∂x ∂y) ·

(
∂xu ∂yu
∂xv ∂yv

)
= (∂2xu+ ∂2yu, ∂

2
xv + ∂2yv) + (∂x∂xu+ ∂y∂xv, ∂x∂yu+ ∂y∂yv)

= (∂2xu+ ∂2yu, ∂
2
xv + ∂2yv) + (∂x (∂xu+ ∂yv)︸ ︷︷ ︸

=0

, ∂y (∂xu+ ∂yv)︸ ︷︷ ︸
=0

= (∂2xu+ ∂2yu, ∂
2
xv + ∂2yv) (7.198)

and then finally the Stokes equation is:

−∇⃗p+ η∆ν⃗+ ρg⃗ = 0⃗ (7.199)

The mass conservation equation remains unchanged and so does the pressure gradient term. We
shall then focus on the weak form of the previously obtained term. We multiply it by a velocity test
function N ν

i and integrate over an element21:∫
Ωe

N ν
i ∆ν⃗hdV

=

∫
Ωe

(
N ν
i ∆u

h

N ν
i ∆v

h

)
dV

=

∫
Ωe

(
N ν
i ∇⃗ · ∇⃗uh
N ν
i ∇⃗ · ∇⃗vh

)
dV

=

∫
Ωe

(
∇⃗N ν

i · ∇⃗uh
∇⃗N ν

i · ∇⃗vh

)
dV

=

∫
Ωe

(
∂xN ν

i ∂xu
h + ∂yN ν

i ∂yu
h

∂xN ν
i ∂xv

h + ∂yN ν
i ∂yv

h

)
dV

=

∫
Ωe

(
∂xN ν

i ∂yN ν
i 0 0

0 0 ∂xN ν
i ∂yN ν

i

)
·


∂xu

h

∂yu
h

∂xv
h

∂yv
h

 dV

=

∫
Ωe

(
∂xN ν

i ∂yN ν
i 0 0

0 0 ∂xN ν
i ∂yN ν

i

)
·


∂xN ν

1 0 ∂xN ν
2 0 · · · ∂xN ν

mν
0

∂yN ν
1 0 ∂yN ν

2 0 · · · ∂yN ν
mν

0
0 ∂xN ν

1 0 ∂xN ν
2 · · · 0 ∂xN ν

mν

0 ∂yN ν
1 0 ∂yN ν

2 · · · 0 ∂yN ν
mν

·


u1
v1
u2
v2
. . .
umv
vmv


dV

21As per usual we discard the surface term when integrating by parts
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Writing this equation for i = 1, ...mν, we obtain:

∫


∂xN ν
1 ∂yN ν

1 0 0
0 0 ∂xN ν

1 ∂yN ν
1

∂xN ν
2 ∂yN ν

2 0 0
0 0 ∂xN ν

2 ∂yN ν
2

...
...

...
...

...
...

...
...

∂xN ν
mν

∂yN ν
mν

0 0
0 0 ∂xN ν

mν
∂yN ν

mν


·


∂xN ν

1 0 ∂xN ν
2 0 · · · ∂xN ν

mν
0

∂yN ν
1 0 ∂yN ν

2 0 · · · ∂yN ν
mν

0
0 ∂xN ν

1 0 ∂xN ν
2 · · · 0 ∂xN ν

mν

0 ∂yN ν
1 0 ∂yN ν

2 · · · 0 ∂yN ν
mν

·


u1
v1
u2
v2
. . .
umv
vmv


︸ ︷︷ ︸

V⃗

dV

or,

Kη = η

∫
Ωe

BT ·B dV

where B is a (ndim ∗ ndim)× (mv ∗ ndofV ) matrix (see also Eq. 6.24 of Donea and Huerta [341]).
In three dimensions, the matrix B is given by

∂xN ν
1 0 ∂xN ν

2 0 · · · ∂xN ν
mν

0
∂yN ν

1 0 ∂yN ν
2 0 · · · ∂yN ν

mν
0

∂zN ν
1 0 ∂zN ν

2 0 · · · ∂zN ν
mν

0
0 ∂xN ν

1 0 ∂xN ν
2 · · · 0 ∂xN ν

mν

0 ∂yN ν
1 0 ∂yN ν

2 · · · 0 ∂yN ν
mν

0 ∂zN ν
1 0 ∂zN ν

2 · · · 0 ∂zN ν
mν
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7.10 Q1 × P0 macro-elements

The Stenberg macro-element

This macro-element is introduced in Stenberg (1984) [1206].

(tikz stenberg.tex)

ν⃗ p

Gresho & Sani [488] state: ”For fans of Q1×Q0 who want guaranteed optimal convergence of both
u and p (with however larger error constants caused by the distorted shapes?), one way to assure
this is to discretise via the macro elements above, each composed of five Q1 × Q0 quadrilaterals.
Such checkerboard-killer meshes have been employed in practice by (at least) Bathé [220]. Both the
macro-element and the proof are due to Stenberg [1206].”

Chapelle & Bathe [220]: ”the numerical inf-sup test is passed for this mesh and in fact, this
behavior was proven analytically (see Brezzi & Fortin [148], see also Le Tallec & Ruas [774]).

Taken from Qin & Zhang (2007) [1025].

Implemented in stone 78.
Relevant Literature: Fig 3.12 of Elman et al. book [371]. Mentioned in Qin and Zhang [1026]

(2007).

The Le Tallec macro-element

This macro-element is introduced in Le Tallec (1981) [773].

(tikz letallec.tex)

ν⃗ p

This macro-element has been proven stable in [773, 774], i.e. it satisfies the stability condition
(see Section 7.3). It is also mentioned in Qin & Zhang (2007) [1025].

Implemented in stone 78.
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The Qin & Zhang macro-elements

In their paper Qin & Zhang (2007) [1025] the authors mention the Stenberg and Le Tallec macro-
elements and also introduce three new ones:

(tikz qizh07a.tex)

ν⃗ p

(tikz qizh07b.tex)

ν⃗ p

(tikz qizh07c.tex)

ν⃗ p

They also indicate that although stable, these macro-elements are inferior to the above two
(Stenberg & Le Tallec).

New macro-elements ?

I came up with these, no idea whether these are stable/usable or better than the others.
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7.11 Solving the Stokes system

solvers.tex

Let us start again from the (full) Stokes system:(
K G
GT −C

)
︸ ︷︷ ︸

A

·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
(7.200)

We need to solve this system in order to obtain the solution, i.e. the V⃗ and P⃗ vectors. But how?
Unfortunately, this question is not simple to answer and the appropriate method depends on many
parameters, but mainly on how big the matrix blocks are and what the condition number of the
matrix K is.

First let us start with an obvious question: couldn’t we just compute the inverse of the matrix
A? Under the assumption that the inverse of K and S exists, we can and we find22

A−1 =

(
K G
GT 0

)−1

=

(
K−1 +K−1 ·G · S−1 ·GT ·K−1 −K−1 ·G · S−1

−S−1 ·GT ·K−1 S−1

)
However, such an expression is of limited interest in the numerical solution of saddle point problems
since it showcases 5 times the inverse of K and more importantly the inverse of the Schur complement
matrix § which is likely to be a full matrix so that we never want to compute it explicitely.

As concisely explained in Clevenger & Heister (2021) [261], there are three common approaches
used in the literature for solving the above equation on large scales:

� a pressure corrected, Schur complement CG scheme, using multigrid as an approximation to
the velocity block;

� a block-preconditioned Krylov method, also using multigrid on the velocity block. For this
method, there are two main types:

– GMRES[845, 1088] (or any Krylov method not requiring symmetry) with block-triangular
preconditioner (This is what Aspect does):

P =

(
K G
0 −S

)
– MINRES[469] with block-diagonal preconditioner

P =

(
K 0
0 −S

)
� an all-at-once multigrid performed on the entire Stokes system, using Uzawa-type smoothers.

Relevant Literature: Preconditioners for Incompressible Navier-Stokes Solvers [1148]
Saddle point preconditioners have been extensively discussed and studied [73], [941]
Diagonal preconditioners in [1145], [48].
Pragmatic solvers for 3D Stokes problems with heterogeneous coefficients [1106]

22The matrix C is here omitted but it bears no consequences on the conclusion.
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7.11.1 When using the penalty formulation

In this case we are only solving for velocity since pressure has been eliminated and is later recovered
in a post-processing step:

(Kη +Kλ) · V⃗ = f⃗

We also know that the penalty factor λ is many orders of magnitude higher than the viscosity and in
combination with the use of the Q1×P0 element the resulting matrix condition number is very high
so that the use of iterative solvers is precluded. Indeed codes such as Sopale [426], Douar [136],
Fantom [1258] or Sulec [1028] relying on the penalty formulation all use direct solvers. The most
popular are BLKFCT23, MUMPS24[13, 15, 14, 16, 12], PasTiX [563], WSMP25 [510, 511], UMFPACK
and CHOLMOD26 , SuperLU27, PARDISO28 [321, 1318, 725], or those inside PETSc29.

Braun et al. (2008) [136] list the following features of direct solvers:

� Robust

� Black-box operation

� Difficult to parallelize

� Memory consumption

� Limited scalability

The main advantage of direct solvers is used in this case: They can solve ill-conditioned matrices.
However, memory requirements for the storage of number of nonzeros in the Cholesky matrix grow
very fast as the number of equations/grid size increases, especially in 3D, to the point that even
modern computers with tens of Gb of RAM cannot deal with a ∼ 1003 element mesh. This explains
why direct solvers are often used for 2D problems and rarely in 3D with noticeable exceptions [1261,
1377, 137, 807, 10, 9, 11, 1352, 933].

7.11.2 Uzawa algorithms and the Schur complement approach

Let us write the above system as two equations:

K · V⃗ +G · P⃗ = f⃗ (7.201)

GT · V⃗ − C · P⃗ = h⃗ (7.202)

The first line can be re-written V⃗ = K−1 · (f⃗ −G · P⃗) and can be inserted in the second:

GT · V⃗ = GT · [K−1 · (f⃗ −G · P⃗)]− C · P⃗ = h⃗ (7.203)

or,

(GT ·K−1 ·G+ C) · P⃗ = GT ·K−1 · f⃗ − h⃗ (7.204)

23http://dm.unife.it/blkfclt/
24http://mumps.enseeiht.fr/
25http://www.research.ibm.com/projects/wsmp
26http://faculty.cse.tamu.edu/davis/suitesparse.html
27https://portal.nersc.gov/project/sparse/superlu/
28https://www.pardiso-project.org/
29https://www.mcs.anl.gov/petsc/
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The matrix S = GT · K−1 · G + C is called the Schur complement. It is Symmetric (since K is
symmetric) and Positive-Definite30 (SPD) if Ker(G) = 0. Having solved this equation (i.e. we have

obtained P⃗), the velocity can be recovered by solving K · V⃗ = f⃗ −G · P⃗ .

Remark. The Schur complement matrix naturally occurs when the Stokes matrix is decomposed
using a LDU block-factorisation. Indeed, we have(

K G
GT 0

)
=

(
I 0

GT ·K−1 I

)
·
(

K 0
0 −S

)
·
(

I K−1 ·G
0 I

)
For now, let us assume that we have built the Smatrix31 and the right hand side f⃗ = GT ·K−1·f⃗−h⃗.

We must solve S · P⃗ = f⃗ . It is easy to see that S is actually a full matrix (i.e. not sparse) and aside
from the costs of building it explicitly using a direct solver would require a lot of memory so that we
must then turn to iterative methods.

One can resort to so-called Richardson iterations, defined as follows (e.g., see Varga [1312], p141):

in solving the matrix equation A · X⃗ = b⃗, the Richardson iterative method is defined by:

X⃗k+1 = X⃗k + αk(−A · X⃗k + b⃗) m ≥ 0 (7.205)

where the αk’s are real scalars. It is easy to see that when the method converges then X⃗k+1 ≃ X⃗k

and then for αk ̸= 0 then A · X⃗ = b⃗ is satisfied. In our case, it writes:

P⃗k+1 = P⃗k + αk(−S · P⃗k + f⃗)

= P⃗k + αk

[
−(GT ·K−1 ·G+ C) · P⃗k + (GT ·K−1 · f⃗ − h⃗)

]
= P⃗k + αk

[
GT ·K−1 · (−G · P⃗k + f⃗)− C · P⃗k − h⃗

]
= P⃗k + αk

[
GT ·K−1 · (K · V⃗k)− C · P⃗k − h⃗

]
= P⃗k + αk

(
GT · V⃗k − C · P⃗k − h⃗

)
(7.206)

The above iterations are then carried out and for each new pressure field the associated velocity
field is computed. The method of using Richardson iterations applied to the Schur complement is
commonly called the Uzawa algorithm (see Braess [128, p221] 32).

Uzawa algorithm (1): assume P⃗0 known

solve K · V⃗k = f⃗ −G · P⃗k (7.207)

P⃗k+1 = P⃗k + αk(GT · V⃗k − C · P⃗k − h⃗) k = 0, 1, 2, ... (7.208)

This method is rather simple to implement, although what makes an appropriate set of αk values
is not straightforward, which is why the conjugate gradient is often preferred, as detailed in the next
section.

It is known that such iterations will converge for 0 < α < ρ(S) = λmax(S) where ρ(S) is the
spectral radius of the matrix S which is essentially the largest, in absolute value, eigenvalue of S
(neither of which can be computed easily). It can also be proven that the rate of convergence
depends on the condition number of the matrix.

30M positive definite ⇐⇒ xTMx > 0 ∀ x ∈ Rn \ 0
31We will revisit this topic later on, but be aware that we never build S in practice.
32I have slightly altered the indices of the velocities wrt the book
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Richardson iterations are part of the family of stationary iterative methods33, since it can be
rewritten

X⃗k+1 = (I − αkA) · X⃗k + αkb⃗ (7.209)

which is the definition of a stationary method. The four main stationary methods are the Jacobi
method, Gauss-Seidel method, successive overrelaxation method (SOR), and symmetric successive
overrelaxation method (SSOR)

Since the α parameter is the key to a successful Uzawa algorithm, this issue has of course been
looked into. What follows is presented in p221 of Braess [128]. For the analysis of the Uzawa
algorithm, we define the residue

R⃗k = h⃗−GT · V⃗k + C · P⃗k
In addition, suppose the solution of the saddle point problem is denoted by (V⃗⋆, P⃗⋆) so that we have

f⃗ = K · V⃗⋆ +G · P⃗⋆ and h⃗ = GT · V⃗⋆ − C · P⃗⋆

Now substituting the iteration formula for Vk, and inserting f⃗ and h⃗ from above, we get

R⃗k = h⃗−GT · V⃗k + C · P⃗k
= h⃗−GT ·K−1(f⃗ −G · P⃗k) + C · P⃗k (7.210)

= (GT · V⃗⋆ − C · P⃗⋆)−GT ·K−1(K · V⃗⋆ +G · P⃗⋆ −G · P⃗k) + C · P⃗k (7.211)

= (GT ·K−1 ·G+ C) · (P⃗k − P⃗⋆) (7.212)

From Eq. (7.208) it follows that:

P⃗k+1 − P⃗k = α (GT · V⃗k − C · P⃗k − h⃗) (7.213)

= −α R⃗k (7.214)

= −α (GT ·K−1 ·G+ C) · (P⃗k − P⃗⋆) (7.215)

= α (GT ·K−1 ·G+ C) · (P⃗⋆ − P⃗k) (7.216)

Thus the Uzawa algorithm is equivalent to applying the gradient method to the reduced equation
using a fixed step size. In particular, the iteration converges for α < 2||GT ·K−1 ·G+C||−1 and one
can show that the good step size αk is given by

αk =
R⃗k · R⃗k

(G · R⃗k) · (K−1 ·G · R⃗k)
(7.217)

include matrix C!

However, if we were to use this rule formally, we would need an additional multiplication by K−1

in every step of the iteration. This can be avoided by storing an auxiliary vector. Note that this
algorithm is presented in Zienkiewicz et al. (1985) [1434] in the context of viscoplastic flow.

As mentioned above, there is a way to rework the original Uzawa algorithm to include Eq. (7.217).
It is yields a modified Uzawa algorithm (see p222 of Braess [128] 34):

33https://mathworld.wolfram.com/StationaryIterativeMethod.html
34I have slightly altered the indices of the velocities wrt the book
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Uzawa algorithm (2): assume P⃗0 known. Solve K · V⃗0 = f⃗−G ·P⃗0. For k = 0, 1, 2, ..., compute

R⃗k = q⃗k = h⃗−GT · V⃗k + C · P⃗k (7.218)

p⃗k = G · qk (7.219)

H⃗k = K−1 · p⃗k (7.220)

αk =
q⃗k · q⃗k
p⃗k · H⃗k

(7.221)

P⃗k = P⃗k−1 − αkq⃗k (7.222)

V⃗k = V⃗k−1 + αkH⃗k (7.223)

Relevant Literature: Cahouet & Chabard (1988) [201], Cao (2003) [207].

7.11.3 Conjugate gradient and the Schur complement approach

Since the Schur matrix S is Symmetric Positive Definite, the Conjugate Gradient (CG) method35

[567] is very appropriate to solve this system.
Indeed, looking at the definition of Wikipedia: ”In mathematics, the conjugate gradient method

is an algorithm for the numerical solution of particular systems of linear equations, namely those
whose matrix is symmetric and positive-definite. The conjugate gradient method is often implemented
as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct
implementation or other direct methods such as the Cholesky decomposition. Large sparse systems
often arise when numerically solving partial differential equations or optimization problems.”

A simple Google search tells us that the Conjugate Gradient algorithm is as follows:
Algorithm as obtained from Wikipedia.

The same algorithm with our notations:
r⃗0 = f⃗ − S · P⃗0

p⃗0 = r⃗0
k = 0
repeat
αk = (r⃗Tk · r⃗k)/(p⃗Tk · S · p⃗k)
P⃗k+1 = P⃗k + αkp⃗k
r⃗k+1 = r⃗k − αk S · p⃗k
βk = (r⃗Tk+1 · r⃗k+1)/(r⃗

T
k · r⃗k)

p⃗k+1 = r⃗k+1 + βkp⃗k
k = k + 1
end repeat
return P⃗k+1 as the result

This algorithm is of course explained in detail in many textbooks such as Saad [1092], in Zhong,
Yuen, Moresi & Knepley (2012) [1415], and in Section 9.33.

Let us look at this algorithm more closely. The parts which may prove to be somewhat tricky are
those involving the matrix the Schur complement matrix since we wish never to build it explicitely.
We start the iterations with a guess pressure P⃗0 (and an initial guess velocity which could be obtained

35https://en.wikipedia.org/wiki/Conjugate_gradient_method
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by solving K · V⃗0 = f⃗ −G · P⃗0).

r⃗0 = f⃗ − S · P⃗0 (7.224)

= GT ·K−1 · f⃗ − h⃗− (GT ·K−1 ·G+ C) · P⃗0 (7.225)

= GT ·K−1 · (f⃗ −G · P⃗0)− h⃗ (7.226)

= GT ·K−1 ·K · V⃗0 − C · P⃗0 − h⃗ (7.227)

= GT · V⃗0 − C · P⃗0 − h⃗ (7.228)

We see that we were able to compute S · P⃗0 without ever forming the Schur complement matrix
explicitely. We now turn to the αk coefficient:

αk =
r⃗Tk · r⃗k
p⃗k · S · p⃗k

=
r⃗Tk · r⃗k

p⃗k · (GT ·K−1 ·G+ C) · p⃗k
=

r⃗Tk · r⃗k
(G · p⃗k)T ·K−1 · (G · p⃗k) + p⃗k · C · p⃗k

We then define ˜⃗pk = G · p⃗k, so that αk can be computed as follows:

1. compute ˜⃗pk = G · p⃗k

2. solve K · d⃗k = ˜⃗pk

3. compute

αk =
r⃗Tk · r⃗k

˜⃗pTk · d⃗k + p⃗k ·T C · p⃗k

Then we need to look at the term S · p⃗k:

S · p⃗k = (GT ·K−1 ·G ·+C)p⃗k = GT ·K−1 · ˜⃗pk + C · p⃗k = GT · d⃗k + C · p⃗k

We can then rewrite the CG algorithm as follows:

� choose P⃗0

� compute V⃗0 solution of K · V⃗0 = f⃗ −G · P⃗0

� r⃗0 = GT · V⃗0 − C · P⃗0 − h⃗

� if r⃗0 is sufficiently small, then return (V⃗0, P⃗0) as the result

� p⃗0 = r⃗0

� k = 0

� repeat

– compute ˜⃗pk = G · p⃗k
– solve K · d⃗k = ˜⃗pk

– compute αk = (r⃗Tk · r⃗k)/(˜⃗pTk · d⃗k + p⃗Tk · C · p⃗k)
– P⃗k+1 = P⃗k + αkp⃗k

– r⃗k+1 = r⃗k − αk(GT · d⃗k + C · p⃗k)
– if r⃗k+1 is sufficiently small, then exit loop

– βk = (r⃗Tk+1 · r⃗k+1)/(r⃗
T
k · r⃗k)

– p⃗k+1 = r⃗k+1 + βkp⃗k
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– k = k + 1

� return P⃗k+1 as result

We see that we have managed to solve the Schur complement equation with the Conjugate Gradient
method without ever building the matrix S. Having obtained the pressure solution P⃗k+1, we can
easily recover the corresponding velocity with K · V⃗k+1 = f⃗ − G · P⃗k+1. However, this is rather
unfortunate because it requires yet another solve with the K matrix. As it turns out, we can slightly
alter the above algorithm to have it update the velocity as well so that this last solve is unnecessary.

We have

V⃗k+1 = K−1 · (f −G · P⃗p+1) (7.229)

= K−1 · (f −G · (P⃗k + αkp⃗k)) (7.230)

= K−1 · (f −G · P⃗k)− αkK−1 ·G · p⃗k (7.231)

= V⃗k − αkK−1 · ˜⃗pk (7.232)

= V⃗k − αkd⃗k (7.233)

and we can insert this minor extra calculation inside the algorithm and get the velocity solution
nearly for free. The final CG algorithm is then

solver cg: assume P⃗0 known

� compute V⃗0 = K−1 · (f⃗ −G · P⃗0)

� r⃗0 = GT · V⃗0 − C · P⃗0 − h⃗

� if r⃗0 is sufficiently small, then return (V⃗0, P⃗0) as the result

� p⃗0 = r⃗0

� k = 0

� repeat

– compute ˜⃗pk = G · p⃗k
– solve K · d⃗k = p̃k

– compute αk = (r⃗Tk · r⃗k)/(˜⃗pTk · d⃗k + p⃗Tk · C · p⃗k)

– P⃗k+1 = P⃗k + αkp⃗k

– V⃗k+1 = V⃗k − αkd⃗k
– r⃗k+1 = r⃗k − αk(GT · d⃗k + C · p⃗k)
– if r⃗k+1 is sufficiently small (||r⃗k+1||2/||r⃗0||2 < tol), then exit loop

– βk = (rTk+1rk+1)/(r
T
k rk)

– p⃗k+1 = r⃗k+1 + βkp⃗k

– k = k + 1

� return P⃗k+1 as result

Remark. The matrix C is rarely present unless for example when stabilised elements are used such
as the stabilised Q1 × P0 or the stabilised Q1 ×Q1 elements.
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This iterative algorithm will converge to the solution with a rate which depends on the condition
number of the S matrix, which is not easy to compute since S is never built. However, it has
been established that large viscosity contrasts in the domain will have a negative impact on the
convergence.

Remark. This algorithm requires one solve with matrix K per iteration but says nothing about the
method employed to do so (direct or iterative solver) nor the corresponding preconditioner.

One thing we know improves the convergence of any iterative solver is the use of a preconditioner
matrix and therefore now focus on the Preconditioned Conjugate Gradient (PCG) method. Once
again we turn to Wikipedia36:

Algorithm as obtained from Wikipedia.

The same algorithm with our notations:
r⃗0 = f⃗ − S · P⃗0

z⃗0 = M−1 · r⃗0
p⃗0 = z⃗0
k = 0
repeat
αk = (r⃗Tk · z⃗k)/(p⃗Tk · S · p⃗k)
P⃗k+1 = P⃗k + αkp⃗k
r⃗k+1 = r⃗k − αk S · p⃗k
z⃗k+1 = M−1 · r⃗k+1

βk = (z⃗Tk+1 · r⃗k+1)/(z⃗
T
k · r⃗k)

p⃗k+1 = z⃗k+1 + βkp⃗k
k = k + 1
end repeat
return P⃗k+1 as the result

Unsurprisingly we find the same algorithm in Saad [1092]:

Note that in the algorithm above the preconditioner matrix M has to be symmetric positive-
definite and fixed, i.e., cannot change from iteration to iteration. We see that this algorithm intro-
duces an additional vector z⃗ and a solve with the matrix M at each iteration, which means that M
must be such that solving M · x⃗ = f⃗ where f⃗ is a given rhs vector must be cheap. Ultimately, the
PCG algorithm applied to the Schur complement equation takes the form:

solver pcg: assume P⃗0 known

� compute V0 = K−1(f −GP0)

� r⃗0 = GTV0 − C · P⃗0 − h⃗

� if r⃗0 is sufficiently small, then return (V⃗0, P⃗0) as the result

36https://en.wikipedia.org/wiki/Conjugate_gradient_method
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� z⃗0 =M−1 · r⃗0

� p⃗0 = z⃗0

� k = 0

� repeat

– compute ˜⃗pk = G · p⃗k
– solve K · d⃗k = ˜⃗pk

– compute αk = (r⃗Tk · z⃗k)/(˜⃗pTk · d⃗k + p⃗Tk · C · p⃗k)

– P⃗k+1 = Pk + αkp⃗k

– V⃗k+1 = Vk − αkd⃗k
– r⃗k+1 = r⃗k − αk(GT · d⃗k + C · p⃗k)
– if r⃗k+1 is sufficiently small (i.e. ||r⃗k+1||2/||r⃗0||2 < tol), then exit loop

– z⃗k+1 =M−1 · r⃗k+1

– βk = (z⃗Tk+1 · r⃗k+1)/(z⃗
T
k · r⃗k)

– p⃗k+1 = z⃗k+1 + βkp⃗k

– k = k + 1

� return P⃗k+1 as result

Following Zhong et al. [1415] one can define the following matrix as preconditioner:

M = diag
[
GT (diag[K])−1G

]
which is the preconditioner used for the Citcom codes (see appendix ??). It can be constructed while
the FEM matrix is being built/assembled and it is trivial to invert. The entries in diag[K] are the
average viscosity in the elements associated with a given degree of freedom.

Another very cheap way of building M for Q1 × P0 lements is to realise that the matrix S has
dimensions element surface/volume divided by viscosity. We can then postulate

Me,e =
|Ω|e
ηe

where e is an element and ηe is the (average viscosity) inside the element. For higher order elements,
we need to use the pressure mass matrix.

These two preconditioners and two other variants are implemented in stone 16 for Q1 × P0

elements.

7.11.4 Generalized Conjugate Residual approach (Geenen et al. (2009))

This approach is presented in Geenen et al. (2009) [443]. The saddle point problem arising from
the constrained Stokes equation is solved with a Krylov method, GCR [1329], right preconditioned
(postconditioned) with a block triangular preconditioner (BTR) [132].

The preconditioner P is given by

P =

(
K G
0 −S̃

)
The GCR algorithm [365] in this case is taken from Vuik et al. (2000) [1331] and makes use of

the block triangular preconditioner as follows:
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r⃗0 = b⃗−A · x⃗0

for k=0,1,2,...

– s⃗k+1 = P−1 · r⃗k

– v⃗k+1 = A · s⃗k+1

– for i=0,1,...k

* v⃗k+1 = v⃗k+1 − (v⃗k+1, v⃗i)v⃗i

* s⃗k+1 = s⃗k+1 − (v⃗k+1, v⃗i)s⃗i

– end for

– v⃗k+1 = v⃗k+1/∥v⃗k+1∥2
– s⃗k+1 = s⃗k+1/∥v⃗k+1∥2
– x⃗k+1 = x⃗k + (v⃗k+1, r⃗k)s⃗k+1

– r⃗k+1 = r⃗k − (v⃗k+1, r⃗k)v⃗k+1

end for

As explained in Geenen et al. , instead of constructing P−1 explicitely and applying it to r⃗, we
instead solve the system P · s⃗ = r⃗. We first decompose r⃗ and s⃗ as follows:

r⃗k =

(
r⃗kν
r⃗kp

)
s⃗k+1 =

(
s⃗k+1
ν

s⃗k+1
p

)
so that we have to solve (

K G
0 −S̃

)
·
(
s⃗k+1
ν

s⃗k+1
p

)
=

(
r⃗kν
r⃗kp

)
This is actually rather trivial because of the upper triangular nature of the preconditioner P . It
immediately follows:

S̃ · s⃗k+1
p = −r⃗kp (7.234)

K · s⃗k+1
ν = r⃗kν −G · s⃗k+1

p (7.235)

As before we now must specify how we solve the above two equations (and we must therefore make
a choice about the approximate Schur complement S̃).

In the paper they take Mp, the pressure mass matrix scaled with the inverse of viscosity as an
approximation to the Schur complement S̃, which is spectrally equivalent. Note that sometimes this
mass matrix can be lumped which makes solving with it trivial and fast.

The inner solve with K is carried out with a CG solvers preconditioned with AMG. They state
that “Using AMG as a preconditioner to CG for the subsystem solution guarantees h-independent
convergence of the solver during the preconditioner construction phase.”

7.11.5 Using MINRES a la Burstedde et al. (2008)

This approach is presented in Burstedde et al. (2008) [190]. They state that neglecting the off-
diagonal blocks motivates use of the symmetric positive definite preconditioner:

P =

(
K̃ 0

0 S̃

)
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where K̃ is a variable-viscosity discrete vector Laplacian approximation of K (see explanations in
[188]), which is motivated by the fact that for constant viscosity and Dirichlet boundary conditions,
K and K̃ are equivalent. S̃ is an approximation of the Schur complement given by a lumped mass
matrix weighted by the inverse viscosity η−1. The resulting diagonal matrix S̃ is spectrally equivalent
to S [371]. They also use AMG as preconditioner for the inner solves.

Note that Burstedde et al. (2008) [190] relies on stabilised Q1 ×Q1 elements from Dohrmann &
Bochev [336] so that their Stokes matrix does feature the associated −C block. Subsequent papers
do so too, see Burstedde et al. (2009) [188], Burstedde et al. (2013) [189]. The same solver structure
based on MINRES is used in these articles too.

7.11.6 The Augmented Lagrangian approach

see LaCoDe paper [322].
We start from the saddle point Stokes system:(

K G
GT 0

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
(7.236)

The AL method consists of subtracting λ−1Mp ·P⃗ from the left and right-side of the mass conservation
equation (where Mp is the pressure mass matrix) and introducing the following iterative scheme:(

K G
GT −λ−1Mp

)
·
(
V⃗k+1

P⃗k+1

)
=

(
f⃗

h⃗− λ−1Mp · P⃗k

)
(7.237)

where k is the iteration counter and λ is an artificial compressibility term which has the dimensions
of dynamic viscosity. The choice of λ can be difficult as too low or too high a value yields either
erroneous results and/or terribly ill-conditioned matrices. LaCoDe paper (!!) use such a method and

report that λ = maxΩ(η) works well. Note that at convergence we have ||P⃗k+1 − P⃗k|| < ϵ and then
Eq.(7.237) converges to Eq.(7.236) and the velocity and pressure fields are solution of the unmodified
system Eq.(7.236).

The introduction of this term serves one purpose: allowing us to solve the system in a segregated
manner (i.e. computing successive iterates of the velocity and pressure fields until convergence is
reached). The second line of Eq. (7.237) is

GT · V⃗k+1 − λ−1Mp · P⃗k+1 = h⃗− λ−1Mp · P⃗k

and can therefore be rewritten

P⃗k+1 = P⃗k + λM−1
p · (GT · V⃗k+1 − h⃗)

We can then substitute this expression of P⃗k+1 in the first equation. This yields:

K · V⃗k+1 = f⃗ −G · Pk+1) (7.238)

K · V⃗k+1 = f⃗ −G · (P⃗k + λM−1
p · (GT · V⃗k+1 − h⃗)) (7.239)

K · V⃗k+1 + λG ·M−1
p ·GT · V⃗k+1 = f⃗ −G · (P⃗k − λM−1

p h⃗)) (7.240)(
K+ λG ·M−1

p ·GT
)︸ ︷︷ ︸

K̃

·V⃗k+1 = f⃗ −G · (P⃗k − λM−1
p h⃗))︸ ︷︷ ︸

f⃗k+1

(7.241)

(7.242)

The iterative algorithm goes as follows:
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1. if it is the first timestep, set P⃗0 = 0 , otherwise set it to the pressure of the previous
timestep.

2. calculate K̃

3. calculate f⃗k+1

4. solve K̃ · V⃗k+1 = f⃗k+1

5. update pressure with P⃗k+1 = P⃗k + λM−1
p · (GT · V⃗k+1 − h⃗)

Remark. If discontinuous pressures are used, the pressure mass matrix can be inverted element by
element which is cheaper than inverting Mp as a whole.

Remark. This method has obvious ties with the penalty method.

Remark. If λ >> maxΩ η then the matrix K̃ is ill-conditioned and an iterative solver must be used.
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7.11.7 The SIMPLE method

simple.tex

What follows is borrowed from Volker John. Finite Element Methods for Incompressible Flow
Problems. Springer, 2016. isbn: 978-3-319-45749-9. doi: 10.1007/978-3-319-45750-5, page 666.

The SIMPLE method (Semi-Implicit Method for Pressure-Linked Equations) has been introduced
by Patankar & Spalding (1972) [981] as an iterative method to solve the finite volume discretized
incompressible Navier-Stokes equations.

The algorithm is based on the following steps:

� First the pressure is assumed to be known from the previous iteration.

� Then the velocity is solved from the momentum equations. The newly obtained velocities do
not satisfy the continuity equation since the pressure is only a guess.

� In the next substeps the velocities and pressures are corrected in order to satisfy the discrete
continuity equation.

SIMPLE relies on the block LU decomposition(
K G
GT −C

)
·
(
V⃗
P⃗

)
=

(
K 0
GT −S

)
·
(

I K−1 ·G
0 I

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
(7.243)

The approximation K−1 as D−1
K = (diag(K))−1 leads to the SIMPLE algorithm. In this case the

approximation of the Schur complement matrix is given by S̃ = GT ·D−1
K ·G and the decomposition

looks like (
K G
GT −C

)
≃
(

K 0

GT −S̃

)
·
(

I D−1
K ·G

0 I

)
Thus one iteration of SIMPLE solves the following system:(

K G
GT −C

)
≃
(

K 0

GT −S̃

)
·
(

I D−1
K ·G

0 I

)
·
(
V⃗
P⃗

)
=

(
f⃗

h⃗

)
Before we can write out the SIMPLE algorithm, we must first take a small detour via so-called

distributive iterative methods [1331, 626]. Let us consider the linear system

A · x⃗ = b⃗

A stationary iterative method is defined as follows:

x⃗k+1 = B · x⃗k + c⃗

where c⃗ = (I −B) ·A−1 · b⃗. Left-multiplying all terms by (I −B)−1 first and then left-multiplying
again by A we arrive at:

A · (I −B)−1 · x⃗k+1 = A · (I −B)−1 ·B · x⃗k +A · (I −B)−1 · c⃗

We define M = A · (I −B)−1 so that now

M · x⃗k+1 = M ·B · x⃗k + b⃗

We define N = M ·B and finally

M · x⃗k+1 = N · x⃗k + b⃗
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Note that M −N = M −M ·B = M · (I −B) = A · (I −B)−1 · (I −B) = A. Let us now write

the original system A · x⃗ = b⃗ as (A ·B) · (B−1 · x⃗) = b⃗ or, A · x⃗ = b⃗ with x⃗ = B · x⃗ and A = A ·B.
Splitting A = M −N again yields

M · x⃗k+1 = N · x⃗k + b⃗

Using x⃗ = B · x⃗, we get
M ·B−1 · x⃗k+1 = N ·B−1 · x⃗k + b⃗

We then have

x⃗k+1 = B ·M−1 · [N ·B−1 · x⃗k + b⃗] (7.244)

= B ·M−1 · [(M −A) ·B−1 · x⃗k + b⃗] (7.245)

= B ·M−1 · [(M −A ·B) ·B−1 · x⃗k + b⃗] (7.246)

= B ·M−1 · [M ·B−1 · x⃗k −A ·B ·B−1 · x⃗k + b⃗] (7.247)

= B ·M−1 · [M ·B−1 · x⃗k −A · x⃗k + b⃗] (7.248)

= x⃗k +B ·M−1 · [⃗b−A · x⃗k] (7.249)

Finally, we have the following recursion:

x⃗k+1 = x⃗k +B ·M−1 · (⃗b−A · x⃗k) (7.250)

Coming back to the SIMPLE algorithm, we start from

A =

(
K G
GT 0

)
The matrix B is then chosen to be

B =

(
I −K−1G
0 I

)
We then have

A ·B =

(
K G
GT 0

)
·
(

I −K−1G
0 I

)
=

(
K 0
GT −S

)
where S = GT ·K−1 ·G. Let us recall that we define DK = diag(K) and Ŝ = GT ·D−1

K ·G. We further
define

M =

(
K 0

GT −Ŝ

)
and N follows from the splitting A ·B = M −N . (Note that we do not need to form nor use N ).

The standard SIMPLE algorithm also replaces K−1 by D−1
K in B so that B is approximated by:

B =

(
I −D−1

K G
0 I

)
in the iterations. We can define

r⃗k = b⃗−A · x⃗k =

(
f⃗

h⃗

)
−
(

K G
GT 0

)
·
(
V⃗k
P⃗k

)
=

(
r⃗kV
r⃗kP

)
The iteration loop of Eq. (7.250) then takes the form(
V⃗k+1

P⃗k+1

)
=

(
V k

P k

)
+BM−1

(
rkV
rkP

)
=

(
V k

P k

)
+

(
δV k

δP k

)
with

(
δV k

δP k

)
= BM−1

(
r⃗kV
r⃗kP

)
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This last equation can be rewritten37:

M ·
[
B−1 ·

(
δV⃗k
δP⃗k

)]
=

(
r⃗kV
r⃗kP

)
We then have to solve

M ·
(
δ⋆V⃗k
δ⋆P⃗k

)
=

(
K 0

GT −Ŝ

)
·
(
δ⋆V⃗k
δ⋆P⃗k

)
=

(
r⃗kV
r⃗kP

)
(7.251)

and then compute (
δV⃗k
δP⃗k

)
= B

(
δ⋆V⃗k
δ⋆P⃗k

)
(7.252)

Fortunately Eq. (7.251) translates into:

K · δ⋆V⃗k = r⃗kV (7.253)

Ŝ · δ⋆P⃗k = −r⃗kP +GT · δ⋆V⃗ k (7.254)

and Eq. (7.252) translates into:(
δV⃗k
δP⃗k

)
=

(
I −D−1

K ·G
0 I

)
·
(
δ⋆V⃗k
δ∗P⃗k

)
or,

δV⃗k = δ⋆V⃗k −D−1
K ·G · δ

⋆P⃗k (7.255)

δP⃗k = δ⋆P⃗k (7.256)

The final algorithm will then look as follows:

1. compute the residuals

r⃗V = f⃗ −K · V⃗(k) −G · P⃗(k)

r⃗P = h⃗−GT · V⃗(k) (7.257)

2. Solve K · δ⋆V⃗k = r⃗kV

3. Solve Ŝ · δ⋆P⃗k = r⃗kP −GT · δ⋆V k

4. Compute δV⃗k = δ⋆V⃗k −D−1
K ·G · δ⋆P⃗k

5. Update δP⃗k = δ⋆P⃗k

6. Update

V⃗(k+1) = V⃗(k) + ωVδV⃗(k)

P⃗(k+1) = P⃗(k) + ωPδP⃗(k) (7.258)

where the parameters ωV and ωP are between 0 and 1.
Note that SIMPLE can be used as left and as right preconditioner, see page 669 of John [650].

37Remember that (A ·B)−1 = B−1 ·A−1
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Also, John states that: “SIMPLE is easily to implement, which makes it attractive. It relies on
the already assembled matrix blocks. Only the approximation Ŝ of the Schur complement matrix
has to be computed. This matrix couples pressure degrees of freedom that are usually not coupled in
finite element approximations of the diffusion operator, but it is still a sparse matrix. The efficiency
of SIMPLE depends on how good K−1 is approximated by its diagonal.”

Relevant Literature:

� C. Echevarria Serur. “Fast iterative methods for solving the incompressible Navier-Stokes
equations”. PhD thesis. TU Delft, 2013,

� D. Braess and R. Sarazin. “An Efficient Smoother for the Stokes Problem”. In: Applied
Numerical Math. 23 (1997), pp. 3–20,

� M. ur Rehman, C. Vuik, and G. Segal. “SIMPLE-type preconditioners for the Oseen prob-
lem”. In: International Journal for Numerical Methods in Fluids 61 (2009), pp. 432–452 for
SIMPLE(R) algorithm,

� Alik Ismail-Zadeh and Paul Tackley. Computational Methods for Geodynamics. Cambridge
University Press, 2010
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7.11.8 The GMRES approach - NOT FINISHED

The Generalized Minimal Residual method [1093] is an extension of MINRES (which is only ap-
plicable to symmetric systems) to unsymmetric systems. Like MINRES, it generates a sequence
of orthogonal vectors and combines these through a least-squares solve and update. However, in
the absence of symmetry this can no longer be done with short recurrences. As a consequence,
all previously computed vectors in the orthogonal sequence have to be retained and for this reason
”restarted” versions of the method are used.

It must be said that the (preconditioned) GMRES method is actually much more difficult to
implement than the (preconditioned) Conjugate Gradient method. However, since it can deal with
unsymmetric matrices, it means that it can be applied directly to the Stokes system matrix (as
opposed to the CG method which is used on the Schur complement equation).

Relevant Literature: [364, p208] [1092, 1091] [48] [34]
finish GMRES algo description. not sure what to do, hard to explain, not easy to code.

Taken from ur Rehman, vuik & Segal.

the FGMRES approach [331]
Relevant Literature[970, 846, 431, 716, 717, 720]
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7.12 Boundary conditions

7.12.1 Imposing Dirichlet boundary conditions

howtobc.tex

Let us consider a quadrilateral element with one degree of freedom per node and let us assume
that we are solving the temperature equation. The local matrix and right-hand side vector are given
by

Ael(4× 4) and Bel(4)

Let us assume that we want to impose T̃ = 10 on the third node (local coordinates numbering). For
instance, having built Ael and Bel, the system looks like :

3 1 6 9
5 2 2 8
7 4 11 2
9 6 4 3




T1
T2
T3
T4

 =


4
3
1
2


which can be rewritten

3T1 + T2 + 6T3 + 9T4 = 4

5T1 + 2T2 + 2T3 + 8T4 = 3

7T1 + 4T2 + 11T3 + 2T4 = 1

9T1 + 6T2 + 4T3 + 3T4 = 2

or,
3T1 + T2 + +9T4 = 4− 6T3

5T1 + 2T2 + +8T4 = 3− 2T3

7T1 + 4T2 + 11T3 + 2T4 = 1

9T1 + 6T2 + +3T4 = 2− 4T3

� Technique 1: Replace the hereabove system by
3 1 6 9
5 2 2 8
7 4 11 + 1012 2
9 6 4 3




T1
T2
T3
T4

 =


4
3

T̃ × (11 + 1012)
2


� Technique 2: One can choose not to solve for T3 anymore, i.e. not to consider it as a degree of
freedom and therefore write:

3T1 + T2 + 9T4 = 4− 6T3

5T1 + 2T2 + 8T4 = 3− 2T3

9T1 + 6T2 + 3T4 = 2− 4T3
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� Technique 3: Since we want to impose T3 = 10, then we can write

3T1 + T2 + +9T4 = 4− 6T3

5T1 + 2T2 + +8T4 = 3− 2T3

0 + 0 + T3 + 0 = 10

9T1 + 6T2 + +3T4 = 2− 4T3

and in matrix form : 
3 1 0 9
5 2 0 8
0 0 1 0
9 6 0 3




T1
T2
T3
T4

 =


4− A13T3
3− A23T3

10
2− A43T3


The first technique is not a good idea in practice as it introduces very large values and will likely

derail the solver. The second option is somewhat difficult to implement as it means that elemental
matrix and rhs sizes will change from element to element and it therefore requires more book-keeping.
The third technique is the one adopted throughout this document.

As shown in Wu, Xu, and Li [1371] (2008), it is better to replace the 1 on the diagonal by
the former diagonal term as it reduces the condition number of the matrix. The rhs must then be
modified accordingly.

Relevant LiteratureBehr (2004) [69] ASK
DAVE
for per-
mission

This is an excerpt of an email sent to me by Dave May in May 2014: Never ever ever impose
bc’s using a penalty approach. For problems with a fixed mesh topology and time dependent Dirichlet
domain (e.g. the segment of the boundary with Dirichlet bc’s maybe change size/shape over time -
for example with a true stick/slip type interface), it’s nice to define the matrix with the dimension
associated with the mesh+basis and leave all bc’s in the operator. Leaving the bc’s in the operator can
be implemented in a manner which still retains the operators symmetry (assuming it was symmetric
to begin with). This leaves the choice of what to stick on the diagonal. Simply using ”1” could screw
up the spectrum of the matrix and kill the iterative solver performance. A better choice would be to
insert a diagonal entry closely related to the operator; e.g. something that looks like the diagonal
entry of

∫
2ηϵ(u) : ϵ(v)dV (for the discrete stress tensor term).

Removing Dirichlet bc’s entirely for the discrete operator sounds attractive. The code will like
the FE theory and you will only be solving for variables which are ”unknowns” (compared with the
above). However, introducing a time dependent Dirichlet domain means the matrix must be re-sized,
as should its non-zero structure be re-allocated. Also, implemented multi-grid is annoying when the
Dirichlet entries are removed. In fact, most of the code associated with stripping out Diriclet bc’s is
annoying and ugly. However, removing the bcs ensures symmetry, it ensures the discrete operator
will have a nice spectrum (c.f. the above option). Also, stripping out bcs usually increases overall
storage as you have one representation of the discrete vectors given to the solver which will be of size
(N-n) and in your mesh you will have a repsentation of length N. “N” being the total number of dofs
in your system, “n” being the number of Dirichlet constrained dofs in your system.
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7.12.2 In-out flux boundary conditions for lithospheric models

kinematic bc.tex

The velocity on the side is given by

u(y) = vext y < y1

u(y) =
vin − vext
y2 − y1

(y − y1) + vext y1 < y < y2

u(y) = vin y > y2

The requirement for volume conservation is:

Φ =

∫ Ly

0

u(y)dy = 0

Having chosen vin (the velocity of the plate), one can then compute vext as a function of y1 and y2.

Φ =

∫ y1

0

u(y)dy +

∫ y2

y1

u(y)dy +

∫ Ly

y2

u(y)dy

= vexty1 +
1

2
(vin + vext)(y2 − y1) + (Ly − y2)vin

= vext[y1 +
1

2
(y2 − y1)] + vin[

1

2
(y2 − y1) + (Ly − y2)]

= vext
1

2
(y1 + y2) + vin[Ly −

1

2
(y1 + y2)]

and finally

vext = −vin
Ly − 1

2
(y1 + y2)

1
2
(y1 + y2)
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7.12.3 Periodic boundary conditions

This type of boundary conditions can be handy in some specific cases such as infinite domains. The
idea is simple: when material leaves the domain through a boundary it comes back in through the
opposite boundary (which of course presupposes a certain topology of the domain).

For instance, if one wants to model a gas at the molecular level and wishes to avoid interactions
of the molecules with the walls of the container, such boundary conditions can be used, mimicking
an infinite domain in all directions.

Let us consider the small mesh depicted hereunder:
missing picture

We wish to implement horizontal boundary conditions so that

u5 = u1 u10 = u6 u15 = u11 u20 = u16

One could of course rewrite these conditions as constraints and extend the Stokes matrix but this
approach turns out to be not practical at all.

Instead, the method is rather simple: replace in the connectivity array the dofs on the right side
(nodes 5, 10, 15, 20) by the dofs on the left side. In essence, we wrap the system upon itself in the
horizontal direction so that elements 4, 8 and 12 ’see’ and are ’made of’ the nodes 1, 6, 11 and 16.
In fact, this is only necessary during the assembly. Everywhere in the loops nodes 5, 10, 15 and 20
appear one must replace them by their left pendants 1, 6, 11 and 16. This autmatically generates
a matrix with lines and columns corresponding to the u5, u10, u15 and u20 being exactly zero. The
Stokes matrix is the same size, the blocks are the same size and the symmetric character of the
matrix is respected. However, there remains a problem. There are zeros on the diagonal of the above
mentioned lines and columns. One must then place there 1 or a more appropriate value.

Another way of seeing this is as follows: let us assume we have built and assembled the Stokes
matrix, and we want to impose periodic b.c. so that dof j and i are the same. The algorithm is
composed of four steps:

1. add col j to col i

2. add row j to row i (including rhs)

3. zero out row j, col j

4. put average diagonal value on diagonal (j, j)

Remark. Unfortunately the non-zero pattern of the matrix with periodic b.c. is not the same as the
matrix without periodic b.c.
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7.12.4 Free-slip boundary conditions on annulus

fsbc annulus.tex

In the context of geodynamical modelling we often wish to prescribed free-slip boundary condi-
tions on a given boundary of the domain. If the domain is a rectangle which sides align with the
Cartesian axis, then fixing νx = 0 or νy = 0 is simple and does indeed insure free-slip boundary
conditions.

However the situation is much more complicated in the case of a curved boundary, such as for
instance the inner and outer boundaries of an annulus or spherical shell.

If the curved boundary is a circular, the procedure is as follows:

1. identify the node on the boundary which is to be fixed.

2. compute its coordinate angle θ (and ϕ in 3D)

3. do a rotation so as to bring it back onto the x-axis (2D) or z-axis (3D)

4. apply free slip boundary condition (now easy since parallel or perpendicular to axis)

5. rotate back

This technique is implemented in stone ??, stone ?? and stone ??.

A few remarks about rotation matrices In a given plane, the counter-clockwise rotation matrix
by and angle θ is defined by

R =

(
cos θ sin θ
− sin θ cos θ

)
The image of vector V⃗ by a rotation of angle θ is given by

V⃗ ′ = R · V⃗

Coordinate transformations of second-rank tensors involve the very same matrix as vector trans-
forms. A transformation of the stress tensor σ , from the reference xy-coordinate system to σ′ in a
new x′y′−system is done as follows:

σ′ = R · σ · RT

[from Wikipedia] A basic rotation (also called elemental rotation) is a rotation about one of the
axes of a Coordinate system. The following three basic rotation matrices rotate vectors by an angle
α about the x-, y-, or z-axis, in three dimensions, using the right-hand rule which codifies their
alternating signs.

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα


Ry(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα


Rz(α) =

 cosα − sinα 0
sinα cosα 0
0 0 1
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In my Elefant code I first rotate around the z axis by and angle −ϕ and then around axis y
by an angle −θ in the case of a spherical shell.

Ry(−θ) =

 cos(−θ) 0 sin(−θ)
0 1 0

− sin(−θ) 0 cos(−θ)

 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


Rz(−ϕ) =

 cos(−ϕ) − sin(−ϕ) 0
sin(−ϕ) cos(−ϕ) 0

0 0 1

 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


These are the Rott and Rotp matrices in the routines.

Relevant Literature

� Note that in some cases applying free slip boundary conditions on a curved boundary with a
triangular mesh can be problematic as explained in Dione, Tibirna, and Urquiza [334] (2013).

� M.S. Engelman, R.L. Sani, and P.M. Gresho. “The implementation of normal and/or tangential
boundary conditions in finite element codes for incompressible fluid flow”. In: Int. J. Num.
Meth. Fluids 2 (1982), pp. 225–238. doi: 10.1002/fld.1650020302

� M. Behr. “On the Application of Slip Boundary Condition on Curved Boundaries”. In: Int.
J. Num. Meth. Fluids 45 (2004), pp. 43–51. doi: 10.1002/fld.663 in which it is stated:
1. If the slip boundary coincides with a Cartesian coordinate plane, the implementation is triv-
ial, with the equations corresponding to the normal component of velocity simply being dropped
from the equation system. 2. If the slip boundary does not coincide with a Cartesian coordinate
plane, the equations corresponding to the velocity components at the boundary are locally aligned
with the normal- tangent-bi-tangent coordinate system, and the normal component of velocity
is set to zero. This procedure is described by Engelman, Sani, and Gresho [372] (1982), who
also advocate the use of consistent normals for proper mass conservation.
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7.13 Open boundary conditions

openbc.tex

So-called open boundary conditions have a special meaning in computational geodynamics. They
usually refer to the boundary conditions on the sides of Cartesian models, usually looking at sub-
duction or rifting processes.

In the literature boundary conditions on the vertical sidewalls are usually

� no-slip (no flow at the boundary),

� free slip (impermeable);

� open to some particular form of through-flow.

Free slip is the most commonly used boundary condition while prescribed in- and outflow or
periodic boundary conditions are also common. (REF?)

Taken from Chertova, Geenen, Berg, and Spakman [231] (2012): “Open boundaries for which the
horizontal in- and outflow are defined by a fully internally developed flow, have hardly been used
[...]. Such open boundaries basically prescribe a hydrostatic pressure condition on the boundary
preventing the model to collapse while horizontal in and outflow is free, in the sense that it is
driven by the internal dynamics and the usual condition of incompressible flow. Among the range of
boundary conditions used, open boundaries may fit best to real-mantle flow conditions surrounding
subduction zones.”

Two examples of the use of such boundary conditions were found in the literature: Quinteros,
Sobolev, and Popov [1030] (2010) and Chertova, Geenen, Berg, and Spakman [231] (212).

We start again from the variational form of the momentum equation, and focus on the term
containing the full stress tensor σ. Let us look at the stress tensor gradient, multiplied by the basis
function N , integrated over the domain:∫

V

N∇⃗ · σ dV =

∫
V

[
∇⃗ · (Nσ)− ∇⃗N · σ

]
dV

=

∫
V

∇⃗ · (Nσ) dV −
∫
V

∇⃗N · σ dV (7.259)

The right term yields the K and G matrices after discretisation, as seen in Section ??. Turning to
the left term, we then make use of the Green-Gauss divergence theorem38 which states that for a
continuously differentiable vector field F⃗ :∫

V

(∇⃗ · F⃗ ) dV =

∫
S

F⃗ · n⃗ dS

so that (applying it now to tensors):∫
V

∇⃗ · (Nσ) dV =

∫
S

Nσ · n⃗ dS

This right hand side term is responsible for the surface boundary conditions and cannot be neglected if
one wishes to implement stress boundary conditions, such as the so-called open boundary conditions.

Note that in Liao and Gerya [786] (2017) the authors describe an iterative algorithm that al-
lows them to control the actual force applied at the boundary by scaling the kinematical boundary
conditions

38https://en.wikipedia.org/wiki/Divergence_theorem
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7.13.1 Two-dimensional case - Q1 × P0 elements

On the following figure two elements are represented, one on the left boundary, one on the right
boundary:

The prescribed traction on the leftt boundary is

t⃗ = σ · n⃗ =

(
−pbc 0
0 −pbc

)
·
(
−1
0

)
=

(
pbc
0

)
The integral on the side of the element is then∫

Γ

Nit⃗ dS

for i = 1, 2, 3, 4, which yields the following elemental rhs vector:

F⃗el =

∫
Γ14



N1(x, y)tx(x, y)
N1(x, y)ty(x, y)
N2(x, y)tx(x, y)
N2(x, y)ty(x, y)
N3(x, y)tx(x, y)
N3(x, y)ty(x, y)
N4(x, y)tx(x, y)
N4(x, y)ty(x, y)


dS

It is worth noting that the integral takes place on the edge Γ14 so that N2 and N3 are identically
zero on this edge and also ty = 0 so

F⃗el =



∫
Γ14
N1(x, y)tx(x, y)dS

0
0
0
0
0∫

Γ14
N4(x, y)tx(x, y)dS

0


If the traction (applied pressure) is constant over the element, then

F⃗el = tx



∫
Γ14
N1(x, y)dS

0
0
0
0
0∫

Γ14
N4(x, y)dS

0


= tx



∫ y4
y1
N1(x, y)dy

0
0
0
0
0∫ y4

y1
N4(x, y)dy

0


=
txhy
2



1
0
0
0
0
0
1
0
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where hy is the height of the element along the segment.
On the right boundary, we have N2 = 0 and N3 = 0, and since ty = 0 then the corresponding

additional elemental right hand side vector writes:

F⃗el = −
txhy
2



0
0
1
0
1
0
0
0


In the case where the traction is not constant over the edge, a numerical quadrature rule must

be employed to integrate
∫
Γ
NitxdS.

7.13.2 Three-dimensional case - Q1 × P0 elements

The right hand side is ndof × ndim = 8× 3 = 24 long.

figure above has two node 6! there are two y axis in the figure and no z. redo with tikz

� The face r = −1 is made of nodes 1,4,5,8, so n⃗ = (−1, 0, 0). Since ty = 0 and tz = 0 and
N2 = N3 = N6 = N7 on this face:

F⃗el =

∫
Γ1458



N1(x, y, z)tx(x, y, z)
N1(x, y, z)ty(x, y, z)
N1(x, y, z)tz(x, y, z)
N2(x, y, z)tx(x, y, z)
N2(x, y, z)ty(x, y, z)
N2(x, y, z)tz(x, y, z)
N3(x, y, z)tx(x, y, z)
N3(x, y, z)ty(x, y, z)
N3(x, y, z)tz(x, y, z)
N4(x, y, z)tx(x, y, z)
N4(x, y, z)ty(x, y, z)
N4(x, y, z)tz(x, y, z)
N5(x, y, z)tx(x, y, z)
N5(x, y, z)ty(x, y, z)
N5(x, y, z)tz(x, y, z)
N6(x, y, z)tx(x, y, z)
N6(x, y, z)ty(x, y, z)
N6(x, y, z)tz(x, y, z)
N7(x, y, z)tx(x, y, z)
N7(x, y, z)ty(x, y, z)
N7(x, y, z)tz(x, y, z)
N8(x, y, z)tx(x, y, z)
N8(x, y, z)ty(x, y, z)
N8(x, y, z)tz(x, y, z)



dS =

∫
Γ1458



N1(x, y, z)tx
0
0
0
0
0
0
0
0

N4(x, y, z)tx
0
0

N5(x, y, z)tx
0
0
0
0
0
0
0
0

N8(x, y, z)tx
0
0



dS = tx



∫
Γ1458

N1(x, y, z)dS

0
0
0
0
0
0
0
0∫

Γ1458
N4(x, y, z)dS

0
0∫

Γ1458
N5(x, y, z)dS

0
0
0
0
0
0
0
0∫

Γ1458
N8(x, y, z)dS

0
0



=
hyhztx

4



1
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1
0
0



� The face r = +1 is made of nodes 2,3,6,7, so n⃗ = (1, 0, 0). so the non-zero terms are in positions
(4, 7, 16, 19).
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� The face s = −1 is made of nodes 1,2,5,6, so n⃗ = (0,−1, 0). so the non-zero terms are in
positions (2, 5, 14, 17).

� The face s = +1 is made of nodes 3,4,7,8, so n⃗ = (0,+1, 0). so the non-zero terms are in
positions (8, 11, 20, 23).

7.13.3 Two-dimensional case - Q2 ×Q1 elements

We here too assume that we wish to prescribe a traction on the sides of a 2D domain which are
aligned with the vertical axis.

constant traction

It is not fundamentally different, except that the element counts 9 nodes, so the vector is 9× 2 = 18
long. The internal numbering of the nodes is as follows:

velocity pressure

3---6---2 3-------2

| | | |

7 8 5 | |

| | | |

0---4---1 0-------1

On the left boundary nodes 0,3,7 are involved while on the right boundary nodes 1,2,5 are.
Assuming once again tx constant over the edge and ty = 0, we have on the left side:

F⃗el =

∫
Γ073



N0(x, y)tx(x, y)
N0(x, y)ty(x, y)
N1(x, y)tx(x, y)
N1(x, y)ty(x, y)
N2(x, y)tx(x, y)
N2(x, y)ty(x, y)
N3(x, y)tx(x, y)
N3(x, y)ty(x, y)
N4(x, y)tx(x, y)
N4(x, y)ty(x, y)
N5(x, y)tx(x, y)
N5(x, y)ty(x, y)
N6(x, y)tx(x, y)
N6(x, y)ty(x, y)
N7(x, y)tx(x, y)
N7(x, y)ty(x, y)
N8(x, y)tx(x, y)
N8(x, y)ty(x, y)



dS = tx



∫
Γ073
N0(x, y)dS

0
0
0
0
0∫

Γ073
N3(x, y)dS

0
0
0
0
0
0
0∫

Γ073
N7(x, y)dS

0
0
0



= tx
hy
2



∫ +1

−1
N0(r = −1, s)ds

0
0
0
0
0∫ +1

−1
N3(r = −1, s)ds

0
0
0
0
0
0
0∫ +1

−1
N7(r = −1, s)ds

0
0
0


We then compute ∫ +1

−1

N0(r = −1, s)ds =

∫ +1

−1

1

2
s(s− 1)ds =

1

3
(7.260)∫ +1

−1

N3(r = −1, s)ds =

∫ +1

−1

1

2
s(s+ 1)ds =

1

3
(7.261)∫ +1

−1

N7(r = −1, s)ds =

∫ +1

−1

(1− s2)ds = 4

3
(7.262)
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Note that the sum of the three terms is 2, as expected: on the edge we have N0 +N3 +N7 = 1 so
that the integral of the sum over the interval [-1,1] yields 2. Finally

F⃗el =
txhy
6



1
0
0
0
0
0
1
0
0
0
0
0
0
0
4
0
0
0


This is implemented in stone 61, 64, 146, 148.

On the right boundary, we need to compute (careful with sign when implementing!)

F⃗el =

∫
Γ152



N0(x, y)tx(x, y)
N0(x, y)ty(x, y)
N1(x, y)tx(x, y)
N1(x, y)ty(x, y)
N2(x, y)tx(x, y)
N2(x, y)ty(x, y)
N3(x, y)tx(x, y)
N3(x, y)ty(x, y)
N4(x, y)tx(x, y)
N4(x, y)ty(x, y)
N5(x, y)tx(x, y)
N5(x, y)ty(x, y)
N6(x, y)tx(x, y)
N6(x, y)ty(x, y)
N7(x, y)tx(x, y)
N7(x, y)ty(x, y)
N8(x, y)tx(x, y)
N8(x, y)ty(x, y)



dS = tx



0
0∫

Γ125
N1(x, y)dS

0∫
Γ125
N2(x, y)dS

0
0
0
0
0∫

Γ125
N5(x, y)dS

0
0
0
0
0
0



= tx
hy
2



0
0∫ +1

−1
N1(−1, s)ds

0∫ +1

−1
N2(−1, s)ds

0
0
0
0
0∫ +1

−1
N5(−1, s)ds

0
0
0
0
0
0



=
txhy
6



0
0
1
0
1
0
0
0
0
0
4
0
0
0
0
0
0
0


linear traction

Let us now turn to the case where the traction we wish to apply on the boundary is not piecewise
constant but linear. We set tx(y) = ay + b, so that on the right side (nodes, 1,2,5), we have to
compute
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∫
Γ125

N1(x, y)tx(y)dS =

∫
Γ125

N1(x, y)(ay + b)dy

=
hy
2

∫ 1

−1

N1(r = 1, s)[ay(s) + b]ds

We have

s(y) =
2

hy
(y − y1)− 1 or y(s) =

hy
2
(s+ 1) + y1

and

N1(r, s) =
1

2
r(r + 1)

1

2
s(s− 1) ⇒ N1(r = 1, s) =

1

2
1(1 + 1)

1

2
s(s− 1) =

1

2
s(s− 1)

Then ∫
Γ125

N1(x, y)tx(y)dS =
hy
2

∫ 1

−1

N1(r = 1, s)

[
a

(
hy
2
(s+ 1) + y1

)
+ b

]
ds

=
hy
2

∫ 1

−1

1

2
s(s− 1)

[
a

(
hy
2
(s+ 1) + y1

)
+ b

]
ds

=
hy
4

∫ 1

−1

s(s− 1)

[
ahy
2

(s+ 1) + (ay1 + b)

]
ds

=
hy
4

[
ahy
2

∫ 1

−1

s(s− 1)(s+ 1)ds+ (ay1 + b)

∫ 1

−1

s(s− 1)ds

]
=

hy
4

ahy
2

∫ 1

−1

s(s2 − 1)ds︸ ︷︷ ︸
=0

+
hy
4
(ay1 + b)

∫ 1

−1

s(s− 1)ds︸ ︷︷ ︸
=2/3

=
hy
6
(ay1 + b) (7.263)

Let us now turn to N2:

N2(r, s) =
1

2
r(r + 1)

1

2
s(s+ 1) ⇒ N2(r = 1, s) =

1

2
s(s+ 1)

Then ∫
Γ125

N2(x, y)tx(y)dS =
hy
2

∫ 1

−1

N2(r = 1, s)

[
a

(
hy
2
(s+ 1) + y1

)
+ b

]
ds

=
hy
2

∫ 1

−1

1

2
s(s+ 1)

[
a

(
hy
2
(s+ 1) + y1

)
+ b

]
ds

=
hy
4

∫ 1

−1

s(s+ 1)

[
ahy
2

(s+ 1) + (ay1 + b)

]
ds

=
hy
4

[
ahy
2

∫ 1

−1

s(s+ 1)(s+ 1)ds+ (ay1 + b)

∫ 1

−1

s(s+ 1)ds

]
=

hy
4

ahy
2

∫ 1

−1

s(s+ 1)2ds︸ ︷︷ ︸
=4/3

+
hy
4
(ay1 + b)

∫ 1

−1

s(s+ 1)ds︸ ︷︷ ︸
=2/3

=
hy
6

(ahy + ay1 + b) (7.264)
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And finally let us turn to N5:

N5(r, s) =
1

2
r(r + 1)(1− s2) ⇒ N5(r = 1, s) = (1− s2)

then ∫
Γ125

N5(x, y)tx(y)dS =
hy
2

∫ 1

−1

N2(r = 1, s)

[
a

(
hy
2
(s+ 1) + y1

)
+ b

]
ds

=
hy
2

∫ 1

−1

(1− s2)
[
a

(
hy
2
(s+ 1) + y1

)
+ b

]
ds

=
hy
2

∫ 1

−1

(1− s2)
[
ahy
2

(s+ 1) + (ay1 + b)

]
ds

=
hy
2

[
ahy
2

∫ 1

−1

(1− s2)(s+ 1)ds+ (ay1 + b)

∫ 1

−1

(1− s2)ds
]

=
hy
2

ahy
2

∫ 1

−1

(1− s2)(1 + s)ds︸ ︷︷ ︸
=4/3

+
hy
2
(ay1 + b)

∫ 1

−1

(1− s2)ds︸ ︷︷ ︸
=4/3

=
hy
6

(2ahy + 4ay1 + 4b) (7.265)

Note that by setting a = 0 and b = tx we recover the expressions above for a piecewise constant
value.

If we know p1 and p2 (say, for example that the lithostatic pressure has been computed on these
nodes and we wish to prescribe it on the side) then

ty = ay + b =
p2 − p1
y2 − y1︸ ︷︷ ︸

=a

y + p1 −
p2 − p1
y2 − y1

y1︸ ︷︷ ︸
=b

On the left side (nodes 0,7,3), we have to compute∫
073

N0(x, y)(ay + b)dS =
hy
2

∫ +1

−1

N0(r = −1, s)[ay(s) + b]ds (7.266)∫
073

N3(x, y)(ay + b)dS =
hy
2

∫ +1

−1

N3(r = −1, s)[ay(s) + b]ds (7.267)∫
073

N7(x, y)(ay + b)dS =
hy
2

∫ +1

−1

N7(r = −1, s)[ay(s) + b]ds (7.268)

with

N0(r, s) =
1

2
r(r − 1)

1

2
s(s− 1)→ N0(−1, s) =

1

2
s(s− 1)

N3(r, s) =
1

2
r(r − 1)

1

2
(1− s2)→ N3(−1, s) = (1− s2)

N7(r, s) =
1

2
r(r − 1)

1

2
s(s+ 1)→ N7(−1, s) =

1

2
s(s+ 1)

If we know p0 and p3 then

tx = ay + b =
p3 − p0
y3 − y0︸ ︷︷ ︸= ay + p0 −

p3 − p0
y3 − y0

y0︸ ︷︷ ︸
=b
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7.13.4 Two-dimensional case - Linear triangle elements

Let us assume we want to apply a stress on the face 13 of the following element:

1-------------3

\ /

\ /

\ /

\ /

\ /

\ /

2

The integral on the side of the element is
∫
Γ
Nit⃗ dS for i = 1, 2, 3, which yields the following

elemental rhs vector:

F⃗el =

∫
Γ13


N1(x, y)tx(x, y)
N1(x, y)ty(x, y)
N2(x, y)tx(x, y)
N2(x, y)ty(x, y)
N3(x, y)tx(x, y)
N3(x, y)ty(x, y)

 dS =

∫
Γ13


0

N1(x, y)ty(x, y)
0
0
0

N3(x, y)ty(x, y)

 dS

since tx = 0 and there function N2 will be zero on the edge.
We also arbitrarily set y1 = y3 = 0. We have seen in Section ?? that the basis functions (expressed

as a function of the real coordinates x, y) for a linear triangle are given by:

N1(x, y) =
1

D
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]

N2(x, y) =
1

D
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]

N3(x, y) =
1

D
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]

with

D =

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 x1 0
1 x2 y2
1 x3 0

∣∣∣∣∣∣ = −x3y2 + x1y2 = y2(x1 − x3)
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∫ x3

x1

N1(x, y = 0)dx =
1

D

∫ x3

x1

[(x2y3 − x3y2) + (y2 − y3)x]

=
1

D

∫ x3

x1

[−x3y2 + y2x] sincey1 = y3 = 0

=
y2
D

∫ x3

x1

(−x3 + x)dx

=
y2

y2(x1 − x3)
[−x3x+

1

2
x2]x3x1

=
1

x1 − x3
[−x3(x3 − x1) +

1

2
(x23 − x21)]

=
1

x1 − x3
[x3(x1 − x3) +

1

2
(x3 − x1)(x3 + x1)]

= x3 −
1

2
(x3 + x1)

=
1

2
(x3 − x1) (7.269)∫ x3

x1

N3(x, y = 0)dx =
1

D

∫ x3

x1

[(x1y2 − x2y1) + (y1 − y2)x]dx

=
1

D

∫ x3

x1

[x1y2 − y2x]dx

=
y2
D

∫ x3

x1

[x1 − x]dx

=
y2

y2(x1 − x3)
[x1x−

1

2
x2]x3x1

=
1

x1 − x3
[x1(x3 − x1)−

1

2
(x23 − x21)]

= −x1 +
1

2
(x3 + x1)

=
1

2
(x3 − x1) (7.270)

Finally

F⃗el =
hty
2


0
1
0
0
0
1
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7.14 About nullspaces

7.14.1 Pressure normalisation, nullspace

pressure normlisation.tex

Basic idea and naive implementation

When Dirichlet boundary conditions are imposed everywhere on the boundary, pressure is only
present by its gradient in the equations. It is thus determined up to an arbitrary constant (one
speaks then of a nullspace of size 1). In such a case, one commonly impose the average of the
pressure over the whole domain or on a subset of the boundary to have a zero average, i.e.∫

Ω

p dV = 0 (7.271)

Let us assume for example/simplicity that we are using Q1×P0elements. The pressure is constant
inside each element so the integral above becomes:∫

Ω

p dV =
∑
e

∫
Ωe

p dV =
∑
e

pe

∫
Ωe

dV =
∑
e

peVe = 0 (7.272)

where the sum runs over all elements e of volume Ve. This can be rewritten

L⃗ · P⃗ = 0

and it is a constraint on the pressure solution which couples all pressure dofs. We can associate to
it a Lagrange multiplier λ so that we must solve the modified Stokes system: K G 0

GT 0 L⃗T

0 L⃗ 0

 ·
 V⃗P⃗

λ

 =

 f⃗

h⃗
0


When higher order spaces are used for pressure (continuous or discontinuous) one must then carry
out the above integration numerically by means of (usually) a Gauss-Legendre quadrature.

Although valid, this approach has one main disadvantage: it makes the Stokes matrix larger
(although marginally so – only one row and column are added), but more importantly it prevents
the use of some of the solving strategies of Section 7.11.

Implementation – the real deal

Here is what Bochev and Gunzburger [103, Section 7.6.4] have to say about this: ”[...] practical im-
plementations cheat by substituting enforcement of the true zero mean constraint by using procedures
collectively known as setting the pressure datum. These procedures essentially amount to removing
one degree of freedom from the pressure space. Setting the pressure datum can be accomplished in
many different ways, ranging from specifying a pressure value at a grid node to more complicated
approaches in which a boundary traction is specified at a single node in lieu of the velocity condition;
see [16, 24, 191] and the references cited therein for more details. Not surprisingly, in practice, the
simplest approach of fixing the pressure value at a node also happens to be the most widely used in
practice.”

The idea is actually quite simple and requires two steps:

1. remove the null space by prescribing the pressure at one location and solve the system;
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2. post-process the pressure so as to arrive at a pressure field which fulfils the required normali-
sation (surface, volume, ...)

The reason why it works is as follows: a constant pressure value lies in the null space, so that
one can add or delete any value to the pressure field without consequence. As such I can choose said
constant such that the pressure at a given node/element is zero. All other computed pressures are
then relative to that one. The post-processing step will redistribute a constant value to all pressures
(it will shift them up or down) so that the normalising condition is respected.

Relevant Literature
In https://scicomp.stackexchange.com/questions/27645/pressure-boundary-condition-in-lid-driven-cavity-using-finite-element-method

we find: Zero mean pressure space is used for convenience when one is interested in FEA theory (basi-
cally, we cannot enforce p(x0) = p0 for p ∈ L2 since it does not make sense); from the computational
point of view, it is easier to fix one of the pressure DOFs (although you can subtract mean value at
the post–processing step if you want to). When you are working w/ polynomial spaces—and this is
exactly what you do in FEM -it is perfectly fine to enforce p(x0) = p0. Handle this constraint like
you usually handle Dirichlet BCs (e.g., via modifying your matrix). It is also fine to ignore this
constraint in some cases (e.g., Krylov solvers can do fine with this).

https://scicomp.stackexchange.com/questions/25134/mixed-finite-element-method-for-the-stokes-system-some-implementation-details

7.14.2 Removing rotational nullspace

nullspace.tex

When free slip boundary conditions are prescribed in an annulus or hollow sphere geometry there
exists a rotational nullspace, or in other words there exists a tangential velocity field (’pure rotation’)
which, if added or subtracted to the solution, generates a solution which is still the solution of the
PDEs.

As in the pressure normalisation case (see section 7.14.1), the solution is simple:

1. fix the tangential velocity at one node on a boundary, and solve the system (the nullspace has
been removed)39

2. post-process the solution to have the velocity field fulfill the required conditions, i.e. either a
zero net angular momentum or a zero net angular velocity of the domain.

Remark. In Aspect this is available under the option ”Remove nullspace = angular momentum”
and ”Remove nullspace = net rotation”. The ”angular momentum” option removes a rotation such
that the net angular momentum is zero. The ”net rotation” option removes the net rotation of the
domain.

Angular momentum approach In physics, velocity is not a conserved quantity, but the momen-
tum is. n order to remove the angular momentum, we search for a rotation vector ω⃗ such that∫

Ω

ρ[r⃗ × (v⃗ − ω⃗ × r⃗)] dV = 0⃗ (7.273)

The angular momentum of a rigid body can be obtained from the sum of the angular momentums

39https://scicomp.stackexchange.com/questions/3531/how-to-remove-rigid-body-motions-in-linear-elasticity
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of the particles forming the body40:

H⃗ =
∑
i

L⃗i (7.274)

=
∑
i

r⃗i ×miv⃗i (7.275)

=
∑
i

r⃗i ×mi(ω⃗i × r⃗i) (7.276)

=
∑
i

mi

 ∑
imi(y

2
i + z2i ) −

∑
imixiyi −

∑
imixizi

−
∑

imixiyi
∑

imi(x
2
i + z2i ) −

∑
imiyizi

−
∑

imixizi −
∑

imiyizi
∑

imi(x
2
i + y2i )

 ·
 ωx

ωy
ωz

 (7.277)

In the continuum limit, we have:

H⃗ =

∫
Ω

ρ(r⃗) r⃗ × v⃗ dV (7.278)

and the 3× 3 moment of inertia tensor I (also called inertia tensor) is given by41

I =

∫
Ω

ρ(r⃗)[r⃗ · r⃗ 1− r⃗ × r⃗]dV (7.279)

so that the above equation writes: H⃗ = I · ω⃗ and then ω⃗ = I−1 · H⃗.
Ultimately, at each velocity node a rotation about the rotation vector ω⃗ is then subtracted from

the velocity solution [1412, eq. 26]:
v⃗new = v⃗old − ω⃗ × r⃗ (7.280)

For the special case of a solid sphere of constant density and radius R the tensor I becomes
diagonal and we have

I =
2

5
mR2

where m is the mass of the sphere.
The case of a hollow sphere is explained in Section 2.4.1 of Zhong et al. (2008) [1412].

Three dimensions

The angular momentum vector is given by:

H⃗ =

∫
Ω

ρ(r⃗)

 yw − zv
zu− xw
xv − yu

 dr⃗ =

 ∫
Ω
ρ(r⃗)(yw − zv)dr⃗∫

Ω
ρ(r⃗)(zu− xw)dr⃗∫

Ω
ρ(r⃗)(xv − yu)dr⃗

 =

 Hx

Hy

Hz

 (7.281)

40http://www.kwon3d.com/theory/moi/iten.html
41https://en.wikipedia.org/wiki/Moment_of_inertia
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while the inertia tensor for a continuous body is given by

I =

∫
Ω

ρ(r⃗)[r⃗ · r⃗ 1− r⃗ × r⃗]dr⃗ (7.282)

=

∫
Ω

ρ(r⃗)

 x2 + y2 + z2 0 0
0 x2 + y2 + z2 0
0 0 x2 + y2 + z2

−
 xx xy xz

yx yy yz
zx zy zz

 dr⃗(7.283)
=

∫
Ω

ρ(r⃗)

 y2 + z2 −xy −xz
−yx x2 + z2 −yz
−zx −zy x2 + y2

 dr⃗ (7.284)

=


∫
Ω
ρ(r⃗)(y2 + z2)dr⃗ −

∫
Ω
ρ(r⃗)xydr⃗ −

∫
Ω
ρ(r⃗)xzdr⃗

−
∫
Ω
ρ(r⃗)yxdr⃗

∫
Ω
ρ(r⃗)(x2 + z2)dr⃗ −

∫
Ω
ρ(r⃗)yzdr⃗

−
∫
Ω
ρ(r⃗)zxdr⃗ −

∫
Ω
ρ(r⃗)zydr⃗

∫
Ω
ρ(r⃗)(x2 + y2)dr⃗

 (7.285)

=

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (7.286)

Two dimensions

In two dimensions, flow is taking place in the (x, y) plane. This means that r⃗ = (x, y, 0) and
v⃗ = (u, v, 0) are coplanar, and therefore that ω⃗ is perpendicular to the plane. We have then

H⃗ =

∫
Ω

ρ(r⃗)

 0
0

xv − yu

 dr⃗ =

 0
0∫

Ω
ρ(r⃗)(xv − yu)dr⃗

 (7.287)

and

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

 Ixx Ixy 0
Iyx Iyy 0
0 0 Izz

 (7.288)

since Ixz = Iyz = 0 as z = 0, and with Ixx =
∫
Ω
ρ(r⃗)y2dr⃗ and Iyy =

∫
Ω
ρ(r⃗)x2dr⃗. The solution to

I · ω⃗ = H⃗ can be easily obtained (see Appendix D.0.2):

ωx =
1

det(I)

∣∣∣∣∣∣
0 Ixy 0
0 Iyy 0
H3 0 Izz

∣∣∣∣∣∣ = 0 (7.289)

ωy =
1

det(I)

∣∣∣∣∣∣
Ixx 0 0
Iyx 0 0
0 Hz Izz

∣∣∣∣∣∣ = 0 (7.290)

ωz =
1

det(I)

∣∣∣∣∣∣
Ixx Ixy 0
Iyx Iyy 0
0 0 Hz

∣∣∣∣∣∣ (7.291)

=
1

det(I)
(IxxIyyHz − IyxIxyHz) (7.292)

=
1

det(I)
(IxxIyy − IyxIxy)Hz (7.293)
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with det(I) = IxxIyyIzz − IyxIxyIzz = (IxxIyy − IyxIxy)Izz and then

ωz =
(IxxIyy − IyxIxy)Hz

(IxxIyy − IyxIxy)Izz
=
Hz

Izz
=

∫
Ω
ρ(r⃗)(xv − yu)dr⃗∫

Ω
ρ(r⃗)(x2 + y2)dr⃗

Concretely, this means that in 2D one does not need to solve the system I · ω⃗ = H⃗ since only ωz
is not zero.

Then, since r⃗ = (x, y, z) and ω⃗ = (0, 0, ωz):

ν⃗new(r⃗) = ν⃗old − ω⃗ × r⃗ =

 uold − (−ωzy)
vold − (ωzx)

0

 (7.294)
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Chapter 8

The Discontinuous Galerkin Finite
Element Method (DG-FEM)

chapter7.tex

dgintro.tex

What is DG?

� it is a variant of the SG (”Standard Galerkin FEM”)1

� SG-FEM requires continuity of the solution along element interfaces (edges).

� DG-FEM does not require continuity of the solution along edges.

� DG methods have more degrees of freedom than SG methods.

� DG-FEM shares some properties with FVM

Various books about DG-FEM

� Discontinuous Galerkin Methods. Theory, Computation and Applications by Cockburn, Kar-
niadakis and Shu [267]

� Mathematical Aspects of Discontinuous Galerkin Methods by Di Pietro and Ern [999]

� Discontinuous Galerkin Methods. Analysis and Applications to Compressible Flow by Dolejsi
and Feistauer [337]

� Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations by Riviére [1075]

� Discontinuous finite elements in fluid dynamics and heat transfer by Li [779]

� Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications by Hesthaven
& Warbuton [568]

1Some authors use the acronym CG for Continuous Galerkin but since the Conjugate Gradient solver acronym CG
is very much present in FE codes it can be confusing so we use here SG instead.
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DG flavors There are many different flavours of the Discontinuous Galerkin Finite Element
Method:

� HDG: Hybridizable DG [263, 268, 937, 938, 936]

� IPG: Interior Penalty G [893, 894]

� IIPG: Incomplete Interior Penalty G [338]

� SIPG: Symmetric Interior Penalty G [118, 1138]

� LDG: Local DG [215, 265, 211, 264]

Pro and cons for DG-FEM versus SG-FEM

� Assembly of stiffness matrix is easier to implement (ref?).

� Refinement of triangles is easier to implement (ref?).

� DG methods can easily handle adaptivity strategies since refinement or unrefinement of the grid
can be achieved without taking into account the continuity restrictions typical of conforming
finite element methods. Moreover, the degree of the approximating polynomial can be easily
changed from one element to the other. [266]

� DG methods can support high order local approximations that can vary nonuniformly over the
mesh.

� DG methods are readily parallelizable. Since the elements are discontinuous, the mass matrix
is block diagonal and since the size of the blocks is equal to the number of degrees of freedom
inside the corresponding elements, the blocks can be inverted by hand once and for all.[266]

The DG-FEM in geodynamics This method has not been used extensively in geodynamics with
(so-far) two noticeable exceptions:

� Lehmann et al. , Comparison of continuous and discontinuous Galerkin approaches for variable-
viscosity Stokes flow (2015) [761]

� He et al. , A discontinuous Galerkin method with a bound preserving limiter for the advection
of non-diffusive fields in solid Earth geodynamics (2017) [555]

� Puckett et al. , New numerical approaches for modeling thermochemical convection in a com-
positionally stratified fluid (2018) [1020]

8.1 First-order advection ODE in 1D

dgfem1D.tex

What follows is borrowed from the book Discontinuous finite elements in fluid dynamics and heat
transfer by Ben Q. Li [779].

To illustrate the basic ideas of the discontinuous finite element method, we consider a simple,
one-dimensional, first order differential equation with u specified at one of the boundaries:

du

dx
+ g = 0 x ∈ [a, b] and u(x = a) = ua (8.1)
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where g is a constant (for simplicity). The domain is discretized such that : Ωj = [xj, xj+1] with
j = 1, 2, ..., nel. Then, integrating the above equation over the element j with respect to a weighting
function f(x) ∫ xj+1

xj

(
du

dx
+ g

)
f(x)dx = 0 (8.2)

Remembering that
∫ d
c
u(x)v′(x)dx = [u(x)v(x)]dc−

∫ d
c
u′(x)v(x)dx, we can now perform an integration

by parts on the differential operator and we obtain:

[u(x)f(x)]xj+1
xj
−
∫ xj+1

xj

(
u
df

dx
− gf(x)

)
dx = 0 (8.3)

or,

u(xj+1)f(xj+1)− u(xj)f(xj)−
∫ xj+1

xj

(
u
df

dx
− gf(x)

)
dx = 0 (8.4)

On the element Ωj the function u is approximated by uh ∈ H, H being an appropriate function
space of finite dimension, and f by fh taken from the same function space as uh. Upon substi-
tuting (uh, fh) for (u, f) in the equation above, we have the discontinuous Galerkin finite element
formulation:

uh(xj+1)fh(xj+1)− uh(xj)fh(xj)−
∫ xj+1

xj

(
uh
dfh
dx
− gfh(x)

)
dx = 0 (8.5)

In the continuous finite element approach, the field variable uh is forced to be continuous across the
boundary. The essential idea for the discontinuous method is that uh is allowed to be discontinuous
across the boundary. Therefore, across the element, the following two different values are defined at
the two sides of the boundary:

u+j = lim
x↘x+j

uh(x) u−j = lim
x↗x−j

uh(x) (8.6)

An illustration of the jump across xj of element j: xj and xj+1 mark the boundaries of the element

Conversely, we also have:

u+j+1 = lim
x↘x+j+1

uh(x) u−j+1 = lim
x↗x−j+1

uh(x) (8.7)

It is key to remember that 1) uh is discontinuous only at the element boundaries; 2) the solution
u is smooth within (but excluding) the boundary. By this definition, the above equation contains the
variables only within the integral limits of Ωj . As a consequence, there is no direct coupling with
other intervals or other elements. The field values at a node, or the interface between two elements,
are not unique. They are calculated using the two limiting values approaching the interface from the
two adjacent elements. This feature is certainly desirable for problems with internal discontinuities.

We can finally write for a single element:

u−j+1fh(xj+1)− u+j fh(xj)−
∫ xj+1

xj

(
uh
dfh
dx
− gfh(x)

)
dx = 0 (8.8)
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8.2 Steady state diffusion in 1D

dgfem1D ssdiff.tex

Let us start simple with the 1D steady state heat conduction problem in 1D, given by the following
equation:

d2T

dx2
= 0 T (x = 0) = 0 T (x = 1) = 1 on x ∈ [0, 1] (8.9)

Although this equation is usually solved as is with its second-order derivative, it can also be written
in a mixed form, using the heat flux q (a scalar in 1D):

−dq
dx

= 0

q − dT

dx
= 0 x ∈ [0, 1] (8.10)

and the boundary conditions remain unchanged.
We apply the standard approach to establish the weak forms of these two first-order ODEs, and

we do so on an element e bound by nodes k and k + 1 with coordinates xk and xk+1

−
∫ xk+1

xk

dq

dx
f̃(x)dx = −

[
qf̃
]xk+1

xk
+

∫ xk+1

xk

df̃

dx
q(x)dx = 0 (8.11)∫ xk+1

xk

(
q − dT

dx

)
f(x)dx =

∫ xk+1

xk

q(x)f(x)dx−
[
Tf
]xk+1

xk
+

∫ xk+1

xk

df

dx
T (x)dx = 0 (8.12)

where f̃ and f are test functions. We now must examine the term between square brackets. Inside
the element, the test functions f̃ and f are well defined polynomials and we coin:

f̃+
k = f̃(x+k ) (8.13)

f̃−
k+1 = f̃(x−k+1) (8.14)

f
+

k = f(x+k ) (8.15)

f
−
k+1 = f(x−k+1) (8.16)

Concerning q and T , we will for now give them values q̂k and T̂k at node k and q̂k+1 and T̂k+1 at
node k + 1, and we will specify the hat quantities as follows:

T̂k =


T−
k k = 1

1
2
(T−

k + T+
k ) + C(T

−
k − T

+
k ) k = 2, ...N − 1

T+
k k = N

q̂k =


q+k − E(T

−
k − T

+
k ) k = 1

1
2
(q+k + q−k )− E(T

−
k − T

+
k )− C(q

−
k − q

+
k ) k = 2, ...N − 1

q−k − E(T
−
k − T

+
k ) k = N

(8.17)

where N is the number of nodes and where C and E are two constants.
Discuss the meaning/values of these!

Remark. Note that T̂k = T−
1 on the left boundary is consistent with T̂k =

1
2
(T−

k +T+
k )+C(T

−
k −T

+
k )

provided T−
1 = T+

1 . The same goes for the right boundary, and the same reasoning applies for the
heat flux terms q̂k.
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Inside an element bounded by nodes k and k+1, the temperature T and heat flux q are interpolated
over an isoparametric linear element:

Th(x) = Nk(x)T+
k +Nk+1(x)T

−
k+1

qh(x) = Nk(x)q+k +Nk+1(x)q
−
k+1

As in the (Continuous/Standard) Galerkin case of section 6.1, the test functions are taken to be the
basis functions, and in this case for both temperature and flux.

There are four unknowns q+k , q
−
k+1, T

+
k and T−

k+1 per element. All other q and T quantities in the
above/following equations will need to find their way to the rhs.

� Eq. 8.11 becomes:

0 = −q̂k+1f̃(x
−
k+1) + q̂kf̃(x

+
k ) +

∫ xk+1

xk

df̃

dx
qh(x)dx

= −q̂k+1f̃
−
k+1 + q̂kf̃

+
k +

∫ xk+1

xk

df̃

dx
(Nk(x)q+k +Nk+1(x)q

−
k+1)dx

= −q̂k+1f̃
−
k+1 + q̂kf̃

+
k +

∫ xk+1

xk

df̃

dx
Nk(x)dx · q+k +

∫ xk+1

xk

df̃

dx
Nk+1(x)dx · q−k+1 (8.18)

– We take f̃ = Nk and by vertue of the properties of basis functions N we have:

f̃+
k = f̃(x+k ) = Nk(x

+
k ) = 1

f̃−
k+1 = f̃(x−k+1) = Nk(x

+
k+1) = 0

so that

0 = q̂k +

∫ xk+1

xk

dNk
dx
Nk(x)dx · q+k +

∫ xk+1

xk

dNk
dx
Nk+1(x)dx · q−k+1

=
1

2
(q+k + q−k )− E(T

−
k − T

+
k )− C(q

−
k − q

+
k )

+

∫ xk+1

xk

dNk
dx
Nkdx · q+k +

∫ xk+1

xk

dNk
dx
Nk+1dx · q−k+1 (8.19)

– We take f̃ = Nk+1 and likewise:

f̃+
k = f̃(x+k ) = Nk+1(x

+
k ) = 0

f̃−
k+1 = f̃(x−k+1) = Nk+1(x

+
k+1) = 1

so that

0 = −q̂k+1 +

∫ xk+1

xk

dNk+1

dx
Nk(x)dx · q+k +

∫ xk+1

xk

dNk+1

dx
Nk+1(x)dx · q−k+1

= −
[
1

2
(q+k+1 + q−k+1)− E(T

−
k+1 − T

+
k+1)− C(q

−
k+1 − q

+
k+1)

]
+

∫ xk+1

xk

dNk+1

dx
Nkdx · q+k +

∫ xk+1

xk

dNk+1

dx
Nk+1dx · q−k+1 (8.20)

and finally∫ xk+1

xk

(
dNk
dx
Nk dNk

dx
Nk+1

dNk+1

dx
Nk dNk+1

dx
Nk+1

)
dx ·

(
q+k
q−k+1

)
+

(
(C + 1

2
)q+k

(C − 1
2
)q−k+1

)
+

(
ET+

k

ET−
k+1

)
=

(
(C − 1

2
)q−k

(C + 1
2
)q+k+1

)
+

(
ET−

k

ET+
k+1

)
(8.21)
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� Eq. 8.12 becomes:

0 = −[Tf ]xk+1
xk

+

∫ xk+1

xk

qh(x)f(x)dx+

∫ xk+1

xk

df

dx
Th(x)dx

= −T̂k+1f
−
k+1 + T̂kf

+

k +

∫ xk+1

xk

qh(x)f(x)dx+

∫ xk+1

xk

df

dx
Th(x)dx

– We take f = Nk:

f
+

k = f(x+k ) = Nk(x
+
k ) = 1

f
−
k+1 = f(x−k+1) = Nk(x

−
k+1) = 0

so that

0 = T̂k +

∫ xk+1

xk

qh(x)Nkdx+
∫ xk+1

xk

dNk
dx

Th(x)dx

=
1

2
(T−

k + T+
k ) + C(T

−
k − T

+
k )

+

∫ xk+1

xk

(Nk(x)q+k +Nk+1(x)q
−
k+1)Nkdx+

∫ xk+1

xk

dNk
dx

(Nk(x)T+
k +Nk+1(x)T

−
k+1)dx(8.22)

– We take f = Nk+1:

f
+

k = f(x+k ) = Nk+1(x
+
k ) = 0

f
−
k+1 = f(x−k+1) = Nk+1(x

−
k+1) = 1

so that

0 = −T̂k+1 +

∫ xk+1

xk

qh(x)Nk+1dx+

∫ xk+1

xk

dNk+1

dx
Th(x)dx

= −
[
1

2
(T−

k+1 + T+
k+1) + C(T

−
k+1 − T

+
k+1)

]
(8.23)

+

∫ xk+1

xk

(Nk(x)q+k +Nk+1(x)q
−
k+1)Nk+1dx+

∫ xk+1

xk

dNk+1

dx
(Nk(x)T+

k +Nk+1(x)T
−
k+1)dx(8.24)

and finally

∫ xk+1

xk

(
NkNk NkNk+1

Nk+1Nk Nk+1Nk+1

)
dx

(
q+k
q−k+1

)
+

∫ xk+1

xk

(
dNk
dx
Nk dNk

dx
Nk+1

dNk+1

dx
Nk dNk+1

dx
Nk+1

)
dx

(
T+
k

T−
k+1

)
+

(
(1
2
− C)T+

k

−(C + 1
2
)T−

k+1

)
=

(
−(C + 1

2
)T−

k

(1
2
− C)T+

k+1

)
(8.25)
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We will also use the results obtained in Appendix E for 1D linear elements:

M e =

∫
Ωe

N⃗ T N⃗dV =

∫
Ωe

(
NkNk NkNk+1

Nk+1Nk Nk+1Nk+1

)
dV =

h

2

1

3

(
2 1
1 2

)
=
h

6

(
2 1
1 2

)
Ke =

∫
Ωe

(
dNk
dx
Nk dNk

dx
Nk+1

dNk+1

dx
Nk dNk+1

dx
Nk+1

)
dV =

1

2

(
−1 −1
1 1

)
(8.26)

Filling this into equations (8.21) and (8.25), gives

Ke ·
(

q+k
q−k+1

)
+

(
(C + 1

2
)q+k

(C − 1
2
)q−k+1

)
+

(
ET+

k

ET−
k+1

)
=

(
(C − 1

2
)q−k

(C + 1
2
)q+k+1

)
+

(
ET−

k

ET+
k+1

)
M e ·

(
q+k
q−k+1

)
+Ke ·

(
T+
k

T−
k+1

)
+

(
(1
2
− C)T+

k

−(C + 1
2
)T−

k+1

)
=

(
−(C + 1

2
)T−

k

(1
2
− C)T+

k+1

)
(8.27)

which becomes(
C −1

2
1
2
C

)(
q+k
q−k+1

)
+

(
E 0
0 E

)(
T+
k

T−
k+1

)
=

(
(C − 1

2
)q−k + ET−

k

(C + 1
2
)q+k+1 + ET

+
k+1

)
h

6

(
2 1
1 2

)(
q+k
q−k+1

)
+

(
−C −1

2
1
2
−C

)(
T+
k

T−
k+1

)
=

(
−(1

2
+ C)T−

k

(1
2
− C)T+

k+1

)
Combining these equations gives the expression for the linear system for the element under con-

sideration: 
h
3

h
6
−C −1

2
h
6

h
3

1
2
−C

C −1
2
E 0

1
2
C 0 E




q+k
q−k+1

T+
k

T−
k+1

 =


−(1

2
+ C)T−

k

(1
2
− C)T+

k+1

−(1
2
− C)q−k + ET−

k

(1
2
+ C)q+k+1 + ET

+
k+1

 (8.28)

Left boundary Special care must be taken for the two elements on the boundaries of the domain.
On the left, we have

q̂1 = q+1 − E(T−
1 − T+

1 )

T̂1 = T−
1

Eq. (8.19) becomes:

0 = q̂k +

∫ xk+1

xk

dNk
dx
Nk(x)dx · q+k +

∫ xk+1

xk

dNk
dx
Nk+1(x)dx · q−k+1

= q+1 − E(T−
k − T

+
1 ) +

∫ xk+1

xk

dNk
dx
Nkdx · q+1 +

∫ xk+1

xk

dNk
dx
Nk+1dx · q−2 (8.29)

Eq. (8.22) becomes:

0 = T̂1 +

∫ xk+1

xk

qh(x)Nkdx+
∫ xk+1

xk

dNk
dx

Th(x)dx

= T−
1 +

∫ xk+1

xk

(Nk(x)q+1 +Nk+1(x)q
−
2 )Nkdx+

∫ xk+1

xk

dNk
dx

(Nk(x)T+
1 +Nk+1(x)T

−
2 )dx(8.30)

Eq. (8.28) then becomes:
h
3

h
6
−1

2
−1

2
h
6

h
3

1
2
−C

1
2
−1

2
E 0

1
2
C 0 E




q+1
q−2
T+
1

T−
2

 =


−T−

1

(1
2
− C)T+

k+1

ET−
k

(1
2
+ C)q+k+1 + ET

+
k+1

 (8.31)
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Right boundary The element is composed of nodes N − 1 and N . The fluxes are

q̂N = q+N − E(T
−
N − T

+
N )

T̂N = T−
N

Eq. (8.20) becomes:

0 = −q̂N +

∫ xk+1

xk

dNk+1

dx
Nk(x)dx · q+N−1 +

∫ xk+1

xk

dNk+1

dx
Nk+1(x)dx · q−N

= −
[
q+N − E(T

−
N − T

+
N )
]
+

∫ xk+1

xk

dNk+1

dx
Nkdx · q+N−1 +

∫ xk+1

xk

dNk+1

dx
Nk+1dx · q−N (8.32)

Eq. (8.24) becomes:

0 = −T̂N +

∫ xk+1

xk

qh(x)Nk+1dx+

∫ xk+1

xk

dNk+1

dx
Th(x)dx

= −T−
N +

∫ xk+1

xk

(Nk(x)q+N−1 +Nk+1(x)q
−
N)Nk+1dx+

∫ xk+1

xk

dNk+1

dx
(Nk(x)T+

N−1 +Nk+1(x)T
−
N )dx

Eq. (8.28) then becomes:
h
3

h
6
−C −1

2
h
6

h
3

1
2

1
2

C −1
2
E 0

1
2
−1

2
0 E




q+N−1

q−N
T+
N−1

T−
N

 =


−(1

2
+ C)T−

N−1

T+
N

−(1
2
− C)q−N−1 + ET

−
N−1

ET+
N

 (8.33)

Solving strategies Following Li [779], there are three main strategies:

� Successive substitution: all the variables are initialized to zero. Eq. (8.31) is solved to obtain
the data for the first element, where boundary conditions are specified. Then Eq. (8.28) is
used for all interior elements. Finally Eq. (8.33) is used for the last element. This procedure is
carried out until all fields have converged.

� Global assembly: this approach is identical to the one we have taken so far with the continuous
Galerkin Finite Element method. We form a large global matrix and then solve the linear
system to obtain the solution. The disadvantage of this approach lies in the size of the generated
marix: each node counts 4 dofs so the assembled matrix will be about 4 times as big as in the
standard FE case.

� Elimination then asssembly: one can first eliminate the variable q and solve for the temperature
T only. This speedis up the calculations, but also increases the bandwidth of the element matrix.
Li [779] states: ”Further comparison shows that the saving in CPU time for solving T alone is
less significant than the q − T iterative solution, in particular, for 3-D problems.”

Eq. (8.28) can be rewritten: (
Me C1

C2 E

)
·
(

q⃗

T⃗

)
=

(
f⃗
g⃗

)
(8.34)

The unknown of the original ODE is temperature so this is the quantity we are after. The first
line of the matrix can be written

Me · q⃗ +C1 · T⃗ = f⃗
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or,
q⃗ = M−1

e · (f⃗ −C1 · T⃗ )

The second line of the matrix is
C2 · q⃗ +E · T⃗ = g⃗

and we then replace q⃗ by the expression above:

C2 · [M−1
e · (f⃗ −C1 · T⃗ )] +E · T⃗ = g⃗

or,
−C2 ·M−1

e ·C1 · T⃗ +E · T⃗ = g⃗ −C2 ·M−1
e · f⃗

and finally
[E −C2 ·M−1

e ·C1] · T⃗ = g⃗ −C2 ·M−1
e · f⃗

Note that the matrix will still be twice as big than in the standard FEM case since each node counts
two temperature dofs.

Choice of C and E Li [779] shows satisfying results for E = 4 and C = −1/2, 0, 1/2 or E = 0 and
C = 1, 4, 10.

Remark. Aside from the shear complexity of the above derivations as compared to those for the SG
method, the fact that we have two tuning parameters E and C is a real drawback.

8.3 Time-dependent diffusion PDE in 1D

dgfem1D diff.tex

Starting from the simple transient 1-D heat conduction problem similar to the steady state heat
conduction problem only with added time dependence:

∂T

∂t
=
∂2T

∂x2
T (x = 0) = 0 T (x = 1) = 1 on x ∈ [0, 1] (8.35)

Once again we split this system into two seperate first order equations:

∂T

∂t
− ∂q

∂x
= 0

∂T

∂x
− q = 0 (8.36)

We apply the standard approach to establish the weak forms of these two first-order PDEs, and
we do so on an element e bound by nodes k and k + 1 with coordinates xk and xk+1

−
∫ xk+1

xk

(
∂T

∂t
− dq

dx

)
f̃(x)dx =

∫ xk+1

xk

∂T

∂t
f̃(x)dx−

[
qf̃
]xk+1

xk
+

∫ xk+1

xk

df̃

dx
q(x)dx = 0 (8.37)∫ xk+1

xk

(
q − dT

dx

)
f(x)dx =

∫ xk+1

xk

q(x)f(x)dx−
[
Tf
]xk+1

xk
+

∫ xk+1

xk

df

dx
T (x)dx = 0 (8.38)

where f̃ and f are test functions.
In what follows we coin Ṫ = ∂T/∂t (for convenience of notation). We once again recover Equations

(8.21) and (8.25), although with an additional time derivative term.
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Filling this into equations (8.21) and (8.25), gives

Ke ·
(

q+k
q−k+1

)
+M e ·

(
Ṫ+
k

Ṫ−
k+1

)
+

(
(C + 1

2
)q+k

(C − 1
2
)q−k+1

)
+

(
ET+

k

ET−
k+1

)
=

(
(C − 1

2
)q−k

(C + 1
2
)q+k+1

)
+

(
ET−

k

ET+
k+1

)
M e ·

(
q+k
q−k+1

)
+Ke ·

(
T+
k

T−
k+1

)
+

(
(1
2
− C)T+

k

−(C + 1
2
)T−

k+1

)
=

(
−(C + 1

2
)T−

k

(1
2
− C)T+

k+1

)
(8.39)

In what follows we set E = 0 so that we have

Ke ·
(

q+k
q−k+1

)
+M e ·

(
Ṫ+
k

Ṫ−
k+1

)
+

(
(C + 1

2
)q+k

(C − 1
2
)q−k+1

)
=

(
(C − 1

2
)q−k

(C + 1
2
)q+k+1

)
M e ·

(
q+k
q−k+1

)
+Ke ·

(
T+
k

T−
k+1

)
+

(
(1
2
− C)T+

k

−(C + 1
2
)T−

k+1

)
=

(
−(C + 1

2
)T−

k

(1
2
− C)T+

k+1

)
(8.40)

Using the expressions for M e and Ke obtained in Appendix E for 1D linear elements we arrive
at

1

2

(
−1 −1
1 1

)
·
(

q+k
q−k+1

)
+
h

6

(
2 1
1 2

)
·
(

Ṫ+
k

Ṫ−
k+1

)
+

(
(C + 1

2
)q+k

(C − 1
2
)q−k+1

)
=

(
(C − 1

2
)q−k

(C + 1
2
)q+k+1

)
h

6

(
2 1
1 2

)
·
(

q+k
q−k+1

)
+

1

2

(
−1 −1
1 1

)
·
(

T+
k

T−
k+1

)
+

(
(1
2
− C)T+

k

−(C + 1
2
)T−

k+1

)
=

(
−(C + 1

2
)T−

k

(1
2
− C)T+

k+1

)
(8.41)

which simplifies to(
C −1/2
1/2 C

)
·
(

q+k
q−k+1

)
+

(
h/3 h/6
h/6 h/3

)
·
(

Ṫ+
k

Ṫ−
k+1

)
=

(
(C − 1

2
)q−k

(C + 1
2
)q+k+1

)
(
h/3 h/6
h/6 h/3

)
·
(

q+k
q−k+1

)
+

(
−C −1/2
1/2 −C

)
·
(

T+
k

T−
k+1

)
=

(
−(C + 1

2
)T−

k

(1
2
− C)T+

k+1

)
(8.42)

or,

C1q⃗ +M ⃗̇T = f⃗

M q⃗ +C2T⃗ = g⃗

so
q⃗ = M−1(g⃗ −C2T⃗ )

and then
C1[M

−1(g⃗ −C2T⃗ )] +M ⃗̇T = f⃗

NOT REALLY FINISHED...
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8.4 Time-dependent advection PDE in 1D

dgfem1D adv.tex

Starting from the 1-D advection equation:

∂T

∂t
+ u

∂T

∂x
= 0 (8.43)

where T is the temperature and u the velocity. As shown before we start by discretizing the domain
into a collection of elements. Then the above equation can be integrated over the element which is
bounded by nodes xk and xk+1.∫ xk+1

xk

(
∂T

∂t
+ u

∂T

∂x

)
f̃(x)dx =

∫ xk+1

xk

f̃(x)
∂T

∂t
dx+

[
uT f̃

]xk+1

xk
−
∫ xk+1

xk

∂f̃

∂x
uTdx = 0

with f̃ the test function. Inside the elements the test functions are defined by well defined polyno-
mials. We once again define

f̃+
k = f̃(x+k )

f̃−
k+1 = f̃(x−k+1)∫ xk+1

xk

(
f̃(x)

∂Th
∂t
− ∂f̃

∂x
uTh

)
dx+ f̃(xk+1)ûT (T

−
k+1, T

+
k+1)− f̃(xk)ûT (T

−
k , T

+
k ) = 0 (8.44)

For a constant u or a linear problem, an effective numerical flux is the Lax-Friedrichs flux:

ûT (a, b) = u
(a+ b)

2
− |u|(b− a)

2
(8.45)

when u > 0 this flux then simply becomes:

uT (a, b) = ua (8.46)

which is in essence an upwinding scheme. Filling this into equation (8.44) gives2:∫ xk+1

xk

(
f̃(x)

∂Th
∂t
− ∂f̃

∂x
uTh

)
dx+ f̃−

k+1uT
−
k+1 − f̃

−
k uT

−
k = 0 (8.47)

The function Th inside the element can be approximated as follows:

Th(x) =
m∑
i=1

Ni(x)Ti = Nk(x)T+
k +Nk+1(x)T

−
k+1 (8.48)

where the red quantities are the unknown dofs. In what follows we coin Ṫ = ∂T/∂t so

Ṫh(x) =
m∑
i=1

Ni(x)Ṫi = Nk(x)Ṫ+
k +Nk+1(x)Ṫ

−
k+1 (8.49)

Taking f̃(x) = Nk(x) and then f̃(x) = Nk+1(x) we arrive at∫ xk+1

xk

(
Nk(x)Ṫh −

∂Nk
∂x

uTh

)
dx+Nk(x−k+1)︸ ︷︷ ︸

=0

uT−
k+1 −Nk(x

−
k )︸ ︷︷ ︸

=1

uT−
k = 0 (8.50)

∫ xk+1

xk

(
Nk+1(x)Ṫh −

∂Nk+1

∂x
uTh

)
dx+Nk+1(x

−
k+1)︸ ︷︷ ︸

=1

uT−
k+1 −Nk+1(x

−
k )︸ ︷︷ ︸

=0

uT−
k = 0. (8.51)

2why do we only keep T−? because of the velocity direction?
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The underbraced terms are either 0 or 1 due to the properties of the basis functions Ni(r⃗j) = δij.
Finally: ∫ xk+1

xk

(
Nk(x)Ṫh −

∂Nk
∂x

uTh

)
dx− uT−

k = 0 (8.52)∫ xk+1

xk

(
Nk+1(x)Ṫh −

∂Nk+1

∂x
uTh

)
dx+ uT−

k+1 = 0 (8.53)

We now use Eqs. (8.48) and (8.49) in Eq. (8.52) and Eq. (8.53):∫ xk+1

xk

(
Nk[NkṪ+

k +Nk+1Ṫ
−
k+1]−

∂Nk
∂x

u[NkT+
k +Nk+1T

−
k+1]

)
dx− uT−

k = 0 (8.54)∫ xk+1

xk

(
Nk+1[NkṪ+

k +Nk+1Ṫ
−
k+1]−

∂Nk+1

∂x
u[NkT+

k +Nk+1T
−
k+1]

)
dx+ uT−

k+1 = 0 (8.55)

Defining again (see Appendix E)

Me =

∫ xk+1

xk

(
NkNk NkNk+1

Nk+1Nk Nk+1Nk+1

)
dx =

h

6

(
2 1
1 2

)
and

Ke =

∫
Ωe

(
dNk
dx
Nk dNk

dx
Nk+1

dNk+1

dx
Nk dNk+1

dx
Nk+1

)
dV =

1

2

(
−1 −1
1 1

)
This results in:

Me ·
(

Ṫ+
k

Ṫ−
k+1

)
− uKe ·

(
T+
k

T−
k+1

)
+ u

(
0 0
0 1

)
·
(

0
T−
k+1

)
−
(
uT−

k

0

)
= 0 (8.56)

or,

Me ·
(

Ṫ+
k

Ṫ−
k+1

)
= u

[
Ke −

(
0 0
0 1

)]
·
(

T+
k

T−
k+1

)
+ u

(
T−
k

0

)
(8.57)

Me ·
(

Ṫ+
k

Ṫ−
k+1

)
= u

1

2

(
−1 −1
1 −1

)
·
(

T+
k

T−
k+1

)
+ u

(
T−
k

0

)
(8.58)

(
Ṫ+
k

Ṫ−
k+1

)
= uM−1

e ·
1

2

(
−1 −1
1 −1

)
·
(

T+
k

T−
k+1

)
+ uM−1

e ·
(
T−
k

0

)
(8.59)

We have already established that

M−1
e =

2

h

(
2 −1
−1 2

)
so (

Ṫ+
k

Ṫ−
k+1

)
=
u

h

(
−3 −1
3 −1

)(
T+
k

T−
k+1

)
+
u

h

(
4
−2

)
T−
k (8.60)

Using the same first order Runge-Kutta method as in the previous section,

T k(t+ δt) = Tk(t) + δt Ṫk (8.61)

we multiply the equation by δt and we obtain(
T+
k (t+ δt)

T−
k+1(t+ δt)

)
=

(
T+
k (t)

T−
k+1(t)

)
+
uδt

h

(
−3 −1
3 −1

)(
T+
k (t)

T−
k+1(t)

)
+
uδt

h

(
4
−2

)
T−
k (t+ δt)(8.62)

and finally
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(
T+
k (t+ δt)

T−
k+1(t+ δt)

)
=

[
1+

uδt

h

(
−3 −1
3 −1

)]
·
(

T+
k (t)

T−
k+1(t)

)
+
uδt

h

(
4
−2

)
T−
k (t+ δt) (8.63)

Also, since C = uδt/h, then the equation above can also be written(
T+
k (t+ δt)

T−
k+1(t+ δt)

)
=

[
1+ C

(
−3 −1
3 −1

)]
·
(

T+
k (t)

T−
k+1(t)

)
+ C

(
4
−2

)
T−
k (t+ δt) (8.64)

This problem can be solved starting from the left boundary and sweeping through all the elements.
The updated values of adjacent elements are used in the calculation of the next element as soon as
this element becomes available which is why the last term T−

k is taken at t+ δt.
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8.5 Steady-state diffusion in 2D

dgfem2D.tex

Let us start from the 2D steady state heat diffusion equation:

∇⃗ · k∇⃗T +H = 0 (8.65)

Just as in the 1D case this equation can be split in two separate first order differential equations:

−∇⃗ · q⃗ +H = 0︸ ︷︷ ︸
ODE 1

; q⃗ = −k∇⃗T︸ ︷︷ ︸
ODE 2

(8.66)

Let Nθ
i be the temperature basis functions so that the temperature inside an element is given by

Th(r⃗) =
m∑
i=1

Nθ
i (r⃗) Ti = N⃗θ · T⃗ (8.67)

where T⃗ is a vector of length m, the number of nodes per element. Similarly we let the basis function
for the heat flux be such that

qh
x
(r⃗) =

m∑
i=1

N q
i (r⃗)qi

x
= N⃗ q · q⃗

x
(8.68)

qh
y
(r⃗) =

m∑
i=1

N q
i (r⃗)qi

y
= N⃗ q · q⃗

y
(8.69)

where q⃗
x
, q⃗
y
and N⃗ q are vectors of length m too. Implicitly if m is the same for temperature and heat

flux, then Nθ = N q. Let us establish the weak forms of the 1st order ODEs.

ODE 1 This results in: ∫
Ω

Nθ
i ∇⃗ · q⃗ dV =

∫
Ω

Nθ
i H dV (8.70)

Using the product rule ∇⃗ · (Nθ
i q⃗) = Nθ

i ∇⃗ · q⃗ + ∇⃗Nθ
i · q⃗ then we can write

Nθ
i ∇⃗ · q⃗ = ∇⃗ · (Nθ

i q⃗)− ∇⃗Nθ
i · q⃗

which we insert in Eq. (8.70) results in∫
Ω

∇⃗ · (Nθ
i q⃗) dV −

∫
Ω

∇⃗Nθ
i · q⃗ dV =

∫
Ω

Nθ
i H dV (8.71)

Using the divergence theorem
∫
Ω
∇⃗ · F⃗ dΩ =

∫
dΩ
(F⃗ · n⃗) dS applied to Eq. (8.71) leads to∫

dΩ

Nθ
i
⃗̂q · n⃗ dS −

∫
Ω

∇⃗Nθ
i · q⃗ dV =

∫
Ω

Nθ
i H dV (8.72)

Here n⃗ is the outward vector everywhere on the boundary. The exact solution q⃗ = (q
x
, q
y
) can

be approximated with q⃗h in a finite element space, same for the approximation of the flux at the
boundary q̂ = q̂h which takes a special form in the context of the DG methods (as reflected by the
presence of the hat). We decompose the resulting equation in 3 terms A, B and C:∫

dΩ

Nθ
i
⃗̂qh · n⃗ dS︸ ︷︷ ︸
A

−
∫
Ω

∇⃗Nθ
i · q⃗h dV︸ ︷︷ ︸
B

=

∫
Ω

Nθ
i H dV︸ ︷︷ ︸
C

(8.73)

Note that terms B and C are explained in Section 6.4. In all what follows blue symbols belong the
the element under consideration and brown symbols belong to its neighbour(s).
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n⃗+ indicates the outward vector at the boundary and n⃗− is the outward vector of the neighbouring
element.

Let us turn to Li’s book for useful definitions:

� Definition of jump operators The square brackets denote the jump operator:

[q⃗h] = q⃗h · n⃗+ + q⃗h · n⃗− or [q⃗h] = (⃗qh − q⃗h) · n⃗+

[Th] = T hn⃗
+ + T hn⃗

− or [Th] = (T h − T h) n⃗+ (8.74)

Note that [q⃗h] is a scalar function which involves the normal components only; while [Th] is a
vector function.

� Definition of average operators The curly brackets indicate the average operator

{q⃗h} =
1

2
(⃗qh + q⃗h) so {qh

x
} = 1

2
(q
x
h + q

x
h) and {qh

y
} = 1

2
(q
y
h + q

y
h)

{Th} =
1

2
(T h + T h)

Note that {q⃗h} is a vector, while {Th} is a scalar.

� Definitions of fluxes In the LDG method the boundary flux ⃗̂q is defined as

⃗̂qh = {q⃗h} − E [Th]− C⃗ [q⃗h]

where E is a scalar (since [Th] is a vector) and C⃗ is a vector (since [q⃗h] is a scalar). To be once
again very explicit, the above equation writes as follows for a 2D Cartesian space:

q̂h
x

= {qh
x
} − E [Th]x − Cx[q⃗h]

=
1

2
(q
x
h + q

x
h)− E(T hn+

x + T hn
−
x )− Cx(⃗qh · n⃗+ + q⃗h · n⃗−) (8.75)

q̂h
y

= {qh
y
} − E [Th]y − Cy[q⃗h]

=
1

2
(q
y
h + q

y
h)− E(T hn+

y + T hn
−
y )− Cy (⃗qh · n⃗+ + q⃗h · n⃗−) (8.76)

Remark. In the book the note under table 4.1 states that the Cij coefficients are constant
matrices, which is quite misleading since some are actually scalars and others vectors.
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Filling Eqs. (8.75) and (8.76) into A of Eq. (8.73) leads to

A =

∫
∂Ω

Nθ
i
⃗̂qh · n⃗ dS

=

∫
∂Ω

Nθ
i

[
{q⃗h} − E [Th]− C⃗[q⃗h]

]
· n⃗+ dS

=

∫
∂Ω

Nθ
i

[
1

2
(⃗qh + q⃗h)− E(T hn⃗+ + T hn⃗

−)− C⃗[q⃗h]
]
· n⃗+ dS

=

∫
∂Ω

Nθ
i

[
1

2
(⃗qh + q⃗h) · n⃗+ − E(T hn⃗+ + T hn⃗

−) · n⃗+ − C⃗ · n⃗+[q⃗h]

]
dS

=

∫
∂Ω

Nθ
i

[
1

2
(⃗qh + q⃗h) · n⃗+ − E(T h − T h)− (C⃗ · n⃗+)(⃗qh − q⃗h) · n⃗+

]
dS since n⃗+ ·n⃗+ = 1 n⃗+ ·n⃗− = −1

=

∫
∂Ω

Nθ
i

[(
1

2
− C⃗ · n⃗+

)
q⃗h · n⃗+ − ET h

]
dS +

∫
∂Ω

Nθ
i

[(
1

2
+ C⃗ · n⃗+

)
q⃗h · n⃗+ + ET h

]
dS

=

∫
∂Ω

Nθ
i

(
1

2
− C⃗ · n⃗+

)
q⃗h · n⃗+ dS −

∫
∂Ω

Nθ
i ET h dS +

∫
∂Ω

Nθ
i

(
1

2
+ C⃗ · n⃗+

)
q⃗h · n⃗+ dS +

∫
∂Ω

Nθ
i ET h dS

= A1 + A2 + A3 + A4 (8.77)

In order to simplify notations we choose N q = Nθ = N and drop the h subscripts.
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A1 =

∫
∂Ω

Ni

(
1

2
− C⃗ · n⃗+

)
q⃗ · n⃗+ dS

=

∫
∂Ω

Ni

(
1

2
− C⃗ · n⃗+

)
(qxn

+
x + qyn

+
y ) dS

=

∫
∂Ω

Ni

(
1

2
− C⃗ · n⃗+

)
qxn

+
x dS +

∫
∂Ω

Ni

(
1

2
− C⃗ · n⃗+

)
qyn

+
y dS

⇒ A⃗1 =

(∫
∂Ω

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS

)
· q⃗
x
+

(∫
∂Ω

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS

)
· q⃗
y
(8.78)

A2 = −
∫
∂Ω

NiET dS

⇒ A⃗2 = −
(∫

∂Ω

EN⃗T N⃗dS

)
· T⃗ (8.79)

A3 =

∫
∂Ω

Nθ
i

(
1

2
+ C⃗ · n⃗+

)
q⃗ · n⃗+ dS

=

∫
∂Ω

Nθ
i

(
1

2
+ C⃗ · n⃗+

)
(qxn

+
x + qyn

+
y ) dS

=

∫
∂Ω

Nθ
i

(
1

2
+ C⃗ · n⃗+

)
qxn

+
x dS +

∫
∂Ω

Nθ
i

(
1

2
+ C⃗ · n⃗+

)
qyn

+
y dS

⇒ A⃗3 =

(∫
∂Ω

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS

)
· q⃗
x
+

(∫
∂Ω

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS

)
· q⃗
y
(8.80)

A4 =

∫
∂Ω

NiET dS

⇒ A⃗4 =

(∫
∂Ω

EN⃗T N⃗dS

)
· T⃗ (8.81)

B =

∫
Ω

∇⃗Ni · q⃗ dV

=

∫
Ω

(∂xNiqx + ∂yNiqy) dV

=

∫
Ω

∂xNiqx dV +

∫
Ω

∂yNiqy dV

⇒ B⃗ =

(∫
Ω

∂xN⃗
T N⃗ dV

)
· q⃗
x
+

(∫
Ω

∂yN⃗
T N⃗ dV

)
· q⃗
y

(8.82)

C =

∫
Ω

NiH dV

⇒ C⃗ =

∫
Ω

N⃗TH dV (8.83)

The expressions above find their equivalent in the book (NB stands for neighbour):
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Note that in the book we have: C12 = C12 · n+ → C⃗ · n⃗+; C11 → E

check minus signs

ODE 2 Its weak form writes: ∫
Ω

N q
i (q⃗ + k∇⃗T )dV = 0

or, (once again we drop the superscript on the basis functions and the h):

0 =

∫
Ω

Niq⃗ dV +

∫
Ω

Nik∇⃗T dV

=

∫
Ω

Niq⃗ dV +

∫
Ω

∇⃗(NikT ) dV −
∫
Ω

∇⃗(kNi)T dV (8.84)

We then use
∫
Ω
∇⃗f dV =

∫
∂Ω
fd⃗S and as before the temperature on the edge integral should be T̂ :∫

Ω

Niq⃗ dV +

∫
∂Ω

kNiT̂ n⃗+dS −
∫
Ω

∇⃗(kNi)T dV = 0

or, if decomposed in a 2D Cartesian axis system

0 =

∫
Ω

Niq
x
dV︸ ︷︷ ︸

D

+

∫
∂Ω

kNiT̂ n+
x dS︸ ︷︷ ︸

E

−
∫
Ω

∂x(kNi) T dV︸ ︷︷ ︸
F

(0 = D + E − F )

0 =

∫
Ω

Niq
y
dV︸ ︷︷ ︸

G

+

∫
∂Ω

kNiT̂ n+
y dS︸ ︷︷ ︸

H

−
∫
Ω

∂y(kNi) T dV︸ ︷︷ ︸
I

(0 = G+H − I) (8.85)

which (aside from a minus sign coming from a different definition of the heat flux) is ’identical’ to
the book (although the notations in the book are hella confusing):

(with κ→ k, w → N⃗)

The temperature flux T̂ is chosen to be (table 4.1 in book):

T̂h = {Th}+ C⃗[Th]−F [q⃗h] (8.86)

=
1

2
(T h + T h) + C⃗(T hn⃗+ + T hn⃗

−)−F (⃗qh · n⃗+ + q⃗h · n⃗−) (8.87)

=
1

2
(T h + T h) + (T h − T h) C⃗ · n⃗+ −F (⃗qh − q⃗h) · n⃗+ (8.88)

=

(
1

2
+ C⃗ · n⃗+

)
T h +

(
1

2
− C⃗ · n⃗+

)
T h −F (⃗qh − q⃗h) · n⃗+ (8.89)

In what follows we assume k to be constant within each element so that ∂x(kNi) = k∂xNi.
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D =

∫
Ω

Niq
x
dV ⇒ D⃗ =

(∫
Ω

N⃗T N⃗dV

)
· q⃗
x

(8.90)

F =

∫
Ω

k∂xNi T dV ⇒ F⃗ =

(∫
Ω

k∂xN⃗
T N⃗ dV

)
· T⃗ (8.91)

G =

∫
Ω

Niq
y

h dV ⇒ G⃗ =

(∫
Ω

N⃗T N⃗dV

)
· q⃗
y

(8.92)

I =

∫
Ω

k∂yNi T dV ⇒ I⃗ =

(∫
Ω

k∂yN⃗
T N⃗ dV

)
· T⃗ (8.93)

E =

∫
∂Ω

kNiT̂ n+
x dS

=

∫
∂Ω

kNi

[(
1

2
+ C⃗ · n⃗+

)
T h +

(
1

2
− C⃗ · n⃗+

)
T h −F (⃗qh − q⃗h) · n⃗+

]
n+
x dS

=

∫
∂Ω

kNi

(
1

2
+ C⃗ · n⃗+

)
T hn

+
x dS +

∫
∂Ω

kNi

(
1

2
− C⃗ · n⃗+

)
T hn

+
x dS

−
∫
∂Ω

kNiF (⃗qh · n⃗+)n+
x dS +

∫
∂Ω

kNiF (⃗qh · n⃗+)n+
x dS

= E1 + E2 + E3 + E4

H =

∫
∂Ω

kNiT̂ n+
y dS

= H1 +H2 +H3 +H4 (8.94)

Then

E1 =

∫
∂Ω

kNi

(
1

2
+ C⃗ · n⃗+

)
T hn

+
x dS ⇒

(∫
∂Ω

k

(
1

2
+ C⃗ · n⃗+

)
NT N⃗n+

x dS

)
· T⃗

E2 =

∫
∂Ω

kNi

(
1

2
− C⃗ · n⃗+

)
T hn

+
x dS ⇒

(∫
∂Ω

k

(
1

2
− C⃗ · n⃗+

)
NT N⃗n+

x dS

)
· T⃗

E3 = −
∫
∂Ω

kNiF (⃗qh · n⃗+)n+
x dS

= −
∫
∂Ω

kNiF(qxn+
x + qyn

+
y )n

+
x dS

= −
∫
∂Ω

kNiFqxn+
x n

+
x dS −

∫
∂Ω

kNiFqyn+
y n

+
x dS

⇒ −
(∫

∂Ω

kN⃗T N⃗Fn+
x n

+
x dS

)
· q⃗
x
−
(∫

∂Ω

kN⃗T N⃗Fn+
y n

+
x dS

)
· q⃗
y

E4 =

∫
∂Ω

kNiF (⃗qh · n⃗+)n+
x dS

=

∫
∂Ω

kNiF(qxn+
x + qyn

+
y )n

+
x dS

=

∫
∂Ω

kNiFqxn+
x n

+
x dS +

∫
∂Ω

kNiFqyn+
y n

+
x dS

⇒
(∫

∂Ω

kN⃗T N⃗Fn+
x n

+
x dS

)
· q⃗
x
+

(∫
∂Ω

kN⃗T N⃗Fn+
y n

+
x dS

)
· q⃗
y

(8.95)

The Hi terms are so similar to the Ei terms that there is not need to write them out explicitely.
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We have seen that ODE #2 and #1 write

D + E − F = D + E1 + E2 + E3 + E4 − F = 0 (8.96)

G+H − I = G+H1 +H2 +H3 +H4 − I = 0 (8.97)

A−B = A1 + A2 + A3 + A4 −B = C⃗ (8.98)

so that (∫
Ω

N⃗T N⃗dV

)
· q⃗
x
+

(∫
∂Ω

k

(
1

2
+ C⃗ · n⃗+

)
NT N⃗n+

x dS

)
· T⃗ +

(∫
∂Ω

k

(
1

2
− C⃗ · n⃗+

)
NT N⃗n+

x dS

)
· T⃗

−
(∫

∂Ω

kN⃗T N⃗Fn+
x n

+
x dS

)
· q⃗
x
−
(∫

∂Ω

kN⃗T N⃗Fn+
y n

+
x dS

)
· q⃗
y
+

(∫
∂Ω

kN⃗T N⃗Fn+
x n

+
x dS

)
· q⃗
x
+

(∫
∂Ω

kN⃗T N⃗Fn+
y n

+
x dS

)
· q⃗
y
−
(∫

Ω

k∂xN⃗
T N⃗ dV

)
· T⃗ = 0⃗(∫

Ω

N⃗T N⃗dV

)
· q⃗
y
+

(∫
∂Ω

k

(
1

2
+ C⃗ · n⃗+

)
NT N⃗n+

y dS

)
· T⃗ +

(∫
∂Ω

k

(
1

2
− C⃗ · n⃗+

)
NT N⃗n+

y dS

)
· T⃗

−
(∫

∂Ω

kN⃗T N⃗Fn+
x n

+
y dS

)
· q⃗
x
−
(∫

∂Ω

kN⃗T N⃗Fn+
y n

+
y dS

)
· q⃗
y
+

(∫
∂Ω

kN⃗T N⃗Fn+
x n

+
y dS

)
· q⃗
x
+

(∫
∂Ω

kN⃗T N⃗Fn+
y n

+
y dS

)
· q⃗
y
−
(∫

Ω

k∂yN⃗
T N⃗ dV

)
· T⃗ = 0⃗(∫

∂Ω

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS

)
· q⃗
x
+

(∫
∂Ω

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS

)
· q⃗
y
−
(∫

∂Ω

EN⃗T N⃗dS

)
· T⃗

+

(∫
∂Ω

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS

)
· q⃗
x
+

(∫
∂Ω

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS

)
· q⃗
y
+

(∫
∂Ω

EN⃗T N⃗dS

)
· T⃗ −

(∫
Ω

∂xN⃗
T N⃗ dV

)
· q⃗
x
−
(∫

Ω

∂yN⃗
T N⃗ dV

)
· q⃗
y

=

∫
Ω

N⃗TH dV




∫
Ω
N⃗T N⃗dV 0 −

∫
Ω
k∂xN⃗

T N⃗ dV

0
∫
Ω
N⃗T N⃗dV −

∫
Ω
k∂yN⃗

T N⃗ dV

−
∫
Ω
∂xN⃗

T N⃗ dV −
∫
Ω
∂yN⃗

T N⃗ dV 0


︸ ︷︷ ︸

AΩ

+



−
∫
∂Ω
kN⃗T N⃗Fn+x n+x dS −

∫
∂Ω
kN⃗T N⃗Fn+y n+x dS

∫
∂Ω
k
(

1
2 + C⃗ · n⃗+

)
NT N⃗n+x dS

−
∫
∂Ω
kN⃗T N⃗Fn+x n+y dS −

∫
∂Ω
kN⃗T N⃗Fn+y n+y dS

∫
∂Ω
k
(

1
2 + C⃗ · n⃗+

)
NT N⃗n+y dS

∫
∂Ω

(
1
2 − C⃗ · n⃗

+
)
N⃗T N⃗n+x dS

∫
∂Ω

(
1
2 − C⃗ · n⃗

+
)
N⃗T N⃗n+

y dS −
∫
∂Ω
EN⃗T N⃗dS


︸ ︷︷ ︸

A∂Ω


·



q⃗
x

q⃗
y

T⃗



=



−
∫
∂Ω
kN⃗T N⃗Fn+x n+x dS −

∫
∂Ω
kN⃗T N⃗Fn+y n+x dS −

∫
∂Ω
k
(

1
2 − C⃗ · n⃗

+
)
NT N⃗n+

x dS

−
∫
∂Ω
kN⃗T N⃗Fn+x n+y dS −

∫
∂Ω
kN⃗T N⃗Fn+y n+y dS −

∫
∂Ω
k
(

1
2 − C⃗ · n⃗

+
)
NT N⃗n+

y dS

−
∫
∂Ω

(
1
2 + C⃗ · n⃗+

)
N⃗T N⃗n+

x dS −
∫
∂Ω

(
1
2 + C⃗ · n⃗+

)
N⃗T N⃗n+

y dS −
∫
∂Ω
EN⃗T N⃗dS


·



q⃗
x

q⃗
y

T⃗

+


0

0∫
Ω
N⃗TH dV
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∫
Ω
N⃗T N⃗dV 0 −

∫
Ω
k∂xN⃗

T N⃗ dV

0
∫
Ω
N⃗T N⃗dV −

∫
Ω
k∂yN⃗

T N⃗ dV

−
∫
Ω
∂xN⃗

T N⃗ dV −
∫
Ω
∂yN⃗

T N⃗ dV 0


︸ ︷︷ ︸

AΩ

+

nedges∑
i=1



−
∫
∂Ωi

kN⃗T N⃗Fn+x n+x dS −
∫
∂Ωi

kN⃗T N⃗Fn+y n+x dS
∫
∂Ωi

k
(

1
2 + C⃗ · n⃗+

)
NT N⃗n+

x dS

−
∫
∂Ωi

kN⃗T N⃗Fn+x n+y dS −
∫
∂Ωi

kN⃗T N⃗Fn+y n+y dS
∫
∂Ωi

k
(

1
2 + C⃗ · n⃗+

)
NT N⃗n+

y dS

∫
∂Ωi

(
1
2 − C⃗ · n⃗

+
)
N⃗T N⃗n+

x dS
∫
∂Ωi

(
1
2 − C⃗ · n⃗

+
)
N⃗T N⃗n+

y dS −
∫
∂Ωi
EN⃗T N⃗dS


︸ ︷︷ ︸

A∂Ω


·



q⃗
x

q⃗
y

T⃗



=

nedges∑
i=1



−
∫
∂Ωi

kN⃗T N⃗Fn+x n+x dS −
∫
∂Ωi

kN⃗T N⃗Fn+y n+x dS −
∫
∂Ωi

k
(

1
2 − C⃗ · n⃗

+
)
NT N⃗n+

x dS

−
∫
∂Ωi

kN⃗T N⃗Fn+x n+y dS −
∫
∂Ωi

kN⃗T N⃗Fn+y n+y dS −
∫
∂Ωi

k
(

1
2 − C⃗ · n⃗

+
)
NT N⃗n+

y dS

−
∫
∂Ωi

(
1
2 + C⃗ · n⃗+

)
N⃗T N⃗n+

x dS −
∫
∂Ωi

(
1
2 + C⃗ · n⃗+

)
N⃗T N⃗n+

y dS −
∫
∂Ωi
EN⃗T N⃗dS


·



q⃗
x

q⃗
y

T⃗


i

+


0

0∫
Ω
N⃗TH dV


 E 0 Hx

0 E Hy

Jx Jy 0

+

nedges∑
i=1

 Exx,i Exy,i Hx,i

Eyx,i Eyy,i Hy,i

Jx,i Jy,i GT,i

 ·


q⃗
x

q⃗
y

T⃗

 =

which is identical to the equation 4.24 in Li’s book (if the terms related to the third dimension are disregarded):

+
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E =

∫
Ω

N⃗T N⃗dV (8.99)

Hx = −
∫
Ω

k∂xN⃗
T N⃗ dV (8.100)

Hy = −
∫
Ω

k∂yN⃗
T N⃗ dV (8.101)

Jx = −
∫
Ω

∂xN⃗
T N⃗ dV (8.102)

Jy = −
∫
Ω

∂yN⃗
T N⃗ dV (8.103)

Exx,i = −
∫
∂Ωi

kN⃗T N⃗Fn+x n+x dS (8.104)

Exy,i = −
∫
∂Ωi

kN⃗T N⃗Fn+y n+x dS (8.105)

Eyx,i = −
∫
∂Ωi

kN⃗T N⃗Fn+x n+y dS (8.106)

Eyy,i = −
∫
∂Ωi

kN⃗T N⃗Fn+y n+y dS (8.107)

Hx,i =

∫
∂Ωi

k

(
1

2
+ C⃗ · n⃗+

)
NT N⃗n+x dS (8.108)

Hy,i =

∫
∂Ωi

k

(
1

2
+ C⃗ · n⃗+

)
NT N⃗n+y dS (8.109)

Jx,i =

∫
∂Ωi

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS (8.110)

Jy,i =

∫
∂Ωi

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS (8.111)

GT,i = −
∫
∂Ωi

EN⃗T N⃗dS (8.112)

Exx,B,i = −
∫
∂Ωi

kN⃗T N⃗Fn+x n+x dS (8.113)

Exy,B,i = −
∫
∂Ωi

kN⃗T N⃗Fn+y n+x dS (8.114)

Eyx,B,i = −
∫
∂Ωi

kN⃗T N⃗Fn+x n+y dS (8.115)

Eyy,B,i = −
∫
∂Ωi

kN⃗T N⃗Fn+y n+y dS (8.116)

Hx,B,i = −
∫
∂Ωi

k

(
1

2
− C⃗ · n⃗+

)
NT N⃗n+

x dS (8.117)

Hy,B,i = −
∫
∂Ωi

k

(
1

2
− C⃗ · n⃗+

)
NT N⃗n+

y dS (8.118)

Jx,B,i = −
∫
∂Ωi

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS (8.119)

Jy,B,i = −
∫
∂Ωi

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS (8.120)

GT,B,i = −
∫
∂Ωi

EN⃗T N⃗dS (8.121)

ST =

∫
Ω

N⃗TH dV (8.122)

Note that E = C11 and F = C22 in the book.
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If k is constant per element, then:

E =

∫
Ω

N⃗T N⃗dV (8.123)

Hx = −k
∫
Ω

∂xN⃗
T N⃗ dV (8.124)

Hy = −k
∫
Ω

∂yN⃗
T N⃗ dV (8.125)

Jx = −
∫
Ω

∂xN⃗
T N⃗ dV (8.126)

Jy = −
∫
Ω

∂yN⃗
T N⃗ dV (8.127)

Exx,i = −k
∫
∂Ωi

N⃗T N⃗Fn+x n+x dS (8.128)

Exy,i = −k
∫
∂Ωi

N⃗T N⃗Fn+y n+x dS (8.129)

Eyx,i = −k
∫
∂Ωi

N⃗T N⃗Fn+x n+y dS (8.130)

Eyy,i = −k
∫
∂Ωi

N⃗T N⃗Fn+y n+y dS (8.131)

Hx,i = k

∫
∂Ωi

(
1

2
+ C⃗ · n⃗+

)
NT N⃗n+

x dS = −kJx,B,i (8.132)

Hy,i = k

∫
∂Ωi

(
1

2
+ C⃗ · n⃗+

)
NT N⃗n+

y dS = −kJy,B,i (8.133)

Jx,i =

∫
∂Ωi

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS (8.134)

Jy,i =

∫
∂Ωi

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS (8.135)

GT,i = −
∫
∂Ωi

EN⃗T N⃗dS (8.136)

Exx,B,i = −k
∫
∂Ωi

N⃗T N⃗Fn+x n+x dS = Exx,i (8.137)

Exy,B,i = −k
∫
∂Ωi

N⃗T N⃗Fn+y n+x dS = Exy,i (8.138)

Eyx,B,i = −k
∫
∂Ωi

N⃗T N⃗Fn+x n+y dS = Eyx,i (8.139)

Eyy,B,i = −k
∫
∂Ωi

N⃗T N⃗Fn+y n+y dS = Eyy,i (8.140)

Hx,B,i = −k
∫
∂Ωi

(
1

2
− C⃗ · n⃗+

)
NT N⃗n+

x dS = −kJx,i (8.141)

Hy,B,i = −k
∫
∂Ωi

(
1

2
− C⃗ · n⃗+

)
NT N⃗n+

y dS = −kJy,i (8.142)

Jx,B,i = −
∫
∂Ωi

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS (8.143)

Jy,B,i = −
∫
∂Ωi

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS (8.144)

GT,B,i = −
∫
∂Ωi

EN⃗T N⃗dS = GT,i (8.145)

ST =

∫
Ω

N⃗TH dV (8.146)
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8.5.1 The special case of linear rectangular elements

dgfem2D q1.tex

Let us start with Ae where we assume that k is constant within an element:

AΩe =

 E 0 Hx

0 E Hy

Jx Jy 0

 =

 E 0 −keJx
0 E −keJy
Jx Jy 0

 (8.147)

The matrices E, Hx, and Hy have been analytically derived in Appendix E.0.2:

E =
hxhy

9


1 1/2 1/4 1/2

1/2 1 1/2 1/4
1/4 1/2 1 1/2
1/2 1/4 1/2 1

 Jx =
hy

12


−2 −2 −1 −1
2 2 1 1
1 1 2 2
−1 −1 −2 −2

 Jy =
hx

12


−2 −1 −1 −2
−1 −2 −2 −1
1 2 2 1
2 1 1 2


The matrix AΩe is therefore trivial to implement.

Let us now turn to A∂Ω which is specific to the DG method. Because elements are rectangles
then n+

i n
+
j = 0 if i ̸= j (where i and j are edge indices). Also, if i = j then n+

i n
+
j = 1.

Assuming here again that heat conductivities are constant inside an element it then follows that

A∂Ωe =

nedges∑
i=1

 Exx,i Exy,i Hx,i

Eyx,i Eyy,i Hy,i

Jx,i Jy,i GT,i

 =

nedges∑
i=1

 Exx,i 0 Hx,i

0 Eyy,i Hy,i

Jx,i Jy,i GT,i

 (8.148)

Note that

� i = 1: bottom edge, i.e. s = −1 and then N4 = N3 = 0; Also n⃗+
x = 0, n⃗+

y = −1

� i = 2: right edge, i.e. r = +1 and then N1 = N4 = 0; Also n⃗+
x = 1, n⃗+

y = 0

� i = 3: top edge, i.e. s = +1 and then N1 = N2 = 0; Also n⃗+
x = 0, n⃗+

y = 1

� i = 4: left edge, i.e. r = −1 and then N2 = N3 = 0; Also n⃗+
x = −1, n⃗+

y = 0

Then

GT,1 = −E
∫
∂Ω1

N⃗T N⃗dS = −EC1

GT,2 = −E
∫
∂Ω2

N⃗T N⃗dS = −EC2

GT,3 = −E
∫
∂Ω3

N⃗T N⃗dS = −EC3

GT,4 = −E
∫
∂Ω4

N⃗T N⃗dS = −EC4

471



where the matrices Ci have been worked out in detail in appendix E.0.2:

C1 =

∫
1→2

N⃗T N⃗dS =
hx
6


2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0



C2 =

∫
2→3

N⃗T N⃗dS =
hy
6


0 0 0 0
0 2 1 0
0 1 2 0
0 0 0 0



C3 =

∫
3→4

N⃗T N⃗dS =
hx
6


0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2



C4 =

∫
4→1

N⃗T N⃗dS =
hy
6


2 0 0 1
0 0 0 0
0 0 0 0
1 0 0 2
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Exx,1 = −keF
∫
∂Ω1

N⃗T N⃗n+
x n

+
x dS = 0

Exx,2 = −keF
∫
∂Ω2

N⃗T N⃗n+
x n

+
x dS = −keFC2

Exx,3 = −keF
∫
∂Ω3

N⃗T N⃗n+
x n

+
x dS = 0

Exx,4 = −keF
∫
∂Ω4

N⃗T N⃗n+
x n

+
x dS = −keFC4

Eyy,1 = −keF
∫
∂Ω1

N⃗T N⃗n+
y n

+
y dS = −keFC1

Eyy,2 = −keF
∫
∂Ω2

N⃗T N⃗n+
y n

+
y dS = 0

Eyy,3 = −keF
∫
∂Ω3

N⃗T N⃗n+
y n

+
y dS = −keFC3

Eyy,4 = −keF
∫
∂Ω4

N⃗T N⃗n+
y n

+
y dS = 0

Hx,1 = ke

∫
∂Ω1

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS = 0

Hx,2 = ke

∫
∂Ω2

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS = ke

(
1

2
+ Cx

)
C2

Hx,3 = ke

∫
∂Ω3

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS = 0

Hx,4 = ke

∫
∂Ω4

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

x dS = −ke
(
1

2
− Cx

)
C4

Hy,1 = ke

∫
∂Ω1

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS = −ke
(
1

2
− Cy

)
C1

Hy,2 = ke

∫
∂Ω2

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS = 0

Hy,3 = ke

∫
∂Ω3

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS = ke

(
1

2
+ Cy

)
C3

Hy,4 = ke

∫
∂Ω4

(
1

2
+ C⃗ · n⃗+

)
N⃗T N⃗n+

y dS = 0

Jx,1 =

∫
∂Ω1

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS = 0

Jx,2 =

∫
∂Ω2

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS =

(
1

2
− Cx

)
C2

Jx,3 =

∫
∂Ω3

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS = 0

Jx,4 =

∫
∂Ω4

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

x dS = −
(
1

2
+ Cx

)
C4

Jy,1 =

∫
∂Ω1

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS = −
(
1

2
+ Cy

)
C1

Jy,2 =

∫
∂Ω2

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS = 0

Jy,3 =

∫
∂Ω3

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS =

(
1

2
− Cy

)
C3

Jy,4 =

∫
∂Ω4

(
1

2
− C⃗ · n⃗+

)
N⃗T N⃗n+

y dS = 0
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8.5.2 The special case of linear triangular elements

dgfem2D p1.tex

The linear basis functions in the triangle are

N1(x, y) =
1

2S
(x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y)

N2(x, y) =
1

2S
(x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y)

N3(x, y) =
1

2S
(x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y)

where S is the area of the element:

S =
1

2
[(x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3)]

We can easily verifiy that Ni(xj, yj) = δij. We then have

∂xN1(x, y) =
1

2S
(y2 − y3)

∂xN2(x, y) =
1

2S
(y3 − y1)

∂xN3(x, y) =
1

2S
(y1 − y2)

and

∂yN1(x, y) =
1

2S
(x3 − x2)

∂yN2(x, y) =
1

2S
(x1 − x3)

∂yN3(x, y) =
1

2S
(x2 − x1)

Then, as shown in Section E.0.5, the mass matrix3 and the Jx and Jy matrices are:

E =

∫
Ω

N⃗T N⃗dV =
S

12

 2 1 1
1 2 1
1 1 2

 (8.149)

Jx = −
∫
Ω

∂xN⃗
T N⃗ dV = −1

6

 y2 − y3 y2 − y3 y2 − y3
y3 − y1 y3 − y1 y3 − y1
y1 − y2 y1 − y2 y1 − y2


Jy = −

∫
Ω

∂yN⃗
T N⃗ dV = −1

6

 x3 − x2 x3 − x2 x3 − x2
x1 − x3 x1 − x3 x1 − x3
x2 − x1 x2 − x1 x2 − x1

 (8.150)

3The mass matrix is commonly called M but I use here the same notations as in Li’s book.
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reconcile all with minus signs

In the same appendix we show that

C1 =

∫
∂Ω3

N⃗T N⃗dS =
L1

6

 2 1 0
1 2 0
0 0 0

 (8.151)

C2 =

∫
∂Ω1

N⃗T N⃗dS =
L2

6

 0 0 0
0 2 1
0 1 2

 (8.152)

C3 =

∫
∂Ω2

N⃗T N⃗dS =
L3

6

 2 0 1
0 0 0
1 0 2

 (8.153)

Testing the waters - constant temperature field

Let us assume that the temperature is constant in space. It then follows that the heat flux is
identically zero.

Testing the waters - linear temperature field

If the temperature field is given by T (x, y) = T0 − ax− by then qx = a and qy = b.
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8.6 Time-dependent diffusion PDE in 2D
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8.7 Stokes equations

Two relevant papers:

� Cockburn et al. (2002) [265] - LDG

� Cockburn et al. (2010) [268] - HDG

Let us start with the dimensionless Stokes system [265]:

−η∆ν⃗+ ∇⃗p = f⃗ in Ω (8.154)

∇⃗ · ν⃗ = 0 in Ω (8.155)

ν⃗ = ν⃗D on Γ (8.156)

where Ω is a bounded domain of Rd and the Dirichlet boundary conditions are such that they satisfy
the compatibility condition ∫

Γ

ν⃗D · n⃗ = 0

where n⃗ is the outward unit normal.

Gradient-based formulation In order to obtain the LDG methods we first rewrite this system
as the following collection of conservation laws [265]:

L = ∇⃗ν⃗ in Ω (8.157)

∇⃗ · (−2ηL+ p1) = f⃗ in Ω (8.158)

∇⃗ · ν⃗ = 0 in Ω (8.159)

ν⃗ = ν⃗D on Γ (8.160)

supplemented by ∫
Ω

p = 0

where L is the gradient tensor, 1 is the unit tensor.

Remark. It may appear counter-intuitive at first to define L as being the gradient of the velocity
instead of the strain rate tensor but under the assumption of incompressibility ∂xu + ∂yv = 0 (and
constant viscosity) we can write:

∇⃗·(2ηL) = 2η

(
∂2xu+

1
2
∂x∂yv +

1
2
∂2yu

1
2
∂2xv +

1
2
∂y∂xu+ ∂2yv

)
= 2η

(
∂2xu+

1
2
∂x(−∂xu) + 1

2
∂2yu

1
2
∂2xv +

1
2
∂y(−∂yv) + ∂2yv

)
= η

(
∂2xu+ ∂2yu
∂2xv + ∂2yv

)
= η∆ν⃗

Remark. Cockburn et al. (2010) [268] also introduce the vorticity-based formulation and the stress-
based formulation but we will not explore these in what follows.

RETYPE section 2.1 of [265]
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Chapter 9

Additional techniques, features,
measurements

chapter8.tex

Solving the Stokes equations and the energy equations is one thing. Doing it in a geodynamical
context requires a lot of additional techniques.
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9.1 Dealing with a free surface (and mesh deformation)

When carrying out global models, typically mantle convection, the effect of the free surface is often
neglected/negligeable: topography ranges from ∼ 10km depth to ∼ 10km height, which is very small
compared to the depth of the mantle (∼ 3000km).

However, it has long been regognised that there is a feedback between topography and crust/litho-
sphere deformation: the surface of the Earth reflects the deeper processes, from orogeny, back-arc
basins, rifts, mid-ocean ridges, etc ... (see for instance Braun (2010) [138]).

Remark. Free surface flows are not unique to Earth sciences, and their modelling has given rise to
many studies and textbooks. A typical free-surface flow problem in the CFD literature is the so-called
’dam break’ problem [888, 42, 788, 757, 584, 17]. Other occurrences involve sea waves, flow over
structures, flow around ships, mould filling, flow with bubbles [788].

Remark. Free surface flows have also been extensively studied and even benchmarked in the ice-sheet
modelling community, see [XXX].

What distinguishes geodynamics free surface modelling from its engineering counterpart is (i) the
absence of surface tension, (ii) the fact that the fluids under consideration are Stokesian, (iii) their
rheology is complex (the elastic and plastic components can be dominant at the surface).

The problem of dealing with a free surface can be deceptively simple at first glance: as mentioned
before the amplitude of surface movement is often less than 1% of the domain size. Isostacy-driven
movements are easy to deal with since the movement is vertical (and often characteried by long
wavelength). However, computational problems quickly arise for example in subduction modelling:
the downgoing lithosphere subducts below the overriding plate and the relative convergence of the
two is likely to generate a cusp at the trench. The presence of shear bands intersecting the surface
accentuates the problem:

Taken from Maffione et al. [823]. Example of free surface deformation above intra-oceanic subduction initiation

Remark. It is difficult to talk about free surface without including the underlying mesh. What follows
should be read alongside Section 9.6.

The fully Lagrangian approach

In this case the mesh is deformed with the velocity (or displacement) computed on its nodes. It
is sometimes called ’body fitting’ [285] or ’boundary fitted’. In the case when large deformation
occurs (which is rather frequent in geodynamics – think about subduction or rifting processes where
materials end up moving 100’s or 1000’s of km, horizontally and/or vertically) – it leads to highly
deformed elements, and in some case even bow-tied:
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Example of a free surface evolution above a sinking sphere. The isostatic rebound above the sphere generates a cusp which, if no special measure is taken,

ultimately leads to a bow-tied element. Once this occurs the simulation stops since the mapping of the bow-tied element to the reference element yields to

wrong elemental matrix. Curtesy of M. Fraters

In the mildest cases this does not occur but it has long been established that large mesh de-
formation yields low accuracy calculations, especially when angles between edges become small or
large. One way to overcome this problem is to remesh, i.e. generate a better mesh based on the
available information on the deformed one. In 2D this is routinely done, especially when triangular
elements are used. In 3D, multiple remeshing are very costly and it is generally avoided. Note also
that re-meshing often involves some form of interpolation and therefore some unwanted numerical
diffusion. When deformation is reasonably small, fully lagrangian methods work and have been used
in geodynamics, see for example Hassani & Chéry (1996) [553], Melosh & Raefsky (1980) [862], or
Lavier et al. (2000) [754].

Taken from Lavier et al. (2000) [754]. Upper-crustal faulting, note that

the bottom and the top surface are deformed.
Taken from Beaumon et al. (1994) [60]. Strain rate and velocity field

for crustal S-point models.

Taken from Gurnis et al. (1996) [516]. Subduction model, topographic

expression is shown without vertical exaggeration.

Taken from Govers & Wortel [479]. Asymmetric lithospheric extension.

The Eulerian approach: using sticky air

’Sticky air’ is the default option for numerical methods which mesh cannot be deformed (typically
the finite difference method). In this case, the air above the crust/sediments is modelled as a zero-
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density1 fluid with very low viscosity (see for instance the early article by Zaleski and Julien [1400]).
One problem quickly arises when one realises that the viscosity of the air (∼ 18.5·10−6 Pa·s2) is almost
25-30 orders of magnitude lower than the (effective) viscosity of Earth materials. Real air viscosity
cannot therefore be used because of 1) round-off errors, 2) extremely poorly-conditioned matrices.
Low viscosities around 1016 − 1019 Pa s are then commonly used as they are still negligible next to
those of the (plastic) crust, and the flow of air parallel to Earth materials only generates extremely
small shear and normal stress values (thereby approaching the true nature of a free surface). This
approach is the one employed in all the papers based on the I2/I3(EL)VIS code (see Appendix ??)
and has been benchmarked in Crameri et al. (2012) [285].

This approach has a few advantages:

1. it is simple to implement

2. it is compatible with all the standard numerical methods (FEM, FDM,FVM)

3. it avoids (potentially complicated or costly ) remeshing

and quite a few drawbacks:

1. it increases the size of the computational domain, thereby adding more unknowns to the linear
system: in Schmeling et al. (2008) [1124] the air layer is set to 50 km while the lithospheric
domain underneath is 700 km thick;

2. it requires the use of averaging all along the free-surface where very large viscosity contrasts
are present. Here is what Poliakov and Podlachikov [1008] say about the sticky air method:
”Zaleski & Julien [1400] used a top layer with a very low viscosity and density to represent air
or water above the surface. This allows a simple representation of the free surface. However,
due to the very high viscosity and density contrast and diffusion between the top layer and the
underlying layers, calculations sometimes become unstable and give significant errors.”

3. it can yield air entrainment in the mantle:

Taken from Schmeling et al. (2008) [1124]. Details of the entrainment and lubrication of the soft surface layer. Light blue particles are sticky air

particle and are found to greatly alter the viscosity of the subduction channel.

4. it is not clear how thick the air layer must be

5. it often requires to ascribe thermal parameters to the air;

1Sometimes a zero value is problematic and one then resorts to a very low value instead.
2https://en.wikipedia.org/wiki/Viscosity
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6. it makes the implementation of Dirichlet or Neuman boundary conditions for temperature at
the surface less obvious.

7. it makes the coupling with surface processes codes less straightforward.

8. its accuracy depends on the method used to track materials in the rest of the code (markers,
level sets, ...). If markers are used, the free surface position is then known up to the average
distance between markers.

9. it negatively impacts the condition number of the matrix.

The term ’sticky water’ is sometimes employed too. The dynamic viscosity of water is about
10−3 Pa s so that it is also negligible compared to the viscosity of Earth materials and the same
reasonng as air applies. However, in such a case a density of about 1000 kgm−3 is then assigned to
the layer (e.g. Gerya & Burg (2007) [451]).

In conclusion, as stated in Crameri et al. (2012) [285]: ”the sticky air method is a good way to
simulate a free surface for Eulerian approaches, provided that its parameters are chosen carefully.”

The Arbitrary Lagrangian Eulerian (ALE) approach

It is a very widely used approach in FEM-based geodynamics codes but originates in the field of
CFD (Hirt et al. (1974)[575], Hughes et al. (1981) [609]) and is described at length in Souli & Zolesio
(2001) [1182], Donea et al. (2004) [339], Donea & Huerta [341]. To put it very simply, the key idea in
the ALE formulation is the introduction of a computational mesh which can move and deform with
a velocity independent of the velocity carried by the material particles.

The simple approach in Thieulot (2011) [1258]. What follows is written with a 2D Cartesian
model in mind (Q1×P0 elements are used). The computational domain is a rectangle of size Lx×Ly
and a nnx × nny rectangular grid spanning the simulation domain is generated. The grid points
constituting the top row of the grid define the discrete free surface of the domain. Once the Eulerian
velocity field has been computed on these, their position is first updated using a simple Eulerian
advection step (see a,b on figure hereunder):

r⃗′i(t+ δt) = r⃗i(t) + v⃗i · δt i = 1, . . . nnx

The other boundaries of the system remain fixed at locations x = 0, x = Lx and y = 0. Even though
the Eulerian grid must conform to the current domain shape, only vertical motion of grid nodes is
allowed. It is therefore necessary to resample the predicted free surface given by r⃗′i at equidistant
positions between x = 0 and x = Lx. The resampling is carried out either with Spline functions
or a moving least square algorithm. Finally, the vertical position of all the nodes corresponding to
column i ∈ [1, nnx] is recalculated so that they are equidistant, as sketched in Figure d. This has
the advantage of keeping the mesh distortion to a minimum in the case of large deformation.
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The ALE algorithm of [1258] in 2D. (a) Grid and free surface at a given time t; (b) advection of the free surface; (c) resampling of the free surface at

equidistant abscissae; (d) vertical adjustment of grid nodes in each column at equidistant ordinates.

The ALE method is used in the Sopale , Sulec , Fantom , Elefant , and Aspect codes to
name a few (see Appendix ??) although each code has its own specific implementation, as detailed
in what follows for Aspect .

The not-so-simple but rather elegant approach of Aspect What follows is mostly borrowed
from Rose et al. [1085]. Their approach has the advantage that it does not presuppose a geometry
(Cartesian, Spherical, ...) nor a number of dimensions. It is also designed to work in parallel and on
octree-based meshes, and with various combinations of boundary conditions. Note that the authors
specify that ”for moderate mesh deformation, the mesh stays smooth and well conditioned, though
it breaks down for large deformations”.

This approach is obtained by simply imposing the obvious condition that no particle (fluid parcel)
can cross the free surface (because it is a material surface). This can be imposed in a straightforward
manner by using a Lagrangian description along this surface. However, this condition may be relaxed
by imposing only the necessary condition: ν⃗ equal to zero along the normal to the boundary (ie.
n⃗ · ν⃗ = 0, where n⃗ is the outward unit normal to the fluid domain). The mesh position, normal to the
free surface, is determined from the normal component of the particle velocity and remeshing can be
performed along the tangent; see, for instance Huerta and Liu (1988) [603] or Braess and Wriggers
(2000) [130].

As mentioned above, the mesh velocity in normal direction at the free surface (with unit normal
n⃗) has to be consistent with the velocity of the Stokes velocity solution ν⃗(t):

ν⃗mesh(t) · n⃗ = ν⃗(t) · n⃗ on ΓF (9.1)

In ALE calculations the internal mesh velocity is usually undetermined, but one wants to smoothly
deform the mesh so as to preserve its regularity, avoiding inverted or otherwise poorly conditioned
cells. The mesh deformation can be calculated in many different ways, icluding algebraic (as men-
tioned in the previous paragraph) and PDE based approaches. The latter is chosen here. The Laplace
equation is solved where the unknown is the mesh velocity, i.e. one must solve:

∆ν⃗mesh = 0 (9.2)
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subjected to the following boundary conditions:

ν⃗mesh = 0⃗ on Γ0

ν⃗mesh = (ν⃗ · n⃗)n⃗ on ΓF

ν⃗mesh · n⃗ = 0 on ΓFS (9.3)

where ΓFS is the part of the boundary with free slip boundary conditions, Γ0 is the no-slip part and
ΓFS is the free slip part.

Once the mesh velocity has been obtained for all mesh points, these can be moved with said
velocity. However, it must be noted that the multiple occurences of the normal vector in the above
equations is not without problem as the normal vectors are not well defined on the mesh vertices,
which is where the mesh velocity is defined.
INSERT FIGURE

This yields what the authors coin the ’quasi-implicit’ scheme (we have so far neglected any kind
of stabilisation):

1. Solve the Stokes system;

2. Solve for the surface mesh velocity using Equation 9.4;

3. Solve for the internal mesh velocity using Equations 9.2, 9.3;

4. Advect the mesh forward in time using displacements determined by the forward Euler scheme:
x⃗(tn+1) = x⃗(tn) + ν⃗meshδt.

The authors list two simple methods of computing the normals:

� one can take n⃗ as the direction of the local vertical,

� one could compute n⃗ as some weighted average of the cell normals adjacent to a given vertex

but conclude that they have found that these schemes do not necessarily have good mass conservation
properties.

A better approach is proposed in the form of an L2 projection of the normal velocity v⃗ · n⃗ onto
the free surface ΓF . Multiplying the boundary conditions ν⃗mesh = (ν⃗ · n⃗)n⃗ by a test function w⃗ and
integrating over the free surface part of the boundary, we find:∫

ΓF

w⃗ · ν⃗meshdΓ =

∫
ΓF

w⃗ · (ν⃗ · n⃗)n⃗dΓ =

∫
ΓF

(w⃗ · n⃗)(ν⃗ · n⃗)dΓ (9.4)

When discretized, this forms a linear system which can be solved for the mesh velocity ν⃗mesh at the
free surface. This system, being nonzero over only the free surface, is relatively computationally
inexpensive to solve. The authors unfortunately fail to mention that this approach is particularly
interesting since the numerical quadrature used to compute the above integrals require the normal
n⃗ between the nodes and these normals are well defined over each segment joining two nodes!3

In what follows I present in some detail how to carry out the L2 projection to arrive at the surface
velocity for both Q1 and Q2 elements.

I start from the following integral over a Q1 element:∫
Γe

Niν⃗meshdΓ =

∫
Ni

(
umesh
vmesh

)
dΓ (9.5)

=

∫
Ni

(
N1 0 N2 0
0 N1 0 N2

)
·


u1
v1
u2
v2

 dΓ (9.6)

(9.7)

3what if Qk with k > 1 elements are used and nodes on the surface no more form a line?
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Writing this equation alternatively for Ni = N1, N2 yields:

∫
Γe


N1N1 0 N1N2 0
0 N1N1 0 N1N2

N2N1 0 N2N2 0
0 N2N1 0 N2N2

·


u1
v1
u2
v2

 dΓ =

∫
Γe


N1N1 0 N1N2 0
0 N1N1 0 N1N2

N2N1 0 N2N2 0
0 N2N1 0 N2N2

 dΓ ·


u1
v1
u2
v2


Turning now to the right hand side

∫
Γe
Ni(ν⃗ · n⃗e)n⃗edΓ, it yields the following rhs:

∫
Γe

(ν⃗ · n⃗e)


N1nx
N1ny
N2nx
N2ny

 dΓ

The elemental matrix and rhs must be built for each element and assembled in a global matrix and
rhs. The solution is the mesh velocity vector at all surface nodes. the same approach can be taken
for Q2 elements:∫

Γe

Niν⃗meshdΓ =

∫
Ni

(
umesh
vmesh

)
dΓ (9.8)

=

∫
Ni

(
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

)
·


u1
v1
u2
v2
u3
v3

 dΓ (9.9)

Writing this equation alternatively for Ni = N1, N2, N3 yields:

∫
Γe


N1N1 0 N1N2 0 N1N3 0
0 N1N1 0 N1N2 0 N1N3

N2N1 0 N2N2 0 N2N3 0
0 N2N1 0 N2N2 0 N2N3

N3N1 0 N3N2 0 N3N3 0
0 N3N1 0 N3N2 0 N3N3

 ·


u1
v1
u2
v2
u3
v3

 dΓ

=

∫
Γe


N1N1 0 N1N2 0 N1N3 0
0 N1N1 0 N1N2 0 N1N3

N2N1 0 N2N2 0 N2N3 0
0 N2N1 0 N2N2 0 N2N3

N3N1 0 N3N2 0 N3N3 0
0 N3N1 0 N3N2 0 N3N3

 dΓ ·


u1
v1
u2
v2
u3
v3

 (9.10)

The right hand side is then

∫
Γe

(ν⃗ · n⃗e)


N1nx
N1ny
N2nx
N2ny
N3nx
N3ny

 dΓ

Having obtained the boundary condition velocity for the Laplace equation, we can now turn our
attention to solving this ODE.
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In what follows I omit the subscript ’mesh’ and focus on the 2D case. The components of the
(mesh) velocity are given by

uh =
mν∑
i=1

Nν
i ui vh =

mν∑
i=1

Nν
i vi ν⃗h =

(
uh

vh

)
We start from the ODE to solve in its strong form:

∆ν⃗h = 0⃗

We multiply it by a velocity test function Nν
i and integrate over an element:

0⃗

=

∫
Ωe

Nν
i ∆ν⃗h

=

∫
Ωe

Nν
i ∆ν⃗hdV

=

∫
Ωe

(
Nν
i ∆u

h

Nν
i ∆v

h

)
dV

=

∫
Ωe

(
Nν
i ∇⃗ · ∇⃗uh

Nν
i ∇⃗ · ∇⃗vh

)
dV

=

∫
Ωe

(
∇⃗Nν

i · ∇⃗uh
∇⃗Nν

i · ∇⃗vh

)
dV

=

∫
Ωe

(
∂xN

ν
i ∂xu

h + ∂yN
ν
i ∂yu

h

∂xN
ν
i ∂xv

h + ∂yN
ν
i ∂yv

h

)
dV

=

∫
Ωe

(
∂xN

ν
i ∂yN

ν
i 0 0

0 0 ∂xN
ν
i ∂yN

ν
i

)
·


∂xu

h

∂yu
h

∂xv
h

∂yv
h

 dV

=

∫
Ωe

(
∂Nν

i

∂x

∂Nν
i

∂y
0 0

0 0
∂Nν

i

∂x

∂Nν
i

∂y

)
·



∂Nν
1

∂x
0

∂Nν
2

∂x
0 · · · ∂Nν

mν

∂x
0

∂Nν
1

∂y
0

∂Nν
2

∂y
0 · · · ∂Nν

mν

∂y
0

0
∂Nν

1

∂x
0

∂Nν
2

∂x
· · · 0

∂Nν
mν

∂x

0
∂Nν

1

∂y
0

∂Nν
2

∂y
· · · 0

∂Nν
mν

∂y


·



u1
v1
u2
v2
. . .
umv
vmv


dV

Writing this equation for i = 1, ...mν, we obtain:

∫



∂Nν
1

∂x

∂Nν
1

∂y
0 0

0 0
∂Nν

1

∂x

∂Nν
1

∂y
∂Nν

2

∂x

∂Nν
2

∂y
0 0

0 0
∂Nν

2

∂x

∂Nν
2

∂y
...

...
...

...
...

...
...

...
∂Nν

mν

∂x

∂Nν
mν

∂y
0 0

0 0
∂Nν

mν

∂x

∂Nν
mν

∂y


·



∂Nν
1

∂x
0

∂Nν
2

∂x
0 · · · ∂Nν

mν

∂x
0

∂Nν
1

∂y
0

∂Nν
2

∂y
0 · · · ∂Nν

mν

∂y
0

0
∂Nν

1

∂x
0

∂Nν
2

∂x
· · · 0

∂Nν
mν

∂x

0
∂Nν

1

∂y
0

∂Nν
2

∂y
· · · 0

∂Nν
mν

∂y


·



u1
v1
u2
v2
. . .
umv
vmv


︸ ︷︷ ︸

V⃗

dV = 0⃗
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or, (∫
Ωe

BT ·B dV

)
· V⃗ = 0⃗

where B is a (ndim ∗ ndim)× (mv ∗ ndofV ) matrix. This is implemented in Stone 54 ??.

Remark. The integration by parts should have a minus appear but since the left hand side is 0, it is
not taken into account.

Note that Rose et al. (2017) [1085] go further than this and propose a ’nonstandard finite difference
scheme’ and make a link with the stabilisation presented in Kaus et al. (2010) [681].
surface terms arising from the integration by parts are neglected. EXPLAIN WHY!

Yet another approach [339] The unknown position of free surfaces can be computed using
the following approach: for the simple case of a single-valued function h = h(x, y, t), a hyperbolic
equation must be solved,

∂h

∂t
+ (ν⃗ · ∇⃗)h = 0 (9.11)

This is the kinematic equation of the surface and has been used, for instance, by Ramaswamy and
Kawahara (1987), Huerta and Liu, 1988b, 1990; Souli and Zolesio (2001).

Eq. (9.11) is a simple advection equation. One could also add a diffusion operator with a diffusion
coefficient D. Low values of D could be used to stabilise the surface while higher values (possibly
nonlinear ones) could be used to account for simple surface processes.

∂h

∂t
+ (ν⃗ · ∇⃗)h = D∆h (9.12)

Also, Hansen and Nielsen [532, 531] write: “During the entire model evolution surface processes
act to re-distribute sediments. These processes are modelled by a diffusion equation with a source
term enabling the transport of sediments to and from the model profile. The transport equation is
written

ḣ = ∇ · (κ∇h) + ṡ(w)

where κ = 200km2/Ma is the diffusivity of topography and ṡ(w) is a linear function of water depth.”
The following pictures are taken from Naliboff et al. (2017) [927] on the topic of how complex fault

interaction controls continental rifting. It is a beautiful example (among many) of the importance
of free surface geodynamical expression and large deformation:
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Taken from [927]

On the topic of moving internal nodes

Braess & Wriggers [130] propose the following interesting algorithm: ”A measure of the quality of
a triangular mesh is the quotient of the outer radius rout and the inner radius rin of each element.
This quotient is important because it plays a certain role in a priori error estimates. If an element
degenerates this quotient will approach infinity. Another important feature of good mesh is that no
element becomes very large. With these considerations in mind the penalty function W is defined:

W =
∑
elts

(
rout
rin

)m(
rout
r0

)n
(9.13)

where m, n and r0 are positive constants. For our calculations we chose m = 3, n = 1 and r0 = 1, but
the results seem to depend only slightly on this choice. Whenever a triangle is distorted or very large,
this function becomes very large. A similar penalty function was presented in [657] for four-node
elements. In that case the angles of the elements are used to construct the penalty function. In order
to regularize a distorted mesh the coordinates of the internal nodes will be chosen such that W is
minimized. It is not necessary to reach the global minimum, a rough approximation is sufficient.
Therefore the minimization of the potential can be done efficiently with standard procedures and will
not be discussed in any detail. This algorithm can also be applied to h-adaptive mesh-generation by
choosing appropriate constants r0 for each triangle.”4

This is still WORK IN PROGRESS. I Need to look at those papers:
ALE: Ramaswamy & Kawahara (1987) [1034], ALE: Huerta & Liu (1988) [603], ALE: Ponthot &

Belytschko (1998)[1010], ALE: Benson (1989) [71], ALE: Sung et al. (2000) [1219], ALE: Ramaswamy
(1990) [1033], Tezduyar et al. (1992) [1248](moving pulse) Andres-Martinez et al. (2015) [24] (read
!! extract benchmarks ? ) Kramer et al. (2012) [731] (read !! extract benchmarks ? ) Steer et
al. (2011) [1195] Maierova [825] Zhong et al. [1410], Gurnis et al. [516] Ellis et al. (2004) [369] Braess
& Wriggers (2000) [130] Parsons & Daly (1983) [980]

Free surface treatment in FDM: [353].

Free surface stabilization algorithm (FSSA)

To start with, Duretz et al. (2011) [352] is concerned with the Finite Difference method so I will
not expore this one further (see Gerya’s book [456] for all things FDM). Note that their approach is
similar to what follows.

4Indeed, if r0 is the same for all elements this parameter will not play any role at all in the minimisation process.
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There are then four articles left: Kaus et al. (2010) [681], Quinquis & Buiter (2011) [1028], Rose
et al. (2017) [1085], and Schuh-Senlis et al. (2020) [1144].

The first one is rather technical while the second is more to the point with some simple reasoning.
Apparently both author groups arrived at about the same formulation/algorithm at about the same
time. The third and fourth paper implement the algorithm in Aspect and the FAIStokes code
respectively.

The basic idea is rather simple. As stated in Quinquis et al. (2011) [1028]: ”In numerical subduc-
tion models which include a free surface or other interfaces with large density contrasts, an instability
can occur as a result of numerical overshoot when computing restoring forces”.

In essence when the timestep δt exceeds (or is comparable) to a characteristic relaxation time ts
then body and surface forces will be out of balance with the updated free surface. As a consequence
oscillations will occur and get amplified with sometimes a sloshing effect, also called ’drunken sailor’.
. The solution is to add a term in the FE matrix which takes into account the incremental change
in normal forces across density interfaces during each timestep:

∆Fy = ∆ρ gyδt vy

where ∆Fy is the extra vertical force term across the interface, ∆ρ is the change in density across
the interface, and vy is the vertical velocity on the interface. This extra term is applied to the free
surface, and at any other interface with a density contrast. Unfortunately, although this is easy
to understand, it is not very clear how to implement it, which is when Kaus et al. (2010) becomes
useful.

I first present results from my doomed 2014 Elefant paper 5 [1257] in which I carried out the
Rayleigh-Taylor instability experiment described in [681] where a dense fluid overlays another fluid
in a square domain with their initial interface being of sinusoidal shape.

Taken from Thieulot (2014) [1257] When the time step δt is small, the simulation evolves smoothly, but too large a time step leads to a sloshing instability,

also called ’drunken sailor effect’ in the community.

The position y(t) of the free surface point situated at x = Lx is monitored over time:

5This paper is about my Elefant code which relied at the time solely on Q1 × P0 elements with the penalty
formulation.
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The stabilisation algorithm is first switched off and up to a time step of δt ∼ 3800yr, the free surface does not develop any instability (all curves are

superimposed). For a time step of 3900yr and above, a clear oscillation develops (green seesaw curve on the figure). Turning the algorithm on, time steps

larger than dt ∼ 10, 000yr can be used and no oscillation is observed.

I found that: a) the presence of the stabilisation algorithm with small time steps does not
introduce a significant difference in the outcome (less than a meter of deviation after 1Myr); b)
the time step was increased up to δt = 20, 000yr and the simulation remained stable (the vertical
deviation differed by approximately 4m from the one obtained with a very small time step, which
remains a remarkable result since it only represents ∼ 0.2% of the element size); c) time steps up
to δt = 50, 000yr remain stable but lead to oscillations at the beginning and deviate in the end by
about 5 meters.

Finally, let us look at the mathematical details behind this stabilisation, as presented in Kaus et
al. (2010) [681].
FINISH!!

Relevant Literature: Furuchi (2011) [428]
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9.2 Convergence criterion for nonlinear iterations

nlconvcrit.tex

Disclaimer: the topic of nonlinear PDEs solving is vast and has received much attention from the
mathematical community. In what follows I present a few key ideas which are at the core of many
codes and publications in computational geodynamics.

Looking at the conservation equations that we must solve, i.e. conservation of mass, momentum
and energy, we find that more often than not the coefficients of these PDEs depend on the strain
rate, temperature, pressure, etc ... This makes solving the PDEs even harder. Also the advection
term ν⃗ · ∇⃗ couples the two primary variables velocity and temperature.

One simple approach consists first in ’separating’ the mass+momentum equations from the energy
equation: one solves the first two equations assuming temperature known while the energy equation
is solved assuming velocity and pressure known. Better schemes obviously exist and iterate on
these equations until convergence for velocity, pressure and temperature is reached (see for instance
the Aspect manual). In what follows I focus on the mass and momentum equations assuming
temperature known.

The main source of nonlinearity lies in the (effective) viscosity which often depends on strain rate
and pressure (note that density can also depend on pressure in compressible cases):

∇⃗ · (2ηeff(ε̇, p) ε̇)− ∇⃗p+ ρg⃗ = 0⃗

∇⃗ · ν⃗ = 0

Simply put, in order to solve these equations and obtain the velocity and pressure fields I need to
specify the density and viscosity (and of course appropriate boundary conditions!), but in order to
compute the viscosity I need the strain rate and pressure fields.

The simplest approach here consists in so-called Picard iterations as explained in Section 9.19.
Let us start with the penalty-based FEM codes. In this case the mass and momentum equations

are ’merged’ into a single PDE where pressure has been eliminated:

∇⃗ · (2ηeff(ε̇, p) ε̇) + λ∇⃗(∇⃗ · ν⃗) + ρg⃗ = 0⃗

In this case the algorithm is simple:

1. start with a guess for the velocity and pressure fields, i.e. V⃗old and P⃗old

2. compute the effective viscosity field with V⃗old and P⃗old

3. solve PDE, obtain new solution V⃗new

4. compute P⃗new from V⃗new

5. assess convergence, i.e. answer ’how close are the newly obtained fields from the old ones?’

6. V⃗old ← V⃗new, and P⃗old ← P⃗new

7. if not converged go back to 2, else exit

Thieulot (2011) [1258] computes the means ⟨V⃗ i⟩, ⟨V⃗ i+1⟩, and the variances σiV and σi+1
V followed

by the correlation

Ri,i+1 =
⟨(V⃗ i − ⟨V⃗ i⟩) · (V⃗ i+1 − ⟨V⃗ i+1⟩)⟩√

σiVσ
i+1
V
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Since the correlation is normalised, it takes values between 0 (very dissimilar velocity fields) and
1 (very similar fields). The following convergence criterion, formulated in terms of the variable
χ = 1 − Ri,i+1 has been implemented: convergence is reached when χ < tol. Since pressure is a
derived quantity from velocity, if velocity is converged so is pressure6.

When the algorithm above is close to convergence then V⃗ i and V⃗ i−1 are close. If these were scalar
quantities we could subtract them and look at the (absolute) difference: if it is ’small enough’ then
the algorithm has converged. However there are two problems with this:

1. V⃗ i and V⃗ i−1 are vector quantities (with potentially millions of values) so in order to measure a

scalar difference between these we must take the norm of the difference, or ||V⃗ i − V⃗ i−1|| and it
is common to take the L2-norm.

2. we do not know a priori the (magnitude of the) solution so that ’small enough’ is a dangerous

statement. We could check for ||V⃗ i − V⃗ i−1|| < tol and set tol = 10−6 for example. However
in geodynamics velocities are of the order of a cmyr−1 which is about 3.1 · 10−10ms−1. Small
velocity changes would then be enforced only if tol < 10−12. This value might prove completely
unpractical for other applications. In light of all this one then resorts to assessing the relative
change in the velocity by normalising the previous quantity by the average velocity in the
domain ||V⃗ i||.

This is the very approach taken by Spiegelman et al. [1187] who monitor the relative changes in
the solution from iteration to iteration:

||∆V⃗||L2
||V⃗||L2

=


∫
Ω

(V⃗i − V⃗i−1) · (V⃗i − V⃗i−1)dV∫
Ω

V⃗i · V⃗idV


1/2

Of course, if a mixed formulation is used where velocity and pressure are solved for unknowns, the
same monitoring can be done for pressure:

||∆P⃗||L2
||P⃗||L2

=


∫
Ω

(P⃗i − P⃗i−1) · (P⃗i − P⃗i−1)dV∫
Ω

P⃗i · P⃗idV


1/2

Convergence is reached when both are below 0.001 (as in Lemiale et al. (2008) [764]) or 0.0001 (as
in Kaus et al. (2010) [679]).

The last option is via the nonlinear residual. Coming back to the penalty formulation, we can
form the nonlinear residual as follows:

R⃗i = K(ηeff(ε̇
i, pi)) · V⃗ i − f⃗

where K is defined in Section 7.4. Close to convergence V⃗ i and V⃗ i−1 are very close so that we expect
the residual R⃗ to become smaller and smaller. In order to extract a scalar from R⃗ we once again
resort to the L2-norm and we also wish to to monitor its relative change. In this case it is customary
to use R⃗0 = f⃗ so that the convergence criterion becomes

||R⃗i||
||R⃗0||

< tol.

FINISH: explain problem with mixed formulation!

6Two caveats here: the amplitude of the chequerboard mode might come into play - in the case Q1 × P0 elements
are used- and so does the applied smoothing.
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Taken from Spiegelman, May & Wilson et al. (2016). Example of reported nonlinear convergence.
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9.3 Strain weakening

strainweakening.tex

Several mechanisms may contribute to strain or strain rate dependent weakening but their rela-
tive and absolute importance is poorly constrained. Furthermore, weakening mechanisms are often
crudely parameterised in geodynamical codes with simple mathematical functions and a limited
number of parameters.

For example, Allken, Huismans, and Thieulot [10] (2011) authors use a von Mises plasticity
formulation so that the rheology is parameterised by the cohesion c, or c = σy in their notations.
The yield strength σy starts is constant until the strain ε reaches the threshold value ε1. It then
decreases linearly from σy to σswy between ε1 and ε2. For strain values ε > ε2 , the yield strength
remains constant at σswy .

Taken from Allken, Huismans, and Thieulot [10] (2011).

The same authors in a subsequent study use a Drucker-Prager rheology parameterised by cohesion
c and friction angle ϕ. They use the same approach as before but now both parameters are subjected
to strain weakening:

Taken from Allken, Huismans, and Thieulot [9] (2012), see also Thieulot [1258] (2011).

They further define the factor R = C0/Csw = ϕ0/ϕsw ≥ 1 which is a proxy for the ratio σy/σ
sw
y

where σy = p sinϕ+ c cosϕ, and carry out 3D crustal extensional models for R between 2 and 5.

� In Le Pourhiet, May, Huille, Watremez, and Leroy [756] (2017) the authors also define

τy = p sin(ϕ(εp)) + c0 cos(ϕ(ε
p))

but the cohesion is regarded to be constant. The angle of friction ϕ is assumed to decrease as
a function of the accumulated plastic strain εp to

ϕ(εp) = max

(
ϕ∞, ϕ0 −

εp(ϕ0 − ϕ∞)

εp∞

)
This equation defines an empirical softening relation which reduces the friction angle linearly
with accumulated plastic strain. ϕ0 defines the initial friction angle, εp∞ represents the measure
of plastic strain after which complete softening is achieved and internal friction angle reaches
ϕ∞ . Plastic strain represents an integrated, tensorial invariant measure of the deformation
which has occurred due to plastic yielding. Thus, the quantity εp can be regarded as a simplified
measure of material damage.
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� In Dyksterhuis et al. Dyksterhuis, Rey, Mueller, and Moresi [356] (2007) a variant of the above
formulation is used:

f(ε) =

{
1− (1− a)(ε/ε0)n ε ≤ ε0

a ε ≥ ε0

where ε is the accumulated plastic strain, ε0 is the saturation strain beyond which no further
weakening takes place, n is an exponent that controls the shape of the function and a is a
maximum value of strain weakening beyond which no further weakening occurs. This equation
leads to the following plot:

Strain-softening behaviour showing strength weakening from 100 to 20% after an accumulated strain of 0.5, after which no further weakening occurs.

Dashed lines show the effect of the exponential parameter (En) on the curve. Taken from Dyksterhuis, Rey, Mueller, and Moresi [356] (2007).

Although it is not specified in Dyksterhuis, Rey, Mueller, and Moresi [356] what f is, other
users of the code specify that the yield strength is given by

σy = (B0 +B1p)f(ε)

where p is the pressure, B0 is the cohesion, or yield stress at zero pressure, and Bp is the
pressure dependence of the yield stress, equivalent to the friction coefficient in Byerlee’s law.

In Yang, Moresi, Zhao, Sandiford, and Whittaker [1380] (2018) the authors take a different
approach:

C = C0 + C1 exp

(
−εplast
εref

)
µ = µ0 + µ1 exp

(
−εplast
εref

)
where C0 and C0 + C1 represent the minimum and maximum cohesions, respectively; µ0 and
µ0 + µ1 represent the minimum and maximum frictional coefficients, respectively. εplast and
εref represent accumulated plastic strain and reference strain, respectively.

� In Leroy and Ortiz [772] (1989) the authors describe another formulation for plastic hardening.
The angle of friction changes with the accumulated plastic strain:

sinϕ = sinϕi +
2(sinϕf − sinϕi)

√
εpcεp

εp + εpc

where ϕ transitions from an initial value ϕi to a maximum ϕf attained when the effective plastic
strain reaches a critical value εpc . When εp → εpc then ϕ→ ϕf .

Relevant Literature: Sterpi [1211] (1999), Nijholt and Govers [942] (2015).
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9.4 Assigning values to quadrature points

As we have seen in Section 7, the building of the elemental matrix and rhs requires (at least) to assign
a density and viscosity value to each quadrature point inside the element. Depending on the type of
modelling, this task can prove more complex than one might expect and have large consequences on
the solution accuracy.

Here are several options:

� The simplest way (which is often used for benchmarks) consists in computing the ’real’ coor-
dinates (xq, yq, zq) of a given quadrature point based on its reduced coordinates (rq, sq, tq), and
passing these coordinates to a function which returns density and/or viscosity at this location.
For instance, for the Stokes sphere:

def rho(x,y):

if (x-.5)**2+(y-0.5)**2<0.123**2:

val=2.

else:

val=1.

return val

def mu(x,y):

if (x-.5)**2+(y-0.5)**2<0.123**2:

val=1.e2

else:

val=1.

return val

This is very simple, but it has been shown to potentially be problematic. In essence, it can
introduce very large contrasts inside a single element and perturb the quadrature. Please read
section 3.3 of [560] and/or have a look at the section titled ”Averaging material properties” in
the Aspect manual.

� another similar approach consists in assigning a density and viscosity value to the nodes of the
FE mesh first, and then using these nodal values to assign values to the quadrature points.
Very often ,and quite logically, the basis functions are used to this effect. Indeed we have seen
before that for any point (r, s, t) inside an element we have

fh(r, s, t) =
m∑
i

fiNi(r, s, t)

where the fi are the nodal values and the Ni the corresponding basis functions.

In the case of linear elements (Q1 basis functions), this is straightforward. In fact, the basis
functions Ni can be seen as moving weights: the closer the point is to a node, the higher the
weight (basis function value).

However, this is quite another story for quadratic elements (Q2 basis functions). In order to
illustrate the problem, let us consider a 1D problem. The basis functions are

N1(r) =
1

2
r(r − 1) N2(r) = 1− r2 N3(r) =

1

2
r(r + 1)

Let us further assign: ρ1 = ρ2 = 0 and ρ3 = 1. Then

ρh(r) =
m∑
i

ρiNi(r) = N3(r)
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There lies the core of the problem: the N3(r) basis function is negative for r ∈ [−1, 0]. This
means that the quadrature point in this interval will be assigned a negative density, which is
nonsensical and numerically problematic!

use 2X Q1. write about it !

The above methods work fine as long as the domain contains a single material. As soon as there
are multiple fluids in the domain a special technique is needed to track either the fluids themselves
or their interfaces. Let us start with markers. We are then confronted to the infernal trio (a menage
a trois?) which is present for each element, composed of its nodes, its markers and its quadrature
points.

Each marker carries the material information (density and viscosity). This information must
ultimately be projected onto the quadrature points. Two main options are possible: an algorithm
is designed and projects the marker-based fields onto the quadrature points directly or the marker
fields are first projected onto the FE nodes and then onto the quadrature points using the techniques
above.

————————–
At a given time, every element e contains ne markers. During the FE matrix building process,

viscosity and density values are needed at the quadrature points. One therefore needs to project
the values carried by the markers at these locations. Several approaches are currently in use in the
community and the topic has been investigated by [330] and [352] for instance.

elefant adopts a simple approach: viscosity and density are considered to be elemental values,
i.e. all the markers within a given element contribute to assign a unique constant density and viscosity
value to the element by means of an averaging scheme.

While it is common in the literature to treat the so-called arithmetic, geometric and harmonic
means as separate averagings, I hereby wish to introduce the notion of generalised mean, which is
a family of functions for aggregating sets of numbers that include as special cases the arithmetic,
geometric and harmonic means.

If p is a non-zero real number, we can define the generalised mean (or power mean) with exponent
p of the positive real numbers a1, ... an as:

Mp(a1, ...an) =

(
1

n

n∑
i=1

api

)1/p

(9.14)

and it is trivial to verify that we then have the special cases:

M−∞ = lim
p→−∞

Mp = min(a1, ...an) (minimum) (9.15)

M−1 =
n

1
a1

+ 1
a2

+ · · ·+ 1
an

(harm. avrg.) (9.16)

M0 = lim
p→0

Mp =

( n∏
i=1

ai

)1/n

(geom. avrg.) (9.17)

M+1 =
1

n

n∑
i=1

ai (arithm. avrg.) (9.18)

M+2 =

√√√√ 1

n

n∑
i=1

a2i (root mean square) (9.19)

M+∞ = lim
p→+∞

Mp = max(a1, ...an) (maximum) (9.20)

Note that the proofs of the limit convergence are given in [169].
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An interesting property of the generalised mean is as follows: for two real values p and q, if p < q
then Mp ≤Mq. This property has for instance been illustrated in Fig. 20 of [1124].

One can then for instance look at the generalised mean of a randomly generated set of 1000
viscosity values within 1018Pa.s and 1023Pa.s for −5 ≤ p ≤ 5. Results are shown in the figure
hereunder and the arithmetic, geometric and harmonic values are indicated too. The function Mp

assumes an arctangent-like shape: very low values of p will ultimately yield the minimum viscosity
in the array while very high values will yield its maximum. In between, the transition is smooth and
occurs essentially for |p| ≤ 5.

 1e+18

 1e+19

 1e+20

 1e+21

 1e+22

 1e+23

-4 -2  0  2  4

M
(p

)

p

geom.

arithm.
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▷ python codes/fieldstone markers avrg
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9.5 Matrix (Sparse) storage

storage.tex

The FE matrix (or the blocks which compose it) is the result of the assembly process of all
elemental matrices. Its size can become quite large when the resolution is being increased (from
thousands of lines/columns to tens of millions).

One important property of the matrix is its sparsity. Typically mush less than 1% of the matrix
terms is not zero and this means that the matrix storage can and should be optimised. Clever storage
formats were designed early on since the amount of RAM memory in computers was the limiting
factor 3 or 4 decades ago [1092].

There are several standard formats7, e.g.:

� compressed sparse row format (CSR)

� compressed sparse column format (CSC)

� the Coordinate Format (COO)

� Skyline Storage Format

I focus on the CSR format in what follows since it is the most common format and it is the one
used in Elefant .

9.5.1 2D domain - Q1 - One degree of freedom per node

Let us consider again the 3× 2 element grid which counts 12 nodes.

(tikz 3x2.tex)

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2

4 5 6

node

nelx = 3, nnx = 4
nely = 2, nny = 3

In the case there is only a single degree of freedom per node, the assembled FEM matrix M will
look like this:

M =



□ □ □ □
□ □ □ □ □ □

□ □ □ □ □ □
□ □ □ □

□ □ □ □ □ □
□ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □
□ □ □ □ □ □

□ □ □ □
□ □ □ □ □ □

□ □ □ □ □ □
□ □ □ □


7https://en.wikipedia.org/wiki/Sparse_matrix
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where the □ stand for non-zero terms. This matrix structure stems from the fact that

� node 0 sees nodes 0,1,4,5 (1st line/column of the matrix)

� node 1 sees nodes 0,1,2,4,5,6 (2nd line/column of the matrix)

� node 2 sees nodes 1,2,3,5,6,7 (3rd line/column of the matrix)

� node 3 sees nodes 2,3,6,7

� node 4 sees nodes 0,1,4,5,8,9

� node 5 sees nodes 0,1,2,4,5,6,8,9,10

� node 6 sees nodes 1,2,3,5,6,7,9,10,11

� node 7 sees nodes 2,3,6,7,10,11

� node 8 sees nodes 4,5,8,9

� node 9 sees nodes 4,5,6,8,9,10

� node 10 sees nodes 5,6,7,9,10,11

� node 11 sees nodes 6,7,10,11 (last line/column of the matrix)

In light thereof, we have

� 4 corner nodes which have 4 neighbours (counting themselves)

� 2(nnx-2) nodes which have 6 neighbours

� 2(nny-2) nodes which have 6 neighbours

� (nnx-2)×(nny-2) nodes which have 9 neighbours

In total, the number of non-zero terms in the matrix above is then:

NZ = 4× 4 + 4× 6 + 2× 6 + 2× 9 = 70

and in general, we would then have:

NZ = 4× 4 + [2(nnx− 2) + 2(nny − 2)]× 6 + (nnx− 2)(nny − 2)× 9

Let us temporarily assume nnx = nny = n. The matrix size (total number of unknowns) is then
N = n2 and

NZ = 16 + 24(n− 2) + 9(n− 2)2

A full matrix array would contain N2 = n4 terms. The ratio of NZ (the actual number of reals to
store) to the full matrix size (the number of reals a full matrix contains) is then

R =
16 + 24(n− 2) + 9(n− 2)2

n4

It is then obvious that when n is large enough R ∼ 1/n2.
CSR stores the nonzeros of the matrix row by row, in a single indexed array A of double precision

numbers. Another array COLIND contains the column index of each corresponding entry in the
A array. A third integer array RWPTR contains pointers to the beginning of each row, which an
additional pointer to the first index following the nonzeros of the matrix A. A and COLIND have
length NZ and RWPTR has length N+1.

In the case of the here-above matrix, the arrays COLIND and RWPTR will look like:

COLIND = (0, 1, 4, 5, 0, 1, 2, 4, 5, 6, 1, 2, 3, 5, 6, 7, ..., 6, 7, 10, 11)

RWPTR = (0, 4, 10, 16, ...)
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9.5.2 2D domain - Q1 - Symmetric matrix CSR storage

If the matrix is symmetric, i.e. M = MT , then we may wish to only store half of it, always in the
interest of saving memory. Only the following remaining □ entries are relevant now:

M =



□ □ □ □
□ □ □ □ □

□ □ □ □ □
□ □ □

□ □ □ □
□ □ □ □ □

□ □ □ □ □
□ □ □

□ □
□ □

□ □
□


We see that the number of nonzeros is now

NZsymm =
NZ − n

2
+ n

and in this case NZsymm = (70− 12)/2 + 12 = 41. Then

COLIND = (0, 1, 4, 5, 1, 2, 4, 5, 6, 3, 5, 6, 7, ..., , 11)

RWPTR = (0, 4, 9, 14, ...)

In case the numbering is Fortran-like, then

ja = COLIND = (1, 2, 5, 6, 2, 3, 5, 6, 7, 3, 4, 6, 7, 8, 4, 7, 8, 5, 6, 9, 10, 6, 7, 9, 10, 11,

7, 8, 10, 11, 12, 8, 11, 12, 9, 10, 10, 11, 11, 12, 12)

ia = RWPTR = (1, 5, 10, 15, 18, 22, 27, 32, 35, 37, 39, 41, 42)

9.5.3 2D domain - Q1 - Two degrees of freedom per node

When there are now two degrees of freedom per node, such as in the case of the Stokes equation in
two-dimensions, the size of the K matrix is given by NfemV = nnx ∗ nny ∗ ndofV where NfemV
is the total number of velocity degrees of freedom.

(tikz 3x2 two.tex)

0,1 2,3 4,5 6,7

8,9 10,11 12,13 14,15

16,17 18,19 20,21 22,23

0 1 2

4 5 6

ν⃗

In the case of the small grid above, we have then NfemV = 24 and elemental matrices are now
8× 8 in size.

We still have
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� 4 corner nodes which have 4 neighbours

� 2(nnx− 2) nodes which have 6 neighbours

� 2(nny − 2) nodes which have 6 neighbours

� (nnx− 2) · (nny − 2) nodes which have 9 neighbours,

but now each degree of freedom from a node sees the other two degrees of freedom of another node
too. In that case, the number of nonzeros has been multiplied by four and the assembled FEM
matrix looks like:

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □


Note that the degrees of freedom are organised as follows:

(u0, v0, u1, v1, u2, v2, ...u11, v11)

In general, we would then have:

NZ = 4 [4× 4 + [2(nnx− 2) + 2(nny − 2)]× 6 + (nnx− 2)(nny − 2)× 9]

and in the case of the small grid, the number of non-zero terms in the matrix is then:

NZ = 4 [4× 4 + 4× 6 + 2× 6 + 2× 9] = 280

In the case of the here-above matrix, the arrays COLIND and RWPTR will look like:

COLIND = (0, 1, 2, 3, 8, 9, 10, 11, 0, 1, 2, 3, 8, 9, 10, 11, ...)

RWPTR = (0, 8, 16, 28, ...)
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Assuming we are using Q1 × P0 elements, the structure of the matrix GT
el is as follows (the 6

pressure dofs are connected to 24 velocity dofs):



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
□ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □


(9.21)

From left to right: Nonzero structures of the assembled Stokes matrix for a 3× 2, 4× 3 and 5× 4 mesh of Q1 × P0 elements.

Assuming we are now using Q1 ×Q1 elements (without bubble), the structure of the matrix GT
el

is different: we now have 12 pressure dofs which are coupled to 24 velocity dofs:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 □ □ □ □ □ □ □ □
1 □ □ □ □ □ □ □ □ □ □ □ □
2 □ □ □ □ □ □ □ □ □ □ □ □
3 □ □ □ □ □ □ □ □

...

9 □ □ □ □ □ □ □ □ □ □
10 □ □ □ □ □ □ □ □ □ □ □ □
11 □ □ □ □ □ □ □ □


(9.22)

If now the velocity dofs are organised as follows

(u0, u1, u2, ..., u11, v0, v1, v2, ..., v11)

then the sparsity pattern of the assembled K matrix looks like
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u u u u u u u u u u u u v v v v v v v v v v v v
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □


(9.23)

We see that in this case the matrix is composed of 4 identical blocks, the same blocks we have
previously obtained when each node only had a single dof. In other words,

K =

(
Kxx Kxy

Kyx Kyy

)
=

(
K1 K1

K1 K1

)
9.5.4 2D domain - Q2 - Two degrees of freedom per node

When there are now two degrees of freedom per node, such as in the case of the Stokes equation in
two-dimensions, the size of the K matrix is given NfemV = nnx ∗ nny ∗ ndofV where NfemV is
the total number of velocity degrees of freedom. What is different here is that for Q2 elements we
have nnx = 2 ∗ nelx+ 1 and nny = 2 ∗ nely + 1.

(tikz 3x2 two Q2.tex)

0,1 2,3 4,5 6,7 8,9 10,11 12,13

14,15 16,17 18,19 20,21 22,23 24,25 26,27

28,29 30,31 32,33 34,35 36,37 38,39 40,41

42,43 44,45 46,47 48,49 50,51 52,53 54,55

56,57 58,59 60,61 62,63 64,65 66,67 68,69

0 1 2

4 5 6

ν⃗

504



In the case of the small grid above, we have then nelx = 3, nely = 2, so that nnx = 7 and
nny = 5, and then NfemV = 7 ∗ 5 ∗ 2 = 70 and elemental matrices are now 18× 18 in size.

(tikz 3x2 Q2.tex)

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

Concretely here:

� nodes 0,6,28,34 see 9 nodes (corners)

� nodes 1,3,5,7,8,10,12,13,21,22,24,26,27,29,31,33 see 9 nodes

� nodes 2,4,9,11,14,15,17,19,20,23,25,30,32, see 15 nodes

� nodes 16,18 see 25 nodes

If there was only one dof per node, we would find the number of non zeros as follow:

NZ = 4 ∗ 9 + 16 ∗ 9 + 13 ∗ 15 + 2 ∗ 25 = 36 + 144 + 195 + 50 = 425

But since there are two velocity dofs per node, we find that the total number of nonzeros is 4 times
higher, i.e.

NZ = 1700

And if we choose for a symmetric CSR storage:

NZsymm =
NZ − n

2
+ n =

1700− 70

2
+ 70 = 885

Let us now turn to the real case of 2 dofs per node and establish who sees who:
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dof sees other dofs total
0 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
1 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
2 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
3 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
4 0,1,2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,22,23,28,29,30,31,32,33,34,35,36,37 30
5 0,1,2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,22,23,28,29,30,31,32,33,34,35,36,37 30
6 4,5,6,7,8,9,18,19,20,21,22,23,32,33,34,35,36,37 18
7 4,5,6,7,8,9,18,19,20,21,22,23,32,33,34,35,36,37 18
8 4,5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,25,26,27,32,33,34,35,36,37,38,39,40,41 30
9 4,5,6,7,8,9,10,11,12,13,18,19,20,21,22,23,24,25,26,27,32,33,34,35,36,37,38,39,40,41 30
10 8,9,10,11,12,13,22,23,24,25,26,27,36,37,38,39,40,41 18
11 8,9,10,11,12,13,22,23,24,25,26,27,36,37,38,39,40,41 18
12 8,9,10,11,12,13,22,23,24,25,26,27,36,37,38,39,40,41 18
13 8,9,10,11,12,13,22,23,24,25,26,27,36,37,38,39,40,41 18
14 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
15 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
16 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
17 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
... ... ...
68 36,37,38,39,50,51,52,53,54,55,64,65,66,67,68,69 18
69 36,37,38,39,50,51,52,53,54,55,64,65,66,67,68,69 18
The second column of this array is the content of the ja array if a full storage is used. If we now

use a symmetric storage then:
dof sees other dofs total
0 0,1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 18
1 1,2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 17
2 2,3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 16
3 3,4,5,14,15,16,17,18,19,28,29,30,31,32,33 15
4 4,5,6,7,8,9,14,15,16,17,18,19,20,21,22,23,28,29,30,31,32,33,34,35,36,37
5 5,6,7,8,9,14,15,16,17,18,19,20,21,22,23,28,29,30,31,32,33,34,35,36,37
6 6,7,8,9,18,19,20,21,22,23,32,33,34,35,36,37
7 7,8,9,18,19,20,21,22,23,32,33,34,35,36,37
8 8,9,10,11,12,13,18,19,20,21,22,23,24,25,26,27,32,33,34,35,36,37,38,39,40,41
9 9,10,11,12,13,18,19,20,21,22,23,24,25,26,27,32,33,34,35,36,37,38,39,40,41
10 10,11,12,13,22,23,24,25,26,27,36,37,38,39,40,41
11 11,12,13,22,23,24,25,26,27,36,37,38,39,40,41
12 12,13,22,23,24,25,26,27,36,37,38,39,40,41
13 13,22,23,24,25,26,27,36,37,38,39,40,41
14 14,15,16,17,18,19,28,29,30,31,32,33
15 15,16,17,18,19,28,29,30,31,32,33
16 16,17,18,19,28,29,30,31,32,33
17 17,18,19,28,29,30,31,32,33
... ... ...
68 68,69 2
69 69 1
In order establish a pattern we will need a bigger mesh:

(tikz 4x3 Q2.tex)

506



0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62

We have

� 4 corner nodes which have 9 neighbours

� nel mid-element nodes which have 9 neighbours

� 2 ∗ nelx+ 2 ∗ nely mid-edge nodes on sides which have 9 neighbours

� (nelx− 1) ∗ nely + nelx ∗ (nely − 1) internal mid-edges nodes which have 15 neighbours

� 2 ∗ (nelx− 1) + 2 ∗ (nely − 1) side nodes that have 15 neighbours

� (nelx− 1) ∗ (nely − 1) nodes which have 25 neighbours

In the end, the number of non-zeros (Q1) is given by

NZ = 4 ∗ 9
+ nel ∗ 9
+ (2 ∗ nelx+ 2 ∗ nely) ∗ 9
+ [(nelx− 1) ∗ nely + nelx ∗ (nely − 1)] ∗ 15
+ [2 ∗ (nelx− 1) + 2 ∗ (nely − 1)] ∗ 15
+ (nelx− 1) ∗ (nely − 1) ∗ 25

Verification: nelx = 3, nely = 2:

NZ = 4 ∗ 9 + 6 ∗ 9 + (2 ∗ 3 + 2 ∗ 2) ∗ 9 + [(3− 1) ∗ 2 + 3 ∗ (2− 1)] ∗ 15 + [2 ∗ (3− 1) + 2 ∗ (2− 1)] ∗ 15 + (3− 1) ∗ (2− 1) ∗ 25
= 36 + 54 + 10 ∗ 9 + 7 ∗ 15 + 6 ∗ 15 + 2 ∗ 25
= 36 + 54 + 90 + 105 + 90 + 50

= 425

as expected.

9.5.5 3D domain - Q1 - CSR storage - One degree of freedom

Let us consider a 3× 4× 2 grid which counts nnx · nny · nnz = 5 · 4 · 3 = 60 nodes. The assembled
FEM matrix K size is then N = nnx× nny × nnz × ndof = 180.
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(tikz 4x3x2.tex)
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The total number of nonzeros in the case ndof = 1 would be decomposed as follows:

� 8 corners ’see’ 8 neighbours

� 4 edges with (nnx− 2) nodes in the x direction see 12 nodes

� 4 edges with (nny − 2) nodes in the y direction see 12 nodes

� 4 edges with (nnz − 2) nodes in the z direction see 12 nodes

� 2(nnx− 2)(nny − 2) nodes see 18 nodes

� 2(nnx− 2)(nnz − 2) nodes see 18 nodes

� 2(nny − 2)(nnz − 2) nodes see 18 nodes

� (nnx− 2)(nny − 2)(nnz − 2) interior nodes see 27 nodes

9.5.6 3D domain - Q2 - CSR storage - one degree of freedom

(tikz 4x3x2 q2.tex)
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9.5.7 Matrix Storage in fieldstone

The majority of the early codes have the FE matrix being a full array

a mat = np . z e ro s ( (Nfem ,Nfem) , dtype=np . f l o a t 6 4 )

and it is converted to CSR format on the fly in the solve phase:

s o l = sps . l i n a l g . sp so l v e ( sps . c s r mat r i x ( a mat ) , rhs )

Note that linked list storages can be used (lil matrix). Substantial memory savings but much
longer compute times since it takes longer to write in such arrays. A conversion to CSR format is
still necessary before calling the solver.

9.5.8 About Sparse Matrix-Vector multiplication

When/if the matrix M is stored in a two-dimensional array, its (left or right) multiplication by a
vector is trivial. Either one resorts to writing a double for loop (not recommended), either one uses
numpy.dot8 in python, or matmul in Fortran.

However, when the matrix is stored as a single continuous array, say CSR, how does this work?
This question is very important since iterative solvers such as the Conjugate Gradient solver (see
Section 9.33) rely extensively on multiplying the matrix by many different vectors.

The Sparse Matrix-Vector multiplication operation is often abbreviated SpMV. To quote Knepley
[712]: ”The Sparse Matrix-Vector Product (SpMV) is today a workhorse of scientific computing. It is
a central kernel is iterative linear and nonlinear solvers for PDE, and now for many graph algorithms.”
As explained in Williams et al. (2007) [1361] (and in many other sources on the topic), the algorithm
for a basic SpMV implementation is rather simple in its naive form.

8https://numpy.org/doc/stable/reference/generated/numpy.dot.html
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Taken from Williams et al. (2008) [1362]. Sparse Matrix Vector Multiplication (SpMV). (a) visualization of the algebra: y⃗ ← A · x⃗.
(b) Standard compressed sparse row (CSR) representation of the matrix.

(c) The standard implementation of SpMV for a matrix stored in CSR. The outer loop is trivially parallelized without any data dependencies.

Let us assume that we wish to compute y⃗ = A · x⃗ where A is in CSR format. The pseudo code
then goes as follows:

for i in range(0,m):

y0=0

for k in range(ROWPTR[i],ROWPTR[i+1]):

y0 += VAL[k] * x[COLIND[k]]

y[i]=y0

Although technically correct, this algorithm is problematic because the vector x array is accessed
indirectly and this causes a non-optimal use of the processor, which in the end makes the calculation
take longer than it should.

The following piece of code comes from Elefant . Note that here (ROWPTR=ia, COLIND=ja,
VAL=mat)

subrout ine spmv ( nr , nc , nz , x , y ,mat , ja , i a )
imp l i c i t none
in t ege r , i n t en t ( in ) : : nr , nc , nz
r e a l (8 ) , i n t en t ( in ) : : x ( nc ) , mat( nz )
r e a l (8 ) , i n t en t ( out ) : : y ( nr )
in t ege r , i n t en t ( in ) : : j a ( nz ) , i a ( nr+1)
r e a l (8 ) t
i n t e g e r i , k

do i = 1 , nr
t = 0 .0 d0
do k=ia ( i ) , i a ( i +1)=1

t = t + mat(k ) *x ( ja ( k ) )
end do
y ( i ) = t

end do

end subrout ine

How to make this calculation as efficiently as possible on CPUs and GPUs, on one thread or
multiple threads has given rise to a lot of literature.

Relevant LiteratureKrotkiewski & Dabrowski [733], Section 9.4 of Kepley [712], Williams et
al. (2008) [1362]

9.5.9 SpMV and SpMV-T with the CSR format - a concrete example

(What follows was orignally written for Elefant so that code excerpts and loop indexing are those
of Fortran.)
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Let us consider a simple matrix G which is not square (size is 3× 5):

GT =

 1 0 4 1 2
0 1 1 1 0
3 0 0 7 1


The number of rows is nr = 3, the number of columns is nc = 5 and the number of nonzeros is

nz = 10.
Let us consider two vectors V⃗T = (1, 1, 1, 1, 1) and P⃗T = (1, 1, 1). Obviously, we have:

GT · V⃗ =

 8
3
11

 and G · P⃗ =


4
1
5
9
3


The CSR storage of GT requires three arrays: ia (integer, size nr + 1), ja (integer, size nz) and

mat (real, size nz). In the case of the small matrix above:

ia = (1, 5, 8, 11)

ja = (1, 3, 4, 5, 2, 3, 4, 1, 4, 5)

mat = (1, 4, 1, 2, 1, 1, 1, 3, 7, 1)

The sparse matrix vector multiplication kernel SpMV for y⃗ = A · x⃗ has been explained above, and it
is trivial to carry out this algorithm by hand and verify that the vector y is given by yT = (8, 3, 11).

Let us now turn to an interesting problem. Is it possible with the same arrays ia, ja,mat to
compute the multiplication of the transpose of the matrix with a vector? The answer is of course
positive and the code is given hereunder:

y=0.d0
do i = 1 , nr

do k=ia ( i ) , i a ( i +1)=1
y ( ja ( k ) )=y( ja (k ) )+mat(k ) *x ( i )

end do
end do

Let us take i = 1. The variable k then goes from 1 to 4. The inner loop does:

y(1)=y(1)+mat(1)*x(1)

y(3)=y(3)+mat(2)*x(1)

y(4)=y(4)+mat(3)*x(1)

y(5)=y(5)+mat(4)*x(1)

Let us take i = 2. The variable k then goes from 5 to 7. The inner loop does:

y(2)=y(2)+mat(5)*x(2)

y(3)=y(3)+mat(6)*x(2)

y(4)=y(4)+mat(7)*x(2)

Let us take i = 3. The variable k then goes from 8 to 10. The inner loop does:

y(1)=y(1)+mat(8)*x(3)

y(4)=y(4)+mat(9)*x(3)

y(5)=y(5)+mat(10)*x(3)
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So in total, we have:

y(1)=mat(1)*x(1)+mat(8)*x(3)

y(2)=mat(5)*x(2)

y(3)=mat(2)*x(1)+mat(6)*x(2)

y(4)=mat(3)*x(1)+mat(7)*x(2)+mat(9)*x(3)

y(5)=mat(4)*x(1)+mat(10)*x(3)

which is indeed the result of the transposed of the matrix multiplied by a vector x⃗.

Let us consider a simple matrix K which is square (size is 5× 5):

K =


1 0 4 1 2
0 1 0 1 0
4 0 0 7 1
1 1 7 4 0
2 0 1 0 5


In this case , NZ=16.

ia = (1, 5, 7, 10, 14, 17)

ja = (1, 3, 4, 5, 2, 4, 1, 4, 5, 1, 2, 3, 4, 1, 3, 5)

mat = (1, 4, 1, 2, 1, 1, 4, 7, 1, 1, 1, 7, 4, 2, 1, 5)

The sparse matrix vector multiplication kernel SpMV for y⃗ = A · x⃗ is given as follows in its simplest
form. Since the matrix is symmetric, there is no use to store the whole matrix. Its upper half (for
instance) will do. In this case, NZ= and then

ia = (1, 5, 7, 9, 10, 11)

ja = (1, 3, 4, 5, 2, 4, 4, 5, 4, 5)

mat = (1, 4, 1, 2, 1, 1, 7, 1, 4, 5)

All is good and well until one wishes to multiply the real matrix by a vector. The SpMV routines
described above will not work since it will return the upper half of the matrix multiplied by the
vector.

One can then write a decicated algorithm:

do i = 1,nr

! multiply the upper half by the vector

do k=ia(i), ia(i+1)-1

y(i) = y(i) + mat(k)*x(ja(k))

end do

! multiply the transpose of matrix by vector

! but omit diagonal

do k=ia(i), ia(i+1)-1

if (i/=ja(k)) then

y(ja(k))=y(ja(k))+mat(k)*x(i)

end if
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end do

end do

Example:

y(1)

=y(1) + mat(1)*x(ja(1)) + mat(2)*x(ja(2)) + mat(3)*x(ja(3)) + mat(4)*x(ja(4))

=y(1) + mat(1)*x(1) + mat(2)*x(3) + mat(3)*x(4) + mat(4)*x(5)

etc ...
Finish?
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9.6 Mesh generation

meshes.tex

Before basis functions can be defined and PDEs can be discretised and solved we must first
tesselate the domain with polygons, e.g. triangles and quadrilaterals in 2D, tetrahedra, prisms and
hexahedra in 3D.

When the domain is itself simple (e.g. a rectangle, a sphere, ...) the mesh (or grid) can be (more
or less) easily produced and the connectivity array filled with straightforward algorithms [1259].
However, real life applications can involve extremely complex geometries (e.g. a bridge, a human
spine, a car chassis and body, etc ...) and dedicated algorithms/softwares must be used (see [1267,
419, 1374]).

We usually distinguish between two broad classes of grids: structured grids (with a regular
connectivity) and unstructured grids (with an irregular connectivity).

Remark. Various families of so-called meshless methods exist and are commonly employed in Com-
putational Fluid Dynamics [797, 783, 796, 798]. They are however very rarely used in Computational
geodynamics, with a noticeable exception [530].

9.6.1 Quadrilateral-based meshes

Let us now focus on the case of a rectangular computational domain of size Lx × Ly with a regular
mesh composed of nelx×nely=nel quadrilaterals. There are then nnx×nny=nnp grid points. The
elements are of size hx×hy with hx=Lx/nelx.

We have no reason to come up with an irregular/illogical node numbering so we can number
nodes row by row or column by column as shown on the example hereunder of a 3×2 grid:

8=======9======10======11 2=======5=======8======11

| | | | | | | |

| (3) | (4) | (5) | | (1) | (3) | (5) |

| | | | | | | |

4=======5=======6=======7 1=======4=======7======10

| | | | | | | |

| (0) | (1) | (2) | | (0) | (2) | (4) |

| | | | | | | |

0=======1=======2=======3 0=======3=======6=======9

"row by row" "column by column"

The numbering of the elements themselves could be done in a somewhat chaotic way but we follow
the numbering of the nodes for simplicity. The row by row option is the adopted one in fieldstone
and the coordinates of the points are computed as follows:

514



x = np . empty (nnp , dtype=np . f l o a t 6 4 )
y = np . empty (nnp , dtype=np . f l o a t 6 4 )
counter = 0
f o r j in range (0 , nny ) :

f o r i in range (0 , nnx ) :
x [ counter ]= i *hx
y [ counter ]= j *hy
counter += 1

The inner loop has i ranging from 0 to nnx-1 first for j=0, 1, ... up to nny-1 which indeed
corresponds to the row by row numbering.

We now turn to the connectivity. As mentioned before, this is a structured mesh so that the
so-called connectivity array, named icon in our case, can be filled easily. For each element we need
to store the node identities of its vertices. Since there are nel elements and m=4 corners, this is a
m×nel array. The algorithm goes as follows:

i con =np . z e ro s ( (m, ne l ) , dtype=np . in t16 )
counter = 0
f o r j in range (0 , ne ly ) :

f o r i in range (0 , ne lx ) :
i con [ 0 , counter ] = i + j * nnx
icon [ 1 , counter ] = i + 1 + j * nnx
icon [ 2 , counter ] = i + 1 + ( j + 1) * nnx
icon [ 3 , counter ] = i + ( j + 1) * nnx
counter += 1

In the case of the 3×2 mesh, the icon is filled as follows:

element id→ 0 1 2 3 4 5
node id↓

0 0 1 2 4 5 6
1 1 2 3 5 6 7
2 5 6 7 9 10 11
3 4 5 6 8 9 10

It is to be understood as follows: element #4 is composed of nodes 5, 6, 10 and 9. Note that nodes
are always stored in a counter clockwise manner, starting at the bottom left. This is very important
since the corresponding basis functions and their derivatives will be labelled accordingly.

In three dimensions things are very similar. The mesh now counts nelx×nely×nelz=nel ele-
ments which represent a cuboid of size Lx×Ly×Lz. The position of the nodes is obtained as follows:

x = np . empty (nnp , dtype=np . f l o a t 6 4 )
y = np . empty (nnp , dtype=np . f l o a t 6 4 )
z = np . empty (nnp , dtype=np . f l o a t 6 4 )
counter=0
f o r i in range (0 , nnx ) :

f o r j in range (0 , nny ) :
f o r k in range (0 , nnz ) :

x [ counter ]= i *hx
y [ counter ]= j *hy
z [ counter ]=k*hz
counter += 1

The connectivity array is now of size m×nel with m=8:

i con =np . z e ro s ( (m, ne l ) , dtype=np . in t16 )
counter = 0
f o r i in range (0 , ne lx ) :

f o r j in range (0 , ne ly ) :
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f o r k in range (0 , ne l z ) :
i con [ 0 , counter ]=nny*nnz *( i )+nnz *( j )+k
icon [ 1 , counter ]=nny*nnz *( i +1)+nnz *( j )+k
icon [ 2 , counter ]=nny*nnz *( i +1)+nnz *( j +1)+k
icon [ 3 , counter ]=nny*nnz *( i )+nnz *( j +1)+k
icon [ 4 , counter ]=nny*nnz *( i )+nnz *( j )+k+1
icon [ 5 , counter ]=nny*nnz *( i +1)+nnz *( j )+k+1
icon [ 6 , counter ]=nny*nnz *( i +1)+nnz *( j +1)+k+1
icon [ 7 , counter ]=nny*nnz *( i )+nnz *( j +1)+k+1
counter += 1

produce drawing of node numbering

Although it is not very common in geosciences, quadrilateral meshes are sometimes employed in
a boundary-fitted way, as shown hereunder:

Taken from Gutscher et al. [517] (2016).

Relevant Literature: Joun and Lee [657] (1997)

9.6.2 Delaunay triangulation and Voronoi cells, and triangle-based meshes

The topic of Delaunay9 triangulation is vast, but a simple definition can be written as follows:
”a Delaunay triangulation for a set P of points in a plane is a triangulation DT(P) such that no
point in P is inside the circumcircle of any triangle in DT(P).” [wikipedia] Other properties of such
triangulations are that they maximize the minimum angle of all the angles of the triangles in the
triangulation. Note that for four or more points on the same circle (e.g., the vertices of a rectangle) the
Delaunay triangulation is not unique and that points on a line also cannot yield a valid triangulation
(for the simple reason that they do not form a triangle).

a) A Delaunay triangulation in the plane with circumcircles shown. b) The Delaunay triangulation of a random set of 100 points in a plane.

The Delaunay triangulation of a discrete point set P in general corresponds to the dual graph of
the Voronoi diagram for P. A Voronoi diagram is composed of non-overlapping Voronoi cells which
make a partition of the plane. For each point there is a corresponding region consisting of all points
closer to that point than to any other: this region is the Voronoi cell of that point.

9The triangulation is named after Boris Delaunay for his work on this topic from 1934.
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a) b)
a) The Delaunay triangulation with all the circumcircles and their centers (in red). b) Connecting the centers of the circumcircles produces the Voronoi

diagram (in red).

The Delaunay triangulation is used in the Douar code which is based on a particle levelset
function to track materials. These particles are connected by means of a Delaunay triangulation
(usually in a plane at startup, and then in a local Euclidean geometry once the surface is deformed)
[136].

Relevant Literature: [444].
Once a Delaunay triangulation has been obtained it can be used as a FEM mesh. Triangle-based

meshes are obviously better suited for simulations of complex geometries:

Bottom row. Left: Robl and Stüwe [1081] (2005), Right: Gerault, Becker, Kaus, Faccenna, Moresi, and Husson [446] (2012).

A very practical 2D triangle mesher is the code Triangle10 written by J.R. Shewchuk [1157, 1158,
1159]. Triangle is specialized for creating two-dimensional finite element meshes, but can also perform
simpler related tasks such as forming Delaunay triangulations under various assumptions. Another
very common mesher tool is Gmsh [457].

Taken from Buiter et al. [162]. Finite element grid. The subducting plate initially extends to 1226 km in the horizontal direction and is not completely shown

here. Discretization in the subducting plate is slightly coarser towards the right edge.

10https://www.cs.cmu.edu/~quake/triangle.html
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Taken from Bakker, Frehner, and Lupi [39] (2016). Numerical model setup of the 2D axisymmetric half-space with all applied boundary conditions to study

the effects of ice-cap unloading on shallow volcanic systems.

Taken from Fernández-Merodo, Garćıa-Davalillo, Herrera, Mira, and Pastor [391] (2014). Modelling of slow landslides. Finite element mesh in the initial and

excavated configuration.

Although it is rarely used in practice it is possible to produce meshes which contain both quadri-
lateral and triangular elements:
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Taken from Fischer, Gross, Engelder, and Greenfield [395]. Mesh used to analayse the stress distribution around a pressurized crack in a layered elastic

medium.

Mesh quality In Cioncolini and Boffi [258] (2019) the authors check the mesh quality of their
triangulation by computing the following mesaures per element (they also refer to Field [394]):

q1 =
(b+ c− a)(c+ a− b)(a+ b− c)

abc

q2 =
4
√
3AT

a2 + b2 + c2

where a, b, c are the triangle side lengths and AT is the triangle area. An equilateral triangle has
q1 = q2 = 1 while a degenerate, zero area triangle has q1 = q2 = 0. As a rule-of-thumb, in a good
quality mesh all triangles should have q1 , q2 above about 0.4-0.5.

Relevant Literature: E. Mulyukova, B. Steinberger, M. Dabrowski, and S.V. Sobolev. “Survival
of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruc-
tion of chemical anomaly”. In: J. Geophys. Res. 120 (2015), pp. 3824–3847. doi: 10.1002/

2014JB011688Mirko Velić, Dave May, and Louis Moresi. “A fast robust algorithm for comput-
ing discrete voronoi diagrams”. In: Journal of Mathematical Modelling and Algorithms 8.3 (2009),
pp. 343–355. doi: 10.1007/s10852-008-9097-6

Remark. The Natural Neighbour Interpolation method of Sambridge et al. [1100, 1099] is based on
the Delaunay triangulation.

Remark. Moresi & Mather [904] have released Stripy, a A Python module for (constrained) trian-
gulation in Cartesian coordinates and on a sphere, which is based on Stripack [1060, 1061].

write about gmesh

Taken from Gudmundsson & Sambridge (1998) [500]. Boundaries of Voronoi cells around 4100 of the original 16,200 2x2 degree cells selected to sample the

details of the regionalization.
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9.6.3 Tetrahedra

Left: Example of 3D mesh Yang and Shi [1379] (2015); Right: Normalized velocities of a STEP subduction model Govers and Wortel [480] (2005).

Left: 3D finite element grid in Damintun area, including prescribed faults, Guo, Yao, and Ren [509] (2016); Right: Structural reactivation in plate tectonics

controlled by olivine crystal anisotropy, Tommasi, Knoll, Vauchez, Signorelli, Thoraval, and Logé [1271] (2009) - based on ¶+1 × P1 elements.

Left: Mesh used for the three-dimensional model. A high resolution mesh is used in the wedge and subslab domains, while the mesh resolution decays to lower

values toward the edge of the model. All elements are quadratic, allowing for twice the resolution visualized here, Paczkowski, Montési, Long, and Thissen

[969] (2014); Right: Mid-Ocean Ridge Hydrothermal System: 3D mesh consisting of 2.5 m tetrahedron elements. Resolution is refined toward the axial center,

with the finest resolution between the dashed lines, and colors indicate computational domains assigned to separate processors, Coumou, Driesner, and

Heinrich [280] (2008).

Grains of sand before a compression experiment with FEM Imseeh and Alshibli [621] (2018).
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Check TetGen mesher Hang Si. “TetGen, a Delaunay-based quality tetrahedral mesh generator”.
In: ACM Transactions on Mathematical Software (TOMS) 41.2 (2015), pp. 1–36. doi: 10.1145/

2629697.

9.6.4 Hexahedra

A hexahedron is a convex polytope isomorphic to the cube [0, 1]3. Edges are line segments, facets
are strictly planar convex polygons.

Relevant LiteratureEfficient Volume computation for Three- Dimensional hexahedral Cells [349,
481]

9.6.5 Adaptive Mesh Refinement

Let us do a simple calculation and assume we wish to model mantle convection on Earth. The inner
radius is R1 = 3485 km and the bottom of the lithosphere is at R2 = 6250 km. The volume of fluid
is then

V =
4

3
π(R3

2 −R3
1) ≃ 8.5× 1011 km3

Let us further assume that we are satisfied with an average resolution of 10 km. Each element/cell
is then 103 km3 and the total number of elements/cell is then

N ≃ 8.5× 108 ∼ O(109)

This is a very large number. The resulting linear systems from the discretisation of the equations on
such a mesh will be very even larger for the Stokes equations and solving these systems will require
very large numbers of CPUs and long compute times.

Aside from these considerations it is quite obvious that a high resolution mesh is not needed in
parts of the mantle where large scale upwellings and downwellings occur, but probably even higher
resolution will be needed in the vicinity of thin plumes and boundary layers. This means that a
uniform mesh is a sub-optimal way of discretising space for such problems.

The same reasoning also holds in the lithosphere where for instance narrow plate boundaries need
to be adequately resolved while the inside of rigid plates can be modelled with coarser meshes.

Finally, although one could employ meshing software to arrive at well balanced meshes in space,
the dynamic character of the geodynamics modelling renders this approach cumbersome. A subduc-
tion zone, a mid-ocean rift or an ascending plume will evolve in time and the mesh will have to evolve
in time too.

In light of all this, it was only a matter of time before Adaptive Mesh Refinement was adopted
in computatinal geodynamics. However, since the use and update of such meshes is somewhat
complex in terms of numerical algorithms, its introduction came somewhat late (00’s and later).
The Douar code (see Section ??) developed originally by J. Braun and Ph. Fullsack is a prime
example of an early multi-purpose code relying on a self-written Octree library [136]. More recently
the Aspect code was developed on top of the Octree library p4est [191]. Note the 2007 and 2008
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papers by Davies et al [307, 310] which explore adaptive mesh refinement with the ConMan code
(see Appendix ??).

For further reading I suggest you read the review by May, Schellart & Moresi on this topic [847].

Taken from [190] and [192]

Taken from [467]

Relevant Literature:

� C. Burstedde et al. “Scalable Adaptive Mantle Convection Simulation on Petascale Supercom-
puters”. In: ACM/IEEE SC Conference Series, 2008 (2008)

� C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L.C. Wilcox. “Parallel scalable adjoint-based
adaptive solution of variable-viscosity Stokes flow problems”. In: Computer Methods in Applied
Mechanics and Engineering 198 (2009), pp. 1691–1700. doi: 10.1016/j.cma.2008.12.015

� Carsten Burstedde et al. “Extreme-scale AMR”. in: Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society. 2010, pp. 1–12. doi: 10.1109/SC.2010.25

� W. Leng and S. Zhong. “Implementation and application of adaptive mesh refinement for
thermochemical mantle convection studies”. In: Geochem. Geophys. Geosyst. 12.4 (2011).
doi: 10.1029/2010GC003425

� Y. Mishin. “Adaptive multiresolution methods for problems of computational geodynamics”.
PhD thesis. ETH Zurich, 2011

� K. Sverdrup, N. Nikiforakis, and A. Almgren. “Highly parallelisable simulations of time-
dependent viscoplastic fluid flow simulations with structured adaptive mesh refinement”. In:
Physics of Fluids 30 (2018), p. 093102. doi: 10.1063/1.5049202

� Marc Fehling and Wolfgang Bangerth. “Algorithms for parallel generic hp-adaptive finite
element software”. In: ACM Transactions on Mathematical Software 49.3 (2023), pp. 1–26.
doi: 10.1145/3603372
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A short illustrative exercise .

# l0 # l1 # l2 # l3 # l4 # l5 # l6 # l7 # l8

max level= 0 1
max level= 1 0 4
max level= 2 0 3 4
max level= 3 0 2 7 4
max level= 4 0 2 5 10 8
max level= 5 0 1 8 12 11 20
max level= 6 0 1 8 11 13 20 32
max level= 7 0 0 11 14 15 23 37 60
max level= 8 0 0 11 13 17 27 43 72 116
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In the particular case presented here, even though the inclusion in a short two-dimensional line,
the total number of elements grows faster than the third power of the refinement level. While of
course the total number of elements remains much smaller than the constant resolution counterpart,
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this observation tells us that authorising a unit increase of the maximum refinement level can have
a substantial effect on the total number of elements.
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9.6.6 Conformal Mesh Refinement

The quadtree/octree mesh refinement presented above is one option when it comes to mesh refine-
ment (or h-refinement). However their massive drawback is the presence of hanging notes which
require special attention. Another approach to mesh refinement is conformal mesh refinement as
best exemplified on the following figures:

Taken from Deb et al. (1996) [324]. A typical instance of the outcome of the refinement procedure. Notice that the ‘spill-over’ is reduced to one row on each

side of the ‘localized’ elements.
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Top row, From left to right: van Driel et al. (2015) [346]; Deb et al. (1996) [324]; Harris et al. (2004) [549]; Komatitsch et al. (2005) [719]; Middle row: Specfem

manual; Bottom row: I don’t know anymore.

Taken from Garimella [436] (2009).

https://cubit.sandia.gov/public/14.0/help_manual/WebHelp/mesh_generation/mesh_

modification/mesh_refinement.htm
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Relevant Literature:

� Düster & Rank [354],

� Harris et al. (2004) [549],

� Anderson et al. (2009) [20],

� Anderson [19],

� Garimella (2009) [436],

� Nicolas & Fouquet (2013) [940, 939].

� Parrish [979],

� Schneiders [1132, 1131, 1134, 1133],

� Schneiders et al. [1135],

� Staten & Canann [1194],

� book by Ramm et al. [1039].

9.6.7 Stretching the mesh

In some cases the topology of the mesh can be regular but one can for instance stretch the mesh
such that (for instance) the vertical resolution is higher at the top than at the bottom, or higher in
the middle than on the sides.

The idea behind the transformation is a piecewise-linear function which maps [0,L] to [0,L] where
L is the length of the domain in the x-direction. For instance, this transformation can take the
following form:
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β1=0.25, β2=0.375

Parameters β1 and β2 control the shape of the lines.

The kinks in the line occur at β1L and (1− β1)L (see code here under).

The (minimal) code to transform the mesh is as follows:

de f s t r e t ch t owa rd s c en t e r (x , L , beta1 , beta2 ) :
i f x<beta1 *L :

va l = beta2 /beta1 *x
e l i f x<(1.=beta1 ) *L :

va l = (1=2*beta2 ) /(1=2*beta1 ) *(x=beta1 *L)+beta2 *L
e l s e :

va l=beta2 /beta1 *(x=(1=beta1 ) *L)+(1=beta2 ) *L
return va l
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[ . . . ]

beta1=0.25
beta2=0.375

f o r i in range (0 ,NV) :
x [ i ]= s t r e t ch t owa rd s c en t e r ( x [ i ] , Lx , beta1 , beta2 )

The following meshes count 64x16 elements. The top one is a regular mesh, with square elements,
while the second one has been stretched by means of the transformation above:

Concerning the stretching towards the top of the model domain, the transformation line is as
follows:
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β1=0.25, β2=0.5

Parameters β1 and β2 control the shape of the lines. The kinks in the line occur at β1L and (1− β1)L.

The slope of the left line is β2/β1x.

The (minimal) code to transform the mesh is as follows:

de f s t r e t ch toward s t op (x , L , beta1 , beta2 ) :
i f x<beta1 *L :

va l=beta2 /beta1 *x
e l s e :

va l=(1=beta2 ) /(1=beta1 ) *(x=beta1 *L)+beta2 *L
return va l

[ . . . ]

beta1=0.25
beta2=0.5
f o r i in range (0 ,NV) :

y [ i ]= s t r e t ch toward s t op (y [ i ] , Ly , beta1 , beta2 )

The following meshes count 64x16 elements. The top one is a regular mesh, with square elements,
while the second one has been stretched by means of the transformation above.
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Finally both transformations can be applied to the same mesh:

This approach is used in stone 67.

9.6.8 Meshes in an annulus

The quadratic finite element mesh as used in Brandenburg et al. [133, 134]

9.6.9 Meshes in/on a hollow sphere

The following is for the most part published in Thieulot (2018) Thieulot [1259] (2018).
To a first approximation the Earth is a sphere: the Earth’s polar diameter is about 43 kilome-

ters shorter than its equatorial diameter, a negligible difference of about 0.3%. As a consequence,
modelling physical processes which take place in the planet require the discretisation of a sphere.
Furthermore, because core dynamics occur on vastly difference time scales than mantle dynamics,
mantle modelling usually leaves the core out, thereby requiring simulations to be run on a hollow
sphere mesh (with the noticeable exception of Gerya and Yuen [450]).

Although so-called latitude-longitude grids would seem appealing, they suffer from the conver-
gence of meridians at the poles (resulting in over sampling at poles) and the juxtaposition of triangles
near the poles and quadrilaterals elsewhere. As a consequence more regular, but more complex, grids
have been designed over the years which tesselate the surface of the sphere into triangles or quadrilat-
erals (sometimes overlapping). There is the ’cubed sphere’ [1084, 564, 235, 1205, 236, 147, 1385], the
Yin-Yang grid [663, 1387, 1389, 665, 1228, 283, 284], the Yin-Yang-zhong grid [554], the Yin-yang
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grid of Shahnas & Peltier [1151], the spiral grid [617], an icosahedron-based grid [58], or a grid com-
posed of 12 blocks further subdivided into quadrilaterals [1414] as used in the CitcomS code. Note
that [956] have also presented a method for generating a numerical grid on a spherical surface which
allows the grid to be based on several different regular polyhedrons (including octahedron, cube,
icosahedron, and rhombic dodecahedron). Ideally, one wishes to generate a mesh that is regular, i.e.
angles between edges/faces as close to 90◦ as possible, of approximately similar volumes.

Example of Yin-Yang grid. Taken from Kameyama, Kageyamab, and Sato [665] (2008).

How such meshes are built is often not discussed in the literature. It is a tedious exercise of three-
dimensional geometry and it can be time-consuming, especially the connectivity array generation.
In Thieulot (2018) [1259] I present an open source mesh generator for three hollow sphere meshes:
the ’cubed sphere’ mesh, the CitcomS mesh and the icosahedral mesh:

� The cubed sphere (’HS06’), composed of 6 blocks which are themselves subdivided into Nb×Nb

quadrilateral shaped cells [1095, 1084, 564, 189]. Four types of cubed spheres meshes have been
proposed: the conformal, elliptic, gnomonic and spring types [1022]:

Left: The cubed-sphere grids at 2◦ resolution displaying cells on the sphere, the image focuses on the distribution of grid cells near one corner of the

grid; (a) conformal mapping [1044, 850], (b) the gnomonic grid modified by elliptic solver, (c) equiangular gnomonic mapping and (d) the gnomonic

grid modified by spring dynamics. [1022]. Right: Taken from presentation by R. Nair, see Nair2008.pdf

However only gnomonic meshes are considered in Thieulot (2018): these are obtained by in-
scribing a cube within a sphere and expanding to the surface of the sphere. The cubed sphere
has been used in large-scale mantle convection simulation in conjunction with Adaptive Mesh
Refinement [7, 189].
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� The CitcomS mesh (’HS12’) composed of 12 blocks also subdivided into Nb ×Nb quadrilateral
shaped cells [1414, 1205, 1412, 29]. Note that Aspect [732, 560], a relatively new code aimed
at superseeding CitcomS can generate and use this type of mesh [1256] but is not limited to it.

� The icosahedral mesh (’HS20’) composed of 20 triangular blocks [58, 57] subdivided into tri-
angles, which is used in the TERRA code [174, 173, 172, 308].

source?

Given the regularity and symmetry of these meshes determining the location of the mesh nodes
in space is a relatively straightforward task. Building the mesh connectivity in an efficient manner
is where the difficulty lies.

The approach to building all three meshes is identical:

1. A reference square or triangle is populated with cells, parametrised by a level l: the square is
subdivided into l × l quadrilaterals while the triangle is subdivided into l2 triangles.

Reference square and triangles meshes at level 5.
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2. This reference square or triangle is then replicated nblock times (6, 12 or 20) and mapped onto
a portion of a unit sphere. The blocks are such that their union covers a full sphere but they
cannot overlap except at the edges:

From left to right: HS06, HS12 and HS20 shells coloured by block number.

3. All block meshes are then merged together to generate a shell mesh. This task is rather complex
as duplicate nodes must be removed and all connectivity arrays of the blocks must then be
mended accordingly.

4. Shell meshes are replicated nlayer+1 times outwards with increasing radii. The nlayer shells
are then merged together to form a hollow sphere mesh:

a) HS06 mesh composed of 6 blocks containing each 63 cells; b) HS12 mesh composed of 12 blocks containing each 63 cells; e) HS20 mesh composed

of 20 blocks containing each 63 cells.

More information on these steps is available in the manual of the code. In the following table the
number of nodes and cells for a variety of resolutions for all three mesh types is reported. Looking
at the CitcomS literature of the past 20 years, we find that the mesh data presented in this table
cover the various resolutions used, e.g. 12 × 483 [859, 29], 12 × 643 [165] 12 × 963 [166], 12 × 1283

[65, 1348, 1349]. Note that in the case of the HS06 and HS12 meshes the mesh nodes are mapped
out to the 6 or 12 blocks following either an equidistant or equiangle approach (see [1022] for details
on both approaches).
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type level N Nel structure

HS06 2 78 48 6× 23

HS06 4 490 384 6× 43

HS06 8 3,474 3,072 6× 83

HS06 16 26,146 24,576 6× 163

HS06 32 202,818 196,608 6× 323

HS06 64 1,597,570 1,572,864 6× 643

HS06 128 12,681,474 12,582,912 6× 1283

HS06 256 101,057,026 100,663,296 6× 2563

HS12 2 150 96 12× 23

HS12 4 970 768 12× 43

HS12 8 6,930 6,144 12× 83

HS12 16 52,258 49,152 12× 163

HS12 32 405,570 393,216 12× 323

HS12 48 1,354,850 1,327,104 12× 483

HS12 64 3,195,010 3,145,728 12× 643

HS12 128 25,362,690 25,165,824 12× 1283

HS12 256 202,113,538 201,326,592 12× 2563

HS20 2 126 160 20× 23

HS20 4 810 1,280 20× 43

HS20 8 5,778 10,240 20× 83

HS20 16 43,554 81,920 20× 163

HS20 32 337,986 655,360 20× 323

HS20 64 2,662,530 5,242,880 20× 643

HS20 128 21,135,618 41,943,040 20× 1283

HS20 256 168,428,034 335,544,320 20× 2563
Number of nodes N and elements/cells Nel for the three types of meshes and for various levels.

HS06: cubed sphere; HS12: CitcomS mesh; HS20: icosahedral mesh.

There are also many possibilities offered by the use of tetrahedral cells/elements:

Left: Grid of a global neo-tectonic SHELLS model coupled to a global mantle circulation model; colours represent temperatures (red=hot, blue=cold) at a

depth of 200km below the surface. Taken from Oeser et al. (2009) [952]. Right: Taken from the GeoTess software 11 manual.

11https://www.sandia.gov/geotess/
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Example of a Hierarchical Triangular Mesh

Baumgardner and Frederickson [58] (1985), Simmons, Myers, Johannesson, and Matzel [1171] (2012)

Relevant Literature:

� Phillips, Davies, and Oldham [996] (2019) present an algorithm which builds polyhedral-based
grids.

� Upadhyaya, Sharma, Mittal, and Fatima [1299] (2011) on icosahedral-hexagonal grids on a
sphere for CFD applications.

� Saff and Kuijlaars [1096] (1997) on distributing many points on a sphere.

� Swinbank and Purser [1222] (2006) on Fibonacci grids which possess virtually uniform and
isotropic resolution, with an equal area for each grid point.

� Hardin, Saff, et al. [547] (2004) on discretizing manifolds via Minimum Energy Points. Element
Software
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9.7 Pressure smoothing/filtering/recovery for Q1 × P0 ele-

ments

It has been widely documented that the use of the Q1 × P0 element is not without problems. Aside
from the consequences it has on the FE matrix properties, we will here focus on another unavoidable
side effect: the spurious pressure checkerboard modes.

These modes have been thoroughly analysed decades ago, see for instance Hughes, Liu, and
Brooks [608] (1979), Sani, Gresho, Lee, and Griffiths [1108] and Sani, Gresho, Lee, Griffiths, and
Engelman [1109] (1981), Griffiths and Silvester [495] (1994). They can be filtered out (Chen, Pan,
and Chang [221] (1995)) or simply smoothed (Lee, Gresho, and Sani [759] (1979)), as we will see later.
Nodes on edges and corners may need special treatment as documented in Sani, Gresho, Lee, and
Griffiths [1108] (1981) or Lee, Gresho, and Sani [759] (1979). The list of 8 schemes is not exhaustive
with regards to the above mentioned publications. There has been considerable amount of work on
the topic and this section is unfortunately not representing the literature appropriately.

On the following figure (a,b), pressure fields for the lid driven cavity experiment are presented
for both an even and un-even number of elements. We see that the amplitude of the modes can
sometimes be so large that the ’real’ pressure signal is not visible under the checkerboard and that
something as simple as the number of elements in the domain can trigger those or not at all.

a) b)

c)
a) element pressure for a 32x32 grid and for a 33x33 grid;

b) image from [341, p307] for a manufactured solution; c) elemental pressure and smoothed pressure for the punch experiment [1261]

9.7.1 Scheme 1

The easiest post-processing step that can be used (especially when a regular grid is used) is explained
in Thieulot et al. (2008) [1261]: ”The element-to-node interpolation is performed by averaging the
elemental values from elements common to each node; the node-to-element interpolation is performed
by averaging the nodal values element-by-element. This method is not only very efficient but produces
a smoothing of the pressure that is adapted to the local density of the octree. Note that these two
steps can be repeated until a satisfying level of smoothness (and diffusion) of the pressure field is
attained.”
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4
5

6

7

8
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A1 A2

A4A3

q
(1)
5 =

1

4

4∑
e=1

pe

In the codes which rely on the Q1 × P0 element, the (elemental) pressure is simply defined as

p=np . z e r o s ( nel , dtype=np . f l o a t 6 4 )

while the nodal pressure is then defined as12

q=np . z e ro s (nnp , dtype=np . f l o a t 6 4 )

The element-to-node algorithm is then simply (in 2D):

count=np . z e ro s (nnp , dtype=np . in t32 )
f o r i e l in range (0 , ne l ) :

q [ i con [ 0 , i e l ]]+=p [ i e l ]
q [ i con [ 1 , i e l ]]+=p [ i e l ]
q [ i con [ 2 , i e l ]]+=p [ i e l ]
q [ i con [ 3 , i e l ]]+=p [ i e l ]
count [ i con [ 0 , i e l ]]+=1
count [ i con [ 1 , i e l ]]+=1
count [ i con [ 2 , i e l ]]+=1
count [ i con [ 3 , i e l ]]+=1

q=q/count

9.7.2 Schemes 2,3

Schemes 2,3 are very similar and are presented in Sani et al. (1981) [1108, 1109]. Scheme 2 uses the
areas of the surrounding elements as weights for the arithmetic averaging while scheme 3 uses the
area of the triangles:

1
2 3

4
5

6

7

8

9

A1
A2

A3
A4

12In virtually all stones p stands for the ’raw’ pressure and q stands for its projection onto the velocity mesh.
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2 3

4
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6

7

8

9

AT1 AT2

AT4AT3

q
(2)
5 =

4∑
e=1

Aepe

4∑
e=1

Ae

q
(3)
5 =

4∑
e=1

ATe pe

4∑
e=1

ATe

Remark. Although Schemes 1,2,3 are similar, scheme 1 is the simplest and fastest to implement
since the areas of neighbouring elements/triangles are not needed.

Remark. Schemes 1,2,3 are identical if all elements are rectangles of identical dimensions.

9.7.3 Scheme 4

This scheme has been designed by me. It resembles the last three ones, but the weighing is in this
case different.

Let us consider a 1D problem:

Elemental pressures p1 and p2 corresponding to elements 1 and 2 respectively are known at
locations x1 and x2. The two elements have a different size, characterised in this case by the distances
d1 and d2 to their common edge.

The equation of the line passing through points (x1, p1) and (x2, p2) is

p(x) =
p2 − p1
x2 − x1

(x− x1) + p1

The x coordinate of the common edge is given by x = x1 + d1/2, and since x2 − x1 = (d1 + d2)/2,
the pressure at this location writes:

p(xM) =
p2 − p1
d1 + d2

d1 + p1 =

p1
d1

+ p2
d2

1
d1

+ 1
d2
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Extrapolating this formula to 2D, d1 and d2 are in fact the element volumes, so that

q
(4)
5 =

4∑
j=1

pej
Aej

4∑
j=1

1
Aej

=

pe1
Ae1

+
pe2
Ae2

+
pe3
Ae3

+
pe4
Ae4

1
Ae1

+ 1
Ae2

+ 1
Ae3

+ 1
Ae4

There remains a problem, due to the presence of the boundary nodes for which the sums present
in the above equation do not run up to 4. A boundary node only has three neighbours and a corner
node only two. Additional measures are required for these nodes.

The pressure value pN is obtained as follows:

qN =

pe2
Ae2

+
pe3
Ae3

+
pe
2′
Ae

2′
+

pe
3′
Ae

3′
1
Ae2

+ 1
Ae3

+ 1
Ae

2′
+ 1

Ae
3′

The areas and pressures of the mirrored elements 2’ and 3’ are extrapolated from the areas of elements
2 and 6, and 3 and 7 respectively. Likewise the pressure pM at the corner node is obtained through
the pressures of its surrounding elements.

9.7.4 Scheme 5 - Least squares

This scheme is presented (among other places) in Lee et al. (1979) [759]. Let us start from the patch
of 4 Q1 elements counting 9 nodes:

1
2

3 4

1
2 3

4
5

6

7

8

9
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We are looking for a field q living on the nodes. We build the quantity

J =

∫∫
Ω

(q − p)2dV

where p is the elemental field. To make things clearer we split the integral into the sum of elemental
integrals:

J =

∫∫
Ω1

(q(x, y)− p1)2dV +

∫∫
Ω2

(q(x, y)− p2)2dV +

∫∫
Ω3

(q(x, y)− p3)2dV +

∫∫
Ω4

(q(x, y)− p4)2dV

Inside each element the field q(x, y) is given by a bilinear interpolation so that:

J =

∫∫
Ω1

(N1(x, y)q1 +N2(x, y)q2 +N5(x, y)q5 +N4(x, y)q4 − p1)2dV

+

∫∫
Ω2

(N2(x, y)q2 +N3(x, y)q3 +N6(x, y)q6 +N5(x, y)q5 − p2)2dV

+

∫∫
Ω3

(N4(x, y)q4 +N5(x, y)q5 +N8(x, y)q8 +N7(x, y)q7 − p3)2dV

+

∫∫
Ω4

(N5(x, y)q5 +N6(x, y)q6 +N9(x, y)q9 +N8(x, y)q8 − p4)2dV (9.24)

where the Ni functions are the basis functions (unusually expressed in x, y coordinates). The least
square procedure looks for the set of qi such that

∂J

∂qi
= 0 ∀i = 1, ...9
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and this yields 9 equations/constraints for 9 unknowns.

∂J

∂q1
=

∫∫
Ω1

2(N1(x, y)q1 +N2(x, y)q2 +N5(x, y)q5 +N4(x, y)q4 − p1)N1(x, y)dV

∂J

∂q2
=

∫∫
Ω1

2(N1(x, y)q1 +N2(x, y)q2 +N5(x, y)q5 +N4(x, y)q4 − p1)N2(x, y)dV

+

∫∫
Ω2

2(N2(x, y)q2 +N3(x, y)q3 +N6(x, y)q6 +N5(x, y)q5 − p2)N2(x, y)dV

∂J

∂q3
=

∫∫
Ω2

2(N2(x, y)q2 +N3(x, y)q3 +N6(x, y)q6 +N5(x, y)q5 − p2)N3(x, y)dV

∂J

∂q4
=

∫∫
Ω1

2(N1(x, y)q1 +N2(x, y)q2 +N5(x, y)q5 +N4(x, y)q4 − p1)N4(x, y)dV

+

∫∫
Ω3

2(N4(x, y)q4 +N5(x, y)q5 +N8(x, y)q8 +N7(x, y)q7 − p3)N4(x, y)dV

∂J

∂q5
=

∫∫
Ω1

2(N1(x, y)q1 +N2(x, y)q2 +N5(x, y)q5 +N4(x, y)q4 − p1)N5(x, y)dV

+

∫∫
Ω2

2(N2(x, y)q2 +N3(x, y)q3 +N6(x, y)q6 +N5(x, y)q5 − p2)N5(x, y)dV

+

∫∫
Ω3

2(N4(x, y)q4 +N5(x, y)q5 +N8(x, y)q8 +N7(x, y)q7 − p3)N5(x, y)dV

+

∫∫
Ω4

2(N5(x, y)q5 +N6(x, y)q6 +N9(x, y)q9 +N8(x, y)q8 − p4)N5(x, y)dV

∂J

∂q6
=

∫∫
Ω2

2(N2(x, y)q2 +N3(x, y)q3 +N6(x, y)q6 +N5(x, y)q5 − p2)N6(x, y)dV

+

∫∫
Ω4

2(N5(x, y)q5 +N6(x, y)q6 +N9(x, y)q9 +N8(x, y)q8 − p4)N6(x, y)dV

∂J

∂q7
=

∫∫
Ω3

2(N4(x, y)q4 +N5(x, y)q5 +N8(x, y)q8 +N7(x, y)q7 − p3)N7(x, y)dV

∂J

∂q8
=

∫∫
Ω3

2(N4(x, y)q4 +N5(x, y)q5 +N8(x, y)q8 +N7(x, y)q7 − p3)N8(x, y)dV

+

∫∫
Ω4

2(N5(x, y)q5 +N6(x, y)q6 +N9(x, y)q9 +N8(x, y)q8 − p4)N8(x, y)dV

∂J

∂q9
=

∫∫
Ω4

2(N5(x, y)q5 +N6(x, y)q6 +N9(x, y)q9 +N8(x, y)q8 − p4)N9(x, y)dV (9.25)

The factor 2 are removed and the terms
∫
piNj are known so they end up in the right hand side.∫∫

Ω1

(N1N1q1 +N1N2q2 +N1N5q5 +N1N4q4)dV =

∫∫
Ω1

p1N1dV∫∫
Ω1

(N2N1q1 +N2N2q2 +N2N5q5 +N2N4q4)dV

+

∫∫
Ω2

(N2N2q2 +N3N2q3 +N6N2q6 +N5N2q5)dV =

∫∫
Ω1

p1N2dV +

∫∫
Ω2

p2N2dV

. . . = . . .∫∫
Ω4

(N9N5q5 +N9N6q6 +N9N9q9 +N9N8q8)dV =

∫∫
Ω4

p4N9dV (9.26)
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The mass matrices corresponding to the four elements are

M1 =

∫
Ω1


N1N1 N1N2 N1N5 N1N4

N2N1 N2N2 N2N5 N2N4

N5N1 N5N2 N5N5 N5N4

N4N1 N4N2 N4N5 N4N4

 dV M2 =

∫
Ω2


N2N2 N2N3 N2N6 N2N5

N3N2 N3N3 N3N6 N3N5

N6N2 N6N3 N6N6 N6N5

N5N2 N5N3 N5N6 N5N5

 dV

M3 =

∫
Ω3


N4N4 N4N5 N4N8 N4N7

N5N4 N5N5 N5N8 N5N7

N8N4 N8N5 N8N8 N8N7

N7N4 N7N5 N7N8 N7N7

 dV M4 =

∫
Ω4


N5N5 N5N6 N5N9 N5N8

N6N5 N6N6 N6N9 N6N8

N9N5 N9N6 N9N9 N9N8

N8N5 N8N6 N8N9 N8N8

 dV

so that the 9 equations above are actually the result of the assembly process of these four elemental
systems: (∫∫

Ωe

N⃗ T N⃗dV
)
· q⃗e =

∫∫
Ωi

N⃗ TpedV e = 1, 2, 3, 4

Also check section 4.5.4 of Glaisner and Tezduyar [464] (1987), in which the authors present a
two-step algorithm: 1) pressure is averaged over each element. 2) the nodal values of the pressure
are recovered through a least-squares approach.

9.7.5 Scheme 6 - Consistent pressure recovery

This is the method presented in Zienkiewicz and Nakazawa [1421] (1982). In the second part of
this publication the authors wish to establish a simple and effective numerical method to calculate
variables eliminated by the penalisation process. The method involves an additional finite element
solution for the nodal pressures using the same finite element basis and numerical quadrature as used
for the velocity.

Let us start with13:
q = −λ∇⃗ · ν⃗

We are going to treat this equation like any other PDE in the context of the FE method, i.e. we are
going to establish its weak form. We assume that the pressure is given inside an element by

q(x, y) =
mν∑
i=1

Ni(x, y)qi = N⃗ · q⃗

and the velocity:

ν⃗ = (u, v) u(x, y) =
mν∑
i=1

Ni(x, y)ui v(x, y) =
mν∑
i=1

Ni(x, y)vi

where the Ni are the Q1 basis functions and qi are the sought after nodal values. We multiply the
equation above by a Q1 basis function Ni and integrate over the whole domain:∫∫

Ω

Ni(x, y)q(x, y) dxdy = −λ
∫∫

Ω

Ni∇⃗ · ν⃗ dxdy

As before we now focus on the above expression inside a single element e:∫∫
Ωe

Ni(x, y)q(x, y) dxdy = −λ
∫∫

Ωe

Ni∇⃗ · ν⃗ dxdy

13I here voluntarily use q instead of p
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After Ni → N⃗ = (N1,N2,N3,N4)
T , the left hand side term becomes:

∫∫
Ωe

N⃗ T q(x, y) dxdy =

∫∫
Ωe

N⃗ T N⃗ · q⃗ dxdy =


∫∫

Ωe

N⃗ T N⃗dxdy︸ ︷︷ ︸
Me

 · q⃗
where Me is the elemental mass matrix. We now turn to the right hand side. We have

∇⃗ · ν⃗ =
∂u

∂x
+
∂v

∂y
=
∑
i

∂Ni
∂x

ui +
∑
i

∂Ni
∂y

vi

We here too define V⃗e = (u1, v1, u2, v2, u3, v3, u4, v4)
T so that

∫∫
Ωe

N⃗ ∇⃗ · ν⃗ dV

=

∫∫
Ωe

N⃗ T

mν∑
i=1

(
∂Ni
∂x

ui +
∂Ni
∂y

vi

)
dV (9.27)

=

∫∫
Ωe



N1

(
4∑
i=1

∂Ni
∂x
ui +

4∑
i=1

∂Ni
∂y
vi

)
N2

(
4∑
i=1

∂Ni
∂x
ui +

4∑
i=1

∂Ni
∂y
vi

)
N3

(
4∑
i=1

∂Ni
∂x
ui +

4∑
i=1

∂Ni
∂y
vi

)
N4

(
4∑
i=1

∂Ni
∂x
ui +

4∑
i=1

∂Ni
∂y
vi

)


dV

=

∫
Ωe



N1 N1 0

N2 N2 0

N3 N3 0

N4 N4 0


·



∑
i

∂Ni
∂x
ui

∑
i

∂Ni
∂y
vi

∑
i

(∂Ni
∂y
ui+

∂Ni
∂x
vi)


dV

=

∫
Ωe


N1 N1 0
N2 N2 0
N3 N3 0
N4 N4 0


︸ ︷︷ ︸

N

·


∂xN1 0 ∂xN2 0 ∂xN3 0 ∂xN4 0

0 ∂yN1 0 ∂yN2 0 ∂yN3 0 ∂yN4

∂yN1 ∂xN1 ∂yN2 ∂xN2 ∂yN3 ∂xN3 ∂yN4 ∂xN4


︸ ︷︷ ︸

B

·V⃗e dV

=

(∫
Ωe

N ·B dV

)
· V⃗e

= −GT
e · V⃗e (9.28)

This makes sense since GT is the discrete divergence operator. However, it is not very efficient to
build Ge only to multiply it with a vector of already known quantities. In practice we implement
Eq. (9.27) which implmentation resembles the buoyancy term of the Stokes equation.

After assembly we arrive at

M · q⃗ = λGT · V⃗ with Ge = −
∫
Ωe

N ·B dV
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where M is the global mass matrix, q⃗ the vector of all nodal pressures, G the discrete gradient
matrix and V⃗ the (velocity) solution vector. The system can be easily solved since the mass matrix
is a friendly matrix. The vector q⃗ contains the nodal pressure values directly, with no need for a
smoothing scheme!

Remark. Very importantly, the mass matrix M is to be evaluated at the full integration points, while
the constraint part (the right hand side of the equation) is to be evaluated at the reduced integration
point, i.e. in the middle of the element.

Remark. As noted in [1421], it is interesting to note that when linear elements are used and the
lumped matrices are used for the M the resulting algebraic equation is identical to the smoothing
scheme 1 only if a uniform square finite element mesh is used. In this respect this method is expected
to yield different results when elements are not square or even rectangular.

Remark. The third column of the matrix N and the last line of the B matrix could be removed
altogether. If your code is based on the mixed formulation, then you already have built matrix G
so you can easily re-use this piece of code to compute G again, this time with a reduced integration
quadrature. If you are using the penalty formulation then you need to program all from scratch and
then simply do away with these unnecessary terms, or you can direcly build the rhs as

∫
Ωe
N⃗ Tpe

(assuming you have previously computed the pressure in the middle of each element by means of

p = −λ∇⃗ · ν⃗).

Remark. This scheme is identical to the least square scheme!

9.7.6 Scheme 7

Same as scheme 6, but with lumped mass matrix.

9.7.7 Scheme 8 - bilinear interpolation

Let us assume that the centers of the four elements make a Q1 quadrilateral element, as shown on
this figure:

(tikz pscheme8.tex)
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4
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6

7
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The values at the corners are p1, p2, p3 and p4. Assuming that the pressure inside this element
can be represented by a bilinear field, we have

p(x, y) = a+ bx+ cy + dxy
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where the coefficients will be determined by ensuring that p(xi, yi) = pi for i = 1, 2, 3, 4, or:

a+ bx1 + cy1 + dx1y1 = p1 (9.29)

a+ bx2 + cy2 + dx2y2 = p2 (9.30)

a+ bx3 + cy3 + dx3y3 = p3 (9.31)

a+ bx4 + cy4 + dx4y4 = p4 (9.32)

i.e. 
1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4

 ·


a
b
c
d

 =


p1
p2
p3
p4


There remains an issue with nodes which are on the boundaries of the domain. These are of course

not ’surrounded’ by four pressure values so the above algorithm does not apply directly. However,
looking at the above figure, and assuming that node 1 is a lower left corner of a 2D domain, we can
use the bilinear interpolation based on elements 1,2,3,4 to extrapolate a nodal pressure value at node
1. The same would apply for nodes 2 and 4 for example.

Remark. This scheme is not applicable to quadtree-based meshed.
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9.8 The value of the timestep

The chosen time step dt used for time integration is chosen to comply with the Courant-Friedrichs-
Lewy condition [22].

δt = Cmin

(
minh

max |ν⃗|p
,
h2

κ

)
(9.33)

where h is a measure of the element diameter, p is the polynomial order of the element, κ = k/ρCp
is the thermal diffusivity and C is the so-called CFL number chosen in [0, 1[. minh is the smallest
element diameter in the domain, while max |ν⃗ is the maximum velocity (norm) in the domain.

In essence the CFL condition arises when solving hyperbolic PDEs . It limits the time step in
many explicit time-marching computer simulations so that the simulation does not produce (too)
incorrect results.

This condition is not needed when solving the Stokes equation but it is mandatory when solving
the heat transport equation or any kind of advection-diffusion equation. Note that any increase of
grid resolution (i.e. h becomes smaller) yields an automatic decrease of the time step value.
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9.9 Exporting data to vtk/vtu format

This format seems to be the universally accepted format for 2D and 3D visualisation in Computational
Geodynamics (and even CFD ?). Such files can be opened with open source softwares such as
Paraview 14, MayaVi 15 or Visit 16.

Unfortunately it is my experience that no simple tutorial exists about how to build such files.
There is an official document which describes the vtk format17 but it delivers the information in a
convoluted way18. I therefore describe hereafter how fieldstone builds the vtk/vtu files19.

I hereunder show vtk file corresponding to a 3×2 grid made of linear elements. In this particular
example there are:

� 12 nodes and 6 elements

� 1 elemental field (the pressure p)

� 2 nodal fields: 1 scalar (the smoothed pressure q), 1 vector (the velocity field u,v,0)

Note that vtk files are inherently 3D so that even in the case of a 2D simulation the z-coordinate
of the points and for instance their z-velocity component must be provided. The file, usually called
solution.vtk starts with a header:

<VTKFile type=’ UnstructuredGrid ’ v e r s i on=’ 0 .1 ’ byte o rde r=’ BigEndian ’>
<UnstructuredGrid>
<Piece NumberOfPoints=’ 12 ’ NumberOfCells=’ 6 ’>

We then proceed to write the node coordinates as follows:

<Points>
<DataArray type=’ Float32 ’ NumberOfComponents=’ 3 ’ Format=’ a s c i i ’>
0.000000 e+00 0.000000 e+00 0.000000 e+00
3.333333 e=01 0.000000 e+00 0.000000 e+00
6.666667 e=01 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 5.000000 e=01 0.000000 e+00
3.333333 e=01 5.000000 e=01 0.000000 e+00
6.666667 e=01 5.000000 e=01 0.000000 e+00
1.000000 e+00 5.000000 e=01 0.000000 e+00
0.000000 e+00 1.000000 e+00 0.000000 e+00
3.333333 e=01 1.000000 e+00 0.000000 e+00
6.666667 e=01 1.000000 e+00 0.000000 e+00
1.000000 e+00 1.000000 e+00 0.000000 e+00
</DataArray>
</Points>

These are followed by the elemental field(s):

<CellData Sca l a r s=’ s c a l a r s ’>
<DataArray type=’ Float32 ’ Name=’p ’ Format=’ a s c i i ’>
=1.333333 e+00
=3.104414e=10
1.333333 e+00
=1.333333 e+00

14https://www.paraview.org/
15https://docs.enthought.com/mayavi/mayavi/
16https://wci.llnl.gov/simulation/computer-codes/visit/
17https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
18I only later realised it was also limited!
19I have found the following information about vtk vs. vtu: VTK denotes the simple legacy format file. VTU

denotes a Serial Unstructured Grid format information for the XML-based syntax.
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8.278417 e=17
1.333333 e+00
</DataArray>
</CellData>

Nodal quantities are written next:

<PointData Sca l a r s=’ s c a l a r s ’>
<DataArray type=’ Float32 ’ NumberOfComponents=’ 3 ’ Name=’ v e l o c i t y ’ Format=’ a s c i i ’>
0.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
8.888885 e=08 =8.278405e=24 0.000000 e+00
8.888885 e=08 1.655682 e=23 0.000000 e+00
0.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
1.000000 e+00 0.000000 e+00 0.000000 e+00
</DataArray>
<DataArray type=’ Float32 ’ NumberOfComponents=’ 1 ’ Name=’q ’ Format=’ a s c i i ’>
=1.333333 e+00
=6.666664e=01
6.666664 e=01
1.333333 e+00
=1.333333 e+00
=6.666664e=01
6.666664 e=01
1.333333 e+00
=1.333333 e+00
=6.666664e=01
6.666664 e=01
1.333333 e+00
</DataArray>
</PointData>

To these informations we must append 3 more datasets. The first one is the connectivity, the
second one is the offsets and the third one is the type. The first one is trivial since the required
connectivity array is the same as the one needed for the Finite Elements. The second must be
understood as follows: when reading the connectivity information in a linear manner the offset
values indicate the beginning of each element (omitting the zero value). The third is simply the type
of element as given in the vtk format document (9 corresponds to a generic quadrilateral with an
internal numbering consistent with ours - more on this later).

<Cel l s>
<DataArray type=’ Int32 ’ Name=’ c onne c t i v i t y ’ Format=’ a s c i i ’>
0 1 5 4
1 2 6 5
2 3 7 6
4 5 9 8
5 6 10 9
6 7 11 10
</DataArray>
<DataArray type=’ Int32 ’ Name=’ o f f s e t s ’ Format=’ a s c i i ’>
4
8
12
16
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20
24
</DataArray>
<DataArray type=’ Int32 ’ Name=’ types ’ Format=’ a s c i i ’>
9
9
9
9
9
9
</DataArray>
</Ce l l s>

The file is then closed with

</Piece>
</UnstructuredGrid>
</VTKFile>

The solution.vtu20 can then be opened with ParaView, MayaVi or Visit and the reader is advised
to find tutorials online on how to install and use these softwares. Also check Appendix O.0.1 on how
to use ParaView.

In the same folder images/vtk there is the python script makevtu.py21 which produces 3 different
vtu files. The first one solution1.vtu is a similar to the one above: an nelx*nely quadrilateral-based
mesh in a unit square. The second one (solution2.vtu) looks identical when opened in Paraview but
it is rather different: each element is exported as its own sub-mesh, so that if the mesh counts nel
elements the number of vertices is 4*nel, and not (nelx+1)*(nely+1). As such this file is larger. The
icon array is needed to write down the positions of the four vertices of each element but not to write
down the connectivity since the first 4 points are making the 1st element, the next four points are
making the second element, etc ...

v t u f i l e . wr i t e ( ”<Points> \n” )
v t u f i l e . wr i t e ( ”<DataArray type=’Float32 ’ NumberOfComponents= ’3 ’ Format=’ a s c i i ’> \n” )
f o r i e l in range (0 , ne l ) :

i f not f l a g [ i e l ] :
f o r k in range (0 ,m) :

v t u f i l e . wr i t e ( ”%10e %10e %10e \n” %(x [ i con [ k , i e l ] ] , y [ i con [ k , i e l ] ] , 0 . ) )
v t u f i l e . wr i t e ( ”</DataArray>\n” )
v t u f i l e . wr i t e ( ”</Points> \n” )
v t u f i l e . wr i t e ( ”<Cel l s>\n” )
v t u f i l e . wr i t e ( ”<DataArray type=’ Int32 ’ Name=’ c onne c t i v i t y ’ Format=’ a s c i i ’> \n” )
f o r i e l in range (0 , n e l l e f t ) :

v t u f i l e . wr i t e ( ”%d %d %d %d \n” %( i e l *4 , i e l *4+1, i e l *4+2, i e l *4+3) )
v t u f i l e . wr i t e ( ”</DataArray>\n” )
. . .
v t u f i l e . wr i t e ( ”</Ce l l s>\n” )

20https://raw.githubusercontent.com/cedrict/fieldstone/master/images/vtk/solution.vtu
21https://raw.githubusercontent.com/cedrict/fieldstone/master/images/vtk/makevtu.py
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This format is rather practical in the case of linear or higher order discontinuous fields. For
example, in the case of the Q2 × P−1 element pair, the pressure is linear inside each element and
discontinuous across element edges. One can then assign pressure values at the four vertices of each
element.

Finally a third mesh solution3.vtu is produced. It is based on the 2nd one, but since elements are
now somewhat de-coupled, then one can export only a subset of the mesh. For instance one could
not show elements which are too distorted, or below a certain line, or outside a certain volume, etc
... In makevtu.py all elements whose center is inside a circle are flagged and will not be exported into
the vtu file:

f o r i e l in range (0 , ne l ) :
f l a g [ i e l ]= ( xc [ i e l ]=0.333*Lx) **2+(yc [ i e l ]=0.666*Ly) **2<0.234**2

n e l f l a g g e d=np . sum( f l a g )
n e l l e f t=nel=n e l f l a g g e d

Once opened in ParaView this is how it looks like:

We can find at this address22 a list of supported cell types (although their internal numbering is
not mentioned so enjoy the guess work). Here is a subset of these that can be relevant in our case:

// Linear cells

VTK_EMPTY_CELL = 0,

VTK_VERTEX = 1,

VTK_POLY_VERTEX = 2,

VTK_LINE = 3,

VTK_POLY_LINE = 4,

VTK_TRIANGLE = 5,

VTK_TRIANGLE_STRIP = 6,

VTK_POLYGON = 7,

VTK_PIXEL = 8,

VTK_QUAD = 9,

VTK_TETRA = 10,

VTK_VOXEL = 11,

VTK_HEXAHEDRON = 12,

VTK_WEDGE = 13,

22https://vtk.org/doc/nightly/html/vtkCellType_8h_source.html
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VTK_PYRAMID = 14,

VTK_PENTAGONAL_PRISM = 15,

VTK_HEXAGONAL_PRISM = 16,

// Quadratic, isoparametric cells

VTK_QUADRATIC_EDGE = 21,

VTK_QUADRATIC_TRIANGLE = 22,

VTK_QUADRATIC_QUAD = 23,

VTK_QUADRATIC_POLYGON = 36,

VTK_QUADRATIC_TETRA = 24,

VTK_QUADRATIC_HEXAHEDRON = 25,

VTK_QUADRATIC_WEDGE = 26,

VTK_QUADRATIC_PYRAMID = 27,

VTK_BIQUADRATIC_QUAD = 28,

VTK_TRIQUADRATIC_HEXAHEDRON = 29,

VTK_TRIQUADRATIC_PYRAMID = 37,

VTK_QUADRATIC_LINEAR_QUAD = 30,

VTK_QUADRATIC_LINEAR_WEDGE = 31,

VTK_BIQUADRATIC_QUADRATIC_WEDGE = 32,

VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON = 33,

VTK_BIQUADRATIC_TRIANGLE = 34,

// Cubic, isoparametric cell

VTK_CUBIC_LINE = 35,

After some online searching I found this figure23:

Fortunately these cell types seem to coincide with those in this document 24 mentioned earlier
where we find these schematics:

23https://examples.vtk.org/site/Cxx/GeometricObjects/IsoparametricCellsDemo/
24https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
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9.10 Runge-Kutta methods

These methods were developed around 1900 by the German mathematicians Carl Runge and Martin
Kutta. The RK methods are methods for the numerical integration of ODEs25. These methods
are well documented in any numerical analysis textbook and the reader is referred to [455, 626].
Any Runge-Kutta method is uniquely identified by its Butcher tableau (REF?) which contains all
necessary coefficients to build the algorithm. missing

refs for
Butcher
tableau

The simplest Runge-Kutta method is the (forward) Euler method. Its tableau is:

0
1

The standard second-order RK method method (also called midpoint method) is:

0
1/2 1/2

0 1

Another second-order RK method, called Heun’s method26 is follows:

0
1 1

1/2 1/2

A third-order RK method is as follows:

0
1/2 1/2
1 -1 2

1/6 4/6 1/6

The RK4 method falls in this framework. Its tableau is:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

A slight variation of the standard RK4 method is also due to Kutta in 1901 and is called the
3/8-rule. Almost all of the error coefficients are smaller than in the standard method but it requires
slightly more FLOPs per time step. Its Butcher tableau is

0
1/3 1/3
2/3 -1/3 1
1 1 -1 1

1/8 3/8 3/8 1/8

25https://en.wikipedia.org/wiki/Runge-Kutta_methods
26https://en.wikipedia.org/wiki/Heun’s_method
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The following method is called the Runge-Kutta-Fehlberg method and is commonly abbreviated
RKF4527. Its Butcher tableau is as follows:

0
1/4 1/4
3/8 3/32 9/32
12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104
1/2 -8/27 2 -3544/2565 1859/4104 -11/40

16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4104 -1/5 0

The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and
the second row gives the fourth-order accurate method.

Left: 7th order Fehlberg method; Right: 8/7th order Dormand-Prince method.

Relevant Literature[389, 519, 342, 343, 1018, 213, 195]

Using RK methods to advect particles/markers

In the context of geodynamical modelling, one is usually faced with the following problem: now that
I have a velocity field on my FE (or FD) mesh, how can I use it to advect the Lagrangian markers?

Runge-Kutta methods are used to this effect but only their spatial component is used: the velocity
solution is not recomputed at the intermediate fractional timesteps, i.e. only the coefficients of the
right hand side of the tableaus is used.

� The RK1 method is simple.

0
1

Carry out a loop over markers and

1. interpolate velocity ν⃗m onto each marker m

2. compute new position as follows: r⃗m(t+ δt) = r⃗m(t) + ν⃗mδt

27https://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method
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� The RK2 method is also simple but requires a bit more work.

0
1 1

1/2 1/2

Carry out a loop over markers and

1. interpolate velocity ν⃗m onto each marker m at position r⃗m

2. compute new intermediate position as follows: r⃗
(1)
m (t+ δt) = r⃗m(t) + ν⃗mδt/2

3. compute velocity ν⃗
(1)
m at position r⃗

(1)
m

4. compute new position: r⃗m(t+ δt) = r⃗m(t) + ν⃗
(1)
m δt

Note that the intermediate positions could be in a different element of the mesh so extra care
must be taken when computing intermediate velocities.

� The RK3 method introduces two intermediate steps.

0
1/2 1

2

1 -1 2
1
6

4
6

1
6

Carry out a loop over markers and

1. interpolate velocity ν⃗m onto each marker m at position r⃗m

2. compute new intermediate position as follows: r⃗
(1)
m (t+ δt) = r⃗m(t) +

1
2
ν⃗mδt

3. compute velocity ν⃗
(1)
m at position r⃗

(1)
m

4. compute new intermediate position as follows: r⃗
(2)
m (t+ δt) = r⃗m(t) + (−1ν⃗m + 2ν⃗

(1)
m )δt

5. compute velocity ν⃗
(2)
m at position r⃗

(2)
m

6. compute new position: r⃗m(t+ δt) = r⃗m(t) + (1
6
ν⃗m + 4

6
ν⃗
(1)
m + 1

6
ν⃗
(2)
m )δt

The following example is borrowed from [825], itself borrowed from Fullsack [426, Section 5.4]. It
is a whirl flow [964], a flow with rotational symmetry in which concentric layers of material rotate
around a centre with an angular velocity:

ω(r) = ω0
r

r0
exp

(
− r

r0

)
The box is [−0.5, 0.5] × [−0.5, 0.5], r0 = 0.25, ω0 = 0.3 and δt = 1. 60 × 60 particles are regularly
positioned inside the [−0.3, 0.3]× [−0.3, 0.3] square. Maierova [825] has carried out this experiment
for the above Runge-Kutta methods.

Model domain with particles colored at three different time-steps: (A) t = 0 (initial position of particles), (B) t = 50, and (C) t = 200. The advection is

computed using the fourth-order Runge-Kutta scheme. Taken from [825]
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The same plot as above, but for different advection schemes at t = 100. Advection was computed using (A) the fourth-order Runge-Kutta scheme, (B) the

mid- point method, (C) Heun’s method and (D) the explicit Euler method. Taken from [825]
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9.11 Am I in or not? - finding reduced coordinates

It is quite common that at some point one must answer the question: ”Given a mesh and its
connectivity on the one hand, and the coordinates of a point on the other, how do I accurately and
quickly determine in which element the point resides?”

One typical occurence of such a problem is linked to the use of the Particle-In-Cell technique:
particles are advected and move through the mesh, and need to be localised at every time step. This
question could arise in the context of a benchmark where certain quantities need to be measured at
specific locations inside the domain.

Two-dimensional space

We shall first focus on quadrilaterals. There are many kinds of quadrilaterals as shown hereunder:

Taken from Wikipedia https://en.wikipedia.org/wiki/Quadrilateral#/media/File:Quadrilaterals.svg

The trivial case of rectangular elements Testing whether the point M is inside the element is
trivial. For x0 ≤ xM ≤ x2 and y0 ≤ yM ≤ y2, its reduced coordinates are given by

rM =
2

x2 − x0
(xM − x0)− 1 =

2

hx
(xM − x0)− 1

sM =
2

y2 − y0
(yM − y0)− 1 =

2

hy
(yM − y0)− 1 (9.34)

0 1

23

M

An intermediate case We make the following assumption that the lateral sides of the element
are vertical while the bottom and top are not necessarily horizontal:

0 1

23

M
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Because the sides are verical then if x0 ≤ xM ≤ x2 then

rM =
2

x2 − x0
(xM − x0)− 1

Then, if M is inside the element then its y coordinate is given by

yM =
∑
i

Ni(rM , sM)yi

where Ni are the four Q1 basis functions associated to the vertices. Assuming we know rM then we
can solve for sM :

yM =
1

4
(1− rM)(1− sM)y0 +

1

4
(1 + rM)(1− sM)y1 +

1

4
(1 + rM)(1 + sM)y2 +

1

4
(1− rM)(1 + sM)y3

=
1

4
[(1− r)y0 + (1 + r)y1 + (1 + r)y2 + (1− r)y3 + sM [−(1− r)y0 − (1 + r)y1 + (1 + r)y2 + (1− r)y3]]

or,

sM =
4yM − [(1− rM)y0 + (1 + rM)y1 + (1 + rM)y2 + (1− rM)y3]

−(1− rM)y0 − (1 + rM)y1 + (1 + rM)y2 + (1− rM)y3

If the obtained value is in [−1, 1] then the point M is in the element. Verification: when y1 = y0 and
y2 = y3 then

sM =
4yM − [(1− rM)y0 + (1 + rM)y0 + (1 + rM)y3 + (1− rM)y3]

−(1− rM)y0 − (1 + rM)y0 + (1 + rM)y3 + (1− rM)y3

=
4yM − [2y0 + 2y3]

−2y0 + 2y3

=
1

y3 − y0
[2yM − (y0 + y3)]

=
1

y3 − y0
[2yM − 2y0 + y0 − y3)]

=
2

y3 − y0
(yM − y0)− 1 (9.35)

which is the expression that corresponds to a rectangular element as seen previously.

A generic quadrilateral We wish to arrive at a single algorithm which is applicable to all quadri-
laterals and we now focus on an irregular quadrilateral (no face is parallel to the axis of the coordinate
system).

0 1

23

M

Several rather simple options exist:

� we could subdivide the quadrilateral into two triangles and check whether point M is inside
any of them (as it turns out, this problem is rather straightforward for triangles. Simply google
it.)
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� We could check that point M is always on the left side of segments 0 → 1, 1 → 2, 2 → 3,
3→ 0.

� ...

Any of these approaches will work although some might be faster than others. In three-dimensions
all will however become cumbersome to implement and might not even work at all. Fortunately, there
is an elegant way to answer the question, as detailed in the following subsection, which works both
in 2D and 3D.

Three-dimensional space

If point M is inside the quadrilateral, there exist a set of reduced coordinates r, s, t ∈ [−1 : 1]3 such
that

4∑
i=1

Ni(rM , sM , tM)xi = xM

4∑
i=1

Ni(rM , sM , tM)yi = yM

4∑
i=1

Ni(rM , sM , tM)zi = zM

This can be cast as a system of three equations and three unknowns. Unfortunately, each basis
function Ni contains a term rst (as well as rs, rt, and st) so that it is not a linear system. We must
then use an iterative technique: the algorithm starts with a guess for values rM , sM , tM and improves
on their value iteration after iteration. In what follows the subscript M is dropped from r, s, t.

The classical way of solving nonlinear systems of equations is Newton’s method. We can rewrite
the equations above as F (r, s, t) = 0:

8∑
i=1

Ni(r, s, t)xi − xM = 0

8∑
i=1

Ni(r, s, t)yi − yM = 0

8∑
i=1

Ni(r, s, t)zi − zM = 0 (9.36)

or,

Fr(r, s, t) = 0

Fs(r, s, t) = 0

Ft(r, s, t) = 0

so that we now have to find the zeroes of continuously differentiable functions F : R → R. The
recursion is simply:  rk+1

sk+1

tk+1

 =

 rk
sk
tk

− JF (rk, sk, tk)−1

 Fr(rk, sk, tk)
Fs(rk, sk, tk)
Ft(rk, sk, tk)
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where J the Jacobian matrix:

JF (rk, sk, tk) =


∂Fr
∂r

(rk, sk, tk)
∂Fr
∂s

(rk, sk, tk)
∂Fr
∂t

(rk, sk, tk)

∂Fs
∂r

(rk, sk, tk)
∂Fs
∂s

(rk, sk, tk)
∂Fs
∂t

(rk, sk, tk)

∂Ft
∂r

(rk, sk, tk)
∂Ft
∂s

(rk, sk, tk)
∂Ft
∂t

(rk, sk, tk)



=



8∑
i=1

∂Ni
∂r

(rk, sk, tk)xi
8∑
i=1

∂Ni
∂s

(rk, sk, tk)xi
8∑
i=1

∂Ni
∂t

(rk, sk, tk)xi

8∑
i=1

∂Ni
∂r

(rk, sk, tk)yi
8∑
i=1

∂Ni
∂s

(rk, sk, tk)yi
8∑
i=1

∂Ni
∂t

(rk, sk, tk)yi

8∑
i=1

∂Ni
∂r

(rk, sk, tk)zi
8∑
i=1

∂Ni
∂s

(rk, sk, tk)zi
8∑
i=1

∂Ni
∂t

(rk, sk, tk)zi


In practice, we solve the following system:

JF (rk, sk, tk)

 rk+1

sk+1

tk+1

−
 rk

sk
tk

 = −

 Fr(rk, sk, tk)
Fs(rk, sk, tk)
Ft(rk, sk, tk)


Finally, the algorithm goes as follows:

� set guess values for r, s, t (typically 0)

� loop over k=0,...

� Compute rhs= −F (rk, sk, tk)

� Compute matrix JF (rk, sk, tk)

� solve system for (drk, dsk, dtk)

� update rk+1 = rk + drk, sk+1 = sk + dsk, tk+1 = tk + dtk

� stop iterations when (drk, dsk, dtk) is small

� if rk, sk, tk ∈ [−1, 1]3 then M is inside.

This method converges quickly but involves iterations, and multiple solves of 3 × 3 systems which,
when carried out for each marker and at each time step can prove to be expensive. A simple
modification can be added to the above algorithm: iterations should be carried out only when the
point M is inside of a cuboid of size [min

i
xi : max

i
xi]× [min

i
yi : max

i
yi]× [min

i
zi : max

i
zi] where the

sums run over the vertices of the element. In 2D this translates as follows: only carry out Newton
iterations when M is inside the red rectangle!

0 1

23

M

Note that the algorithm above extends to high degree elements such as Q2 and higher, even with
curved sides. As shown in the 2D case if the element is a cuboid or if all its lateral faces are vertical
then one can compute the reduced coordinates without using an iterative method.
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Three-dimensional space - special case

We assume that the mesh is such that the cross section of all Q1 elements is a rectangle in the
xy-plane.

Let (x, y, z) be a point inside the element. The global coordinates x, y, z are obtained from the
reduced coordinates r, s, t via the basis the basis functions:

x =
8∑
i=1

Ni(r, s, t)xi y =
8∑
i=1

Ni(r, s, t)yi z =
8∑
i=1

Ni(r, s, t)zi (9.37)

Let

v⃗1 = (+1,+1,+1,+1,+1,+1,+1,+1)

v⃗2 = (−1,+1,+1,−1,−1,+1,+1,−1)
v⃗3 = (−1,−1,+1,+1,−1,−1,+1,+1)

v⃗4 = (−1,−1,−1,−1,+1,+1,+1,+1)

v⃗5 = (+1,−1,+1,−1,+1,−1,+1,−1)
v⃗6 = (+1,−1,−1,+1,−1,+1,+1,−1)
v⃗7 = (+1,+1,−1,−1,−1,−1,+1,+1)

and

x⃗ = (x1, x2, x3, x4, x5, x6, x7, x8)

y⃗ = (y1, y2, y3, y4, y5, y6, y7, y8)

z⃗ = (z1, z2, z3, z4, z5, z6, z7, z8)

then Eqs. (9.37) can also be written

x =
1

8
(v⃗1 + rv⃗2 + sv⃗3 + tv⃗4 + rsv⃗5 + rtv⃗6 + stv⃗7) · x⃗

y =
1

8
(v⃗1 + rv⃗2 + sv⃗3 + tv⃗4 + rsv⃗5 + rtv⃗6 + stv⃗7) · y⃗

z =
1

8
(v⃗1 + rv⃗2 + sv⃗3 + tv⃗4 + rsv⃗5 + rtv⃗6 + stv⃗7) · z⃗ (9.38)

If the element has a rectangular cross-section sx × sy then

x⃗ = (x0, x0 + sx, x0 + sx, x0, x0, x0 + sx, x0 + sx, x0)

y⃗ = (y0, y0, y0 + sy, y0 + sy, y0, y0, y0 + sy, y0 + sy)

which yields

r = 2
x− x0
sx

− 1

s = 2
y − y0
sy

− 1

Since the local coordinates r and s can be easily computed, one can use Eq. (9.38) to obtain t:

t =
8z − (v⃗1 + rv⃗2 + sv⃗3 + rsv⃗5) · z⃗

(v⃗4 + rv⃗6 + sv⃗7) · z⃗
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9.12 Error measurements and convergence rates

errors.tex

What follows is written in the case of a two-dimensional model. Generalisation to 3D is trivial.
What follows is mostly borrowed from [1254].

When measuring the order of accuracy of the primitive variables v⃗ and p, it is standard to report
errors in both the L1 and the L2 norm. For a scalar quantity Ψ, the L1 and L2 norms are computed
as

∥Ψ∥1 =
∫
V

|Ψ|dV ∥Ψ∥2 =

√∫
V

Ψ2dV (9.39)

For a vector quantity k⃗ = (kx, ky) in a two-dimensional space, the L1 and L2 norms are defined as:

∥∥∥k⃗∥∥∥
1
=

∫
V

(|kx|+ |ky|)dV
∥∥∥k⃗∥∥∥

2
=

√∫
V

(k2x + k2y)dV (9.40)

To compute the respective norms the integrals in the above norms can be approximated by splitting
them into their element-wise contributions. The element volume integral can then be easily computed
by numerical integration using Gauss-Legendre quadrature.

The respective L1 and L2 norms for the pressure error can be evaluated via

ehp |1 =
ne∑
i=1

nq∑
q=1

|ehp(r⃗q)|wq|Jq| ehp |2 =

√√√√ ne∑
i=1

nq∑
q=1

|ehp(r⃗q)|2wq|Jq| (9.41)

where ehp(r⃗q) = ph(r⃗q)− p(r⃗q) is the pressure error evaluated at the q-th quadrature associated with
the ith element. ne and nq refer to the number of elements and the number of quadrature points per
element. wq and Jq are the quadrature weight and the Jacobian associated with point q.

The velocity error ehv⃗ is evaluated using the following two norms

ehv⃗ |1 =
ne∑
i=1

nq∑
q=1

[|ehu(r⃗q)|+ |ehv(r⃗q)|]wq|Jq| ehv⃗ |2 =

√√√√ ne∑
i=1

nq∑
q=1

[|ehu(rq)|2 + ehv(rq)|2]wq|Jq| (9.42)

where ehu(r⃗q) = uh(r⃗q)− u(r⃗q) and ehv(r⃗q) = vh(r⃗q)− v(r⃗q).
Another norm is very rarely used in the geodynamics literature but is preferred in the Finite

Element literature: the H1 norm. The mathematical basis for this norm and the nature of the
H1(Ω) Hilbert space is to be found in many FE books [341, 650, 604]. This norm is expressed as
follows for a function f such that f, |∇f | ∈ L2(Ω) 28

∥f∥H1 =

(∫
Ω

(|f |2 + |∇f |2)dΩ
)1/2

(9.43)

We then have

ehv⃗ |H1 =
∥∥v⃗h − v⃗∥∥

H1 =

√√√√ d∑
i=1

∫
Ω

[
(vhi − vi)2 + ∇⃗(vhi − vi) · ∇⃗(vhi − vi)

]
dΩ (9.44)

28https://en.wikipedia.org/wiki/Sobolev_space
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where d is the number of dimensions. Note that sometimes the following semi-norm is used [336,
101]:

ehv⃗ |H1 =
∥∥v⃗h − v⃗∥∥

H1 =

√√√√ d∑
i=1

∫
Ω

[
∇⃗(vhi − vi) · ∇⃗(vhi − vi)

]
dΩ (9.45)

When computing the different error norms for ep and ev⃗ for a set of numerical experiments with
varying resolution h we expect the error norms to follow the following relationships:

ehv⃗ |1 = ChrvL1 ehv⃗ |2 = ChrvL2 ehv⃗ |H1 = ChrvH
1

(9.46)

ehp |1 = ChrpL1 ehp |2 = ChrpL2 (9.47)

where C is a resolution-independent constant and rpXX and rvXX are the convergence rates for
pressure and velocity in various norms, respectively. Using linear regression on the logarithm of the
respective error norm and the resolution h, one can compute the convergence rates of the numerical
solutions.

As mentioned in [336], when finite element solutions converge at the same rates as the interpolants
we say that the method is optimal, i.e.:

ehv⃗ |L2 = O(h3) ehv⃗ |H1 = O(h2) ehp |L2 = O(h2) (9.48)

We note that when using discontinuous pressure space (e.g., P0, P−1), these bounds remain
valid even when the viscosity is discontinuous provided that the element boundaries conform to the
discontinuity.

About extrapolation

Section contributed by W. Bangerth and part of Thieulot and Bangerth [1260] (2022) but it was
ultimately not used.

In a number of numerical benchmarks we want to estimate the error Xh−X∗ between a quantity
Xh computed from the numerical solution ν⃗h, ph and the corresponding value X computed from the
exact solution ν⃗, p. Examples of such quantities X are the root mean square velocity νrms, but it
could also be a mass flux across a boundary, an average horizontal velocity at the top boundary, or
any other scalar quantity.

If the exact solution is known, then one can of course compute X from it. On the other hand,
we would of course like to assess convergence also in cases where the exact solution is not known. In
that case, one can compute an estimate X∗ for X by way of extrapolation. To this end, we make the
assumption that asymptotically, Xh converges to X at a fixed (but unknown) rate r, so that

eh = |Xh −X| ≈ Chr. (9.49)

Here, X, C and r are all unknown constants to be determined, although we are not really interested
in C. We can evaluate Xh from the numerical solution on successively refined meshes with mesh
sizes h, h/2, and h/4. Then, in addition to (9.49) we also have

eh/2 = |Xh/2 −X| ≈ C

(
h

2

)r
, (9.50)

eh/4 = |Xh/4 −X| ≈ C

(
h

4

)r
. (9.51)

Taking ratios of equations (9.49)–(9.51), and replacing the unknown X by an estimate X∗, we then
arrive at the following equation:

|Xh −X⋆|
|Xh/2 −X⋆|

=
|Xh/2 −X⋆|
|Xh/4 −X⋆|

= 2r.
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If one assumes that Xh converges to X uniformly either from above or below (rather than oscillate
around X), then this equation allows us to solve for X∗ and r:

(Xh −X⋆)(Xh/4 −X⋆) = (Xh/2 −X⋆)(Xh/2 −X⋆)

XhXh/4 −X⋆Xh/4 −XhX
⋆ + (X⋆)2 = X2

h/2 − 2X⋆Xh/2 + (X⋆)2

XhXh/4 −X⋆Xh/4 −XhX
⋆ = X2

h/2 − 2X⋆Xh/2

XhXh/4 −X2
h/2 = −2X⋆Xh/2 +X⋆Xh/4 +XhX

⋆

XhXh/4 −X2
h/2 = X⋆(−2Xh/2 +Xh/4 +Xh)

and finally:

X⋆ =
XhXh/4 −X2

h/2

Xh − 2Xh/2 +Xh/4

, r = log2
Xh/2 −X⋆

Xh/4 −X⋆
.

In the determination of r, we could also have used Xh and Xh/2, but using Xh/2 and Xh/4 is generally
more reliable because the higher order terms we have omitted in (9.49) are less visible on finer meshes.

In some cases, however, halving the mesh size multiple times is not really tractable (memory
problem, or cpu time). Let us now start again from

eh = |Xh −X| ≈ Chr. (9.52)

and assume that we run two other models at a resolution αh and βh, such that 1 > α > β > 0. In
the example above we of course had α = 1/2 and β = 1/4. Then we have

eαh = |Xαh −X| ≈ C (αh)r , (9.53)

eβh = |Xβh −X| ≈ C (βh)r . (9.54)

which leads to

|Xh −X⋆|
|Xαh −X⋆|

=
Chr

C(αh)r
= (1/α)r and

|Xαh −X⋆|
|Xβh −X⋆|

=
C(αh)r

C(βh)r
= (α/β)r

In order for both to be equal we must have

(1/α)r = (α/β)r ⇒ 1/α = α/β ⇒ β = α2

So of course if α = 1/2 then β = 1/4, but now we can also take α = 3/4 and then β = 9/16. Etc ...
In the end, this approach might not be that useful since the mesh sizes would then be h, 3h/4, 9h/16, 27h/64, ...

which may be hard to achieve in practice.
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9.13 The initial temperature field

Relevant Literature:

� Thermal gradients in the continental crust [219]

� Simple analytical approximation to the temperature structure in subduction zones [378]

� Thermal structure of subduction zone back arcs [296]

� Thermal Structure of Oceanic Lithosphere [1067]

� thermal structure of a subducting plate with finite length [598]

Single layer with imposed temperature b.c.

Let us take a single layer of material characterised by a heat capacity Cp, a heat conductivity k and
a heat production term H.

The Heat transport equation writes

ρCp

(
∂T

∂t
+ v⃗ · ∇⃗T

)
= ∇⃗ · (k∇⃗T ) + ρH (9.55)

At steady state and in the absence of a velocity field, assuming that the material properties to be
independent of time and space, and assuming that there is no heat production (H = 0), this equation
simplifies to

∆T = 0 (9.56)

Assuming the layer to be parallel to the x-axis, the temperature is T (x, y) = T (y) = αT + β. In
order to specify the constants α and β, we need two constraints.

At the bottom of the layer y = yb a temperature Tb is prescribed while a temperature Tt is
prescribed at the top with y = yt. This ultimately yields a temperature field in the layer given by

T (y) =
Tt − Tb
yt − yb

(y − yb) + Tb

If now the heat production coefficient is not zero, the differential equation reads

k∆T +H = 0 (9.57)

The temperature field is then expected to be of the form

T (y) = −H
2k
y2 + αy + β (9.58)

Supplied again with the same boundary conditions, this leads to

β = Tb +
H

2k
y2b − αyb
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ie,

T (y) = −H
2k

(y2 − y2b ) + α(y − yb) + Tb

and finally

α =
Tt − Tb
yt − yb

+
H

2k
(yb + yt)

or,

T (y) = −H
2k

(y2 − y2b ) +
(
Tt − Tb
yt − yb

+
H

2k
(yb + yt)

)
(y − yb) + Tb

Taking H = 0 in this equation obviously yields the temperature field obtained previously. Taking
k = 2.25, Tt = 0C, Tb = 550C, yt = 660km, yb = 630km yields the following temperature profiles
and heat fluxes when the heat production H varies:
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Looking at the values at the top, which are somewhat estimated to be about 55 − 65mW/m2 [639,
table 8.6], one sees that value H = 0.8e − 6 yields a very acceptable heat flux. Looking at the
bottom, the heat flux is then about 0.03W/m2 which is somewhat problematic since the heat flux at
the Moho is reported to be somewhere between 10 and 20 mW/m2 in [639, table 7.1].

Single layer with imposed heat flux b.c.

Let us now assume that heat fluxes are imposed at the top and bottom of the layer:

We start again from the ODE
k∆T +H = 0

but only integrate it once:

k
dT

dy
+Hy + α = 0

At the bottom q = k(dT/dy)|y=yb = qb and at the top q = k(dT/dy)|y=yt = qt so that
to finish

Single layer with imposed heat flux and temperature b.c.

to finish
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Half cooling space

TODO.
Relevant Literature[384]

Plate model

[856]

McKenzie slab

When doing thermo-mechanical modelling, the initial temperature field in the domain is of prime
importance. This is especially true for the temperature in the slab for subduction modelling as its
rheological behaviour is strongly temperature-dependent. One could easily design a simple geomet-
rical initial field but it is unlikely to be close to the field of a slowly subducting slab at an angle in
a hot mantle.

McKenzie [852] derived such approximate initial field from the steady-state energy equation in
two dimensions:

ρCpv⃗ · ∇⃗T = k∇⃗2T (9.59)

We denote by Tl the temperature at the base of the lithosphere and l its thickness (i.e. the thickness
of the slab).

Assuming v⃗ = (vx, 0) yields

ρCpvx
∂T

∂x
= k

∂2T

∂x2

and substitution of T ′ = T/Tl, x
′ = x/l and z′ = z/l ∈ [0, 1] in this equation leads to

ρCpvx
Tl
l

∂T ′

∂x′
= k

Tl
l2

(
∂2T ′

∂x′2
+
∂2T ′

∂z′2

)
or

ρCpvxl

k

∂T ′

∂x′
=
∂2T ′

∂x′2
+
∂2T ′

∂z′2

and finally (see Eq. 2.3 of [852]):

∂2T ′

∂x′2
− 2R

∂T ′

∂x′
+
∂2T ′

∂z′2
= 0

where R is the thermal Reynolds number

R =
ρCpvxl

2k

The general solution to this PDE with T ′ = 1 on the top, left and right boundary is

T ′(x′, z′) = 1 +
∑
n

Cn exp
[(
R− (R2 + n2π2)1/2

)
x′
]
sin(nπz′)

We now must make an assumption about the temperature on the left boundary (x′ = 0), which is
the temperature of the lithosphere. For simplicity McKenzie assumes that T ′(x′ = 0, z′) = 1− z′ so
that Cn = 2(−1)n/nπ and finally

T ′(x′, z′) = 1 + 2
∑
n

(−1)n

nπ
exp

[(
R− (R2 + n2π2)1/2

)
x′
]
sin(nπz′) (9.60)
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Let us build a simple temperature model for a 250km × 50km slab, with ρ = 3000, Cp = 1250,
k = 3. The python code is available in images/mckenzie/mckenzie1.py.

0 50 100 150 200 250
0

20

40

0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250
0

20

40

0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250
0

20

40

0.2 0.4 0.6 0.8 1.0

Left to right: Dimensionless temperature T ′ in a 250km× 50km slab for vx = 0.5, 1, 2cm/year

We logically recover the fact that the slower the slab penetrates the mantle the more temperature
diffusion dominates over temperature advection. For v = 0.5cm/year we see that that the slab
assumes a constant temperature T ′ = 1 at all depthes 0 ≤ z′ ≤ 1 for x′ ≥ 125km.

Note that this field is a steady-state field, valid for a constant density, heat conductivity and heat
capacity, zero heat production, that it implies that the velocity is constant and that the lithosphere
temperature is linear.

One can also embed the slab in a more realistic context, a subduction zone, involving a subduct-
ing lithosphere, an over-riding plate and a mantle. The domain is 1000km × 250km. The mantle
temperature is set to 1300 ◦C. The slab dip can be varied and so can the velocity. The python code
is available in images/mckenzie/mckenzie2.py.
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Left to right: temperature T for vx = 0.5, 1, 2cm/year and ϕ = 30◦.
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Left to right: temperature T for vx = 1cm/year and ϕ = 15, 30, 45◦.

Initial temperature for global mantle convection models

This is a difficult topic, and Gottschaldt et al. [476] list a few issues or facts to take into account:
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� Frequent impacts may have determined the heat structure of the outer layers (Arrhenius and
Lepland 2000), leading to an early thermally stable stratification.

� A global magma ocean (Solomatov 2000) or several large scale melting events (Kleine et al. .
2004) are also conceivable.

� Fractional crystallisation and subsequent overturn has the potential to result in compositionally
or thermally stable layering, too (Elkins-Tanton et al. 2003; Zaranek and Parmentier 2004)
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9.14 The consistent boundary flux (CBF)

cbf.tex

The Consistent Boundary Flux technique was devised to alleviate the problem of the accuracy
of primary variables derivatives (mainly velocity and temperature) on boundaries. These derivatives
are important since they are needed to compute the heat flux (and therefore the Nusselt number) or
dynamic topography and geoid.

The idea was first introduced in Mizukami (1986) [886] and later used in geodynamics in Zhong
et al. (1993) [1409]. It was finally implemented in the CitcomS code [1412, 897] and more recently
in the Aspect code (dynamic topography postprocessor). Note that the CBF should be seen as a
post-processor step as it does not alter the primary variables values.

The CBF method is implemented and used in stone 27. It is also discussed but not explicitely
named in Reddy’s book [1051, p309]. Also see Larock & Herrmann (1976) [747], Gresho et al. (1987)
[487], Marshall et al. [837].

The CBF applied to the Stokes equation

We start from the strong form:
∇⃗ · σ + b⃗ = 0⃗ (9.61)

and then write the weak form on an element e:∫
Ωe

Nν
i ∇⃗ · σ dV +

∫
Ωe

Nν
i b⃗ dV = 0⃗ (9.62)

We then use the two equations:

∇⃗ · (Nσ) = N∇⃗ · σ + ∇⃗N · σ (chain rule)∫
Ω

(∇⃗ · σ) dV =

∫
Γ

σ · n⃗ dS (divergence theorem)

and integrate by parts in order to obtain:∫
Γ

Nν
i σ · n⃗ dS −

∫
Ωe

∇⃗Nν
i · σ dV +

∫
Ωe

Nν
i b⃗ dV = 0⃗ (9.63)

and since the traction vector t⃗ is given by t⃗ = σ · n⃗ we have:∫
Γe

Nν
i t⃗ dS =

∫
Ωe

∇⃗Nν
i · σ dV −

∫
Ωe

Nν
i b⃗ dV (9.64)

The core idea of the method lies in considering the traction vector as an unknown living on the
nodes on the boundary, and assuming we have already solved the Stokes equation and therefore have
obtained the velocity and pressure.

Finally, since the traction vector can be expressed as a function of the velocity basis functions on
the edge i.e.

t⃗ =
m∑
i=1

Nν
i t⃗i

the left hand term yields an edge (1D) mass matrix M′ (see Section E).
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Remark. In stone 27 an alternative to equation 9.64 is used. Although somewhat inefficient, the
elemental matrices K and G and the corresponding body force rhs are built and the rhs of the traction
equation is computed as follows:

M′ · T⃗ = −K · V⃗ −G · P⃗ + f⃗

where T⃗ is the vector of assembled tractions which we want to compute and V⃗ and T⃗ are the solutions
of the Stokes problem.

Remark. The assembled mass matrix is tri-diagonal and can be easily solved with a Conjugate
Gradient method.

Remark. With a trapezoidal integration rule (i.e. Gauss-Lobatto - see Section 4.2.7) the matrix can
even be diagonalised and the resulting matrix is simply diagonal, which results in a very cheap solve
as mentioned in Zhong et al. (1993) [1409].

The CBF applied to the heat transport equation

We start from the strong form of the heat transfer equation (without the source terms for simplicity):

ρCp

(
∂T

∂t
+ v⃗ · ∇⃗T

)
= ∇⃗ · k∇⃗T

The weak form then writes:∫
Ω

N θρCp
∂T

∂t
dV + ρCp

∫
Ω

N θv⃗ · ∇⃗TdV =

∫
Ω

N θ∇⃗ · k∇⃗TdV

Using once again integration by parts and divergence theorem:∫
Ω

NρCp
∂T

∂t
dV + ρCp

∫
Ω

Nv ·∇TdV =

∫
Γ

Nk∇T · ndΓ−
∫
Ω

∇N · k∇TdV

On the boundary we are interested in the heat flux q = −k∇T∫
Ω

NρCp
∂T

∂t
dV + ρCp

∫
Ω

Nv ·∇TdV = −
∫
Γ

Nq · ndΓ−
∫
Ω

∇N · k∇TdV

or, ∫
Γ

Nq · ndΓ = −
∫
Ω

NρCp
∂T

∂t
dV − ρCp

∫
Ω

Nv ·∇TdV −
∫
Ω

∇N · k∇TdV

Considering the normal heat flux qn = q · n as an unknown living on the nodes on the boundary,

qn =
2∑
i=1

qn|iNi

so that the left hand term becomes a mass matrix for the basis functions living on the boundary.
We have already covered the right hand side terms when building the FE system to solve the heat
transport equation, so that in the end

M′ · Q⃗n = −M · ∂T
∂t
−Ka · T −Kd · T

where Q⃗n is the assembled vector of normal heat flux components. Note that in all terms the assembly
only takes place over the elements along the boundary.

Note that the resulting matrix is symmetric.
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Some implementation details for the Stokes equation

What follows is relevant for stone 27 which relies on Q1 shape functions for the velocity. Let us
start with a small example, a 3x2 element FE grid:

0 1 2

3 4 5

0 1 2 3

4 5 6 7

8 9 10 11

01 23 45 67

89 1011 1213 1415

16 17 18 19 20 21 22 23

Red color corresponds to the dofs in the x direction, blue color indicates a dof in the y direction.

We have nnp=12, nel=6, NfemV=24. Let us assume that free slip boundary conditions are
applied. The boundary conditions fix bc array is then:

bc fix=[T T T T T T T T T T T T T T T T T T T T T T T T ]

Note that since corners belong to two edges, we effectively prescribed no-slip boundary conditions
on those.
why does array contain only T??

We wish to compute the tractions on the boundaries, and more precisely for the dofs for which
a Dirichlet velocity boundary condition has been prescribed. The number of (traction) unknowns
NfemTr is then the number of T in the bc fix array. In our specific case, we wave NfemTr= . This finish

means that we need for each targeted dof to be able to find its identity/number between 0 and
NfemTr-1. We therefore create the array bc nb which is filled as follows:

bc nb=[T T T T T T T T T T T T T T T T T T T T T T T T ]

This translates as follows in the code:

NfemTr=np . sum( b c f i x )
bc nb=np . z e r o s (NfemV, dtype=np . in t32 )
counter=0
f o r i in range (0 ,NfemV) :

i f ( b c f i x [ i ] ) :
bc nb [ i ]= counter
counter+=1

The algorithm is then as follows

A Prepare two arrays to store the matrix Mcbf and its right hand side rhscbf

B Loop over all elements

C For each element touching a boundary, compute the residual vector Rel = −fel+KelVel+GelPel

D Loop over the four edges of the element using the connectivity array

E For each edge loop over the number of degrees of freedom (2 in 2D)

F For each edge assess whether the dofs on both ends are target dofs.
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G If so, compute the mass matrix Medge for this edge

H extract the 2 values off the element residual vector and assemble these in rhscbf

I Assemble Medge into NfemTrxNfemTr matrix using bc nb

M cbf = np . z e ro s ( (NfemTr , NfemTr) ,np . f l o a t 6 4 ) # A
r h s cb f = np . z e r o s (NfemTr , np . f l o a t 6 4 )

f o r i e l in range (0 , ne l ) : # B

. . . compute e l ementa l r e s i d u a l . . . # C

#boundary 0=1 # D
f o r i in range (0 , ndofV ) : # E

i d o f 0=2* i con [ 0 , i e l ]+ i
i d o f 1=2* i con [ 1 , i e l ]+ i
i f ( b c f i x [ i d o f 0 ] and b c f i x [ i d o f 1 ] ) : # F

ido fTr0=bc nb [ i d o f 0 ]
ido fTr1=bc nb [ i d o f 1 ]
r h s c b f [ ido fTr0]+= r e s e l [0+ i ] # H
r h s cb f [ ido fTr1]+= r e s e l [2+ i ]
M cbf [ idofTr0 , ido fTr0]+=M edge [ 0 , 0 ] #
M cbf [ idofTr0 , ido fTr1]+=M edge [ 0 , 1 ] # I
M cbf [ idofTr1 , ido fTr0]+=M edge [ 1 , 0 ] #
M cbf [ idofTr1 , ido fTr1]+=M edge [ 1 , 1 ] #

#boundary 1=2 #[D]

. . .

#boundary 2=3 #[D]

. . .

#boundary 3=0 #[D]

. . .
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9.15 Computing gradients - the recovery process

recovery.tex

write about recovering accurate strain rate components and heat flux components on the nodes.
Let g⃗(r⃗) be the desired nodal field which we want to be the continuous (for example Q1) repre-

sentation of the field ∇⃗fh. Since the derivative of the basis function does not uniquely exist on the
nodes we need to design an algorithm to do so. This problem is well known and has been investigated
. The main standard techniques are listed hereafter. refs!

Relevant Literature: check OC Zienkiewicz, B Boroomand, and Jian Zhong Zhu. “Recovery
procedures in error estimation and adaptivity: adaptivity in linear problems”. In: Advances in
Adaptive Computational Methods in Mechanics. 1998, pp. 3–23

Global recovery

The global recovery approach is rather simple: we wish to find g⃗h such that it satisfies∫
Ω

ϕg⃗h dΩ =

∫
Ω

ϕ∇⃗fh dΩ ∀ϕ

We will then successively replace ϕ by all the basis functions Ni and since we have gh =
∑

j Nigi we
then obtain ∑

j

∫
NiNjdΩgi =

∫
Ni∇⃗fh dΩ

or,
M · G⃗ = f⃗

Local recovery - centroid average over patch

Local recovery - nodal average over patch

Let j be the node at which we want to compute g⃗. Then

g⃗j = g⃗(r⃗j) =

∑
e adj. to j

|Ωe|(∇⃗f)e(r⃗j)∑
|Ωe|

where |Ωe| is the volume of the element and (∇⃗fh)e(r⃗j) is the gradient of f as obtained with the
basis functions inside element e and computed at location r⃗j.

Local recovery - least squares over patch

Link to pressure smoothing

When the penalty method is used to solve the Stokes equation, the pressure is then given by p =
−λ∇⃗ · v⃗. As explained in section 7.4, the velocity is first obtained and the pressure is recovered
by using this equation as a postprocessing step. Since the divergence cannot be computed easily
at the nodes, the pressure is traditionally computed in the middle of the elements, yielding an
elemental pressure field (remember, we are talking about Q1P0 elements here – bi/tri-linear velocity,
discontinuous constant pressure)
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9.16 Tracking materials and/or interfaces

tracking.tex

Unless using a fully Lagrangian formulation, one needs an additional numerical method to repre-
sent/track the various materials present in an undeformable (Eulerian) mesh. The figure below (by
B. Hillebrand) illustrates the three main methods used in geodynamics.

Note that what follows is applicable to FEM, FDM, etc ...
A typical test for advection algorithm is the Zalesak disk [1399]. It is a two dimensional test

problem of solid body rotation with a constant angular velocity ω (in rad/sec):

Taken from [1399]. Left: Schematic representation of two dimensional solid body rotation problem. The field inside the cut out has value 3 and it is 1 outside.

The rotational speed is such that one full revolution is effected in 628 cycles. The width of the gap separating the two halves of the cylinder, as well as the

maximum extent of the ”bridge” connecting the two halves, is 5 cells. Right: Perspective view of initial conditions for the two dimensional! solid body

rotation problem. Note that only a 50× 50 portion of the mesh centered on the cylinder is displayed.

This benchmark is widely used in the literature [1193, 1220, 1307, 1000, 55, 1407]. Note that the
Zalesak disc is often supplemented with a cone and a Gaussian features:
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Taken from [777]. Initial data for solid rotation tests

The Particle-in-cell technique

pic.tex

Remark. The terms ’particle’ and ’marker’ are commonly (and unfortunately) interchangeably used
in the literature in the context of the particle-in-cell technique. However, one should be aware that
the marker-and-cell (MAC) technique is something different: it was invented in the early 60’s at the
Los Alamos Laboratories by Harlow and Welch (1965) [548]. For more information on MAC see
the review paper by McKee et al. (2008) [851]. Also, Tackley and King (2003) [1229] talk about the
tracer-ratio method in the context of PIC...

The Particle-in-cell method is by far the most widely used in computational geodynamics. In its
most basic form it is a rather simple method to implement and this probably owes to its success
and early adoption [1008] in non-parallel codes such as Sopale [426], I2VIS [453] or CitcomS [859]
(Appendix ??). It has been implemented in Aspect [438] and the inherent load balancing issues
arising from the parallel implementation as well as from the use of Adaptive Mesh Refinement are
discussed. It has also been implemented in the MILAMIN code [299] to study LLSVPs [918].

One of the main problems of the PIC method is the fact that the interface between the fluid is not tracked explicitely, and if one uses a random distribution of

particles the black dotted line reprensents the ’real’ interface between the fluids while the red line is liekly to be the interface one would obtain based on the

distribution of particles. Taken from Crameri et al. (2012) [285].

Samuel (2018) [1104] does a great job at explaining the core problem with PIC:

The method requires the method requires particle-mesh and mesh-particle mappings to
be specified. These critical operations constitute a major source of inaccuracy in the PIC
solution [891, 352, 1254]. Indeed, while the Lagrangian advection alone is not prone to
significant numerical diffusion, particle-mesh mappings can introduce important amounts
of dissipation. This is particularly true when the spatial distribution of particles is not ho-
mogeneous, leading to areas in the vicinity of gridpoints that are not sufficiently well sam-
pled by particles, and other regions where the domain is oversampled by particles. This
recurrent sampling problem develops in regions characterized by strong deformation, and
concerns both compressible and incompressible flow [1337, 1021]. The non-homogeneous
sampling has two main origins.
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� The first one corresponds to inaccuracies in advecting the Lagrangian particles [868].
This aspect has drawn the attention of a few recent studies [1337, 1021], which have
proposed the use of conservative schemes to map velocity components from the Eu-
lerian grid to the Lagrangian particles during their advection. Such schemes have
shown to significantly improve the accuracy of the interpolation, and result in a
considerably more homogeneous spatial sampling.

� The second origin, which has received less attention, is related to the deforming
nature of the flow [898], and is completely independent of the accuracy of the nu-
merical methods for interpolating the velocities at particles’ locations. In fact, for
a given velocity field, particles should travel along their characteristics, and even
in the case of incompressible flows, the distance between characteristics can vary
in general, and can strongly diverge or converge in regions characterized by strong
deformation. This naturally leads to the development of a non-homogeneous spatial
distribution of the Lagrangian particles, even if the particles locations are perfectly
known.

The basic methodology goes as follows:

1. distribute particles in the domain,

2. assign a material identity (and/or any other quantity) to each particle,

3. project particle quantities on the nodes of the mesh,

4. solve the Stokes equations for a new velocity field,

5. interpolate the velocity onto the particles,

6. move the particles with their respective velocities,

7. go back to step 3.

As it turns out each step above needs to be carefully executed and is more difficult than it first
looks.

Distributing particles in the domain Let us assume we wish to distribute Np particles in the
domain. How large must Np be? To simplify, one end member could be ’as many particles as possible
that fit in memory’ while the other end member could be ’one per element/cell on average’. While
the former does not necessarily guarantee a desired accuracy while being CPU and memory intensive,
the latter will certainly lead to zones in the domain void of particles which will be problematic since
the projection onto the mesh might yield zero values or very inaccurate values. How many particles
(per element/cell) will be enough? Also, should the particles be randomly distributed in the domain
or on some kind of regular grid? See stone 13.

Taken from Tackley and King (2003) [1229]: ”Tracers are initialized on a regular grid with each
tracer perturbed from its grid position by a random amount of up to ± half a grid spacing, in order
to eliminate artifacts due to tracer alignment.”
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Averaging and projection This is a very critical step. Unfortunately, there is no community-
wide agreed-upon method. The problem at hand boils down to: at a given location (r⃗) in space I
need a the value of a field which is carried by the particles. The first step is to find the particle(s)
close to this point. If done naively, this is a very costly affair, and begs the question what ’close’
means. Finding all particles within a radius R of point r⃗ can be done very efficiently (e.g. with
linked lists, Verlet lists, ...) but the choice of R proves to be critical: if too small, there may not be
any particle inside the circle, and if too large there may be many particles inside the circle and the
averaging over so many particles in space will prove to be over diffusive. In practice, the FD or FE
mesh is used to provide an indication of R. In FDM, the four cells (or quarter cells) around a node
represent the volume of space containing the particles whose properties are to be averaged [352] as
illustrated in the following figure:

Taken from [352]. The ”4-cell” and ”1-cell” schemes for projecting properties defined on the markers (denoted by stars) onto a node (denoted by the solid

circle). (A) The 4-cell scheme. The support of the interpolating function Ni associated with node i is indicated by the shaded region. Only markers within

the support of node i contribute to the projection operation used to define the nodal value at i. The shape of the bilinear interpolation function for node i is

indicated in the lower frame. (B) The 1-cell scheme. The thick lines in the lower frame indicate the grid used to discretize the Stokes equations, while the thin

lines indicate the grid onto which marker properties are projected. The 1-cell scheme utilizes a compact support of size ∆x×∆y. The support for nodes r, s,

t are indicated by the shaded regions. Only markers within the nodal support contribute to the projection operation for that node.

Given that the FEM requires to compute integrals over each element, one could assume that
only the particles inside the element will contribute to the average values assigned to the quadrature
points (which I coin ’elemental approach’).

However, one could also decide to first average the properties onto the nodes before using these
nodal values to assign values to the quadrature points (which I coin ’nodal approach’). In this case
the FDM approach seen above could apply.

Finally, in both FDM and FEM bi/trilinear basis functions are used for the interpolation as they
can be interpreted as weighing functions. Higher order basis functions could also be used but the
standard Q2 basis functions (Section 5.3) are 2-nd order polynomials which can take negative values
(as opposed to the Q1 basis functions which are strictly positive) and this can pose problems: in
some cases, although all values to be averaged are positive, their weighed average can be negative.
See Section 9.30 for concrete examples.

nodal approach
elemental approach (1) - piece-wise constant interpolation
What follows is written with simplicity in mind, although more mathematical formulations can

be found in the literature [438].
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Assuming that we have established a list of particles tracking a field f(r⃗) inside the element we
must now compute their average value < f >. The simplest approach which comes to mind is the
arithmetic mean (am):

⟨f⟩am =

n∑
i=1

fi

n
where n is the number of particles inside the element. In the case where f is the (mass) density ρ,
it is indeed what should be used. However, turning now to viscosity η, we know that its value can
vary by many orders of magnitude over very short distances. It is then likely that the average runs
over values spanning values between 1018Pa s and 1025Pa s. As explained in [1124] the arithmetic
averaging tends to ’favour’ large values: if the sum runs over 10 particles, 9 carrying the value 1025

and 1 carrying the value 1019, the average value is then

⟨η⟩ = 9 · 1025 + 1 · 1019

10
≃ 0.9 · 1025

which is much much closer to 1025 than to 1019. Other averagings are then commonly used, namely
the geometric mean (gm) and the harmonic mean (hm), defined as follows:

⟨f⟩gm =

(∏
i

fi

)1/n

or, log10⟨f⟩gm =

n∑
i=1

log10 fi

n

and

⟨f⟩hm =


n∑
i=1

1
fi

n


−1

or,
1

⟨f⟩hm
=

n∑
i=1

1
fi

n

The geometric mean can be seen as a form of arithmetic mean of log10 values, while the harmonic
mean can be seen as a form of arithmetic mean of the inverse values.

Looking back at the above example, the geometric mean of the viscosities is given by

log⟨η⟩gm =
9 · 25 + 1 · 19

10
= 24.4 or, ⟨η⟩gm ≃ 2.5 · 1024

and the harmonic mean:

⟨η⟩hm ≃
(

1

10 · 1019

)−1

= 1020

We see that the harmonic mean tends to favour the small values. Also we recover the known property:

⟨f⟩am ≥ ⟨f⟩gm ≥ ⟨f⟩hm (9.65)

Once a single average value has been computed for the whole element, then all quadrature points
are assigned this value.

elemental approach (2) - Least Squares Interpolation One can revisit this topic on the grounds
that with high(er) order elements optimal convergence is unlikely to be reached if viscosity (and
density) are assumed to be constant inside each element (see Gassmöller et al. (2019) [440]). One
could therefore use the least-square method to arrive at a functional representation of the field inside
the element which is as close as possible (in the least-squares sense, then) to the particle-based field.

Thielmann et al. (2014) [1254] use the Q2P−1 element and introduce an element-wise interpolation
scheme based on a least squares fitting of the particle properties and choose the functional to be a
linear function to match the pressure space. They define the error ϵ such that

ϵ2 =
n∑
i=1

(f̃(xi, yi)− fi)2
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with f̃(x, y) = a+ bx+ cy and proceed to look for the minimum of ϵ2, i.e. ∇⃗(ϵ2) = 0 in the {a, b, c}
space:

0 =
∂ϵ2

∂a
= 2

∑
i

(f̃(xi, yi)− fi)

= 2
∑
i

(a+ bxi + cyi − fi)

= 2

[
a
∑
i

1 + b
∑
i

xi + c
∑

yi −
∑
i

fi

]

0 =
∂ϵ2

∂b
= 2

∑
i

(f̃(xi, yi)− fi)xi

= 2
∑
i

(a+ bxi + cyi − fi)xi

= 2

[
a
∑
i

xi + b
∑
i

x2i + c
∑

xiyi −
∑
i

xifi

]

0 =
∂ϵ2

∂c
= 2

∑
i

(f̃(xi, yi)− fi)yi

= 2
∑
i

(a+ bxi + cyi − fi)yi

= 2

[
a
∑
i

yi + b
∑
i

xiyi + c
∑

y2i −
∑
i

yifi

]
so 

∑
i

1
∑
i

xi
∑
i

yi∑
i

xi
∑
i

x2i
∑
i

xiyi∑
i

yi
∑
i

xiyi
∑
i

y2i

 ·


a

b

c

 =


∑
i

fi∑
i

xifi∑
i

yifi


This method can trivially be extended to three dimensions. It must also be noted that it is not
cheap: for each element the matrix and rhs above must be formed and the system solved for a, b, c.

We could also then decide to use a bi-linear function f̃ , i.e.

f̃(x, y) = a+ bx+ cy + dxy

which lies in the Q1 space of Taylor-Hood quadrilateral elements. In this case the error is

ϵ2 =
n∑
i=1

(f̃(xi, yi)− fi)2 =
n∑
i=1

(a+ bxi + cyi + dxiyi − fi)2

and one has to solve a 4× 4 system this time:

∑
i

1
∑
i

xi
∑
i

yi
∑
i

xiyi∑
i

xi
∑
i

x2i
∑
i

xiyi
∑
i

x2i yi∑
i

yi
∑
i

xiyi
∑
i

y2i
∑
i

xiy
2
i∑

i

xiyi
∑
i

xiyi
∑
i

y2i
∑
i

x2i y
2
i

 ·


a
b
c
d

 =



∑
i

fi∑
i

xifi∑
i

yifi∑
i

xiyifi
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which we write A · c⃗ = b. Note that the matrix A is symmetric. We see that this is a potentially
numerically problematic equation. Distances/coordinates in geodynamic calculations are of the order
of 100-1000km and viscosities are between 1019 and 1026Pa s. The matrix would contain very large
terms, which may compromise the accuracy of the system solve.

Once this linear system (or the previous one) has been solved we have obtained the coefficients
a, b, c(, d) which allow us to compute f̃ anywhere inside the element, and especially at the quadrature
points. Once these coefficients have been obtained one can compute f̃ anywhere in the element, and
in particular at the quadrature points.

Remark. Using a different (bi)linear function f̃ for each element means that it is likely to be dis-
continuous from one element to another in regions of high gradients.

There is however one drawback with this approach (linear or bi-linear alike): in the areas of steep
gradients the computed coefficients can be such that the function f̃ evaluated on a quadrature point
is negative which 1) would be wrong but not numerically dramatic for density, 2) would be wrong
and physically and numerically problematic for viscosity (a viscosity cannot be negative, and this
would automatically destroy the SPD nature of the viscous block of the Stokes matrix).

Least square fit of the density field for the sinking sphere experiment of Section 12.2.23.

Resolution is 33× 33, 100 markers per element.

This problem is discussed in Thielmann et al. (2014) in Section 3.2.1 and they call this ”Over-
and Under-shooting”. A simple (iterative) fix is then designed which insures that the computed value
is within user-defined acceptable bounds. This is also mentioned in [440] but the authors explain
that this problem was not encountered in the context of the publication.

Remark. One could consider the above least-square approach with f̃ = a, i.e. f̃ is a zero-th order
polynomial. In this case

ϵ2 =
n∑
i=1

(f̃(xi, yi)− fi)2 =
n∑
i=1

(a− fi)2

The gradient becomes

∇⃗(ϵ2) = dϵ2

da
=

n∑
i=1

2(a− fi) = 0

or a = 1
n

∑
i fi. We here recover the arithmetic averaging!

Remark. Two variants of the PIC methods have been proposed: the Deformable PIC (DPIC) by
Samuel (2018) [1104], and the multiscale PIC in [31].

Remark. TO BE WRITTEN. A word about the tracer ratio method. [1229]. Trim et al. (2020)
show a modified method with a tracer repositioning algorithm designed to promote even tracer coverage
[1281].

Also look at Yang, Moresi, and Mansour [1378] and Bouffard, Labrosse, Choblet, Fournier,
Aubert, and Tackley [119].

See stone 67 for a concrete example of Particle-In-Cell use and a detailed explanation of its
implementation. See also stone 41 for an implementation of the least square method.
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Interpolation of the velocity onto particles .
Once the particle i has been localised inside a given element (Section 9.11) and its reduced

coordinates (r, s, t) determined, the velocity at this location can be computed through the basis
functions:

ν⃗i =
m∑
k=1

Ni(r, s, t)ν⃗k

This approach is not without problem: while the nodal velocities ν⃗k are such that29 ∇⃗ · ν⃗ = 0 (in
the weak sense), the computed velocity ν⃗i is not necessarily divergence-free! In order to remedy
this, a Conservative Velocity Interpolation (CVI) has been proposed in [1337]. Because the complete
derivations for the CVI algorithm is quite large I have decided to make a new section about it
(Section 9.31) rather than include it here.

Moving the particles This is discussed in the context of the Runge-Kutta Methods, see Sec-
tion 9.10.

The level set function technique

lsf.tex

This method was developed in the 80’s by Stanley Osher and James Sethian [809]
The Level-set Method (LSM), as it is commonly used in Computational Fluid Dynamics – and

especially in Computational Geodynamics – represents a close curve Γ (say, in our case, the interface
between two fluids or layers) by means of a function ϕ (called the level-set function, or LSF). Γ is
then the zero level-set of ϕ:

Γ = {(x, y) | ϕ(x, y) = 0} (9.66)

The convention is that ϕ > 0 inside the region delimited by Γ and ϕ < 0 outside. The function value
indicates on which side of the interface a point is located (negative or positive) and this is used to
identify materials.

Furthermore, if the curve Γ moves with a velocity ν⃗, then it satisfies the following equation:

∂ϕ

∂t
+ ν⃗ · ∇⃗ϕ = 0 (9.67)

The level set function is generally chosen to be a signed distance function, i.e. |∇⃗ϕ| = 1 everywhere
and its value is also the distance to the interface. The function value indicates on which side of the
interface a point is located (negative or positive) and this is used to identify materials.

As explained in [571], the level-set function ϕ is advected with the velocity ν⃗ which is obtained by
solving the Stokes equations. This velocity does not guarantee that after an advection step the signed
distance quality of the LSF is preserved. The LSF then needs to be corrected, which is also called
reinitialisation. Finally, solving the advection equation must be done in an accurate manner both in
time and space, so that so-called ENO (essentially non-oscillatory) schemes are often employed for
the space derivative [962, 1103].

The level set method has not often been used in the geodynamics community with some notable
exceptions. Bourgouin et al use this method combined with Finite Differences to model lava flows
[124, 123, 521, 499]. Braun et al. use a so-called particle based level set methodology in their FEM
code in conjunction with AMR [136]. Zlotnik et al. coupled the X-FEM method with level set
functions to model slab break-off and Rayleigh-Taylor Diapirism [1441]. This same particle level sets
are studied by Samuel and Evonuk and applied to geophysical flows [1103]. In Suckale et al. (2010)

29for incompressible flows, of course
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[1218, 1217] the authors investigate simulating buoyancy-driven flow in the presence of large viscosity
contrasts. Hale et al. (2010) [522] use the LSM in 3D and sudy the dynamics of slab tear faults. An
overview of the method and applications can be found in [961].

Several improvements upon the original LSM have been proposed, such as for instance the con-
servative level set of [1407]. The most notable difference between CLS method originally proposed
by Olsson et al. [959, 960] and standard LS method lies in the choice of LS function. Instead of the
signed distance function, the CLS methods employ the Heaviside function H(ϕ)

H(ϕ) =


1 ϕ > 0
1/2 ϕ = 0
0 ϕ < 0

where ϕ is the signed distance function as in the LSM. In practice, a hyperbolic tangent function is
used:

H(ϕ) =
1

2
(1 + tan(ϕ/2ϵ))

where ϵ defines the spreading width of H. In the case where there are only two fluids (i.e. a single
level set is sufficient), the material properties such as density and viscosity are computed as follows:

ρ = ρ1 + (ρ2 − ρ1)H(ϕ)

η = η1 + (η2 − η1)H(ϕ)

Relevant Literature: [1307, 1308, 873, 1306].

� Review of level-set methods [462]

� Interactive 3-D computation of fault surfaces using level sets [662]

The field/composition technique

This is the approach taken by the Aspect developers [732, 560]. Each material i is represented
by a compositional field ci, which takes values between 0 and 1. Each compositional field is then
advected with the (prescribed or computed) Stokes velocity [241]:

∂ci
∂t

+ v ·∇ci = 0 (9.68)

The value at a point (Finite element node or quadrature point) is 1 if it is in the domain covered by
the material i, and 0 otherwise. In one dimension, each compositional field is a Heavyside function.
This approach is somewhat similar to the LSM but the field is essentially discontinuous across the
interface, which makes it very difficult to advect. On the plus side, compositional fields need not be
reinitialised, as opposed to LSF’s.

Accurate numerical advection is a notoriously difficult problem. Unless very specialised techniques
are used it often yields undershoot (ci < 0) and overshoot (ci > 0), which ultimately yields mass
conservation issues. Also, unless special care is taken, compositional fields tend to become more
and more diffuse over time: the SUPG method (Section ??) and the entropy viscosity method [732,
1079] add small amounts of diffusion to dampen the under- and overshoots. This means that at a
given point two or more compositions may have values, which require some form of averaging. If
under- and overshoots are present, these averagings can become very problematic and even yield
meaningless quantities (e.g. negative viscosities).

One rather old and popular filtering approach is the so-called Lenardic and Kaula (1993) [766]
filter:
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Taken from Lenardic and Kaula [766]

From FENICS book

Filtering approach proposed by Lenardic and Kaula (1993). The composition field C is assumed to vary between 0 and 1. Grid points with C-values lower

than 0 and greater than 1 are set to 0 and 1, respectively (red). Cmin and Cmax are the minimum and maximum spurious values observed. Grid points

whose C-value is lower than |Cmin| or greater than (2− Cmax) are also set to 0 and 1, respectively (blue). The C-value of all grid points that do not exhibit

spurious oscillations (green) is then corrected according to the difference between the original average composition and that computed after the reset- ting of

the spurious values. Taken from Plesa et al. (2013) [1003].

Relevant Literature: [1333]
Entropy viscosity method [503]

write about DG approach
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The Volume-of-Fluid method

The Volume-Of-Fluid (VOF) method is a fixed-grid approach based on the one-fluid model and
considers that the various immiscible fluids (or ‘phases’) can be described as a single fluid whose
local physical properties, namely density and viscosity, vary in space and time depending on the
volume fraction Ci of each phase i [574, 1391].

The volume fraction of each fluid intrinsically obeys
n∑
i=1

Ci = 1 where n is the number of phases.

Typically, Ci = 1 in grid cells filled only with fluid i, and 0 < Ci < 1 in grid cells cross–cut by an
interface. There are two main classes of VOF methods: methods that try to reconstruct exactly the
interface between fluids (e.g. [1020]), which requires significant computational time, and methods
that do not, such as in JADIM and OpenFOAM. With no interface reconstruction, the thickness of
the interfacial region is defined by 0 < Ci < 1, and typically occupies two to three grid cells.

Relevant Literature:
Hirt and Nichols [574]“Volume of fluid (VOF) method for the dynamics of free boundaries”
Dutta, Sarkar, and Mandal [355]“Ballooning versus curling of mantle plumes: views from numerical
models”
Robey and Puckett [1079]“Implementation of a volume-of-fluid method in a finite element code with
applications to thermochemical convection in a density stratified fluid in the earth’s mantle”
Louis–Napoléon, Gerbault, Bonometti, Thieulot, Martin, and Vanderhaeghe [811]“3D numerical
modeling of crustal polydiapirs with Volume-Of-Fluid methods”
Louis–Napoléon, Bonometti, Gerbault, Martin, and Vanderhaeghe [810]“Models of convection and
segregation in heterogeneous partially molten crustal roots with a VOF method–I: flow regimes”

See review of the method in Robey’s phd thesis [1078].

The method of characteristics

ask Arie to write something

[323]

The Marker Chain method

In two dimensions, the idea is quite simple: each interface is discretised by means of a number of
Lagrangian points (which may or may not vary in time). The points are numbered and connected
(think of the connectivity array of a 1D FEM code). In the case of small deformations, and in the
absence of in/out-flow boundaries, the method is reasonably trivial to implement, and each couple
of point defines a segment (and therefore its normal vector too) which can then be used to answer
the question: ”at this location, am I above or below this interface” or ”am I this domain our outside
this domain” (in the case that the interface does not reach any of the boundaries).

This method becomes somewhat impractical when large deformation occurs or, for example, when
a domain splits into two (e.g. slab break off). One interface must then become two, and it requires
an algorithm capable of detecting the breakup of the surface and capable of rebuilding/patching
the new ones so that they can still be used further. Note that in case of large deformation some
markers may get further and further apart from each other which makes for a poor representation of
the surface. New markers should then be added but the question of when and where must then be
addressed.

Also, switching to three dimensions can prove to be very difficult or simply very costly: the
generation of the inital marker position is trivial but their connectivity can be complicated to establish
at startup: for instance, a Stokes sphere will require a mesh made of triangles which maps exactly
the surface of the sphere (see [1259, 904] for methods on how to efficiently produce such meshes). In
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the case of more complex 3D geometries this may prove nearly impossible to do. So will the problem
of splitting a surface into two (or merging two domains). I still

have
pics
from
the old
days
using
Douar -
include

This method is usually coupled to Eulerian meshes (typically with FDM, but not only). It was
used in [1366] in the context of salt domes analysis and later in [248, 245]. It is also used in [1309] but
little details are given about the algorithms used to track and update the chain in the presence of such
large deformation. It is also used (athough coupled to level set functions) in the Douar code[136]
(see Section ??). Having worked myself on this code and having had to produce complex initial
triangulated surfaces for simulations (see for example [807]) it is easy to understand why later users
of this code did implement the marker-in-cell technique. More recently, it is used to track the free
surface position in a FDM code [353, 229].

Finally, Christensen [241] makes the following interesting comment: ”One might assume that
different methods of representing the discontinuity, for example, by a tracer chain [245] or a cloud of
tracers, would solve these problems. However, the difficulties arise not only from the way in which
material boundaries are represented. Physically, the rate of shear strain parallel to a rheological
boundary is discontinuous. Within the finite ele- ment scheme such jump can only be realized at an
element boundary. In an Eulerian scheme, where the discontinuity will crosscut the elements, the
jump in strain rate must be approx- imated by a continuous variation, and effectively, the rheolog-
ical properties on both sides of the discontinuity will be averaged in some way within the element.”

It is also used in Tan & Gurnis (tagu07) [1234]: ” The composition field is computed using
the marker chain method [316, 1309]. The marker chain is advected using a fourth-order predictor-
corrector scheme. If the distance between two adjacent markers is greater than a predefined threshold,
a new marker is inserted in between them. The marker chain defines the material interface. Because
of material entrain- ment, the length of the marker chain grows exponentially with time. The com-
putational efficiency of the marker chain method severely deteriorates if there is substantial material
entrainment, in which case we halt the computation. For some halted models, the marker chain is
trimmed to remove excess entrainment, and the computation restarted in order to proceed further.
The trimming of the marker chain introduces error in the composition field, but the magnitude of
the error is estimated to be small and does not influence the stability of the chemical layer.”

Literature: Lin & van Keken (2006) [791, 789, 790, 678, 919]

Hybrid methods

In Braun et al. [136] a level set method is presented which is based on a 3-D set of triangulated points,
which makes it a hybrid between tracers and level set functions: in the Douar code (Appendix ??)
the interface is then explicitely tracked by means of the tracers while the LSF is computed on the
FE nodes. Although very promising in theory, this method proved to be difficult to use in practice
since it requires a) a triangulation of the interfaces at t = 0 which is not trivial if the geometries are
complex (think about a slab in 3D); b) the addition or removal of tracers because of the interface
deformation and the patching of the triangulation; c) the calculation of the distance to the interfaces
for each FE node based on the triangle normal vectors. This probably explains why the Particle-
In-Cell method was later implemented in this code (pers. comm.). Note that another very similar
approach is used in [1103].

Boundary fitted mesh

This method is rather simple to implement and works well for small deformations. It is for instance
used by Frehner [417] (see online supplementary material) in which it is stated: ”The numerical grid
is set up in such a way that the interface between different material phases (two layers in this case)
coincides with element boundaries. Hence, each element belongs to a unique material phase and
no interpolation is necessary.” With such a method, each element is initally attributed a material
phase/number and its material properties do not change.
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Relevant Literature: three-dimensional front tracking method using a triangular mesh [1122].
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9.17 Static condensation

static condensation.tex

The idea behind static condensation is quite simple: in some cases, there are dofs belonging to
an element which only belong to that element. For instance, the so-called MINI element (P+

1 × P1)

showcases a bubble function in the middle (see section 7.3). In the following, V⃗⋆ corresponds to the
list of such dofs inside an element. The discretised Stokes equations on any element looks like: K L G

LT K⋆ H
GT HT 0


e

 V⃗
V⃗⋆
P⃗


e

=

 f⃗

f⃗ ⋆

h⃗


e

(9.69)

This is only a re-writing of the elemental Stokes matrix where the matrix K has been split in four
parts. Note that the matrix K⋆ is diagonal. check

This can also be re-written in non-matrix form:

K · V⃗ + L · V⃗⋆ +G · P⃗ = f⃗ (9.70)

LTV +K⋆ · V⃗⋆ +H · P⃗ = f⃗ ⋆ (9.71)

GT · V⃗ +HT V⃗⋆ = h⃗ (9.72)

The V⃗⋆ in the second equation can be isolated:

V⃗⋆ = K−⋆ · (f⃗ ⋆ − LT · V⃗ −H · P⃗)

and inserted in the first and third equations:

K · V⃗ + L
[
K−⋆(f⃗ ⋆ − LT · V⃗ −H · P⃗)

]
+G · P⃗ = f⃗ (9.73)

GT · V⃗ +HT
[
K−⋆(f⃗ ⋆ − LT · V⃗ −H · P⃗)

]
= h⃗ (9.74)

or,

(K− L ·K−⋆ · LT ) · V⃗ + (G− L ·K−⋆ ·H) · P⃗ = f⃗ − L ·K−⋆ · f⃗ ⋆ (9.75)

(GT −HT ·K−⋆ · LT ) · V⃗ − (HT ·K−⋆ ·H) · P⃗ = h⃗−HT ·K−⋆ · f⃗ ⋆ (9.76)

i.e.

K · V⃗ +G · P⃗ = f⃗ (9.77)

GT · V⃗ − C · P⃗ = h⃗ (9.78)

with

K = K − L ·K−⋆ · LT (9.79)

G = G− L ·K−⋆ ·H (9.80)

C = HT ·K−⋆ ·H (9.81)

f⃗ = f⃗ − L ·K−⋆ · f⃗ ⋆ (9.82)

h⃗ = h⃗−HT ·K−⋆ · f⃗ ⋆ (9.83)

Note that K is symmetric, and so is the Stokes matrix.
For instance, in the case of the MINI element, the dofs corresponding to the bubble could be

eliminated at the elemental level, which would make the Stokes matrix smaller (see book by Braess
[128]). However, it is then important to note that static condensation introduces a pressure-pressure
term which was not there in the original formulation. This is also presented in the appendix of
Karabelas et al. [670].
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9.18 Measuring incompressibility

The velocity divergence error integrated over the whole element is given by

ediv =

∫
Ω

(∇⃗ · v⃗h − ∇⃗ · v⃗︸︷︷︸
=0

) dΩ =

∫
Ω

(∇⃗ · v⃗h) dΩ (9.84)

where Γe is the boundary of element e and n⃗ is the unit outward normal of Γe.
Furthermore, one can show that [336]:

ediv =

∫
Γe

v⃗h · n⃗ dΓ

The reason is as follows and is called the divergence theorem30: suppose a volume V subset of Rd

which is compact and has a piecewise smooth boundary S, and if F⃗ is a continuously differentiable
vector field then ∫

V

(∇⃗ · F⃗ ) dV =

∫
S

(F⃗ · n⃗) dS

The left side is a volume integral while the right side is a surface integral. Note that sometimes the
notation dS⃗ = n⃗ dS is used so that F⃗ · n⃗ dS = F⃗ · dS⃗.

The average velocity divergence over an element can be defined as

< ∇⃗ · v⃗ >e=
1

Ve

∫
Ωe

(∇⃗ · v⃗) dΩ =
1

Ve

∫
Γe

v⃗ · n⃗ dΓ

Note that for elements using discontinuous pressures we shall recover a zero divergence element per
element (local mass conservation) while for continuous pressure elements the mass conservation is
guaranteed only globally (i.e. over the whole domain), see section 3.13.2 of [488].

Note that one could instead compute < |∇⃗ · v⃗| >e. Either volume or surface integral can be
computed by means of an appropriate Gauss-Legendre quadrature algorithm.

30https://en.wikipedia.org/wiki/Divergence_theorem
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9.19 Picard and Newton
explain why our eqs are nonlinear

Relevant LiteratureQuasi Newton methods [373]. Also check Christensen and Yuen [246] for a
succinct N-R explanation in the context of stream fct formulation.

Picard iterations

Let us consider the following system of nonlinear algebraic equations:

A(X⃗) · X⃗ = b⃗(X⃗)

Both matrix and right hand side depend on the solution vector X⃗.
For many mildly nonlinear problems, a simple successive substitution iteration scheme (also called

Picard method) will converge to the solution and it is given by the simple relationship:

A(X⃗n) · X⃗n+1 = b⃗(X⃗n)

where n is the iteration number. It is easy to implement:

1. guess X⃗0 or use the solution from previous time step

2. compute A and b⃗ with current solution vector X⃗old

3. solve system, obtain T new

4. check for convergence (are X⃗old and X⃗new close enough?)

5. X⃗old ← X⃗new

6. go back to 2.

There are various ways to test whether iterations have converged. The simplest one is to look

at
∥∥∥X⃗old − X⃗new

∥∥∥ (in the L1, L2 or maximum norm) and assess whether this term is smaller than

a given tolerance ϵ. However this approach poses a problem: in geodynamics, if two consecutively
obtained temperatures do not change by more than a thousandth of a Kelvin (say ϵ = 10−3K ) we
could consider that iterations have converged but looking now at velocities which are of the order of
a cm/year (i.e. ∼ 3 · 10−11m/s) we would need a tolerance probably less than 10−13m/s. We see that
using absolute values for a convergence criterion is a potentially dangerous affair, which is why one
uses a relative formulation (thereby making ϵ a dimensionless parameter):∥∥∥X⃗old − X⃗new

∥∥∥∥∥∥X⃗new

∥∥∥ < ϵ

Another convergence criterion is proposed by Reddy (section 3.7.2) [1051]:(
(X⃗old − X⃗new) · (X⃗old − X⃗new)

Xnew ·Xnew

)1/2

< ϵ

Yet another convergence criterion is used in [1258]: the means < X⃗old >, < X⃗new > as well as the
variances σold and σnew are computed, followed by the correlation factor R:

R =
< (X⃗old− < X⃗old >) · (X⃗new− < X⃗new >) >√

σoldσnew
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Since the correlation is normalised, it takes values between 0 (very dissimilar velocity fields) and 1
(very similar fields). The following convergence criterion is then used: 1−R < ϵ.
write about nonlinear residual

Note that in some instances and improvement in convergence rate can be obtained by use of a
relaxation formula where one first solves

A(X⃗n) · X⃗⋆ = b⃗(X⃗n)

and then updates X⃗n as follows:

X⃗n = γX⃗n + (1− γ)X⃗⋆ 0 < γ ≤ 1

When γ = 1 we recover the standard Picard iterations formula above.

9.19.1 Defect correction formulation

Work in progress.
We start from the system to solve:

A(X⃗) · X⃗ = b⃗(X⃗)

with the associated residual vector F⃗

F⃗ (X⃗) = A(X⃗) · X⃗ − b⃗(X⃗)

The Newton-Raphson algorithm consists of two steps:

1. solve Jk · δX⃗k = −F⃗ (X⃗k), or in the case of the incompressible Stokes equation FEM system:(
JVV
k JVP

k

JPV
k 0

)
·
(
δV⃗k
δP⃗k

)
=

(
−F⃗ V

k

−F⃗P
k

)

2. update X⃗k+1 = X⃗k + αkδX⃗k

The defect correction Picard approach consists of neglecting the derivative terms present in the J
terms (Eqs. 16,17,18 of [415]) so that

JVV
k ≃ Kk JVP

k ≃ G JPV
k ≃ GT

and step 1 of the above iterations become:(
Kk G
GT 0

)
·
(
δV⃗k
δP⃗k

)
=

(
−F⃗ V

k

−F⃗P
k

)

explain picard, defect picard, Newton, line search, ....
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9.20 Parallel or not?

Rationale

Let us assume that we want ro run a simulation of the whole Earth mantle with a constant resolution
of 5km. The volume of the mantle is

Vmantle =
4

3
π(R3

out −R3
in) ≃ 1012km3

while the volume of an element is Ve = 125km3 (this is only an average since the tesselation of a
hollow sphere with hexahedra yields elements which are not all similar [1259]). Consequently, the
number of cells needed to discretise the mantle is

Nel =
Vmantle
Ve

≃ 8× 109

We know that the matrix size is approx. 4 times the number of elements in 3D:

N ≃ 25× 109

Using between 9 and 125 particles per element (a very conservative number), the total number of
particles is then

Nparticles ≥ 1010

The unescapable conclusion is that high-resolution 3D calculations have a very large memory footprint
and require extremely long computational times.

The only way to overcome this problem is by resorting to using supercomputers with many
processors and large memory capacities.

The idea behind parallel programming is to have each processor carry out only a subset of the
total number of operations required. In order to reduce the memory footprint on each processor,
only a subset of the computational mesh is known by each: one speaks then of domain decomposition
[1275].

An example of such a large parallel calculation of 3D convection with domain decomposition in
a spherical shell can be found in [732]:

a) b)
a)Isocontours of the temperature field; b) Partitioning of the domain onto 512 proc. The mesh counts 1,424,176 cells. The solution has approximately 54

million unknowns (39 million vel., 1.7 million press., and 13 million temp.)

Basic approaches

In the past, many applications implemented the idea below on the left using 1D domain decomposition
(also known as “slab decomposition”). In the following left figure, a 3D domain is arbitrarily chosen
to be decomposed in Y and X directions. It can be seen that in state (a), any computations in the
X-Z planes can be done in local memories while data along a Y mesh-line is distributed.
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a) b)
Left: 1D domain decomposition example using 4 processors: (a) decomposed in Y direction; (b) decomposed in X direction. Right: 2D domain decomposition

example using a 4x3 processor grid.

A 1D decomposition, while quite simple, has some limitations, especially for large-scale simu-
lations. Given a cubic mesh of size N3 , one obvious constraint is that the maximum number of
processors Nproc that can be used in a 1D decomposition is N as each slab has to contain at least
one plane 31 For a cubic mesh with 10003 = 109 points, the constraint is Nproc ≤ 1000. This is a
serious limitation as most supercomputers today have more than 10,000 cores and some have more
than 100,000. Large applications are also likely to hit the memory limit when each processor handles
too much workload.

Load balancing

In computing, load balancing distributes workloads across multiple computing resources, such as
computers, a computer cluster, network links, central processing units or disk drives. Load balancing
aims to optimize resource use, maximize throughput, minimize response time, and avoid overload of
any single resource.

More concretely, the use of many processors in the case where the mesh is unstructured and
highly irregular raises the question of how the partitioning is done so that each processor gets a
similar workload, thereby minimising latency and optimising cpu time.

This is a difficult problem which is often addressed by means of graph partitioners, and which is
made more complicated by the use of AMR.

A typical strategy goes as follows. One can prove that space filling curves can be generated
for any regular subdivision of a square (see dashed line in the following figure).

It now the refined grid is the one shown on the following figure, one can use the curve to ’write’
all elements in a line and then cut this curve in Nproc chunks (in this case 4, hence four colours).

31This domain decomposition approach is the one carried out in the FANTOM code [1258] and this limitation
was often encountered when using grids such as 160x160x23, thereby limiting the number of processors to about 100
processors.
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The mesh counts in total 100 elements and each domain counts 25 elements. This decomposition
looks very appealing but another aspect must be taken in account: communication.

Ideally, one wishes to carry out the domain decomposition in a simple-enough manner so that it
does not require too much work, and also in such a way that the surface between between all the
domain is minimised, since it is related to the amount of communication across processors.

The following figures showcase examples of domain decomposition projected onto a complex 3D
geometry.

Right: Domain decomposition for parallel processing of a wing-body-nacelle-pylon configuration. Each colour corresponds to a different processor.

Strong scaling vs weak scaling
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9.21 Corner flow

cornerflow.tex

The mantle wedge comprised between the downgoing slab and the overriding plate has been
extensively studied since very important geodynamical processes take place in it or right above it
(slab dehydration and water transport, melting, over-riding plate deformation, vulcanism, ...).

To first approximation one can approach the problem and simplify it greatly by assuming that
both plates kinematic behaviour are independent of what happens in the wedge, that the wedge
geometry does not change over time, that the problem is essentially 2D, and that the mantle extends
very far away from the actual wedge (plates are infinite).

Under such assumptions, it is possible to derive an analytical solution for incompressible Stokes
flow in the wedge as documented at p. 224 in Batchelor [52].

Literature: [1277]
FIND refs. check new version of Vol7 theoretical geophys

A corner flow setup is shown hereunder:

The solution to this problem is arrived at by means of the stream function Φ, defined as u =
−∂Φ/∂y and v = ∂Φ/partialx, so that we automatically have ∇⃗ · ν⃗ = 0. As shown in Section ??,
the stream function Φ is then the solution to the biharmonic equation

∇⃗2∇⃗2Φ = ∇⃗4Φ = 0

Considering the geometry of the problem has plates of infinite extent with constant relative
velocity, the solution for velocity everywhere is expected to be independent of r. This means the
equation is separable and we will use a solution of the form

Φ(r, θ) = R(r)f(θ)

However, given the infinite extent of the domain, the velocity is expected to be independent of r, so
we postulate R(r) = r (look at the relationship between velocity components and stream function),
or:

Φ(r, θ) = rf(θ)

and we then have to solve

∆

(
1

r
(f + f ′′)

)
=

1

r3
(f + 2f ′′ + f ′′′′) = 0.

The solution of this equation for f is:

f(θ) = A sin θ +B cos θ + Cθ sin θ +Dθ cos θ

f ′(θ) = A cos θ −B sin θ + C(sin θ + θ cos θ) +D(cos θ − θ sin θ)
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with

νr =
1

r

∂Φ

∂θ
= f ′(θ)

νθ = −
∂Φ

∂r
= −f(θ)

A, B, C and D are four constants to be determined by means of the boundary conditions which are
as follows:

νr(θ = 0) = 0

νθ(θ = 0) = 0

νr(θ = θ0) = −U0

νθ(θ = θ0) = 0

or,

f ′(0) = A+D = 0 (9.85)

f(0) = B = 0 (9.86)

f ′(θ0) = −U0 (9.87)

f(θ0) = 0 (9.88)

From the second equation it is trivial to see that B = 0, so that:

f(θ) = A sin θ + Cθ sin θ +Dθ cos θ

f ′(θ) = A cos θ + C(sin θ + θ cos θ) +D(cos θ − θ sin θ)
From the first one we obtain D = −A so that

f(θ) = A(sin θ − θ cos θ) + Cθ sin θ

f ′(θ) = A(θ sin θ) + C(sin θ + θ cos θ)

The last two boundary conditions yield:

0 = A(sin θ0 − θ0 cos θ0) + Cθ0 sin θ0

−U0 = A(θ0 sin θ0) + C(sin θ0 + θ0 cos θ0)

or,

A = −U0
θ0 sin θ0

θ20 − sin2 θ0
C = U0

sin θ0 − θ0 cos θ0
θ20 − sin2 θ0

Finally:

(A,B,C,D) = (−θ0 sin θ0, 0, sin θ0 − θ0 cos θ0, θ0 sin θ0)
U0

θ20 − sin2 θ0

We have

er = cos θex + sin θey (9.89)

eθ = − sin θex + cos θey (9.90)

so that the velocity field can be expressed in Cartesian coordinates:

ν = νrer + νθeθ

= νr(cos θux + sin θey) + νθ(− sin θux + cos θey)

= (νr cos θ − νθ sin θ)ex + (νr sin θ + νθ cos θ)ey (9.91)

Relevant Literature: Ribe [1063] present a simple model for the mantle flow induced by back
arc spreading behind a subduction zone.
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9.22 Surface processes

surfaceprocesses.tex

In 1D - simple nonlinear diffusion a la Burov & Cloetingh (1997)

This approach comes from Burov and Cloetingh [183] (1997). The tectonic-scale transport equations
describe long term changes in topography h(x, y, t) as a result of simultaneous short- and long-range
mass transport processes [59, 721].

The short-range surface processes are represented by cumulative effects of hillslope processes (soil
creep, rainsplash, slides) that remove material from uplifted areas down to the valleys. It is then

assumed that the horizontal material flux q⃗s is related to local slope ∇⃗h by q⃗s = −Ks∇⃗h where Ks

is the effective diffusivity. Assumption of conservation of mass volume leads to the linear diffusion
equation for erosion:

∂h

∂t
= Ks∆h

This equation can be solved with constant-elevation (fixed h value) boundary conditions simulating
local base levels of erosion.

Note that is practice the coefficient Ks might depend on slope and curvature, i.e.

∂h

∂t
= Ks(x, y, h, ∇⃗h)∆h

Following [474], Burov & Cloetingh use an empirical non linear expression Ks = ks(x)(∇⃗h)n.

In 1D - not so simple, a la Andrès-Martinez et al. (2019)

This approach comes from Andrés-Mart́ınez, Pérez-Gussinyé, Armitage, and Morgan [25] (2019). The
change in surface elevation rate due to surface processes is equal to the divergence of the sediment
flux (assuming there is no density difference between the bedrock and sediment and ignoring the
effects of compaction):

∂h

∂t
= −∂qs

∂x

where h is the topography, t is the time, qs represents the sediment flux, and x is the horizontal
coordinate.

The next step consists in a formulation for the sediment flux. Still following [25], in the subaerial
environment, it is possible to define the sediment transport flux qs in terms of the water flux qw as

qs = −(K + cqnw)
∂h

∂x

where K is the slope diffusivity, c is the transport coefficient, and n ≥ 1 is the power law that defines
the type of relationship between the sediment transport and the water flux (Simpson & Schlunegger,
2003; Smith & Bretherton, 1972).
get these papers

This model accounts for hillslope diffusion processes where the topography will tend to a dispersive
diffusion (Culling, 1960) and fluvial transport processes that result in concentrative diffusion due to
water run off (Graf, 1984). For a simple parameterization we choose a linear relationship between
sediment transport and water flux (n = 1).

The water flux can be related to the water discharge/effective rainfall α as

∂

∂x
(n⃗qw) = −α
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where n⃗ is a unit vector directed down the surface gradient (Smith & Bretherton, 1972). By assuming
a constant α and integrating equation (12) over the surface in the downstream direction, we obtain

qw = αxd

where xd is the downstream distance from the drainage divide. By substituting equations (11) and
(13) into (10) we obtain the 1-D sediment mass conservation equation for combined hillslope and
discharge-dependent fluvial transport

∂h

∂t
=

∂

∂x

(
(K + kαxd)

∂h

∂x

)
where the downstream distance xd is calculated at each time step as the distance from the topographic
highs to the valley floors. Because qw is dependent on the length of the drainage, the model mimics
1-D landscapes similar to river profiles in which fluvial processes are dominant.

Examples in the literature

Application to Taiwan. Taken from Fuller et al. (2006) [425]
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9.23 Geometric multigrid

The following is mostly borrowed from the Wikipedia page on multigrid methods32.
There are many types of (geometric) multigrid algorithms, but the common features are that a

hierarchy of grids is considered. The important steps are:

� Smoothing: reducing high frequency errors, for example using a few iterations of the Gauss-
Seidel method.

� Residual Computation: computing residual error after the smoothing operation(s).

� Restriction: downsampling the residual error to a coarser grid.

� Interpolation or prolongation: interpolating a correction computed on a coarser grid into a
finer grid.

� Correction: Adding prolongated coarser grid solution onto the finer grid.

There are many choices of multigrid methods with varying trade-offs between speed of solving
a single iteration and the rate of convergence with said iteration. The 3 main types are V-Cycle,
F-Cycle, and W-Cycle.

Any geometric multigrid cycle iteration is performed on a hierarchy of grids and hence it can
be coded using recursion. Since the function calls itself with smaller sized (coarser) parameters, the
coarsest grid is where the recursion stops.

Note that the ratio of the number of nodes between two consecutive levels has to be constant
between all the levels. Often powers of 2 are used (especially if the grids are based on quad/octrees)
but it is not a requirement.

Image from http://web.utk.edu/~wfeng1/research.html

What follows is a pseudo-code example of a recursive V-Cycle Multigrid for solving the Poisson
equation (∇2ϕ = f) on a uniform grid of spacing h:

function phi = V_Cycle(phi,f,h)

% Pre-Smoothing

phi = smoothing(phi,f,h);

% Compute Residual Errors

r = residual(phi,f,h);

% Restriction

rhs = restriction(r);

eps = zeros(size(rhs));

% stop recursion at smallest grid size

if smallest_grid_size_is_achieved

32https://en.wikipedia.org/wiki/Multigrid_method
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eps = smoothing(eps,rhs,2*h);

else

eps = V_Cycle(eps,rhs,2*h);

end

% Prolongation and Correction

phi = phi + prolongation(eps);

% Post-Smoothing

phi = smoothing(phi,f,h);

end

A multigrid method with an intentionally reduced tolerance can be used as an efficient precon-
ditioner for an external iterative solver. The solution may still be obtained in O(N) time as well
as in the case where the multigrid method is used as a solver. Multigrid preconditioning is used in
practice even for linear systems, typically with one cycle per iteration.

Taken from [626]: Different types of multigrid cycle with four grid levels: (top left) V-cycle, (top right) W-cycle, (bottom left) F-cycle

and (bottom right) full multigrid. ‘S’ denotes smoothing while ‘E’ denotes exact coarse-grid solution.

Check Kaus BEcker syllabus!
Relevant Literature: [1001, 792, 1284, 626, 455, 845, 804, 1285, 908, 1381, 1351, 1246, 1383,

260] Book [153]

� ACuTEMan: A multigrid-based mantle convection simulation code and its optimization to the
Earth Simulator, Kameyama (2005) [667]
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9.24 Algebraic multigrid

Relevant Literature: [930][946]
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9.25 Computing depth

computing depth.tex

In the case of a perfectly rectangular, cylindrical or spherical domain, computing the depth of
any given point inside the domain is trivial. However, when the free surface becomes somewhat
distorted, the concept of depth needs to be refined. What follows is an attempt at bringing clarity
as to how to compute depth in all cases.

The depth d(r) satisfies the equation:

g

|g|
·∇d = 1

with d = 0 at the surface.
This is a form of steady-state advection equation (the time derivative is zero, there is no diffusion,

nor any source term).
Given the boundary conditions, one could solve this equation over the whole domain.
Note that in the case of a cartesian box, g = −guz, we need to solve

− ∂

∂z
d = 1

For a flat top surface at d(z = Lz) = 0 so that in the end

d(z) = Lz − z
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9.26 The Geoid

What is the geoid?

There is an infinity of equipotential surfaces of the gravitational potential U . However, there is a
particular surface on the Earth that is ”easy” to locate: the mean sea level. This is a somewhat
arbitrary choice but it makes sense because the oceans are made of water (!): the surface of a fluid
in equilibrium must follow an equipotential.

The geoid is usually defined in two ways:

� it is the particular equipotential surface that coincides with the mean sea level (easy to define in
the oceans -assuming no currents, waves,... - but harder on land since it is not the topographic
surface).

� A gravitational equipotential surface. This means that everywhere at sea level experiences the
same value of gravity potential, so there is no tendency for water to flow downhill since all
points in the vicinity have the same value of gravity potential, pointed toward the center of the
earth.

Data Max value: 85.4 meters, east of New Guinea. Data Min value:-107.0 meters, south of India. This image shows 15’x15’ geoid undulations covering the

planet Earth from the NIMA/GSFC WGS-84 EGM96 15’ Geoid Height File. The undulations refer to the differences from the WGS-84(G873) reference

ellipsoid. Map and description from National Geodetic Survey 33

From Wikipedia: The geoid surface is irregular, unlike the reference ellipsoid (which is a math-
ematical idealized representation of the physical Earth), but is considerably smoother than Earth’s
physical surface. Although the physical Earth has excursions of +8,848 m (Mount Everest) and
-11,034 m (Marianas Trench), the geoid’s deviation from an ellipsoid ranges from +85 m (Iceland)
to -106 m (southern India), less than 200 metre total.

33https://www.usna.edu/Users/oceano/pguth/md_help/geology_course/geoid.htm
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1. Ocean 2. Reference ellipsoid 3. Local plumb line 4. Continent 5. Geoid

Taken from https://en.wikipedia.org/wiki/Geoid

the (reference) ellipsoid

First evidence that the Earth is round Erathostene (275-195 B.C.)
First hypothesis that the Earth is flattened at the poles: Newton
First measurement of the Earth’s flattening at the poles: Clairaut (1736) and Bouguer (1743)
The shape of the Earth can be mathematically represented as an ellipsoid defined by:

� Semi-major axis = equatorial radius = a

� Semi-minor axis = polar radius = c

� Flattening (the relationship between equatorial and polar radius): f = (a− c)/a

� Eccentricity: e2 = 2f − f 2

Many different reference ellipsoids have been defined and are in use. We define the reference
ellipsoid = the ellipsoid that best fits the geoid. It is totally arbitrary, but practical. The most
common reference ellipsoid is the WGS-84 one34:

Taken from https://en.wikipedia.org/wiki/Reference_ellipsoid

Geoid undulations = differences, in meters, between the geoid reference ellipsoid (= geoid “height”).
To clarify:

� Geoid = the equipotential surface of the Earth’s gravity field that best fits (in a least squares
sense) the mean sea level. The gravitational potential is constant on the geoid (by definition)
but the gravitational acceleration is not!

� Reference Ellipsoid = the ellipsoid that best fits the geoid

� Geoid = the (actual) figure of the Earth

� Ellipsoid = the (theoretical) shape of the Earth
34https://confluence.qps.nl/qinsy/latest/en/world-geodetic-system-1984-wgs84-182618391.html
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How to compute it?

From Liu and Zhong [803] (2016): “ The geoid is computed by ϕ/g, where ϕ is the surface gravitational
potential anomaly and can be solved from the Poisson equation, ∇2ϕ = −4πGδρ where G is the
gravitational constant, and δρ includes both density variations in the mantle [...] and those associated
with dynamic topographies at the surface and CMB. Dynamic topographies are determined from
solving [the Stokes] equations under free-slip boundary conditions at the surface and CMB.”

Interesting modelling

Idealized 2D slab

calculations for each viscosity model: geoid and geoid filtered to pass only the longest wavelengths (∼ 4000 km). (a) Cold slab extends to

500 km depth in the upper mantle, (b) Slab extends to 750 km so that it is partly supported by the high viscosity lower mantle at 670

km. (c) Slab tilted at 45◦to the vertical extending to the top of the lower mantle. Taken from [900]
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9.27 Mixing and stirring, the Lyapunov time/exponent

lyapunov.tex

Many approaches are taken in the literature when it comes to studying mixing/stirring in fluids,
and in our case the mantle.

For example, Samuel and Tosi [1105] (2012) measure the convective stirring efficiency using two
Lagrangian methods: the first determines the mixing time associated with different wavelengths of
heterogeneity following the approach of Ferrachat and Ricard [392] (2001) The second determines
the value of the maximum Finite Time Lyapunov Exponents (FTLE) as described in Farnetani and
Samuel [386] (2003), and measures the rate at which heterogeneities are stretched by mantle motions.

In Tackley and Xie [1230] (2002) we read:

“ Two-dimensional simulations of simple mantle convection (Christensen [244], 1989;
Kellogg and Turcotte [692], 1990; Schmalzl and Hansen [1119]) suggest that for whole-
mantle convection the mantle should be homogenized in a time-scale of less than 1 Gyr,
although unmixed islands may remain. Non-Newtonian rheology, which is thought to be
important in the upper mantle [673], may somewhat inhibit mixing (Ten, Podladchikov,
Yuen, Larsen, and Malevsky [1244], 1998). The rate at which blobs of anomalous (e.g.
primitive) material are stretched and assimilated into the flow depends on their relative
viscosity; very viscous blobs can survive intact for many mantle overturns (Manga [834],
1996).
In three-dimensional geometry with only poloidal flow, mixing may be significantly less ef-
ficient than in two dimensions (Schmalzl, Houseman, and Hansen [1121], 1995; Schmalzl,
Houseman, and Hansen [1120], 1996) but, if the toroidal flow associated with plate mo-
tions is included (Gable, O’connell, and Travis [433], 1991), mixing can instead be more
efficient (Ferrachat and Ricard [393] (1998)).
High viscosity in the deep mantle is not sufficient to maintain different reservoirs over
geological time-scales (Ferrachat and Ricard [392], 2001; van Keken & Ballentine 1998,
1999), in contrast to predictions from earlier calculations at lower convective vigour (Gur-
nis and Davies [515], 1986). Part of the reason for this apparent discrepancy is that the
latter study used a kinematically driven flow rather than buoyancy-driven flow. Since
a viscosity jump does not affect densities, thermal buoyancy-driven flow has no prob-
lem crossing it, so substantial mass exchange occurs between upper and lower mantles.
Buoyancy is thus necessary to maintain separate reservoirs. ”

In Gottschaldt, Walzer, Hendel, Stegman, Baumgardner, and Mühlhaus [475] (2006) we find

“ Heterogeneities in a convecting fluid are deformed by stirring and finally erased by
diffusive mixing. Chemical diffusion in mantle rock acts on the scale of centimetres over
the lifetime of the Earth, but our models resolve km-scales. Therefore this paper deals
only with convective stirring. Some nice studies about mantle stirring and mixing in 2-d
have been done (e.g. [244, 515, 694, 692, 865, 958, 957, 1242, 1243, 1244]). Unfortunately,
results from studies in 2-d can be extrapolated to 3-d only in a limited manner. Tracers in
3-d poloidal stationary convection move on 2-d toruslike surfaces. Stirring is constrained
to these surfaces. Cross-cell stirring becomes possible in time-dependent flows, but may
not be very efficient [1120]. Large-scale stirring is enhanced by a toroidal component,
but convectively isolated islands of laminar stirring may remain [393]. Convection in the
Earth is time-dependent and the surface planform shows a strong toroidal component
today. Since there is currently no general understanding about the stirring behaviour of
the mantle, a case-by-case study of different models is necessary. ”
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9.27.1 The Lyapunov exponent

Simply put, the Lyapunov time is the characteristic timescale on which a dynamical system is chaotic.
It is defined as the inverse of a system’s largest Lyapunov exponent.

The Lyapunov time mirrors the limits of the predictability of the system. By convention, it is
defined as the time for the distance between nearby trajectories of the system to increase by a factor
of e. However, measures in terms of 2-foldings and 10-foldings are sometimes found, since they
correspond to the loss of one bit of information or one digit of precision respectively.

The Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity
that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two
trajectories in phase space with initial separation δZ0 diverge (provided that the divergence can be
treated within the linearized approximation) at a rate given by

|δZ(t)| ≈ eλt|δZ0|

where λ is the Lyapunov exponent.
Measuring the Lyapunov exponent or time (or related quantities) is relevant in the context of

mantle stirring. On the one hand it is argued that the mantle is convecting and very efficient at
mixing resulting in a somewhat homogenous composition. On the other hand, there is are modeling
studies that suggest that whole-mantle convection can preserve heterogeneity in the presence of
well-mixed mantle.

Mixing takes place by the repeated stretching and folding of interfaces. A measure of the mixing
efficiency is the time evolution of the area of the mixing surface. Maximum efficiency of mixing is
reached with turbulent mixing behavior where One can formally show whether mixing is laminar or
turbulent by evaluating the Luyaponov exponents σ . These are of the form:

σ = lim
t→∞

lim
X→0

[
1

t
ln

(
X(t)

X(t = 0)

)]
where X(t) is the length of this segment at time t. Non-zero Luyaponov exponents indicate that
stretching is exponential and the larger the exponent, the more efficient mixing is. However, the limits
in the above equation are difficult to evaluate and the interpretation of the ’finite-time’ Luyaponov
exponent, where both limits are truncated, is difficult to formalize.

In Keken and Zhong [688] (1999) the authors use a steady state velocity pattern obtained for a
model of present-day mantle convection. The velocity model is based on the solution of the Stokes
equations in a 3D spherical model with variable rheology. To study mixing, they release particles in
the velocity model and follow these by numerical integration.
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a) The three particles in this plot were selected for their relatively regular pattern. b) Three other particles that traverse a large portion of the model. These

particles feel the strong toroidal motion and their paths form corkscrew-like patterns. They indicate that certain parts of the model can exhibit strong mixing.

Taken from Keken and Zhong [688] (1999).

Rather than calculating the exponents explicitly, the authors use an approximation to the finite-
time, finite-length Lyaponov exponent by evaluating the distance between two points that are closely
spaced at time t = 0. For this they compute the advection of a large number of 10 km long line
segments that were originally at 1500 km depth. The length of these segments is approximated by
the distance between the endpoints and the results are summarized in the following figure:

Length of the line segment after 4 billion years. Approximately 14,000 line segments were released with regular spacing at 1500 km depth. The length of the

segment is indicated by the colored symbols that are plotted at the initial position. The results indicate that there is a strong diversity in mixing behavior. In

some regions (north Pacific, parts under the Indian/Australian plate) stretching is very limited, indicating laminar and consequently inefficient mixing.

Regions that are under strong toroidal surface motion (western Pacific, Nazca and South America) show very efficient stretching of up to the maximum length

of the diameter of the Earth. Taken from Keken and Zhong [688] (1999).

In Bello, Coltice, Rolf, and Tackley [70] (2014) the authors estimate for the first time the limit
of predictability of Earth’s mantle convection. Following the twin experiment method, we compute
the Lyapunov time (i.e., e-folding time) for state of the art 3-D spherical convection models, varying
rheology, and Rayleigh number.

Reconstruction of mantle convection and surface tectonics with (ensemble) Kalman filter: Bocher,
Coltice, Fournier, and Tackley [99] (2016), Bocher, Fournier, and Coltice [100] (2018).

Investigating the initial condition of mantle models using data assimilation. PhD thesis. Price
[1016] (2016).

Relevant Literature
Pierrehumbert [998] (1991) Colli, Bunge, and Schuberth [271] (2015),
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9.27.2 configurational ’Shannon’ entropy

Goltz and Böse [472] (2002), Camesasca, Kaufman, and Manas-Zloczower [204] (2006), Naliboff and
Kellogg [926] (2007), van der Wiel et al. (2024).

9.27.3 Literature to sort out

Richter, Daly, and Nataf [1072] (1982), hayk82 (1982),
Gurnis [513] (1986),
Christensen [244] (1989),
Schmalzl and Hansen [1119] (1994),
Keken and Zhong [688] (1999),
Farnetani, Legras, and Tackley [385] (2002),
Farnetani and Samuel [386] (2003),
Coltice and Schmalzl [273] (2006),
Huang and Davies [600] (2007),
Manga [833] (2010),
Samuel, Aleksandrov, and Deo [1102] (2011),
Wiel, Hinsbergen, Thieulot, and Spakman [1355] (2024) Thomas, Samuel, Farnetani, Aubert, and

Chauvel [1266] (2024)
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9.28 Phase transitions

The topic of phase transitions and their implementation is computational geodynamics is a very
vast topic. It requires input from thermodynamics, geochemistry and petrology, and also requires
dedicated algorithms which are quite complex.

Let us start with simple examples from the literature:

� Zlotnik et al. (2007) [1440]. The equations that is used in this work are the standard incom-
pressible Stokes equations by the authors chose to represent the density as a function of of
temperature and pressure by the following expression:

ρ(T, p) = ρ0[1− α(T − T0)][1 + β(p− p0)]

where α and β are, respectively, the thermal expansion and compressibility coefficients, and T0
and p0 are reference values at surface.

The authors then proceed to divide the phase diagram into three regions corresponding to three
minerals: olivine, spinel-structured olivine, and perovskite:

Phase diagram indicating stable mineral phases in the temperature-pressure plane. The phase diagram is divided into three regions corresponding to

three distinct minerals: olivine, spinel and perovskite. Taken from [1440].

They state that two major mineralogical phase transitions occur, one at 410 km depth and other
at 660 km depth (other deeper transitions run outside the domain under study because their
domain is 1000km deep). The density increases discontinuously across these phase transitions.
In order to take into account the effect of these discontinuities, the density ρ0 above is taken
as a reference density plus an increment ∆ρ:

ρ0 = ρolivine +∆ρ

where

∆ρ =


0 if (T, p)is in the olivine region
∆ρes if (T, p)is in the spinel region
∆ρper if (T, p)is in the perovskite region

The authors unfortunately fail to report how the phase transitions affect the viscosity.

The obvious problem with this otherwise simple approach is that density varies in the domain
but is not accompanied by a volume change so that it violates mass conservation.

� the following phase diagram is taken from Peltier et al. (1997) [988].
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Phase boundary for the α→ β → γ transitions of Olivine

Left: Solidus and liquidus temperatures; Right: melt fraction as a function temperature for dry peridotite. Taken from King & Anderson (1995) [702], Both

after McKenzie & Bickle [854].

Left: Solidus and liquidus curves. Taken from Lavecchia et al. (2017) [753].

Relevant Literature: [1143]
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9.29 Implementation of an elasto-viscous rheology

evrheo.tex

A viscoelastic material can behave both elastically and viscously. Its response to an applied
stress is dependent on the material properties and can be found using the Maxwell time (tM) of said
material. This material constant is defined as the ratio of the material viscosity and shear modulus

tM =
η

µ

where η is the viscosity and µ the shear modulus.
The total deviatoric strainrate tensor can be decomposed into an elastic component and a viscous

component:

ε̇d(ν⃗) = ε̇de(ν⃗) + ε̇dv(ν⃗) =
˜̇τ

2µ
+

τ

2η

[From wikipedia] In continuum mechanics, objective stress rates are time derivatives of stress
that do not depend on the frame of reference. Many constitutive equations are designed in the
form of a relation between a stress-rate and a strain-rate (or the rate of deformation tensor). i The
mechanical response of a material should not depend on the frame of reference. In other words,
material constitutive equations should be frame indifferent (objective). If the stress and strain
measures are material quantities then objectivity is automatically satisfied. However, if the quantities
are spatial, then the objectivity of the stress-rate is not guaranteed even if the strain-rate is objective.

There are numerous objective stress rates in continuum mechanics - all of which can be shown
to be special forms of Lie derivatives. Some of the widely used objective stress rates are [586]: a)
the Truesdell rate of the Cauchy stress tensor, b) the Green-Naghdi rate of the Cauchy stress, and
c) the Jaumann rate of the Cauchy stress.

The Jaumann rate of the Cauchy stress is a further specialization of the Lie derivative (Truesdell
rate). This rate has the form

˜̇τ t+δt =
Dτ

Dt
− (ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t)) =

τ t+δt − τ t

δt
− (ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t))

where D/Dt is the material derivative and ω̇ is the rotation rate -also called spin tensor- which is
anti-symmetric and has zero trace - see Section 2.4.3:

ω̇(ν⃗) =
1

2

(
∇⃗ν⃗− (∇⃗ν⃗)T

)
In the case of a Lagrangian description, we have [1328]

˜̇τ t+δt =
τ t+δt − τ t

δt
− (ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t))

so that

ε̇d(ν⃗t+δt) =
˜̇τ t+δt

2µ
+

τ t+δt

2η
=

1

2µ

[
τ t+δt − τ t

δt
− (ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t))

]
+

τ t+δt

2η

Let us multiply this by 2µδt and transform the equations until a satisfying formulation is found:

2µδtε̇d(ν⃗t+δt) = τ t+δt − τ t − δt(ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t)) +
µδt

η
τ t+δt

2µδtε̇d(ν⃗t+δt) =

(
1 +

µδt

η

)
τ t+δt − τ t − δt(ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t))
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(
1 +

µδt

η

)
τ t+δt = 2µδtε̇d(ν⃗t+δt) + τ t + δt(ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t))

τ t+δt = 2
µδt(

1 + µδt
η

) ε̇d(ν⃗t+δt) + 1(
1 + µδt

η

)τ t + δt(
1 + µδt

η

)(ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t))

We define:

ηeff =
µδt(

1 + µδt
η

) =
ηδt

δt+ η/µ
=

η

1 + tM/δt
(9.92)

Z =
ηeff
µδt

=
η

µδt+ η

J t = ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t)

so that we can write
τ t+δt = 2ηeff ε̇

d(ν⃗t+δt) + Zτ t + ZδtJ t

or,
τ t+δt = 2ηeff ε̇

d(ν⃗t+δt) + τ t with τ t = Zτ t + ZδtJ t

The total stress tensor is then

σt+δt = −pt+δt1+ τ t+δt = −pt+δt1+ 2ηeff ε̇
d(ν⃗t+δt) + Zτ t + ZδtJ t (9.93)

Remark. When µ → ∞ we have ηeff → η and Z → 0 and we recover the Stokes equation for a
purely viscous fluid.

Strong form

Let us now turn to the momentum conservation equation:

∇⃗ · σt+δt + ρt+δtg⃗ = 0⃗

⇒ ∇⃗ · (−pt+δt1+ τ t+δt) + ρt+δtg⃗ = 0⃗

⇒ −∇⃗pt+δt + ∇⃗ · τ t+δt + ρt+δtg⃗ = 0⃗

⇒ −∇⃗pt+δt + ∇⃗ ·
(
2ηeff ε̇

d(ν⃗t+δt) + τ t
)
+ ρt+δtg⃗ = 0⃗

and finally

−∇⃗pt+δt + ∇⃗ · 2ηeff ε̇d(ν⃗t+δt) = −ρt+δtg⃗ − ∇⃗ · τ t

Weak form

The mass conservation equation is still ∇⃗ · ν⃗ = 0 so we need not look into it since its weak form is
in Section 7.5.

For the Nν
i ’s we can write:∫

Ωe

Nν
i ∇⃗ · σt+δtdΩ +

∫
Ωe

Nν
i ρg⃗ dΩ = 0⃗ (9.94)
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We can integrate by parts and drop the surface term35 REVISIT and use Eq. (9.93):∫
Ωe

∇⃗Nν
i · σt+δt dΩ =

∫
Ωe

Nν
i ρg⃗ dΩ∫

Ωe

∇⃗Nν
i ·
[
−pt+δt1+ 2ηeff ε̇

d(ν⃗t+δt) + τ t
]
dΩ =

∫
Ωe

Nν
i ρg⃗ dΩ (9.95)∫

Ωe

∇⃗Nν
i ·
[
−pt+δt1+ 2ηeff ε̇

d(ν⃗t+δt)
]
dΩ =

∫
Ωe

Nν
i ρg⃗ dΩ−

∫
Ωe

∇⃗Nν
i · τ t dΩ (9.96)

We see that the left hand term is virtually identical to the one in Section 7.5, although the viscosity
has been replaced with the effective viscosity of Eq. (9.92). The headache will come from the right
hand side term τ t, as we will see.

In two dimensions - Cartesian coordinates . The rotation rate tensor is given by:

ω̇(ν⃗) =
1

2

(
∇⃗ν⃗− (∇⃗ν⃗)T

)
=

(
0 ω̇xy
−ω̇xy 0

)
=

1

2

(
0 ∂v

∂x
− ∂u

∂y
∂v
∂x
− ∂u

∂y
0

)
so that the tensor J can be computed explicitely:

J t = ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t)

=

(
0 ω̇xy(ν⃗

t)
−ω̇xy(ν⃗t) 0

)
·
(
τ txx τ txy
τ txy τ tyy

)
−
(
τ txx τ txy
τ txy τ tyy

)
·
(

0 ω̇xy(ν⃗
t)

−ω̇xy(ν⃗t) 0

)
= ω̇xy(ν⃗

t)

(
0 1
−1 0

)
·
(
τ txx τ txy
τ txy τ tyy

)
− ω̇xy(ν⃗t)

(
τ txx τ txy
τ txy τ tyy

)
·
(

0 1
−1 0

)
= ω̇xy(ν⃗

t)

(
τ txy τ tyy
−τ txx −τ txy

)
− ω̇xy(ν⃗t)

(
−τ txy τ txx
−τ tyy τ txy

)
= ω̇xy(ν⃗

t)

(
2τ txy τ tyy − τ txx

τ tyy − τ txx −2τ txy

)
(9.97)

so that the tensor equation τ = Zτ + ZδtJ can be reformulated as follows in a vector form: τ txx
τ tyy
τ txy

 = Z

 τ txx
τ tyy
τ txy

+ Zδt

 J txx
J tyy
J txy

 = Z

 τ txx
τ tyy
τ txy

+ Zδtω̇txy

 2τ txy
−2τ txy
τ tyy − τ txx

 (9.98)

or, σt+δtxx

σt+δtyy

σt+δtxy

 =

 −pt+δt−pt+δt
0

+ 2ηeff

 ε̇xx(ν⃗
t+δt)

ε̇yy(ν⃗
t+δt)

ε̇xy(ν⃗
t+δt)

+

 τ txx
τ tyy
τ txy


=

 −pt+δt−pt+δt
0

+ 2ηeff

 ε̇xx(ν⃗
t+δt)

ε̇yy(ν⃗
t+δt)

ε̇xy(ν⃗
t+δt)

+ Z

 τ txx
τ tyy
τ txy

+ Zδtω̇xy

 2τ txy
−2τ txy
τ tyy − τ txx

(9.99)
...

∫
Ωe

BT ·

 σt+δtxx

σt+δtyy

σt+δtxy

 dΩ =

∫
Ωe

N⃗bdΩ (9.100)

35We will come back to this at a later stage
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∫
Ωe

BT ·

 −pt+δt−pt+δt
0

+ 2ηeff

 ε̇dxx(ν⃗
t+δt)

ε̇dyy(ν⃗
t+δt)

ε̇dxy(ν⃗
t+δt)

 dΩ =

∫
Ωe

N⃗bdΩ−
∫
Ωe

BT ·

Z
 τ txx

τ tyy
τ txy

+ Zδtω̇xy(ν⃗
t)

 2τ txy
−2τ txy
τ tyy − τ txx

 dΩ

As seen in Section 7.5 the left hand side terms yield K · V⃗ +G · P⃗ . The buoyancy term in the rhs
is also standard and yields f⃗ . The discretised momentum equation then writes

K · V⃗ +G · P⃗ = f⃗ + f⃗el

and the last rhs term is

f⃗el = −
∫
Ωe

BT ·

Z
 τ txx

τ tyy
τ txy

+ Zδtω̇xy(ν⃗
t)

 2τ txy
−2τ txy
τ tyy − τ txx

 dΩ

with the matrix B being given by

B =



∂Nν
1

∂x
0 0 · · · ∂Nν

mv

∂x
0 0

0
∂Nν

1

∂y
0 · · · 0

∂Nν
mv

∂y
0

∂Nν
1

∂y

∂Nν
1

∂x
0 · · · ∂Nν

mv

∂x

∂Nν
mv

∂x
0


In three dimensions - Cartesian coordinates The spin tensor is given by

ω̇(ν⃗) =
1

2

(
∇⃗ν⃗− (∇⃗ν⃗)T

)
=

 0 ω̇xy ω̇xz
−ω̇xy 0 ω̇yz
−ω̇xz −ω̇yz 0


so that

J t = ω̇(ν⃗t) · τ t − τ t · ω̇(ν⃗t)

=

 0 ω̇xy ω̇xz
−ω̇xy 0 ω̇yz
−ω̇xz −ω̇yz 0

 ·
 τxx τxy τxz

τxy τyy τyz
τxz τyz τzz

−
 τxx τxy τxz

τxy τyy τyz
τxz τyz τzz

 ·
 0 ω̇xy ω̇xz
−ω̇xy 0 ω̇yz
−ω̇xz −ω̇yz 0


= (9.101)

FINISH!!!
check appendix A of Loes’ GR
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9.30 Interpolation inside an element

bernstein.tex

The n+ 1 Bernstein basis polynomials of degree n on the interval [0, 1] are defined as 36

bm,n(x) =

(
n
m

)
xm(1− x)n−m m = 0, 1, ...n

The first few Bernstein polynomials are

b0,0(x) = 1 (9.102)

b0,1(x) = 1− x
b1,1(x) = x (9.103)

b0,2(x) = (1− x)2

b1,2(x) = 2x(1− x)
b2,2(x) = x2 (9.104)

 0

 0.2
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 0.6

 0.8

 1

 1.2
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b0,2
b1,2
b2,2

We see that the zero-th and first order polynomials are the same as the linear basis functions
defined in Section 5.2. However the second order polynomials (and higher) differ from the second-
order basis functions.

Also, the Bernstein polynomials have a lot of properties, but one that is of importance to us is
the following: bm,n(x) ≥ 0 ∀x ∈ [0, 1], i.e. the polynomials are positive. This is however not true
for basis functions for n ≥ 2. Another important property shared with basis functions is that their
sum over the interval is exactly 1, i.e.

∑
m bm,n(x) = 1.

In order to facilitate the comparison between the 2nd-order basis functions and Bernstein poly-
nomials, I will express the latter as a function of the reduced coordinate r ∈ [−1, 1] = 2(x− 1/2) (or
x = (r + 1)/2). We have then:

b0,2(r) =
1

4
(1− r)2

b1,2(r) =
1

2
(1− r2)

b2,2(r) =
1

4
(1 + r)2 (9.105)

Both 2nd-order Bernstein polynomials and basis functions are plotted here under:
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 0.8

 1

 1.2

-1 -0.5  0  0.5  1

b0,2
b1,2
b2,2

0

-0.2

 0

 0.2

 0.4
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36https://en.wikipedia.org/wiki/Bernstein_polynomial
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Left: Second-order Bernstein polynomials; right: 2nd-order basis functions.

Having reached this point, the burning question is why should we care?

Example 1 In order to answer this question, let us carry out the following experiment: each
node i in the element carries a field value fi and for simplicity, we choose f0 = f(r = −1) = 1,
f1 = f(r = 0) = 0, f2 = f(r = +1) = 0. Then, we can compute the value of the field inside of the
element as we usually do in the FE methodology:

fh(r) =
2∑
i=0

fiNi(r) = f0N0(r) = N0(r) =
1

2
r(r − 1)

This means that although the field f is always positive (or null) inside the element its representation
with the basis functions is negative over half (!) of the element (see purple curve on the right panel
above). If we now turn to the Bernstein polynomials:

fh(r) =
2∑
i=0

bi,2 = b0,2 =
1

4
(1− r)2

which is always positive over the interval [−1,+1], and looking at the purple curve on the left panel
above, we see that the value decreases monotonously when we go away from node 1, and reaches
zero at the other end of the element.

Also:

Shape function:

∫ +1

−1

fh(r)dr =

∫ +1

−1

1

2
r(r − 1)dr =

1

3

Bernstein polynomial:

∫ +1

−1

fh(r)dr =

∫ +1

−1

1

4
(1− r)2dr = 2

3

Analytical value for the integral can be obtained by splitting the integral as
∫ 0

−1
+
∫ +1

0
. The left part

can be represented by a line of equation −r and the right part simply by 0, so that the integral is
equal to 1/2. We then see that the Shape function-based interpolation underestimates the integral
while the Bernstein polynomial-based interpolation overestimates it.

Example 2 We now choose f0 = f(r = −1) = 1, f1 = f(r = 1) = 0, f2 = f(r = +1) = 0. Then

fh(r) =
2∑
i=0

fiNi(r) = f0N0(r)f(1)N1(r) = N0(r) +N1(r) =
1

2
r(r − 1) + 1− r2 = −1

2
r2 − 1

2
r + 1

Looking now at the Bernstein polynomials:

fh(r) =
2∑
i=0

bi,2 = b0,2 + b1,2 =
1

4
(1− r)2 + 1

2
(1− r2) = −1

4
r2 − 1

2
r +

3

4

If we now plot both approximations:
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 0.4

 0.6
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We see that in this case the basis function-based approximation yields values above 1 over half of the
element while the Bernstein polynomial-based approximation remains between 0 and 1 as expected.

Approximation of polynomials Let us now explore another aspect of such an interpolation
based on the Bernstein polynomials and assume that f(r) = C. Then

fh(r) =
2∑
i=0

fibi,2(r) = C

2∑
i=0

bi,2(r) = C · 1 = C

Such interpolation can exactly represent a constant field. Let us assume that f(r) = ar + b. Then

fh(r) =
2∑
i=0

f(ri)bi,2(r)

=
2∑
i=0

(ari + b)bi,2(r)

= a
2∑
i=0

ribi,2(r) + b

3∑
i=1

bi,2(r)

= a(−b0,2(r) + b2,2(r)) + b · 1
= ar + b (9.106)

Such interpolation can exactly represent a linear field.
Let us assume that f(r) = ar2 + br + c. Then

fh(r) =
2∑
i=0

f(ri)bi,2(r)

=
2∑
i=0

(ar2 + br + c)bi,2(r)

=
2∑
i=0

r2i bi,2(r) + b
2∑
i=0

ribi,2(r) + c
2∑
i=0

bi,2(r)

= a
2∑
i=0

r2i bi,2(r) + br + c

= a(b0,2(r) + b2,2(r)) + br + c

= a
1

2
(1 + r2) + br + c (9.107)

which is not equal to f(r).
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On the other hand it is trivial to show that

fh(r) =
2∑
i=0

f(ri)Ni(r)

=
2∑
i=0

(ar2i + bri + c)Ni(r)

= a
2∑
i=0

r2iNi(r) + b

2∑
i=0

riNi(r) + c

2∑
i=0

Ni(r)

= a
2∑
i=0

r2iNi(r) + b
2∑
i=0

riNi(r) + c

= a(N0(r) +N2(r)) + b(−N0(r) +N2(r)) + c

= ar2 + br + c (9.108)

To hammer the point once more: let f(r) = r2 + r + 1. Then

fhQ1
= f(−1)1

2
(1− r) + f(+1)

1

2
(1 + r)

=
1

2
(1− r) + 3

1

2
(1 + r)

= 2− r (9.109)

fhQ2
= r2 + r + 1 (9.110)

fhB2
=

1

2
(1 + r2) + r + 1 (9.111)

We see on the following figure that although Bernstein polynomials cannot represent f(r) exactly
they still do a better job than first order basis functions (Q1 projection).
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As a conclusion there is a trade-off: 2nd-order Bernstein polynomials always yield positive values
when the field is positive (as opposed to 2nd-order basis functions) but they cannot represent exactly
a 2nd-order polynomial field (while basis functions can).

The positivity can be really critical in geodynamical simulations: a negative density makes no
sense, and a negative viscosity even less!

The 2nd-order Bernstein polynomials are used in Stone ??. The actual context of this stone is
not important. Fields such as density and viscosity are known on the 9 nodes of the Q2 element and
need to be projected onto the 9 quadrature points. For instance, these nodal fields are given by:
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The resulting fields on the quadrature points are shown:

The bottom row is obtained with the basis functions while the top row is obtained with the Bernstein
polynomials as interpolants. The thin blue line actually indicated points with negative viscosity and
on the left the colour bar shows densities below the value of 1890 (lowest density in the domain).
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9.31 Conservative Velocity Interpolation (CVI)

cvi.tex

To my knowledge the conservative velocity interpolation (CVI) was introduced to the computa-
tional geodynamics community in Wang, Agrusta, and Hunen [1337] (2015). As mentioned in the
paper “An improved velocity interpolation scheme that conserves the divergence of the flow field has
been developed by Jenny, Pope, Muradoglu, and Caughey [644] (2001) and the simplified scheme
for incompressible flow (i.e., divergence free) has been demonstrated that it largely eliminates the
spurious distribution of particles for 2D incompressible flow problem (see Meyer and Jenny [868]
(2004)).”

Additional more recent publications on the topic of accurate marker advection: Sime, Maljaars,
Wilson, and Keken [1168] (2021), Sime, Wilson, and Keken [1170] (2022).

9.31.1 A few remarks about Wang et al. (2015)

The article by Wang, Agrusta, and Hunen [1337] (2015) comes with supplementary material with
more details on the derivation of the corrective velocities but that material is a Word document
printed to pdf with an annoying layout of equations, different font sizes, lack of alignment, etc ...
Also, Fig. 1 of the paper is reproduced here:

Why the authors chose to label nodes a,b,...h and not 1,2,...8 shall forever remain a mystery, but it
is not as problematic as the labelling of the axes: indeed, if X1 is the x-axis then X3 should be the
y-axis and X2 the z-axis. That is quite illogical. Or is it a mistake in the drawing only? In any case
this sheds some confusion on the equations presented in the paper so I have decided to carry out all
the CVI derivations in this chapter.

Their paper does not seem to consider cases where the element is not a cuboid (so what about
CitcomS, or ALE formulations?), nor does it address higher order elements. Finally many details of
the setups in the paper are just not there and I had to email the author(s) multiple time regarding:

� the setup of the couette flow in section 3.1 is incomplete: for instance, size of the box ? velocity
value ? exact formula for the vel field (couette flow, I know, but how thick are the layers before
rotation)? etc ...
Wang answered me: “The box is a unit box (nondimentional 1*1). I attached the function for
the analytical solution for the exact formula for the velocity field that you asked. I didn’t find
the models file yet, so I can’t tell you what it is the value of the velocity. But I think it can
be: 1m*1m box with 1m/s on the surface (V0). In Citcom, the timestep is chosen to let any
material in one cell not to move more than half of the cell length (CFL=0.5). Then we have
this parameter ”finetunedt” (< 1) to multiply it. I remember I usually use 0.9 or 0.7. So the
CFL=0.45 or 0.35. Concerning the Couette flow we used a viscosity of 1e3, which make very
sharp velocity contrast across the diagonal line.”

for (i=1;i<=E->lmesh.nno;i++)

{
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x = E->X[1][i];

z = E->X[2][i];

eta1=E->control.testvelval[1];

eta2=E->control.testvelval[2];

alpha=E->control.testvelval[3]*PI/180; /*coordinate rotation angle */

V0=E->control.testvelval[4];

h=sqrt(2.0)*sin(alpha+PI/4); /*WHL: h (with analytical solution) is a function of the rotation angle */

V1=(x*sin(alpha)+z*cos(alpha))*2*V0*eta2/(eta1+eta2)/h;

V2=(x*sin(alpha)+z*cos(alpha))*2*V0*eta1/(eta1+eta2)/h+(eta2-eta1)*V0/(eta1+eta2);

if (x*sin(alpha)+z*cos(alpha)<0.5*h)

{

E->V[1][i]=V1*cos(alpha);

E->V[2][i]=-V1*sin(alpha);

}

else

{

E->V[1][i]=V2*cos(alpha);

E->V[2][i]=-V2*sin(alpha);

}

if (E->mesh.nsd == 3)

E->V[3][i]=0.;

}

� which advection scheme was used and I am worried that at no point in the publication the
timestep size is either mentioned nor its importance discussed.
Wang answered: “About the timestep, my experience is that using smaller timestep would’t
solve this kind of problem. Otherwise we probably would not need to use this new velocity
interpolation. I could not remember that I tested the effects of timestep for this model. So it
would be nice to know the result if you test it. The advection scheme is the 2nd Runge Kutta.
”

� Agrusta wrote: ”here the input values for the couette flow: testvelval=100000,1,45,0.01 #
eta1,eta2,angle,velocity. mesh = 33x33. initial tracers 100X100, random distribution”

Looking at their Fig. 2a,b we see black arrow tips in the blue region where velocity should be
zero. Velocity is indeed zero and the authors confirmed that the arrow tips are an artefact of their
visualisation software (!).

Relevant Literature: McNally (2011) [858] proposed a divergence-free interpolation of vector
fields from point values in the context of magnetohydrodynamics. Pusok, Kaus, and Popov [1021]
(2016) has applied the CVI to staggered grid FDM.

9.31.2 In 2D with Q1 basis functions - Naive approach

Let us start directly in reduced coordinates (r, s) ∈ [−1 : 1]2 (i.e. the reference element). The velocity
components inside of the element are given by:

uh(r, s) =
∑
i

Ni(r, s)ui

vh(r, s) =
∑
i

Ni(r, s)vi
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where Ni are the four Q1 basis functions defined as follows:

N1(r, s) =
1

4
(1− r)(1− s)

N2(r, s) =
1

4
(1 + r)(1− s)

N3(r, s) =
1

4
(1 + r)(1 + s)

N4(r, s) =
1

4
(1− r)(1 + s)

The incompressibility constraint in the (r, s)−coordinate system reads

(∇⃗ · ν⃗)h = ∂uh

∂r
+
∂vh

∂s
=
∑
i

(
∂Ni
∂r

ui +
∂Ni
∂s

vi

)
= 0.

However, it is trivial to verify that the incompressibility condition is not and can not be verified for
all values of r, s ∈ [−1, 1]2. It would then make sense to think of a corrective term to the interpolation
which would add just enough degrees of freedoms so as to insure an exact37 incompressibility in the
element. Let us then write:

uh(r, s) =
∑
i

Ni(r, s)ui + (as+ b)(1− r)(1 + r)

vh(r, s) =
∑
i

Ni(r, s)vi + (cr + d)(1− s)(1 + s)

Note that in this way the correction is zero on the x = −1 and x = +1 sides of the element for u,
and likewise for v on the top and bottom sides (in other words the velocity remains continuous from
one element to another). In this case,

∂uh

∂r
=

∑
i

∂Ni
∂r

ui + (as+ b)(−2r)

∂vh

∂s
=

∑
i

∂Ni
∂s

vi + (cr + d)(−2s)

We have introduced 4 coefficients (a, b, c, d) which remain to be determined. We start with:∑
i

∂Ni

∂r
ui = −1

4
(1− s)u1 +

1

4
(1− s)u2 +

1

4
(1 + s)u3 −

1

4
(1 + s)u4

= (1− s)u2 − u1
4

+ (1 + s)
u3 − u4

4
= (1− s)u21 + (1 + s)u34∑

i

∂Ni

∂s
vi = −1

4
(1− r)v1 −

1

4
(1 + r)v2 +

1

4
(1 + r)v3 +

1

4
(1− r)v4

= (1− r)v4 − v1
4

+ (1 + r)
v3 − v2

4
= (1− r)v41 + (1 + r)v32

where uij = (ui − uj)/4 and vij = (vi − vj)/4, so that in the end

∂uh

∂r
= (1− s)u21 + (1 + s)u34 + (as+ b)(−2r) (9.112)

∂vh

∂s
= (1− r)v41 + (1 + r)v32 + (cr + d)(−2s) (9.113)

37more on this later
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The incompressibility condition is now:

(∇⃗ · ν⃗)h = (1− s)u21 + (1 + s)u34 + (as+ b)(−2r) + (1− r)v41 + (1 + r)v32 + (cr + d)(−2s) = 0

This can be rewritten as
(∇⃗ · ν⃗)h = C0 + C1r + C2s+ C3rs = 0

where the four Ci coefficients are functions of the velocities and the other coefficients. In order for
this expression to be exactly zero everywhere, each C coefficient has to be independently zero.

C0 (.) u21 + u34 + v41 + v32 = 0

C1 (r) −v41 + v32 − 2b = 0

C2 (s) −u21 + u34 − 2d = 0

C3 (rs) −2a− 2c = 0

The first line is simply the incompressibility condition expressed in the center of the element (i.e.
r = s = 0), so we set it aside for now (I will come back to it later!) and focus on the remaining three.

At this stage it is important to note that in the absence of corrective terms (i.e. a = b = c = d = 0)
then only C3 = 0 and the divergence inside the element is a linear field.

We obtain

c = −a b =
1

2
(−v41 + v32) d =

1

2
(−u21 + u34)

Since a and c are not otherwise constrained, we can set them to zero, and we then have:

b =
1

2
(v14 + v32) d =

1

2
(u12 + u34)

and finally

uh(r, s) =
∑
i

Ni(r, s)ui + b(1− r)(1 + r) =
∑
i

Ni(r, s)ui +
1

2
(v14 + v32)(1− r)(1 + r)

vh(r, s) =
∑
i

Ni(r, s)vi + d(1− s)(1 + s) =
∑
i

Ni(r, s)vi +
1

2
(u12 + u34)(1− s)(1 + s)

By using these corrected interpolations for both components of the velocity then one ensures that
a point-wise divergence free velocity field anywhere in the element. However, these derivations were
carried out in the reference element. In fact they would work also for rectangular elements with
minimal changes, but not for generic quadrilaterals.

To be clear, let us now compute the velocity divergence of the corrected velocity field above:

(∇⃗ · ν⃗)h =
∂uh

∂r
+
∂vh

∂s

= (1− s)u21 + (1 + s)u34 +
1

2
(v14 + v32)(−2r) + (1− r)v41 + (1 + r)v32 +

1

2
(u12 + u34)(−2s)

= u21 + u34 + v41 + v32 − su21 + su34 − rv14 − rv32 − rv41 + rv32 − su12 − su34
= u21 + u34 + v41 + v32 (9.114)

A point must then be made crystal clear: the divergence is not zero. The quantity above is constant
inside the element (it does not depend on r nor s). All what the CVI algorithm does is to
remove the spatial dependence of the velocity divergence inside the element.
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9.31.3 In 2D with Q1 basis functions - better approach

We now consider a generic quadrilateral in the x, y-coordinate space and its equivalent in the reference
space r, s. One can easily show that the gradient of a field f verifies ∂f

∂x

∂f
∂y

 = J̃ ·

 ∂f
∂r

∂f
∂s


where J̃ in the inverse of the Jacobian matrix. We then postulate again

uh(r, s) =
∑
i

Ni(r, s)ui + (as+ b)(1− r)(1 + r)

vh(r, s) =
∑
i

Ni(r, s)vi + (cr + d)(1− s)(1 + s)

In this case,

∂uh

∂r
=

∑
i

∂Ni
∂r

ui + (as+ b)(−2r)

∂uh

∂s
=

∑
i

∂Ni
∂s

ui + a(1− r2)

∂vh

∂r
=

∑
i

∂Ni
∂s

vi + c(1− s2)

∂vh

∂s
=

∑
i

∂Ni
∂s

vi + (cr + d)(−2s)

We have introduced 4 coefficients (a, b, c, d) which remain to be determined. In order to compute the
velocity divergence inside the element we will need

∂u

∂x
= J̃xx

∂u

∂r
+ J̃xy

∂u

∂s

= J̃xx

(∑
i

∂Ni
∂r

ui + (as+ b)(−2r)

)
+ J̃xy

(∑
i

∂Ni
∂s

ui + a(1− r2)

)
= J̃xx (−(1− s)u12 + (1 + s)u34 + (as+ b)(−2r))
+ J̃xy

(
−(1− r)u14 − (1 + r)u23 + a(1− r2)

)
∂v

∂y
= J̃yx

(
−(1− s)v12 + (1 + s)v34 + c(1− s2)

)
+ J̃yy (−(1− r)v14 − (1 + r)v23 + (cr + d)(−2s))

where uij = (ui − uj)/4 and vij = (vi − vj)/4. The velocity divergence can be written as follows

∂u

∂x
+
∂v

∂y
= C0 + C1r + C2s+ C3rs+ C4r

2 + C5s
2 = 0
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with

C0 = Jxx(−u12 + u34) + Jxy(−u14 − u23) + Jyx(−v12 + v34) + Jyy(−v14 − v23)
C1 = Jxy(u14 − u23) + Jyy(v14 − v23)− 2bJxx

C2 = Jxx(u12 + u34) + Jyx(v12 + v34)− 2dJyy

C3 = −2aJxx − 2cJyy

C4 = −aJxy
C5 = −cJyx

(9.115)

where the six Ci coefficients are functions of the velocities and the other coefficients. In order for
this expression to be exactly null everywhere38, each C coefficient has to be independently null.

This immediately yields a = c = 0 (since the components of the J̃ tensor are not necessarily zero
- and if Jxy and Jyx are zero then the equation for C3 remains and we would still take a = c = 0 for
simplicity) and the equation for C3 is immediately satisfied. We then have:

b =
1

2Jxx
(Jxy(u14 − u23) + Jyy(v14 − v23))

d =
1

2Jyy
(Jxx(u12 + u34) + Jyx(v12 + v34))

These expressions contain the same ingredients as before but also introduce more coupling between
the velocity components. If the element is rectangular then Jxy = Jyx = 0 and

b =
Jyy
2Jxx

(v14 − v23)

d =
Jxx
2Jyy

(u12 + u34)

If the element is square then Jxx = Jyy = 0 so

b =
1

2
(v14 − v23)

d =
1

2
(u12 + u34)

and finally the velocity correction is

δu =
1

2
(v14 − v23)(1− r)(1 + r)

δv =
1

2
(u12 + u34)(1− s)(1 + s) (9.116)

9.31.4 Comparison with Wang et al. (2015) for 2D

Rather annoyingly Wang et al. (2015) use a reference element that is [0, 1]× [0, 1] as opposed to the
standard [−1, 1]× [−1, 1]:

38We know by now that this is not possible
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Taken from the supplementary material of Wang et al. (2015).

Since basis functions must be 1 on their node, then the numbering must be as follows:

c--d 4--3

| | <=> | |

a--b 1--2

Setting ∆x1 = ∆x2 = 1, replacing a by 1, b by 2, c by 4 and d by 3, x1 by r′ and x2 by s′, U1 by
u and U2 by v, we arrive at (in order to render the notations a bit lighter I have set U = U1 and
V = U2)

∆U =
1

2
r′(1− r′)(v1 − v2 − v4 + v3) =

1

2
r′(1− r′)(4v14 − 4v23)

∆V =
1

2
s′(1− s′)(u1 − u2 − u4 + u3) =

1

2
s′(1− s′)(4u12 + 4u34)

Since r = 2r′ − 1 and s = 2s′ − 1 then we find that

∆U =
1

2
(1− r2)(v14 − v23)

∆V =
1

2
(1− s2)(u12 + u34) (9.117)

which is Eq. (9.116). In the case of the reference element then my velocity corrections are identical
to theirs.

Let us look at the equations of the figure above. Since the authors state that they “transform the
rectangular cells into unit squares” we do away with ∆x1 = ∆x2 = 1. Eqs. 3 and 1 together yield:

U = (1− x1)(1− x2)Ua + x1(1− x2)U b + (1− x1)x2U c + x1x2U
d +

1

2
x1(1− x1)(V a − V b − V c + V d)

V = (1− x1)(1− x2)V a + x1(1− x2)V b + (1− x1)x2V c + x1x2V
d +

1

2
x2(1− x2)(Ua − U b − U c + Ud)

Then

∂U

∂x1
= −(1− x2)Ua + (1− x2)U b − x2U c + x2U

d +
1

2
(1− 2x1)(V

a − V b − V c + V d)

∂V

∂x2
= −(1− x1)V a − x1V b + (1− x1)V c + x1V

d +
1

2
(1− 2x2)(U

a − U b − U c + Ud)
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So

∂U

∂x1
+
∂V

∂x2
= −(1− x2)Ua + (1− x2)U b − x2U c + x2U

d +
1

2
(1− 2x1)(V

a − V b − V c + V d)

−(1− x1)V a − x1V b + (1− x1)V c + x1V
d +

1

2
(1− 2x2)(U

a − U b − U c + Ud)

= −Ua + U b + x2(U
a − U b − U c + Ud) +

1

2
(V a − V b − V c + V d)− x1(V a − V b − V c + V d)

−V a + V c + x1(V
a − V b − V c + V d) +

1

2
(Ua − U b − U c + Ud)− x2(Ua − U b − U c + Ud)

= −Ua + U b +
1

2
(V a − V b − V c + V d)− V a + V c +

1

2
(Ua − U b − U c + Ud)

̸= 0 (9.118)

Unfortunately, the authors seem to be under the impression that this quantity is zero since they talk
of “2D divergence-free interpolation” and “the divergence of the vector field need to be zero”. Their
own equations prove that this is not the case.

9.31.5 In 3D with Q1 basis functions - Naive approach

In this case we are addressing the case of the divergence being as close to zero as possible in the
reference element. We’ll treat the case of a generic hexahedron in the next section.

Let us start directly in reduced coordinates (r, s, t) ∈ [−1 : 1]3:

uh(r, s, t) =
∑
i

Ni(r, s, t)ui

vh(r, s, t) =
∑
i

Ni(r, s, t)vi

wh(r, s, t) =
∑
i

Ni(r, s, t)wi

with

N1 =
1

8
(1− r)(1− s)(1− t)

N2 =
1

8
(1 + r)(1− s)(1− t)

N3 =
1

8
(1 + r)(1 + s)(1− t)

N4 =
1

8
(1− r)(1 + s)(1− t)

N5 =
1

8
(1− r)(1− s)(1 + t)

N6 =
1

8
(1 + r)(1− s)(1 + t)

N7 =
1

8
(1 + r)(1 + s)(1 + t)

N8 =
1

8
(1− r)(1 + s)(1 + t)

The incompressibility constraint imposes:

∂uh

∂r
+
∂vh

∂s
+
∂wh

∂t
= 0 =

∑
i

(
∂Ni
∂r

ui +
∂Ni
∂s

vi +
∂Ni
∂t

wi

)
= 0
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However, once again it is trivial to verify that the incompressibility condition is not and can not be
verified for all values of r, s, t ∈ [−1, 1]3.

It would then make sense to think of a corrective term to the interpolation which would add just
enough degrees of freedoms so as to insure an exact incompressibility in the element. Let us then
write:

uh(r, s, t) =
∑
i

Ni(r, s, t)ui + (as+ bt+ c)(1− r)(1 + r)

vh(r, s, t) =
∑
i

Ni(r, s, t)vi + (dr + et+ f)(1− s)(1 + s)

wh(r, s, t) =
∑
i

Ni(r, s, t)wi + (gr + hs+ i)(1− t)(1 + t)

We thereby make sure that the corrections are zero on the edges so that velocity remains continuous
from one element to another. In this case,

∂uh

∂r
=

∑
i

∂Ni
∂r

ui + (as+ bt+ c)(−2r)

∂vh

∂s
=

∑
i

∂Ni
∂s

vi + (dr + et+ f)(−2s)

∂wh

∂t
=

∑
i

∂Ni
∂t

wi + (gr + hs+ i)(−2t)

We have introduced 9 coefficients (a, b, c, d, e, f, g, h, i) which remain to be determined. The incom-
pressibility condition is now:∑
i

(
∂Ni
∂r

ui +
∂Ni
∂s

vi +
∂Ni
∂t

wi

)
+ (as+ bt+ c)(−2r) + (dr + et+ f)(−2s) + (gr + hs+ i)(−2t) = 0

This can be rewritten as

C0 + C1r + C2s+ C3t+ C4rs+ C5st+ C6rt = 0

where the seven Ci coefficients are functions of the velocities and the other coefficients. In order for
this expression to be exactly zero everywhere39, each C coefficient has to be independently zero.

We start with:

8
∑
i

∂Ni
∂r

ui = (1− s)(1− t)(u2 − u1) + (1 + s)(1− t)(u3 − u4) + (1− s)(1 + t)(u6 − u5) + (1 + s)(1 + t)(u7 − u8)

8
∑
i

∂Ni
∂s

vi = (1− r)(1− t)(v4 − v1) + (1 + r)(1− t)(v3 − v2) + (1− r)(1 + t)(v8 − v5) + (1 + r)(1 + t)(v7 − v6)

8
∑
i

∂Ni
∂t

wi = (1− r)(1− s)(w5 − w1) + (1 + r)(1− s)(w6 − w2) + (1 + r)(1 + s)(w7 − w3) + (1− r)(1 + s)(w8 − w4)

Let us denote uij = (ui − vj)/8 (same for v, w), so that:∑
i

∂Ni
∂r

ui = (1− s)(1− t)u21 + (1 + s)(1− t)u34 + (1− s)(1 + t)u65 + (1 + s)(1 + t)u78∑
i

∂Ni
∂s

vi = (1− r)(1− t)v41 + (1 + r)(1− t)v32 + (1− r)(1 + t)v85 + (1 + r)(1 + t)v76∑
i

∂Ni
∂t

wi = (1− r)(1− s)w51 + (1 + r)(1− s)w62 + (1 + r)(1 + s)w73 + (1− r)(1 + s)w84

39By now we know this is not possible – see 2D
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We finally arrive at:

C0 (.) u21 + u34 + u65 + u78 + v41 + v32 + v85 + v76 + w51 + w62 + w73 + w84 = 0

C1 (r) −v41 + v32 − v85 + v76 − w51 + w62 + w73 − w84 − 2c = 0

C2 (s) −u21 + u34 − u65 + u78 − w51 − w62 + w73 + w84 − 2f = 0

C3 (t) −u21 − u34 + u65 + u78 − v41 − v32 + v85 + v76 − 2i = 0

C4 (rs) w51 − w62 + w73 − w84 − 2a− 2d = 0

C5 (st) u21 − u34 − u65 + u78 − 2e− 2h = 0

C6 (rt) v41 − v32 − v85 + v76 − 2b− 2g = 0

I leave C0 alone but I still unfortunately end up with 6 equations and 9 unknowns a, b, c, d, e, f, g, h.
Coming up with additional constraints is not trivial, so I will instead further assume αr = b = a,
αs = e = d and αt = h = g, and rename βr = c, βs = f and βt = i so that I have now six unknowns
αr, αs, αt, βr, βs, βt for six equations

C1 (r) −v41 + v32 − v85 + v76 − w51 + w62 + w73 − w84 − 2βr

C2 (s) −u21 + u34 − u65 + u78 − w51 − w62 + w73 + w84 − 2βs

C3 (t) −u21 − u34 + u65 + u78 − v41 − v32 + v85 + v76 − 2βt

C4 (rs) w51 − w62 + w73 − w84 − 2αr − 2αs

C5 (st) u21 − u34 − u65 + u78 − 2αs − 2αt

C6 (rt) v41 − v32 − v85 + v76 − 2αr − 2αt

This naturally yields:

βr =
1

2
(−v41 + v32 − v85 + v76 − w51 + w62 + w73 − w84)

=
1

16
(v1 − v2 + v3 − v4 + v5 − v6 + v7 − v8 + w1 − w2 − w3 + w4 − w5 + w6 + w7 − w8)

βs =
1

2
(−u21 + u34 − u65 + u78 − w51 − w62 + w73 + w84)

=
1

16
(u1 − u2 + u3 − u4 + u5 − u6 + u7 − u8 + w1 + w2 − w3 − w4 − w5 − w6 + w7 + w8)

βt =
1

2
(−u21 − u34 + u65 + u78 − v41 − v32 + v85 + v76)

=
1

16
(u1 − u2 − u3 + u4 − u5 + u6 + u7 − u8 + v1 + v2 − v3 − v4 − v5 − v6 + v7 + v8)

and we need to solve

w̃ − 2αr − 2αs = 0

ũ− 2αs − 2αt = 0

ṽ − 2αr − 2αt = 0

where

ũ = u21 − u34 − u65 + u78 =
1

8
(−u1 + u2 − u3 + u4 + u5 − u6 + u7 − u8)

ṽ = v41 − v32 − v85 + v76 =
1

8
(−v1 + v2 − v3 + v4 + v5 − v6 + v7 − v8)

w̃ = w51 − w62 + w73 − w84 =
1

8
(−w1 + w2 − w3 + w4 + w5 − w6 + w7 − w8)
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which yields:

αr =
1

4
(−ũ+ ṽ + w̃) αs =

1

4
(ũ− ṽ + w̃) αt =

1

4
(ũ+ ṽ − w̃)

So finally:

uh(r, s, t) =
∑
i

Ni(r, s, t)ui + [αr(s+ t) + βr](1− r)(1 + r)

vh(r, s, t) =
∑
i

Ni(r, s, t)vi + [αs(r + t) + βs](1− s)(1 + s)

wh(r, s, t) =
∑
i

Ni(r, s, t)wi + [αt(r + s) + βt](1− t)(1 + t)

9.31.6 In 3D with Q1 basis functions - better approach

We start again from 
∂f
∂x

∂f
∂y

∂f
∂z

 = J̃ ·


∂f
∂r

∂f
∂s

∂f
∂t


where J̃ is the inverse of the Jacobian matrix J . We then postulate

uh(r, s, t) =
∑
i

Ni(r, s, t)ui + (as+ bt+ c)(1− r)(1 + r)

vh(r, s, t) =
∑
i

Ni(r, s, t)vi + (dr + et+ f)(1− s)(1 + s)

wh(r, s, t) =
∑
i

Ni(r, s, t)wi + (gr + hs+ i)(1− t)(1 + t)

so that:

∂u

∂x
= J̃xx

∂uh

∂r
+ J̃xy

∂u

∂s
+ J̃xz

∂u

∂t

= J̃xx

[∑
i

∂Ni
∂r

ui + (as+ bt+ c)(−2r)

]
+ J̃xy

[∑
i

∂Ni
∂s

ui + a(1− r2)

]
+ J̃xz

[∑
i

∂Ni
∂t

ui + b(1− r2)

]
∂v

∂y
= J̃yx

∂vh

∂r
+ J̃yy

∂v

∂s
+ J̃yz

∂v

∂t

= J̃yx

[∑
i

∂Ni
∂r

vi + d(1− s2)

]
+ J̃yy

[∑
i

∂Ni
∂s

vi + (dr + et+ f)(−2s)

]
+ J̃yz

[∑
i

∂Ni
∂t

vi + e(1− s2)

]
∂w

∂z
= J̃zx

∂wh

∂r
+ J̃zy

∂w

∂s
+ J̃zz

∂w

∂t

= J̃zx

[∑
i

∂Ni
∂r

wi + g(1− t2)

]
+ J̃zy

[∑
i

∂Ni
∂s

wi + h(1− t2)

]
+ J̃zz

[∑
i

∂Ni
∂t

wi + (gr + hs+ i)(−2t)

]
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where for any function f :∑
i

∂Ni
∂r

fi = (1− s)(1− t)f21 + (1− s)(1 + t)f65 + (1 + s)(1− t)f34 + (1 + s)(1 + t)f78

= (f21 + f65 + f34 + f78)

+ (−f21 − f65 + f34 + f78)s

+ (−f21 + f65 − f34 + f78)t

+ (f21 − f65 − f34 + f78)st

= fr1 + fr2s+ fr3t+ fr4st∑
i

∂Ni
∂s

fi = (1− r)(1− t)f41 + (1 + r)(1− t)f32 + (1− r)(1 + t)f85 + (1 + r)(1 + t)f76

= (f41 + f32 + f85 + f76)

+ (−f41 + f32 − f85 + f76)r

+ (−f41 − f32 + f85 + f76)t

+ (f41 − f32 − f85 + f76)rt

= fs1 + fs2r + fs3t+ fs4rt∑
i

∂Ni
∂t

fi = (1− r)(1− s)f51 + (1 + r)(1− s)f62 + (1 + r)(1 + s)f73 + (1− r)(1 + s)f84

= (f51 + f62 + f73 + f84)

+ (−f51 + f62 + f73 − f84)r
+ (−f51 − f62 + f73 + f84)s

+ (f51 − f62 + f73 − f84)rs
= ft1 + ft2r + ft3s+ ft4rs

632



The velocity divergence is then

∂u

∂x
+
∂v

∂y
+
∂w

∂z

= J̃xx

[∑
i

∂Ni
∂r

ui + (as+ bt+ c)(−2r)

]
+ J̃xy

[∑
i

∂Ni
∂s

ui + a(1− r2)

]
+ J̃xz

[∑
i

∂Ni
∂t

ui + b(1− r2)

]

+ J̃yx

[∑
i

∂Ni
∂r

vi + d(1− s2)

]
+ J̃yy

[∑
i

∂Ni
∂s

vi + (dr + et+ f)(−2s)

]
+ J̃yz

[∑
i

∂Ni
∂t

vi + e(1− s2)

]

+ J̃zx

[∑
i

∂Ni
∂r

wi + g(1− t2)

]
+ J̃zy

[∑
i

∂Ni
∂s

wi + h(1− t2)

]
+ J̃zz

[∑
i

∂Ni
∂t

wi + (gr + hs+ i)(−2t)

]
= J̃xx [ur1 + ur2s+ ur3t+ ur4st+ (as+ bt+ c)(−2r)]
+ J̃xy

[
us1 + us2r + us3t+ us4rt+ a(1− r2)

]
+ J̃xz

[
ut1 + ut2r + ut3s+ ut4rs+ b(1− r2)

]
+ J̃yx

[
vr1 + vr2s+ vr3t+ vr4st+ d(1− s2)

]
+ J̃yy [vs1 + vs2r + vs3t+ vs4rt+ (dr + et+ f)(−2s)]
+ J̃yz

[
vt1 + vt2r + vt3s+ vt4rs+ e(1− s2)

]
+ J̃zx

[
wr1 + wr2s+ wr3t+ wr4st+ g(1− t2)

]
+ J̃zy

[
ws1 + ws2r + ws3t+ ws4rt+ h(1− t2)

]
+ J̃zz [wt1 + wt2r + wt3s+ wt4rs+ (gr + hs+ i)(−2t)]
= C0 + C1r + C2s+ C3t+ C4rs+ C5st+ C6rt+ C7r

2 + C8s
2 + C9t

2 = 0 (9.119)

with:

C0 = J̃xxur1 + J̃xyus1 + J̃xzut1 + J̃yxvr1 + J̃yyvs1 + J̃yzvt1 + J̃zxwr1 + J̃zyws1 + J̃zzwt1

+ J̃xya+ J̃xzb+ J̃yxd+ J̃yze+ J̃zxg + J̃zyh

C1 = J̃xyus2 + J̃xzut2 + J̃yyvs2 + J̃yzvt2 + J̃zyws2 + J̃zzwt2 − J̃xx2c
C2 = J̃xxur2 + J̃xzut3 + J̃yxvr2 + J̃yzvt3 + J̃zxwr2 + J̃zzwt3 − J̃yy2f
C3 = J̃xxur3 + J̃xyus3 + J̃yxvr3 + J̃yyvs3 + J̃zxwr3 + J̃zyws3 − J̃zz2i
C4 = J̃xzut4 + J̃yzvt4 + J̃zzwt4 − J̃xx2a− J̃yy2d
C5 = J̃xxur4 + J̃yxvr4 + J̃zxwr4 − J̃yy2e− J̃zz2h
C6 = J̃xyus4 + J̃yyvs4 + J̃zyws4 − J̃xx2b− J̃zz2g
C7 = −J̃xya− J̃xzb
C8 = −J̃yxd− J̃yze
C9 = −J̃zxg − J̃zyh

Of course what we want is a point-wise zero velocity divergence so we would need C0 = C1 = ...C9 = 0.
However we have 10 C coefficients/equations and only 9 variables a, b, c, d, e, f, g, h, i. We leave the
C0 equation alone and hope for the best (see 2D case). In other words we hope that if/when we
have found a, b, c, d, e, f, g, h, i so that C1 = ...C9 = 0 then C0 is ’small’ (whatever that means). As
mentioned earlier, the CVI only removes the spatial dependence of the velocity divergence inside an
element, it does not zero it.

633



It is then trivial to obtain c, f, i from the equations of C1, C2, C3:

C1 = 0 ⇒ J̃xyus2 + J̃xzut2 + J̃yyvs2 + J̃yzvt2 + J̃zyws2 + J̃zzwt2 − J̃xx2c = 0

c =
1

2J̃xx
(J̃xyus2 + J̃xzut2 + J̃yyvs2 + J̃yzvt2 + J̃zyws2 + J̃zzwt2)

C2 = 0 ⇒ J̃xxur2 + J̃xzut3 + J̃yxvr2 + J̃yzvt3 + J̃zxwr2 + J̃zzwt3 − J̃yy2f = 0

f =
1

2J̃yy
(J̃xxur2 + J̃xzut3 + J̃yxvr2 + J̃yzvt3 + J̃zxwr2 + J̃zzwt3)

C3 = 0 ⇒ J̃xxur3 + J̃xyus3 + J̃yxvr3 + J̃yyvs3 + J̃zxwr3 + J̃zyws3 − J̃zz2i = 0

i =
1

2J̃zz
(J̃xxur3 + J̃xyus3 + J̃yxvr3 + J̃yyvs3 + J̃zxwr3 + J̃zyws3)

Concerning a, b, d, e, g, h we are left with 6 equations for 6 unknowns, which can be cast as follows:

J̃xx J̃yy
J̃yy J̃zz

J̃xx J̃zz
J̃xy J̃xz

J̃yx J̃yz
J̃zx J̃zy




a
b
d
e
g
h

 =
1

2


J̃xzut4 + J̃yzvt4 + J̃zzwt4
J̃xxur4 + J̃yxvr4 + J̃zxwr4
J̃xyus4 + J̃yyvs4 + J̃zyws4

0
0
0


At this stage we can only hope that the system is not ill-posed and that a solution exists. Obviously
solving a 6× 6 linear system for every marker/particle/etc ... will turn out to be costly. Let’s see if
we cannot do better.

From the last three equations for C7, C8, C9 we have

b = − J̃xy
J̃xz

a d = − J̃yz
J̃yx

e h = − J̃zx
J̃zy

g

At this stage we have determined c, f, i entirely and have expressed b, d, h as functions of a, e, g.
There only remain three unknowns a, e, g and the equations involving C4, C5, C6 become:

0 = C4 = J̃xzut4 + J̃yzvt4 + J̃zzwt4︸ ︷︷ ︸
2T

−J̃xx2a− J̃yy2d = 2T − J̃xx2a+ J̃yy2
J̃yz

J̃yx
e

0 = C5 = J̃xxur4 + J̃yxvr4 + J̃zxwr4︸ ︷︷ ︸
2R

−J̃yy2e− J̃zz2h = 2R− J̃yy2e+ J̃zz2
J̃zx

J̃zy
g

0 = C6 = J̃xyus4 + J̃yyvs4 + J̃zyws4︸ ︷︷ ︸
2S

−J̃xx2b− J̃zz2g = 2S + J̃xx2
J̃xy

J̃xz
a− J̃zz2g (9.120)

This is much more manageable: J̃xx −J̃yyJ̃yz/J̃yx 0

0 J̃yy −J̃zzJ̃zx/J̃zy
−J̃xxJ̃xy/J̃xz 0 J̃zz

 ·
 a

e
g

 =

 T
R
S


or,  A11 A12 0

0 A22 A23

A31 0 A33

 ·
 a

e
g

 =

 T
R
S


The solution is not super-elegant, so I stop here and we might solve the 3x3 system on the fly.

Could there be a case where some off-diagonal J̃ terms are zero and some are not?
Summary
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uh(r, s, t) =
∑
i

Ni(r, s, t)ui + (as+ bt+ c)(1− r)(1 + r)

vh(r, s, t) =
∑
i

Ni(r, s, t)vi + (dr + et+ f)(1− s)(1 + s)

wh(r, s, t) =
∑
i

Ni(r, s, t)wi + (gr + hs+ i)(1− t)(1 + t)

a = ... (9.121)

b = − J̃xy
J̃xz

a

c =
1

2J̃xx
(J̃xyus2 + J̃xzut2 + J̃yyvs2 + J̃yzvt2 + J̃zyws2 + J̃zzwt2)

d = − J̃yz
J̃yx

e

e = ... (9.122)

f =
1

2J̃yy
(J̃xxur2 + J̃xzut3 + J̃yxvr2 + J̃yzvt3 + J̃zxwr2 + J̃zzwt3)

g = ... (9.123)

h = − J̃zx
J̃zy

g

i =
1

2J̃zz
(J̃xxur3 + J̃xyus3 + J̃yxvr3 + J̃yyvs3 + J̃zxwr3 + J̃zyws3)

Case of a regular grid made of cuboids In the case of a regular grid with nodes aligned with
the x, y, z axis, the 6× 6 system above is indefinite as J̃xy = J̃yx = J̃xz = ... = 0. Let us then rewrite
the C equations again in this specific case:

C0 = J̃xxur1 + J̃yyvs1 + J̃zzwt1

C1 = J̃yyvs2 + J̃zzwt2 − J̃xx2c
C2 = J̃xxur2 + J̃zzwt3 − J̃yy2f
C3 = J̃xxur3 + J̃yyvs3 − J̃zz2i
C4 = J̃zzwt4 − J̃xx2a− J̃yy2d
C5 = J̃xxur4 − J̃yy2e− J̃zz2h
C6 = J̃yyvs4 − J̃xx2b− J̃zz2g
C7 = 0

C8 = 0

C9 = 0

We see that the condition C7 = C8 = C9 = 0 are automatically satisfied. The c, f, i coefficients are
obtained as in the general case above. We are left with the equations for C4, C5, C6 (we leave the C0

equation alone - note that it does not contain any coefficient a, b, c... anymore anyways).
Also, elements are cuboids of size hx × hy × hz, so that their Jacobian matrix is

J =

 hx/2 0 0
0 hy/2 0
0 0 hz/2
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and its inverse:

J̃ =

 2/hx 0 0
0 2/hy 0
0 0 2/hz


Then the C4,C5,C6 equations become

0 = C4 =
2

hz
wt4 −

2

hx
2a− 2

hy
2d

0 = C5 =
2

hx
ur4 −

2

hy
2e− 2

hz
2h

0 = C6 =
2

hy
vs4 −

2

hx
2b− 2

hz
2g (9.124)

This is problematic since we are left with 6 unknowns and 3 equations So we should probably go
back to the original definition of

uh(r, s, t) =
∑
i

Ni(r, s, t)ui + (as+ bt+ c)(1− r)(1 + r)

vh(r, s, t) =
∑
i

Ni(r, s, t)vi + (dr + et+ f)(1− s)(1 + s)

wh(r, s, t) =
∑
i

Ni(r, s, t)wi + (gr + hs+ i)(1− t)(1 + t)

and simply choose 3 of the 6 coefficients a, b, d, e, g, h to be zero ? May be better, as proposed earlier:
take αr = a = b, αs = d = e and αt = g = h? Then, keeping only αr, αs, αt:

uh(r, s, t) =
∑
i

Ni(r, s, t)ui + (αr(s+ t) + c)(1− r)(1 + r)

vh(r, s, t) =
∑
i

Ni(r, s, t)vi + (αs(r + t) + f)(1− s)(1 + s)

wh(r, s, t) =
∑
i

Ni(r, s, t)wi + (αt(r + s) + i)(1− t)(1 + t)

The C4,C5,C6 equations become

0 = C4 =
2

hz
wt4 −

2

hx
2αr −

2

hy
2αs

0 = C5 =
2

hx
ur4 −

2

hy
2αs −

2

hz
2αt

0 = C6 =
2

hy
vs4 −

2

hx
2αr −

2

hz
2αt

and we have 3 equations and 3 unknowns: 2hz/hx 2hz/hy 0
0 2hx/hy 2hx/hz

2hy/hx 0 2hy/hz

 ·
 αr

αs
αt

 =

 wt4
ur4
vs4


multiply last line by hz/hy: 2hz/hx 2hz/hy 0

0 2hx/hy 2hx/hz
hz/hy · 2hy/hx 0 hz/hy · 2hy/hz

 ·
 αr

αs
αt

 =

 wt4
ur4

hz/hy · vs4
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 2hz/hx 2hz/hy 0
0 2hx/hy 2hx/hz

2hz/hx 0 2

 ·
 αr

αs
αt

 =

 wt4
ur4

hz/hy · vs4


subtract line 3 from line 1 and put in in line 3: 2hz/hx 2hz/hy 0

0 2hx/hy 2hx/hz
0 −2hz/hy 2

 ·
 αr

αs
αt

 =

 wt4
ur4

hz/hy · vs4 − wt4


now multiply 3rd line by hx/hz 2hz/hx 2hz/hy 0

0 2hx/hy 2hx/hz
0 hx/hz · −2hz/hy hx/hz2

 ·
 αr

αs
αt

 =

 wt4
ur4

hx/hz(hz/hy · vs4 − wt4)


 2hz/hx 2hz/hy 0

0 2hx/hy 2hx/hz
0 −2hx/hy 2hx/hz

 ·
 αr

αs
αt

 =

 wt4
ur4

hx/hy · vs4 − hx/hzwt4


Add line 2 to line 3: 2hz/hx 2hz/hy 0

0 2hx/hy 2hx/hz
0 0 4hx/hz

 ·
 αr

αs
αt

 =

 wt4
ur4

ur4 + hx/hy · vs4 − hx/hzwt4


From the third line we obtain:

αt =
1

4

hz
hx

(
ur4 +

hx
hy
vs4 −

hx
hz
wt4

)
=

1

4

(
hz
hx
ur4 +

hz
hy
vs4 − wt4

)
Then

2
hx
hy
αs + 2

hx
hz
αt = ur4

αs =
hy
hx

(
1

2
ur4 −

hx
hz
αt

)
=

1

2

hy
hx
ur4 −

hy
hz
αt

=
1

2

hy
hx
ur4 −

hy
hz

1

4

(
hz
hx
ur4 +

hz
hy
vs4 − wt4

)
=

1

2

hy
hx
ur4 −

1

4

(
hy
hx
ur4 + vs4 −

hy
hz
wt4

)
=

1

4

hy
hx
ur4 −

1

4
vs4 +

1

4

hy
hz
wt4

=
1

4

(
hy
hx
ur4 − vs4 +

hy
hz
wt4

)
and finally:

2
hz
hx
αr + 2

hz
hy
αs = wt4
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αr =
hx
hz

(
1

2
wt4 −

hz
hy
αs

)
=

1

2

hx
hz
wt4 −

hx
hy
αs

=
1

2

hx
hz
wt4 −

hx
hy

(
1

4

hy
hx
ur4 −

1

4
vs4 +

1

4

hy
hz
wt4

)
=

1

2

hx
hz
wt4 −

(
1

4
ur4 −

1

4

hx
hy
vs4 +

1

4

hx
hz
wt4

)
= −1

4
ur4 +

1

4

hx
hy
vs4 +

1

4

hx
hz
wt4

=
1

4

(
−ur4 +

hx
hy
vs4 +

hx
hz
wt4

)

βr =
1

2J̃xx
(J̃yyvs2 + J̃zzwt2)

=
hx
4

(
2

hy
vs2 +

2

hz
wt2

)
=

1

2

(
hx
hy
vs2 +

hx
hz
wt2

)
βs =

1

2J̃yy
(J̃xxur2 + J̃zzwt3)

=
hy
4

(
2

hx
ur2 +

2

hz
wt3

)
=

1

2

(
hy
hx
ur2 +

hy
hz
wt3

)
βt =

1

2J̃zz
(J̃xxur3 + J̃yyvs3)

=
hz
4

(
2

hx
ur3 +

2

hy
vs3

)
=

1

2

(
hz
hx
ur3 +

hz
hy
vs3

)
To recap,
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uh(r, s, t) =
∑
i

Ni(r, s, t)ui + (αr(s+ t) + βr)(1− r)(1 + r)

vh(r, s, t) =
∑
i

Ni(r, s, t)vi + (αs(r + t) + βs)(1− s)(1 + s)

wh(r, s, t) =
∑
i

Ni(r, s, t)wi + (αt(r + s) + βt)(1− t)(1 + t)

αr =
1

4

(
−ur4 +

hx
hy
vs4 +

hx
hz
wt4

)
αs =

1

4

(
hy
hx
ur4 − vs4 +

hy
hz
wt4

)
αt =

1

4

(
hz
hx
ur4 +

hz
hy
vs4 − wt4

)
βr =

1

2

(
hx
hy
vs2 +

hx
hz
wt2

)
βs =

1

2

(
hy
hx
ur2 +

hy
hz
wt3

)
βt =

1

2

(
hz
hx
ur3 +

hz
hy
vs3

)

9.31.7 Comparison with Wang et al. (2015) for 3D

The following is taken from the supplementary material of Wang et al. (2015):
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Taken from the supplementary material of Wang et al. (2015).

In my opinion, it is quite unbelievable that such a document was accepted for publication (even as
supplementary material). There is not much justification for why their equation 7 only contains x2
and not also x3, same for the other two equations. Rather surprising is also the fact that although
equations 3,6,7,8,9 do not contain any ∆x{1,2,3}term then equations 11,12,13 do feature them. Nev-
ertheless, we must make sense of this mess.

Since the authors state that they “transform the rectangular cells into unit squares” I do away
with ∆x1 = ∆x2 = ∆x3 = 1 altogether. Also, U1, U2, U3 have become U, V,W .
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The polynomial representation of U, V,W on the element including the correction factors is

U = (1− x1)(1− x2)(1− x3)Ua + (1− x1)(1− x2)x3U e

+ x1(1− x2)(1− x3)U b + x1(1− x2)x3U f

+ (1− x1)x2(1− x3)U c + (1− x1)x2x3U g

+ x1x2(1− x3)Ud + x1x2x3U
h

+ x1(1− x1)(C10 + x2C12) (9.125)

V = (1− x1)(1− x2)(1− x3)V a + (1− x1)(1− x2)x3V e

+ x1(1− x2)(1− x3)V b + x1(1− x2)x3V f

+ (1− x1)x2(1− x3)V c + (1− x1)x2x3V g

+ x1x2(1− x3)V d + x1x2x3V
h

+ x2(1− x2)(C20 + x3C23) (9.126)

W = (1− x1)(1− x2)(1− x3)W a + (1− x1)(1− x2)x3W e

+ x1(1− x2)(1− x3)W b + x1(1− x2)x3W f

+ (1− x1)x2(1− x3)W c + (1− x1)x2x3W g

+ x1x2(1− x3)W d + x1x2x3W
h

+ x3(1− x3)(C30 + x1C31) (9.127)

Then

∂U

∂x1
= −(1− x2)(1− x3)Ua − (1− x2)x3U e + (1− x2)(1− x3)U b + (1− x2)x3U f

+ −x2(1− x3)U c − x2x3U g + x2(1− x3)Ud + x2x3U
h

+ (1− 2x1)(C10 + x2C12) (9.128)

∂V

∂x2
= −(1− x1)(1− x3)V a − (1− x1)x3V e − x1(1− x3)V b − x1x3V f

+ (1− x1)(1− x3)V c + (1− x1)x3V g + x1(1− x3)V d + x1x3V
h

+ (1− 2x2)(C20 + x3C23) (9.129)

∂W

∂x3
= −(1− x1)(1− x2)W a + (1− x1)(1− x2)W e − x1(1− x2)W b + x1(1− x2)W f

− (1− x1)x2W c + (1− x1)x2W g − x1x2W d + x1x2W
h

+ (1− 2x3)(C30 + x1C31) (9.130)

So the velocity divergence can be written

∂U

∂x1
+
∂V

∂x2
+
∂W

∂x3
= A+Bx1 + Cx2 +Dx3 + Ex1x2 + Fx2x3 +Gx3x1 (9.131)

with

A = −Ua + U b + C10 − V a + V c + C20 −W a +W e + C30 (9.132)

B = −2C10 + V a − V b − V c + V d +W a −W e −W b +W f + C31 (9.133)

C = Ua − U b − U c + Ud + C12 − 2C20 +W a −W e −W c +W g (9.134)

D = Ua − U e − U b + U f + V a − V e − V c + V g + C23 − 2C30 (9.135)

E = −2C12 −W a +W e +W b −W f +W c −W g −W d +W h (9.136)

F = −Ua + U e + U b − U f + U c − U g − Ud + Uh − 2C23 (9.137)

G = −V a + V e + V b − V f + V c − V g − V d + V h − 2C31 (9.138)
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A term by term comparison of these equations shows that these are identical to the 7 equations
in the supplementary material between Eq. 13 and Eq. 14 (why are these not numbered in the
supplementary material?).

Ideally we wish to have all 7 coefficients A to G equal to zero. This leaves us with 7 equations
involving 6 unknowns. In other words the system is over constrained and cannot be solved. However
the authors seem to interprete this in the exact opposite way by offering yet one more constraint
(Eq. 14) which a) is irrelevant b) is not justified (it is indeed related to Eq. 10 but only by taking all
Cij coefficients equal to zero and expressed for x1 = x2 = x3 = 1/2). Funny enough, that constraint
of Eq. 14 is not used further...

From E = 0, F = 0, G = 0 we get:

C12 =
1

2
(−W a +W e +W b −W f +W c −W g −W d +W h) (9.139)

C23 =
1

2
(−Ua + U e + U b − U f + U c − U g − Ud + Uh) (9.140)

C31 =
1

2
(−V a + V e + V b − V f + V c − V g − V d + V h) (9.141)

and from B = 0, C = 0, D = 0 we get

C10 =
1

2
(V a − V b − V c + V d +W a −W e −W b +W f + C31) (9.142)

C20 =
1

2
(Ua − U b − U c + Ud + C12 +W a −W e −W c +W g) (9.143)

C30 =
1

2
(Ua − U e − U b + U f + V a − V e − V c + V g + C23) (9.144)

These 6 expressions are identical to the ones in the paper. However, let us now turn to A:

A = −Ua + U b + C10 − V a + V c + C20 −W a +W e + C30 (9.145)

= −Ua + U b +
1

2
(V a − V b − V c + V d +W a −W e −W b +W f + C31) (9.146)

−V a + V c +
1

2
(Ua − U b − U c + Ud + C12 +W a −W e −W c +W g) (9.147)

−W a +W e +
1

2
(Ua − U e − U b + U f + V a − V e − V c + V g + C23) (9.148)

= −Ua + U b +
1

2
(V a − V b − V c + V d +W a −W e −W b +W f ) (9.149)

+
1

2

1

2
(−V a + V e + V b − V f + V c − V g − V d + V h) (9.150)

−V a + V c +
1

2
(Ua − U b − U c + Ud +W a −W e −W c +W g) (9.151)

+
1

2

1

2
(−W a +W e +W b −W f +W c −W g −W d +W h) (9.152)

−W a +W e +
1

2
(Ua − U e − U b + U f + V a − V e − V c + V g+) (9.153)

+
1

2

1

2
(−Ua + U e + U b − U f + U c − U g − Ud + Uh) (9.154)

̸= 0 (9.155)

(easy to prove: for example W h appears only once)
Once again, we find that the divergence is not identically zero in the element, thereby refuting

the statement “Adding these corrections does not improve the order of accuracy of the interpolation
(it remains a second-order accurate scheme), but they ensure a divergence-free velocity field over the
cell” on page 3 of the article. Their entire paper is based on a false premise.
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9.31.8 In 2D with P1 basis functions - what about triangles?

The reference linear element is:

s

|

3

|\

| \

| \

1-----2 ->r

The basis functions are

N1(r, s) = 1− r − s
N2(r, s) = r

N3(r, s) = s (9.156)

and the velocity vector is ν⃗ = (u, v). Its representation inside the element is

uh(r, s) =
∑
i

Ni(r, s)ui

vh(r, s) =
∑
i

Ni(r, s)vi

and the velocity divergence in the element is given by

(∇⃗ · ν⃗)h = ∂uh

∂r
+
∂vh

∂s
= (−u1 + u2) + (−v1 + v3)

which is evidently not zero everywhere in the element. There is however a fundamental difference
with regards to quadrilaterals for which the same quantity still contains r and s terms which opens
the door to a correction in order to cancel them. In this case, not so much: this term is exactly the
one we could not get rid off for quads!

The following consists of a few misguided attempts at designing a CVI scheme for triangles despite
the above observation.

approach 1 As we have seen before the CVI approach consists in adding polynomial terms to the
expressions of uh and vh. In what follows I assume that the additional terms are of the form (I here
use only two basis functions per line, similarly to the quadrilateral counterpart):

uh(r, s) =
∑
i

Ni(r, s)ui + f(r, s)r(1− r − s) (9.157)

vh(r, s) =
∑
i

Ni(r, s)vi + g(r, s)s(1− r − s) (9.158)

Note that we thereby ensure that u is continuous across edges, and so is v.
The velocity divergence requirement is then

0 = ∇⃗ · ν⃗h = −u1 + u2 + ∂rfr(1− r − s) + f(r, s)(1− 2r − s) (9.159)

−v1 + v3 + ∂sgs(1− r − s) + g(r, s)(1− 2s− r) (9.160)
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� We start simple and postulate f(r, s) = a, g(r, s) = b, so then

0 = ∇⃗ · ν⃗h = −u1 + u2 + a(1− 2r − s)− v1 + v3 + b(1− 2s− r) (9.161)

= (−u1 + u2 − v1 + v3 + a+ b) + (−2a− b)r + (−a− 2b)s (9.162)

It is impossible to find a and b such that this expression is zero everywhere inside the element.

� We then turn to linear functions and postulate then f(r, s) = a+ br+ cs, g(r, s) = d+ er+ fs,
so

0 = ∇⃗ · ν⃗h = −u1 + u2 + ∂rfr(1− r − s) + f(r, s)(1− 2r − s)
−v1 + v3 + ∂sgs(1− r − s) + g(r, s)(1− 2s− r)

= −u1 + u2 + br(1− r − s) + (a+ br + cs)(1− 2r − s)
−v1 + v3 + fs(1− r − s) + (d+ er + fs)(1− 2s− r)

= −u1 + u2 − v1 + v3 + a+ d

+(b− 2a+ b− d+ e)r

+(f − a+ c− 2d+ f)s

+(−b− 2b− e)r2

+(−f − c− 2f)s2

+(−b− f − b− 2c− 2e− f)rs
= −u1 + u2 − v1 + v3 + a+ d

+(2b− 2a− d+ e)r

+(2f − a+ c− 2d)s

+(−3b− e)r2

+(−3f − c)s2

+(−2b− 2f − 2c− 2e)rs

Immediately e = −3b and c = −3f . Inserting these in the last line yields −2b− 2f − 2c− 2e =
−2b− 2f + 6f + 6b = 4b+ 4f = 0, i.e. b = −f . Inserting these in the remaining lines:

a+ d = u1 − u2 + v1 − v3
2b− 2a− d+ (−3b) = 0

2(−b)− a+ (3b)− 2d = 0

or,

a+ d = u1 − u2 + v1 − v3
−2a− b− d = 0

−a+ b− 2d = 0

or,  1 0 1
−2 −1 −1
−1 1 −2

 ·
 a

b
d

 =

 u1 − u2 + v1 − v3
0
0


Determinant= 3 -2 -1 = 0. Matrix is singular ... !!

� We now try bilinear functions and postulate f(r, s) = a+br+cs+hrs, g(r, s) = d+er+fs+krs,
so then
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0 = ∇⃗ · ν⃗h = −u1 + u2 + ∂rfr(1− r − s) + f(r, s)(1− 2r − s)
−v1 + v3 + ∂sgs(1− r − s) + g(r, s)(1− 2s− r)

= −u1 + u2 + (b+ hs)r(1− r − s) + (a+ br + cs+ hrs)(1− 2r − s)
−v1 + v3 + (f + kr)s(1− r − s) + (d+ er + fs+ krs)(1− 2s− r)

= −u1 + u2 − v1 + v3 + a+ d

+(b− 2a+ b− d+ e)r

+(f − a+ c− 2d+ f)s

+(−b− 2b− e)r2

+(−f − c− 2f)s2

+(−b− f − b− 2c− 2e− f + 2h+ 2k)rs

+(−h− k − 2k − h)rs2

+(−h− k − 2h− k)r2s
= −u1 + u2 − v1 + v3 + a+ d

+(b− 2a+ b− d+ e)r

+(f − a+ c− 2d+ f)s

+(−3b− e)r2

+(−3f − c)s2

+(−2b− 2f − 2c− 2e+ 2h+ 2k)rs

+(−2h− 3k)rs2

+(−3h− 2k)r2s (9.163)

Immediately we see that the last 2 lines yield k = h = 0 which are the coefficients in front of
the new terms (with regards to linear f and g). This is a dead end too.

I could keep adding high order terms but I suspect it is a doomed effort and even if it would
work, the cost would be prohibitive.

approach 2 This time I include all three basis functions r , s and 1− r − s, not just two. Then

uh(r, s) =
∑
i

Ni(r, s)ui + f(r, s)rs(1− r − s) (9.164)

vh(r, s) =
∑
i

Ni(r, s)vi + g(r, s)rs(1− r − s) (9.165)

0 = ∇⃗ · ν⃗h = −u1 + u2 + ∂rf rs(1− r − s) + f(r, s)s(1− 2r − s) (9.166)

−v1 + v3 + ∂sg rs(1− r − s) + g(r, s)r(1− 2s− r) (9.167)

We postulate f(r, s) = a, g(r, s) = b, so then

0 = ∇⃗ · ν⃗h = −u1 + u2 + as(1− 2r − s)− v1 + v3 + br(1− 2s− r) (9.168)

= (−u1 + u2 − v1 + v3) + ... (9.169)

This is also a dead end and this will not change with high order terms in f and g. Because of the
presence of all three basis functions in the additional terms we see that no coefficient will enter the
parenthesis above and therefore it is doomed.
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approach 3 We start from  ∂u
∂x

∂u
∂y

 = J̃ ·

 ∂u
∂r

∂u
∂s


where J̃ in the inverse of the Jacobian matrix. We then postulate again

u(r, s) =
∑
i

Ni(r, s)ui + (ax + bxr + cxs+ dxrs+ exr
2 + fxs

2)

v(r, s) =
∑
i

Ni(r, s)vi + (ay + byr + cys+ dyrs+ eyr
2 + fys

2)

In this case,

∂u

∂r
=

∑
i

∂Ni
∂r

ui + (bx + dxs+ 2exr) (9.170)

∂u

∂s
=

∑
i

∂Ni
∂s

ui + (cx + dxr + 2fxs) (9.171)

∂v

∂r
=

∑
i

∂Ni
∂s

vi + (by + dys+ 2eyr) (9.172)

∂v

∂s
=

∑
i

∂Ni
∂s

vi + (cy + dyr + 2fys) (9.173)

We have

∂u

∂x
= J̃xx

∂u

∂r
+ J̃xy

∂u

∂s

= J̃xx

(∑
i

∂Ni
∂r

ui + (bx + dxs+ 2exr)

)
+ J̃xy

(∑
i

∂Ni
∂s

ui + (cx + dxr + 2fxs)

)
= J̃xx (−u12 + bx + dxs+ 2exr)

+ J̃xy (−u13 + cx + dxr + 2fxs)

∂v

∂y
= J̃yx

∂v

∂r
+ J̃yy

∂v

∂s

= J̃yx

(∑
i

∂Ni
∂r

vi + (by + dys+ 2eyr)

)
+ J̃yy

(∑
i

∂Ni
∂s

vi + (cy + dyr + 2fys)

)
= J̃yx (−u12 + by + dys+ 2eyr)

+ J̃yy (−v13 + cy + dyr + 2fys)

where uij = (ui − uj) and vij = (vi − vj).
Then

∂uh

∂x
+
∂vh

∂y
= J̃xx (−u12 + bx + dxs+ 2exr) + J̃xy (−u13 + cx + dxr + 2fxs)

+ J̃yx (−u12 + by + dys+ 2eyr) + J̃yy (−v13 + cy + dyr + 2fys)

We see that yet again velocity components never multiply r nor s so that no space dependent
correction can be designed.
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9.31.9 In 2D with Q2 basis functions - Naive approach

03===06===02

|| || ||

|| || ||

07===08===05

|| || ||

|| || ||

00===04===01

The basis functions are given by:

N0(r, s) =
1

2
r(r − 1)

1

2
s(s− 1)

N1(r, s) =
1

2
r(r + 1)

1

2
s(s− 1)

N2(r, s) =
1

2
r(r + 1)

1

2
s(s+ 1)

N3(r, s) =
1

2
r(r − 1)

1

2
s(s+ 1)

N4(r, s) =
1

2
(1− r2)s(s− 1)

N5(r, s) =
1

2
r(r + 1)(1− s2)

N6(r, s) =
1

2
(1− r2)s(s+ 1)

N7(r, s) =
1

2
r(r − 1)(1− s2)

N8(r, s) = (1− r2)(1− s2)
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and their partial derivatives with respect to the reduced coordinates by

∂N0

∂r
=

1

2
(2r − 1)

1

2
s(s− 1)

∂N1

∂r
=

1

2
(2r + 1)

1

2
s(s− 1)

∂N2

∂r
=

1

2
(2r + 1)

1

2
s(s+ 1)

∂N3

∂r
=

1

2
(2r − 1)

1

2
s(s+ 1)

∂N4

∂r
= (−2r)1

2
s(s− 1)

∂N5

∂r
=

1

2
(2r + 1)(1− s2)

∂N6

∂r
= (−2r)1

2
s(s+ 1)

∂N7

∂r
=

1

2
(2r − 1)(1− s2)

∂N8

∂r
= (−2r)(1− s2)

∂N0

∂s
=

1

2
r(r − 1)

1

2
(2s− 1)

∂N1

∂s
=

1

2
r(r + 1)

1

2
(2s− 1)

∂N2

∂s
=

1

2
r(r + 1)

1

2
(2s+ 1)

∂N3

∂s
=

1

2
r(r − 1)

1

2
(2s+ 1)

∂N4

∂s
= (1− r2)1

2
(2s− 1)

∂N5

∂s
=

1

2
r(r + 1)(−2s)

∂N6

∂s
= (1− r2)1

2
(2s+ 1)

∂N7

∂s
=

1

2
r(r − 1)(−2s)

∂N8

∂s
= (1− r2)(−2s)
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We then have

∂uh

∂r
=

∑
i

∂Ni
∂r

ui

=

[
1

2
(2r − 1)

1

2
s(s− 1)

]
u0 +

[
1

2
(2r + 1)

1

2
s(s− 1)

]
u1 +

[
1

2
(2r + 1)

1

2
s(s+ 1)

]
u2 +

[
1

2
(2r − 1)

1

2
s(s+ 1)

]
u3

+

[
(−2r)1

2
s(s− 1)

]
u4 +

[
1

2
(2r + 1)(1− s2)

]
u5 +

[
(−2r)1

2
s(s+ 1)

]
u6 +

[
1

2
(2r − 1)(1− s2)

]
u7

+
[
(−2r)(1− s2)

]
u8

∂vh

∂s
=

∑
i

∂Ni
∂s

vi

=

[
1

2
r(r − 1)

1

2
(2s− 1)

]
v0 +

[
1

2
r(r + 1)

1

2
(2s− 1)

]
v1 +

[
1

2
r(r + 1)

1

2
(2s+ 1)

]
v2 +

[
1

2
r(r − 1)

1

2
(2s+ 1)

]
v3

+

[
(1− r2)1

2
(2s− 1)

]
v4 +

[
1

2
r(r + 1)(−2s)

]
v5 +

[
(1− r2)1

2
(2s+ 1)

]
v6 +

[
1

2
r(r − 1)(−2s)

]
v7

+
(
1− r2)(−2s)

]
v8

or, multiplying each side by 4:

4
∂uh

∂r
= [(2r − 1)s(s− 1)]u0 + [(2r + 1)s(s− 1)]u1 + [(2r + 1)s(s+ 1)]u2 + [(2r − 1)s(s+ 1)]u3

+ [−4rs(s− 1)]u4 +
[
2(2r + 1)(1− s2)

]
u5 + [−4rs(s+ 1)]u6 +

[
2(2r − 1)(1− s2)

]
u7

+
[
−8r(1− s2)

]
u8

=
[
(2r − 1)(s2 − s)

]
u0 +

[
(2r + 1)(s2 − s)

]
u1 +

[
(2r + 1)(s2 + s)

]
u2 +

[
(2r − 1)(s2 + s)

]
u3

+ [−4rs(s− 1)]u4 +
[
2(2r + 1)(1− s2)

]
u5 + [−4rs(s+ 1)]u6 +

[
2(2r − 1)(1− s2)

]
u7

+
[
−8r(1− s2)

]
u8

4
∂vh

∂s
= [r(r − 1)(2s− 1)] v0 + [r(r + 1)(2s− 1)] v1 + [r(r + 1)(2s+ 1)] v2 + [r(r − 1)(2s+ 1)] v3

+
[
2(1− r2)(2s− 1)

]
v4 + [−4rs(r + 1)] v5 +

[
2(1− r2)(2s+ 1)

]
v6 + [−4rs(r − 1)] v7

+
[
−8s(1− r2)

]
v8

=
[
(r2 − r)(2s− 1)

]
v0 +

[
(r2 + r)(2s− 1)

]
v1 +

[
(r2 + r)(2s+ 1)

]
v2 +

[
(r2 − r)(2s+ 1)

]
v3

+
[
2(1− r2)(2s− 1)

]
v4 + [−4rs(r + 1)] v5 +

[
2(1− r2)(2s+ 1)

]
v6 + [−4rs(r − 1)] v7

+
[
−8s(1− r2)

]
v8

We then have

4(∇⃗ · ν⃗)h = 4
∂uh

∂r
+ 4

∂vh

∂s
= (2u5 − 2u7 − 2v4 + 2v6) 1

+ (4u5 + 4u7 − 8u8 + v0 − v1 + v2 − v3) r
+ (u0 − u1 + u2 − u3 + 4v4 + 4v6 − 8v8) s

+ (−2u0 − 2u1 + 2u2 + 2u3 + 4u4 − 4u6 − 2v0 + 2v1 + 2v2 − 2v3 − 4v5 + 4v7) rs

+ (−v0 − v1 + v2 + v3 + 2v4 − 2v6) r
2

+ (−u0 + u1 + u2 − u3 − 2u5 + 2u7) s
2

+ (2v0 + 2v1 + 2v2 + 2v3 − 4v4 − 4v5 − 4v6 − 4v7 + 8v8) r
2s

+ (2u0 + 2u1 + 2u2 + 2u3 − 4u4 − 4u5 − 4u6 − 4u7 + 8u8) rs
2
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i.e.

(∇⃗ · ν⃗)h = C0 + C1r + C2s+ C3rs+ C4r
2 + C5s

2 + C6r
2s+ C7rs

2 (9.174)

with

C0 =
1

4
(2u5 − 2u7 − 2v4 + 2v6)

C1 =
1

4
(4u5 + 4u7 − 8u8 + v0 − v1 + v2 − v3)

C2 =
1

4
(u0 − u1 + u2 − u3 + 4v4 + 4v6 − 8v8)

C3 =
1

4
(−2u0 − 2u1 + 2u2 + 2u3 + 4u4 − 4u6 − 2v0 + 2v1 + 2v2 − 2v3 − 4v5 + 4v7)

C4 =
1

4
(−v0 − v1 + v2 + v3 + 2v4 − 2v6)

C5 =
1

4
(−u0 + u1 + u2 − u3 − 2u5 + 2u7)

C6 =
1

4
(2v0 + 2v1 + 2v2 + 2v3 − 4v4 − 4v5 − 4v6 − 4v7 + 8v8)

C7 =
1

4
(2u0 + 2u1 + 2u2 + 2u3 − 4u4 − 4u5 − 4u6 − 4u7 + 8u8)

Looking at C0, we see that it is effectively (u5−u7)/2+(v6−v4)/2 which is the divergence expressed
in the middle of the element using only the mid-edges velocity components (as in a staggered FD
grid).

Looking now at C4 we can write it

C4 =
1

4
(−(v0 − 2v4 + v1) + (v3 − 2v6 + v2))

Since the reference element is of size 2 × 2, then the distance between nodes 0 and 4, and 4 and 1
respectively is h = 1. We then recognise

v0 − 2v4 + v1
h2

∼ v′′4

and likewise
v3 − 2v6 + v2

h2
∼ v′′6

Can we recognize more FD stencils?
The divergence inside an element is a polynomial, and as before we then need to design a CVI so

that we can get rid of the terms containing the C1−7 coefficients (while keeping C0 as low as possible,
although we don’t have much control over this).

Because we need that the correction term are zero on the edges (r = ±1 and s = ±1), we
postulate

δu(r, s) = (1− r2)f(r, s)
δv(r, s) = (1− s2)g(r, s)

with

f(r, s) =
m∑
i=0

n∑
j=0

aijr
isj = a00 + a10r + a01s+ a11rs+ a20r

2 + a02s
2 + a12rs

2 + a21r
2s+ a22r

2s2 + . . .

g(r, s) =

p∑
k=0

q∑
l=0

bklr
ksl = b00 + b10r + b01s+ b11rs+ b20r

2 + b02s
2 + b12rs

2 + b21r
2s+ b22r

2s2 + . . .
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Then the partial derivatives of the velocity corrections are given by:

∂

∂r
δu(r, s) = −2rf(r, s) + (1− r2)∂f

∂r
= −2r(a00 + a10r + a01s+ a11rs+ a20r

2 + a02s
2 + a12rs

2 + a21r
2s+ a22r

2s2 + . . . )

+ (1− r2)(a10 + a11s+ 2a20r + a12s
2 + 2a21rs+ 2a22rs

2 + . . . )

∂

∂s
δv(r, s) = −2sg(r, s) + (1− s2)∂g

∂s
= −2s(b00 + b10r + b01s+ b11rs+ b20r

2 + b02s
2 + b12rs

2 + b21r
2s+ b22r

2s2 + . . . )

+ (1− s2)(b01 + b11r + 2b02s+ 2b12rs+ b21r
2 + 2b22r

2s+ . . . )

We immediately see that a12, a22, a20, a21, b02, b12, b21 and b22 must be zero, as well as all higher
order terms because these rαsβ are not present in (9.174). Then

f(r, s) = a00 + a10r + a01s+ a11rs+ a02s
2

g(r, s) = b00 + b10r + b01s+ b11rs+ b20r
2

δu(r, s) = (1− r2)(a00 + a10r + a01s+ a11rs+ a02s
2)

δv(r, s) = (1− s2)(b00 + b10r + b01s+ b11rs+ b20r
2)

∂

∂r
δu(r, s) = −2r(a00 + a10r + a01s+ a11rs+ a02s

2) + (1− r2)(a10 + a11s)

∂

∂s
δv(r, s) = −2s(b00 + b10r + b01s+ b11rs+ b20r

2) + (1− s2)(b01 + b11r)

And we have 10 aij and bkl coefficients to determine. Let us write the corrected velocity divergence:

(∇⃗ · ν⃗)hCV I = (∇⃗ · ν⃗)h + ∂

∂r
δu(r, s) +

∂

∂s
δv(r, s)

= C0 + C1r + C2s+ C3rs+ C4r
2 + C5s

2 + C6r
2s+ C7rs

2

−2r(a00 + a10r + a01s+ a11rs+ a02s
2) + (1− r2)(a10 + a11s)

−2s(b00 + b10r + b01s+ b11rs+ b20r
2) + (1− s2)(b01 + b11r)

If we want to cancel all first and second-order polynomial terms we need to have

C0 + a10 + b01 = 0

C1 − 2a00 + b11 = 0

C2 + a11 − 2b00 = 0

C3 − 2a01 − 2b10 = 0

C4 − 3a10 = 0 (9.175)

C5 − 3b01 = 0 (9.176)

C6 − 3a11 − 2b20 = 0

C7 − 2a02 − 3b11 = 0

In total there are 10 coefficients and 8 only equations. Interestingly, we see that this time around we
also do not really stand a chance to actually have C0 + a10 + b01 = 0 because a10 and b01 are actually
given by (9.175) and (9.176):

a10 = C4/3

b01 = C5/3
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I am then left with

C1 − 2a00 + b11 = 0 (9.177)

C2 + a11 − 2b00 = 0 (9.178)

C3 − 2a01 − 2b10 = 0 (9.179)

C6 − 3a11 − 2b20 = 0 (9.180)

C7 − 2a02 − 3b11 = 0 (9.181)

I now have 8 unknowns and 5 equations. Since the system is overconstrained, we could further zero
b20 and a02 (thereby removing quadratic terms altogether from f and g). Then (9.180) and (9.181)
give

a11 = C6/3

b11 = C7/3

and then (9.177) and (9.178) yield

a00 =
1

2
(C1 + b11) =

1

2
(C1 + C7/3)

b00 =
1

2
(C2 + a11) =

1

2
(C2 + C6/3)

Finally, we are left with (9.179) and we assume for simplicity a01 = b10 so

a01 = b10 = C3/4

It must be noted that this is only one possible approach.
In the end, chosing the aij’s and bkl’s coefficients as obtained above will yield

(∇⃗ · ν⃗)hCV I = C0 + a10 + b01

= C0 +
C4

3
+
C5

3

=
1

4
(2u5 − 2u7 − 2v4 + 2v6) +

1

3

1

4
(−v0 − v1 + v2 + v3 + 2v4 − 2v6) +

1

3

1

4
(−u0 + u1 + u2 − u3 − 2u5 + 2u7)

=
1

12
(6u5 − 6u7 − 6v4 + 6v6 − v0 − v1 + v2 + v3 + 2v4 − 2v6 − u0 + u1 + u2 − u3 − 2u5 + 2u7)

=
1

12
(−(u0 + u3 + u1 + u2 − u3 + 4u5 − 4u7 − v0 − v1 + v2 + v3 − 4v4 + 4v6)

Finish? What can we say there? what do we recognise?
Finally:

δu(r, s) = (1− r2)(a00 + a10r + a01s+ a11rs+ a02s
2)

= (1− r2)
(
1

2
(C1 +

C7

3
) +

C4

3
r +

C3

4
s+

C6

3
rs

)
=

1

12
(1− r2)(6C1 + 2C7 + 4C4r + 3C3s+ 4C6rs)

δv(r, s) = (1− s2)(b00 + b10r + b01s+ b11rs)

= (1− s2)
(
1

2
(C2 +

C6

3
) +

C3

4
r +

C5

3
s+

C7

3
rs

)
=

1

12
(1− s2) (6C2 + 2C6 + 3C3r + 4C5s+ 4C7rs)
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Let us verify one more time:

12
∂

∂r
δu(r, s) = (−2r)(6C1 + 2C7 + 4C4r + 3C3s+ 4C6rs) + (1− r2)(4C4 + 4C6s)

12
∂

∂s
δv(r, s) = (−2s) (6C2 + 2C6 + 3C3r + 4C5s+ 4C7rs) + (1− s2) (4C5 + 4C7r)

so that

∂

∂r
δu(r, s) +

∂

∂s
δv(r, s) =

1

12

(
−12C1r − 4C7r − 8C4r

2 − 6C3rs− 8C6r
2s+ 4C4 + 4C6s− 4C4r

2 − 4C6r
2s
)

1

12

(
−12C2s− 4C6s− 6C3rs− 8C5s

2 − 8C7rs
2 + 4C5 + 4C7r − 4C5s

2 − 4C7rs
2
)

=
1

12

(
4C4 + 4C5 − 12C1r − 12C2s− 12C3rs− 12C4r

2 − 12C5s
2 − 12C6r

2s− 12C7rs
2
)

=
1

3
C4 +

1

3
C5 − C1r − C2s− C3rs− C4r

2 − C5s
2 − C6r

2s− C7rs
2

it adds up!
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Recap:

δu(r, s) =
1

12
(1− r2)(6C1 + 2C7 + 4C4r + 3C3s+ 4C6rs)

δv(r, s) =
1

12
(1− s2) (6C2 + 2C6 + 3C3r + 4C5s+ 4C7rs)

C0 =
1

4
(2u5 − 2u7 − 2v4 + 2v6)

C1 =
1

4
(4u5 + 4u7 − 8u8 + v0 − v1 + v2 − v3)

C2 =
1

4
(u0 − u1 + u2 − u3 + 4v4 + 4v6 − 8v8)

C3 =
1

4
(−2u0 − 2u1 + 2u2 + 2u3 + 4u4 − 4u6 − 2v0 + 2v1 + 2v2 − 2v3 − 4v5 + 4v7)

C4 =
1

4
(−v0 − v1 + v2 + v3 + 2v4 − 2v6)

C5 =
1

4
(−u0 + u1 + u2 − u3 − 2u5 + 2u7)

C6 =
1

4
(2v0 + 2v1 + 2v2 + 2v3 − 4v4 − 4v5 − 4v6 − 4v7 + 8v8)

C7 =
1

4
(2u0 + 2u1 + 2u2 + 2u3 − 4u4 − 4u5 − 4u6 − 4u7 + 8u8)

or

δu(r, s) = (1− r2)(a00 + a10r + a01s+ a11rs)

δv(r, s) = (1− s2)(b00 + b10r + b01s+ b11rs)

a00 =
1

2
(C1 + C7/3)

a01 = C3/4

a10 = C4/3

a11 = C6/3

b00 =
1

2
(C2 + C6/3)

b01 = C5/3

b10 = C3/4

b11 = C7/3

654



9.32 Computing field derivatives -WIP

One often needs the strain rate tensor in geodynamics for two main reasons: 1) it is a quantity which
’helps’ with interpreting results 2) it is needed in the non-linear rheology, typically power-law.

Let us assume the scalar nodal field f (e.g., temperature, components of velocity, ...) has been
obtained by solving a FE problem. Anywhere within an element the given finite element solution

fh(x, y) =
∑
k

Nk(x, y)fk

We wish to compute the field g⃗h = ∇⃗fh on the nodes with the highest accuracy.
For any point inside an element, this problem is trivial and we have

g⃗h(x, y) =
m∑
k=1

∇⃗Nk(x, y)fk (9.182)

This method works adequately everywhere inside the element, but since the basis functions derivatives
are not uniquely defined on the nodes this problem requires careful attention to arrive at the best
result.

Relevant Literature:

� P. Labbé and A. Garon. “A robust implementation of Zienkiewicz and Shu’s local patch recov-
ery method”. In: Communications in Numerical Methods in Engineering 11 (1995), pp. 427–
434. doi: 10.1002/cnm.1640110507

� O.C. Zienkiewicz and J.Z. Zhu. “The superconvergent patch recovery and a posteriori error
estimates. Part 1: the recovery technique”. In: Int. J. Num. Meth. Eng. 33 (1992), pp. 1331–
1364,O.C. Zienkiewicz and J.Z. Zhu. “The superconvergent patch recovery and a posteriori
error estimates. Part 2: error estimates and adaptativity”. In: Int. J. Num. Meth. Eng. 33
(1992), pp. 1365–1382

� P. Ho-Liu, B.H. Hager, and A. Raefsky. “An improved method of Nusselt number calculation”.
In: Geophys. J. R. astr. Soc. 88 (1987), pp. 205–215. doi: 10.1111/j.1365-246X.1987.

tb01375.x

� P.M. Gresho, R.L. Lee, R.L. Sani, M.K. Maslanik, and B.E. Eaton. “The consistent Galerkin
FEM for computing derived boundary quantities in thermal and/or fluid problems”. In: Int.
J. Num. Meth. Fluids 7 (1987), pp. 371–394
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Centroid-to-node method (”method 1”)

In this case the gradient is first computed in the 4-element patch to which node p belongs to as
shown in Fig. (??). The gradient g⃗ is computed at the centroid of each element of the patch and
averaged out to yield g⃗p.

ghp =
1

4

∑
e

(
m∑
k=1

(∇⃗Nkfk)r=rc

)
e

where rc stands for the location of the centroid.
This technique is similar to the one of pressure smoothing showcased in Braun et al. (2008) [136]

and is mentioned on p. 865 of Gresho & Sani [488] (section 4.2.6 ?).
Although very simple to implement, this approach is not without problem since the algorithm

cannot be applied to the nodes on the boundary and an ad-hoc rule muct be adopted for these.

Corner-to-node method (”method 2”)

For each element of the patch the value of g⃗ is computed at node p and the obtained values are then
averaged out. At the time of writing, this is the technique implemented in ASPECT.

ghp =
1

4

∑
e

(
m∑
k=1

(∇⃗Nkfk)r=rp

)
e

Consistent approach using basis functions (”method 3”)

What follows is formulated in 2D Cartesian coordinates for simplicity. Let us start from the function
g which is the gradient of the function f in the x-direction:

g(x, y) =
∂f

∂x
(x, y)

If we left-multiply this equation by a basis function Ni(x, y) and integrate over an element, we arrive
at ∫

Ωe

Ni(x, y) g(x, y) dV =

∫
Ωe

Ni(x, y)
∂f

∂x
(x, y) dV (9.183)

The function g is represented inside an element by

gh(x, y) =
∑
j

Nj(x, y)gj = N⃗ · g⃗

where g⃗ = (g1, g2, . . . gmv) is the vector of nodal values for the element and N⃗ is the vector of basis
functions. Likewise we have:

∂f

∂x
(x, y)

∣∣∣∣h = ∂N⃗

∂x
· f⃗

where f⃗ = (f1, f2, . . . fmv) is the vector of f nodal values for the element. When we write (9.183) for
i = 1, 2, ...mV we arrive at

M · g⃗ = Gx · f⃗

where M is the elemental mass matrix:

M =

∫
Ωe

N⃗T N⃗dV
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and Gx is the gradient matrix

Gx =

∫
Ωe

N⃗T ∂N⃗

∂x
dV

Both matrices are of size mv ×mv. After the assembly process we are now ready to solve the global
system and obtain the derived nodal value at all nodes. This method is particularly interesting
because it can use the existing algorithms already present in any FE which has solved the PDE to
obtain f .

The nodal strain rate components are obtained as follows:

ε̇xx = M−1 ·Gx · U⃗ (9.184)

ε̇yy = M−1 ·Gy · V⃗ (9.185)

ε̇xy =
1

2
M−1 ·

(
Gx · V⃗ +Gy · U⃗

)
(9.186)

where U⃗ is the vector of all nodal u and V⃗ is the vector of all nodal v.
idea: try lumping M?
make link with consistent pressure recov for q1p0
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9.33 Iterative solvers

In what follows, we want to solve the system of linear equations

A · x⃗ = b⃗ (9.187)

for the vector x⃗. We denote the unique solution of this system by x⃗⋆.
Note that in some cases the the known n × n matrix A is symmetric (i.e., AT = A), positive-

definite (i.e. x⃗T ·A · x⃗ > 0 for all non-zero vectors x⃗ in Rn), and real, and b⃗ is known as well (typically
the K matrix).

Relevant Literature: Direct and Iterative Solvers [745]

Stationary iterative methods

Basic examples of stationary iterative methods use a splitting of the matrix A such as

A = D +L+U

where D is only the diagonal part of A, L is the strict lower triangular part of A and U is the strict
upper triangular part of A.

For instance:

A =

 1 5 8
6 4 2
−1 7 5

 ⇒ D =

 1 0 0
0 4 0
0 0 5

 L =

 0 0 0
6 0 0
−1 7 0

 U =

 0 5 8
0 0 2
0 0 0


� Jacobi method40: The solution is then obtained iteratively via

D · x⃗k+1 = −(L+U) · x⃗k + b⃗ k = 0, 1, . . . (9.188)

where x⃗k is the k-th approximation or iteration of x⃗ and x⃗0 is the initial guess (often taken
to be zero). A sufficient (but not necessary) condition for the method to converge is that the
matrix A is strictly or irreducibly diagonally dominant.

� Gauss-Seidel method41: It is defined by the iteration

L⋆ · x⃗k+1 = −U · x⃗k + b⃗ k = 0, 1, . . . (9.189)

where L⋆ = L+U .

There is actually a way to make the computation of x⃗(k+1) which uses the elements of x⃗(k+1)

that have already been computed, and only the elements of x⃗(k) that have not been computed
in the k + 1 iteration. This means that, unlike the Jacobi method, only one storage vector is
required as elements can be overwritten as they are computed, which can be advantageous for
very large problems.

Note that Gauss-Seidel is the same as SOR (successive over-relaxation) with ω = 1.

� Successive over-relaxation method (SOR):

(D + ωL) · x⃗k+1 = −(ωU + (ω − 1)D) · x⃗k + ωb⃗ k = 0, 1, . . . (9.190)

40https://en.wikipedia.org/wiki/Jacobi_method
41https://en.wikipedia.org/wiki/Gauss-Seidel_method
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� Symmetric successive over-relaxation (SSOR)42: The version of SOR for symmetric matrices
A, in which U = LT is given by the recursion

x⃗k+1 = x⃗k − γkP−1(A · x⃗(k) − b⃗) k = 0, 1, . . . (9.191)

with

P =

(
D

ω
+L

)
ω

2− ω
D−1 ·

(
D

ω
+L

)
with 0 < ω < 2.

All these methods can be cast in a more general framework43: The basic iterative methods work
by splitting the matrix A into M-N and here the matrix M should be easily invertible. The iterative
methods are now defined as

M · x⃗k+1 = N · x⃗k + b⃗ (9.192)

with

� Richardson method: M = 1
ω
I

� Jacobi method: M = D

� Damped Jacobi method: M = 1
ω
D

� Gauss-Seidel method: M = D +L

� Successive over-relaxation method: M = D
ω
+L

� Symmetric successive over-relaxation: M =
(
D
ω
+L

)
ω

2−ωD
−1 ·

(
D
ω
+L

)
and N = M −A.

Krylov subspace methods

� Conjugate Gradient 44

It was first proposed by Hestenes and Stiefel in 1952 [567]. The method solves an SPD system

A · x⃗ = b⃗ of size n. In theory (i.e. exact arithmetic) it does so in n iterations. Each iteration
requires a few inner products in Rn and one matrix-vector multiplication. With roundoff error,
CG can work poorly (or not at all), but for some A (and b⃗), can get good approximate solution
in << n iterations.

As an iterative method, the conjugate gradient method monotonically (in the energy norm)
improves approximations x⃗k to the exact solution and may reach the required tolerance after
a relatively small (compared to the problem size) number of iterations. The improvement is
typically linear and its speed is determined by the condition number κ(A) of the system matrix
A: the larger κ(A) is, the slower the improvement.

If κ(A) is large, preconditioning is commonly used to replace the original system A · x⃗− b⃗ = 0⃗

with M−1 · (A · x⃗− b⃗) = 0⃗ such that κ(M−1 ·A) is smaller than κ(A).

The resulting method is called the Preconditioned Conjugate Gradient method (PCG). An ex-
treme case of preconditioner is M = A−1 but it is a silly case since applying the preconditioner
is as difficult as solving the system in the first place. In the end the goal is to find a matrix M
that is cheap to multiply, and is an approximate inverse of A (or at least has a more clustered
spectrum than A).

42https://en.wikipedia.org/wiki/Symmetric_successive_over-relaxation
43https://en.wikipedia.org/wiki/Iterative_method
44https://en.wikipedia.org/wiki/Conjugate_gradient_method
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Top: algorithms as obtained from Wikipedia (Left: CG; Right: PCG); Bottom: algorithm from Shewchuk (1994) [1156].

Also available on Wikipedia is a (naive) MATLAB implementation of the CG algorithm:

We see that its implementation is actually rather simple and straightforward!

Relevant Literature: Shewchuk, An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain [1156]. CG using mpi [1165]. Een kwart eeuw iteratieve methoden [1332].

The CG and PCG algorithms are used in Section 7.11.3. It is implemented in stone 15,16,82.

� Biconjugate Gradient method 45

� Biconjugate Gradient stabilised method 46

45https://en.wikipedia.org/wiki/Biconjugate_gradient_method
46https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
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� MINRES: For iterative solution of symmetric systems Ax = b, the conjugate gradient method
(CG) is commonly used when A is positive definite, while the minimum residual method (MIN-
RES) is typically reserved for indefinite systems.

� Generalized minimal residual method (GMRES) 47

47https://en.wikipedia.org/wiki/Generalized_minimal_residual_method
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9.34 Weak seeds in extension modelling

weakseeds.tex

This section was mostly written by I. van Zelst with some input by S. Buiter.
Numerical models that investigate dynamics of the lithosphere and upper mantle always start

from an initial geometry with a set of prescribed mechanical and thermal conditions. This initial
setup is usually a more-or-less standard representation of the lithosphere and asthenosphere, as
defined from compilations of geological and geophysical observations and laboratory measurements.
Deformation is driven by internal buoyancy forces and/or velocity or stress boundary conditions.
However, unless an intrinsically unstable setup is defined or boundary conditions are discontinuous,
deformation may take long model time to localize (up to millions of years). This is because these
models need to build up numerical disturbance to create starting points for the deformation. In such
models, deformation may in the first stages be accommodated by pure shear extension or shortening
[1024, 901].

To avoid this long starting phase and, in addition, exert some control over the initial location
of deformation (preferably away from the boundaries), modelers use different approaches to initiate
and localize deformation.

One manner to localize deformation is by discontinuous boundary conditions, such as the so-
called S-point velocity discontinuity at the bottom of the system (or the tip of a basal sheet) which
is used in both numerical [143, 368, 1360, 61, 161, 1261, 137] and analogue studies [161, 872]. These
models are usually on the scale of the (upper-) crust. S-point models are less flexible than upper-
mantle scale models as they do not include feedback relations between deformation and the basal
velocity field. Models of extension of continental lithosphere often use ’seeds’ to initiate extension.
Such seeds are usually small regions that are weaker than the surrounding crust and lithosphere.
The use of seeds can be justified by considering the fact that in nature continental lithosphere is
hardly ever (if at all) homogeneous in composition and stratification. In addition, extension often
occurs in regions of former convergence, such as the opening of the North Atlantic Ocean that largely
followed the old sutures of the Iapetus and Rheic Oceans [1364]. Analogues for numerical seeds can
therefore be found in inherited faults, inherited crustal thickness changes, and/or plumes impacting
the lithosphere. However, this immediately points out a problem with single-seed models as orogenic
inheritance and mantle upwellings may be expected to occur over larger areas than a seed of some
hundreds of meters to a few kilometers in width and height.

A literature survey shows that seeds in previous numerical studies differ in shape, size, orientation,
mechanical and thermal properties, and depth in the models. Three types of weak seeds can be
identified that have been used in previous models of (continental) extension:

Seeding through thermal effects A weak region can be achieved by a temperature anomaly
in the crust or lithosphere [177], which is created by directly imposing a temperature difference, by
assigning high radiogenic heat production, or modeling a thermal upwelling in the mantle below. The
elevated temperature reduces viscosity values for models with a temperature-dependent viscosity. An
advantage of using an imposed temperature anomaly is that it will dissipate with time, thus reducing
the impact on later model stages [531]. Examples of thermal anomalies used to initiate extension
are an elevated temperature at the base of the crust [531], an elevated temperature at the base of
the lithosphere (100◦ in [184], up to 200◦ in [156]), a temperature anomaly imposed from the base of
the lithosphere to the middle crust [232], and a 10mWm−2 perturbation in basal heat flow [416]. In
[184] the rifting is initiated by means of a thermal perturbation placed at the bottom of the mantle
lithosphere with a maximum temperature T2 exponentially which decays from the center to T1 on
the left and T3 on the right.
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Seeding by mechanical inhomogeneity A seed may be composed of a material with a lower
rheological strength than the surroundings. A weak seed may, for example, have a lower imposed
viscosity [764, 679, 878], a lower value for angle of internal friction [1023, 682, 1258, 483, 227], a
lower value for cohesion [10], or a lower value for density [1269].

The seed may also be assigned different material properties, as, for example, a Von Mises seed in
a frictional plastic material [614]. A frequently used approach is to assume that a region has already
accumulated strain, leading to strain-weakening [754, 615, 995, 10, 9, 711, 11]. Previous studies have
used a variety of shapes and sizes for weak seeds. Examples are square seeds, fault-shaped weak
inclusions, and rectangular seeds with different aspect ratios: [615] use a 6 × 3 km seed, while the
weak seed of [614] has a size of 12× 10 km.

Instead on confining the seed to a geometrically simple region, randomly distributed seeds have
also been used [1258], [1262], albeit for compression.

Seeding through geometrical discontinuity A seed is created by an abrupt variation in the
thickness of the crust and/or lithosphere. A locally thinned crust could be thought to be caused
by a previous rifting phase, whereas a thicker crust could represent preceding mountain building.
Such crustal thickness variations effect not only mechanical strength, but may also impose a thermal
anomaly. Burg & Schmalholz [178] implemented a Gaussian shaped mohorovičić discontinuity of
250m height as a representation of the weak zone resulting in a slightly thinner crust. A step change
in crustal thickness alters the symmetry of the domain. Chenin et al. [230] implement a sinusoidal
perturbation of the Moho.

Only few studies have investigated how different methods of implementing a weak zone can affect
the results of a model. [356] found that a single seed produces a symmetric narrow rift, an initial
shear zone tends to produce an asymmetric rift, and multiple seeds promote a wide rift. Note however
that this behavior will be affected by rheological stratification, as not all systems can evolve in a
wide rift mode [615, 163]. [356] found that a seed needs to be 10 times weaker than the surrounding
material in order to localize strain. To initiate shear bands with a Coulomb dip angle (45 ±ϕ/2,
where ϕ is the angle of internal friction), seeds need to be well resolved (5-10 elements, [679]).

This variety in the shape, size, orientation, mechanical and thermal properties, and depth of the
seed(s) begs the question if these different approaches to initiate extension could have an effect on
model evolution? As such variations might not be removed by subsequent deformation stages, the
initiation effects could propagate into later model evolution. In addition, weak seeds introduce a
weakness into the extensional system that may potentially be long-lasting. For instance, seeds with
a weakness defined by material or strain-weakened properties stay in the model and may control
deformation also in later model stages. The heat associated with thermal seeds will diffuse away, but
additional heat has been introduced into the initial system and the setup will therefore differ from
models with mechanically weak seeds.
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9.35 Computing the volume of a hexahedron

volume hexahedron.tex

What follows is based on the report ”Efficient Computation of Volume of Hexahedral Cells” by
J. Grandy (1997) [481]. We assume the following internal numbering of the hexahedron, which is
different than the one in the paper:

Modified from [481]

in ./images/hexahedron/

If the hexahedron is such that some or all the opposite faces are planes parallel to each other
than the volume can be arrived at very simply48.

The real catch here is that the four nodes which make up a face are not necessarily co-planar!
The volume is then computed as follows

V = [(r⃗6 − r⃗1) + (r⃗7 − r⃗0), (r⃗6 − r⃗3), (r⃗2 − r⃗0)]
+ [(r⃗7 − r⃗0), (r⃗6 − r⃗3) + (r⃗5 − r⃗0), (r⃗6 − r⃗4)]
+ [(r⃗6 − r⃗1), (r⃗5 − r⃗0), (r⃗6 − r⃗4) + (r⃗2 − r⃗0)]
/ 12 (9.193)

where [·] is the triple product:

[A⃗, B⃗, C⃗] =

∣∣∣∣∣∣
Ax Bx Cx
Ay By Cy
Az Bz Cz

∣∣∣∣∣∣
It is implemented and used in Stone 98. The code is shown hereunder:

de f hexahedron volume (x , y , z ) :
va l = ( t r i p l e p r o du c t ( x [6]=x [1 ]+x [7]=x [ 0 ] , y [6]=y [1 ]+y [7]=y [ 0 ] , z [6]= z [1 ]+ z
[7]= z [ 0 ] , \

x [6]=x [ 3 ] , y [6]=y [ 3 ] , z [6]= z [ 3 ] ,
\

x [2]=x [ 0 ] , y [2]=y [ 0 ] , z [2]= z [ 0 ]
) \
+ t r i p l e p r o du c t ( x [7]=x [ 0 ] , y [7]=y [ 0 ] , z [7]= z [ 0 ] ,
\

x [6]=x [3 ]+x [5]=x [ 0 ] , y [6]=y [3 ]+y [5]=y [ 0 ] , z [6]= z [3 ]+ z
[5]= z [ 0 ] , \

x [6]=x [ 4 ] , y [6]=y [ 4 ] , z [6]= z [ 4 ]
) \
+ t r i p l e p r o du c t ( x [6]=x [ 1 ] , y [6]=y [ 1 ] , z [6]= z [ 1 ] ,
\

x [5]=x [ 0 ] , y [5]=y [ 0 ] , z [5]= z [ 0 ] ,
\

x [6]=x [4 ]+x [2]=x [ 0 ] , y [6]=y [4 ]+y [2]=y [ 0 ] , z [6]= z [4 ]+ z
[2]= z [ 0 ] ) ) /12 .
r e turn va l

48https://en.wikipedia.org/wiki/Cuboid
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with

de f t r i p l e p r o du c t (Ax,Ay,Az ,Bx ,By , Bz ,Cx ,Cy , Cz) :
va l = Ax * ( By * Cz = Bz * Cy ) \

= Ay * ( Bx * Cz = Bz * Cx ) \
+ Az * ( Bx * Cy = By * Cx )

return va l

Relevant Literature: [349]
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9.36 Bandwidth reduction, matrix reordering

The need for reordering

The profile (or envelope) of a symmetric matrix determines how close its non-zero elements are to
the diagonal:

profile =
n∑
i=1

(i−min(ne(i)))

The bandwidth is the largest deviation:

bandwidth = max(i−min(ne(i)))

The cost for a band cholesky factorisation with bandwidth p is n(p2 + 3p) flops assuming n >> p.
(source?)

In conclusion: reducing bandwidth means a factor solve if Cholesky factorisation is used.

A simple example

Let us consider a structurally symmetric matrix M . We wish to reduce its bandwidth by permuting
rows and columns such as to move all the nonzero elements of M in a band as close as possible to
the diagonal. We then talk about Bandwidth Reduction.

We know that the solution a linear system remains unchanged if lines or columns of the matrix
(and corresponding rhs) are permuted.

For example49 , let us consider the 5× 5 matrix M :

M =



1 . . . 1 . . .
. 1 1 . . 1 . 1
. 1 1 . 1 . . .
. . . 1 . . 1 .
1 . 1 . 1 . . .
. 1 . . . 1 . 1
. . . 1 . . 1 .
. 1 . . . 1 . 1


Simply through row and column permutations it can be rewritten

M ′ =



1 1 . . . . . .
1 1 . . . . . .
. . 1 1 1 . . .
. . 1 1 1 . . .
. . 1 1 1 1 . .
. . . . 1 1 1 .
. . . . . 1 1 1
. . . . . . 1 1


The different existing algorithms

� The simplest bandwidth reduction method is the Cuthill-McKee algorithm (1969) [297]

� Reverse Cuthill-McKee algorithm (1976) [460]

49Taken from http://ciprian-zavoianu.blogspot.com/2009/01/project-bandwidth-reduction.html

666

http://ciprian-zavoianu.blogspot.com/2009/01/project-bandwidth-reduction.html


� The Gibbs-Poole-Stockmeyer and Gibbs-King algorithm is an alternative, often superior, profile
reduction method (1976) [461]

� Sloan algorithm [1175, 1174]

Implementation in python

The documentation for the reverse Cuthill-McKee algorithm is available online50, but it is quite
useless as to how the result of the function call should be used. I therefore provide here a small
python program in /images/reordering which builds matrix M and returns M ′.

This header is necessary:

from sc ipy . spar s e import c s r mat r i x
from sc ipy . spar s e . csgraph import r e v e r s e c u t h i l l m ck e e

After the matrix is filled, the reverse Cuthill-McKee algorithm is used to compute the permutation
order of the rows and columns:

perm = r ev e r s e c u t h i l l m ck e e ( sparse matr ix , symmetric mode=True )

The result is an array of size n which indicates the new order of rows and columns:

[ 6 3 7 5 1 2 4 0 ]

All that we have to do then is to use this array to rebuild the matrix:

spar s e mat r ix=spar s e mat r ix [ np . i x (perm , perm) ]

In case a right hand side vector exists, it must be reordered too in order to match the matrix:

rhs=rhs [ np . i x (perm) ]

Assuming a solution of the reordered matrix and rhs has been obtained, it must be reordered back.
We therefore create the inverse permutation array:

perm inv=np . empty (n , dtype=np . in t32 )
f o r i in range (0 , n ) :

perm inv [ perm [ i ] ]= i

and use it as follows:

s o l=s o l [ np . i x ( perm inv ) ]

a) b)
a) before reordering; b) after reordering.

50https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.reverse_cuthill_

mckee.html
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9.37 Scaling between dimensioned and dimensionless quan-

tities

All quantities with an r subscript denote real quantities, while quantities with an m subscript denote
dimensionless model quantites, i.e. values that are used as inputs to the code.

Let us define four coefficients KL, KT , KM and Kθ as follows:

KL =
Lm
Lr

KT =
Tm
Tr

KM =
Mm

Mr

Kθ =
θm
θr

(9.194)

where L{m,r}, T{m,r},M{m,r} and θ{m,r} are respectively lengths, times, masses and temperatures, and
the coefficients K bear the following dimensions:

KM → kg−1 , or M−1

KL → m−1 , or L−1

KT → s−1 , or T−1

Kθ → K−1 , or θ−1

Velocity The dimensions of a velocity are: m.s−1, or LT−1, so that

vm =
Lm
Tm

=
KLLr
KTTr

= KLK
−1
T

Lr
Tr

= KLK
−1
T vr (9.195)

Viscosity The dimensions of a viscosity are Pa.s, or ML−1T−1, so that

µm =
Mm

LmTm
=

KM

KLKT

Mr

LrTr
=

KM

KLKT

µr (9.196)

Cohesion The dimensions of a cohesion are those of a stress, i.e. Pa, or ML−1T−2, so that

cm =
Mm

LmT 2
m

=
KM

KLK2
T

Mr

LrT 2
r

=
KM

KLK2
T

cr

Density The dimensions of a density are kg.m−3, or ML−3, so that

ρm =
Mm

L3
m

=
KM

K3
L

Mr

L3
r

=
KM

K3
L

ρr

Gravity The dimensions of the gravity acceleration are m.s−2, or LT−2, so that

gm =
Lm
T 2
m

=
KL

K2
T

Lr
T 2
r

=
KL

K2
T

gr

Body force The dimensions of body forces are those of ρg, i.e. kg.m−2.s−2, or ML−2T−2, so that

(ρg)m =
Mm

L2
mT

2
m

=
KM

K2
LK

2
T

Mr

L2
rT

2
r

=
KM

K2
LK

2
T

(ρg)r

Thermal expansion The dimension of thermal expansion is ◦C−1, so that

αm =
1

θm
=

1

Kθ

1

θr
=

1

Kθ

αr
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Thermal conductivity The dimensions of the thermal conductivity areW/m/K, i.e. kg.m.s−3.K−1,
so that

km =
MmLm
T 3
mθm

=
KMKL

K3
TKθ

MrLr
T 3
r θr

=
KMKL

K3
TKθ

kr

Thermal diffusivity The dimensions of thermal diffusivity are m2/s so that

κm =
L2
m

Tm
=
K2
L

KT

L2
r

Tr
=
K2
L

KT

κr

Heat capacity The dimensions are J.kg−1.K−1, i.e. m2.s−2.K−1 so that

(cp)m =
L2
m

T 2
mθm

=
K2
L

K2
TKθ

L2
r

T 2
r θr

=
K2
L

K2
TKθ

(cp)r

Radiogenic heat production The dimensions are W.m−3, i.e. kg.m−1.s−3 so that

Hm =
Mm

LmT 3
m

=
KM

KLK3
T

Mr

LrT 3
r

=
KM

KLK3
T

Hr

A constant The dimensions of A are Pa−n.s−1, or M−nLnT (2n−1) so that

Am =
LnmT

2n+1
m

Mn
m

=
Kn
LK

2n−1
T

Kn
M

Ar

Activation energy The dimensions of Q are J.mol−1, but the dimensions of Q̃ = Q/R are K, so
that

Q̃m = θm = KθQ̃r

Activation volume The dimensions of V are m3.mol−1, but the dimensions of Ṽ = V/R are
m3.◦C.J−1, so that

Ṽm =
KLK

2
TKθ

KM

Ṽr

The following coefficients are used in the code too :

Kµ =
µm
µm

=
KM

KLKT

Kv =
vm
vr

=
KL

KT

Kstress =
KM

KLK2
T

Kρ =
ρm
ρr

=
KM

K3
L
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9.38 Spectral methods

Trubitsyn et al. (2008) [1286]

670



Chapter 10

Geodynamics GEO3-1313 syllabus
(Utrecht University)

chapter9.tex

This course has officially be retired and is no more given by me with this
content in the UU Batchelor program.

What follows was written by Arie van den Berg and was/is used as the syllabus for the 3rd year
geodynamics course at Utrecht University. It is reproduced with Arie’s permission and has been
slightly modified by me.

10.1 Introduction

The internal constitution of the Earth has been investigated systematically from the nineteenth
century on. With the advent of seismological instrumentation for the registration of tele-seismic
events, by the end of that century, the main tool for obtaining direct information about distribution
of the material properties controling seismic wave propagation became available. Before this, mainly
global properties could be determined from gravity and magnetic field observations, astronomical data
and indications about the heatflow from the Earth’s interior. As a result of the early seismological
investigations the main internal structure of the Earth was revealed within the first few decades of
the twentieth century with the discovery of the earth’s core in 1906 by Oldham and Gutenberg (1912)
and the solid inner core in 1936 by Lehmann.

From the radial distribution of the seismic velocity profile, obtained by processing the tables of
traveltime versus epicentral distance, Williamson and Adams (1923) [1363] made a first estimate of
the density profile for a compressible homogeneous mantle model, consistent with the total mass of
the Earth and obtained at the same time strong indication for a high density core, compositionally
distinct from the mantle. They concluded that ”It is therefore impossible to explain the high density
of the Earth on the basis of compression alone. The dense interior cannot consist of ordinary rocks
compressed to a small volume; we must therefore fall back on the only reasonable alternative, namely,
the presence of a heavier material, presumably some metal, which, to judge from its abundance in
the Earth’s crust, in meteorites and in the Sun, is probably iron.”

Bullen1 (1975) [168] further refined the analysis and showed the assumption of a homogeneous
mantle to be inconsistent with the known moment of inertia of the Earth. In the 1940s and 1950s
he introduced a global divison of the Earth in concentric shells, labelled A through G, ranging from
the Earth’s crust (A), bounded by the moho discontinuity, to the inner core (G). Region C between,

1Keith Edward Bullen (29 June 1906 - 23 September 1976) was a New Zealand-born mathematician and geophysi-
cist. He is noted for his seismological interpretation of the deep structure of the Earth’s mantle and core.
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roughly 400km and 900km, characterized by rapid increase of the seismic velocities, was identified by
Bullen as a transition region between the upper mantle region B and a homogeneous lower mantle,
region D. The deduced inhomogeneity of the mantle was projected by Bullen in this C region. E
through G were used to label subdivisions of the core. Region E indicated the liquid, adiabatic outer
core, F a transition region between inner and outer core and G the solid inner core. Birch (1952)
[89] published improved equations of state, based on finite-strain theory, thereby giving a more firm
physical basis to interpretation of available data in terms of a compressible medium.

In the second half of the twentieth century the resolution and accuracy of the models were
further improved using continuously improved seismological observations and a growing data set.
It also became possible to obtain independent information about the radial density distribution
from spectral analysis of radial eigen-vibrations of the Earth after very large earthquakes. This
development resulted in the publication of the Preliminary Reference Earth Model (PREM) by
Dziewonski and Anderson (1981) [357] which still serves as a global reference.

The improved seismologial models indicated that the continuous rapid velocity increase in the
transition zone (C) was actually a succession of several abrupt changes, confirming radial inhomo-
geneity in mineral phase and possibly in chemical composition of the mantle.

From geological and cosmochemical arguments a probable composition of the Earth had been
derived consisting of a mantle with major element composition dominated by magnesium-iron silicates
and an iron-nickle core with a small amount of lighter elements mixed in, most likely including
mainly sulphur. In the 1960s this resulted in the definition of a so-called pyrolitic composition of the
mantle by Ringwood which could explain the main mantle petrological observations regarding the
complementary nature of basalts and ultra mafic mantle rocks found in ophiolites, kimberlites and
mantle perioditite bodies (Ringwood, 1975 [1074]).

In experimental high-pressure and temperature work on the candidate mantle materials a series
of phase transitions were found at pressure and temperature values relevant for the Earth’s mantle
which could be related to the seismic discontinuities revealed by the seismological data. From these
the most prominent at approximately 410 and 660km depth were identified as the phase transition of
the olivine component (Mg,Fe)2SiO4 of the pyrolitic mantle to a denser wadsleyite crystal structure
and, at 660km, a transition (dissociation) from a γ-spinel (known as ringwoodite) structure to a two-
phase assemblage, post-spinel, i.e. magnesium-iron perovskite, (Mg,Fe)SiO3 and wüstite (Mg,Fe)O.

It was also found that the 660 km boundary corresponds to an endothermic phase transition
which would have implications for large scale circulation in the mantle, leading to long-standing
speculations about the degree of layering in mantle convection (Christensen & Yuen (1985) [251],
Albarede & van der Hilst (2002) [4]), http://www.mantleplumes.org.

A more recent development in this area is the discovery of a new phase transition of magnesium-
perovskite to a denser form for pressure temperature conditions, approximately 125 GPa 2500 K,
relevant for the D” layer close to the core-mantle boundary (Lay et al. , 2005, van der Hilst et al. ,
2007).
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Effect of water on the phase relations in Earth’s mantle and deep water cycle,

Litasov & Ohtani (2007) [793]

In the following sections the density distribution in the Earth’s interior is treated in relation to
the gravity field and internal pressure distribution of a self-gravitating compressible planet model
and the link is shown with results from theoretical mineral physics and high pressure-temperature
experimental data for mantle materials.

10.2 Global internal structure and temperature of the Earth

To understand the Earth’s internal dynamics and evolution we need to know its internal structure
and material properties. What do we know about Earth’s global internal structure?

For a substance of given chemical composition, the material properties are determined by tem-
perature and pressure. A full understanding of the Earth’s internal dynamics therefore requires that
we know the internal distribution of composition, temperature and pressure as illustrated in the
following figure:

Illustration of the central roles that pressure, temperature and density play in geophysics.

Taken from Regenauer-Lieb et al. , Phil. Mag., 2006 [1055].
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The internal pressure distribution is directly linked with the Earth’s own internal gravity field and
density distribution because the local pressure gradient equals the local gravity acceleration times
the density (see problem 6). In Section 10.4 density, gravity and pressure are treated together in a
consistent way.

If the internal pressure distribution is known we can relate sharp transitions in the physical
parameters as shown in the PREM model, illustrated in the following figure to phase transitions,
solid-solid or solid-liquid, in the Earth’s deep interior.

Radial (depth)distribution of density ρ, seismic velocities vp and vs, gravity acceleration g and pressure P

in the PREM model (Dziewonski and Anderson (1981) [357]).

Phase transitions in ‘candidate’ materials for the Earth’s interior are investigated under high
pressure and temperature conditions in HPT laboratory experiments 2. Using theoretical mineral
physics models the complete mineral phase diagram of mantle silicates can, in principle, be con-
structed from a limited set of experimental data (Stixrude & Lithgow-Bertelloni (2005) [1214, 1213]
Jacobs & de Jong (2007) [629]). To constrain the possible candidate materials we also need to know
the internal distribution of the Earth’s chemical composition. Such composition models are derived
from geological evidence and cosmochemical considerations.

Table I of (Dziewonski and Anderson (1981) [357]) gives an expression for the density as a function
of the radius r, which I have turned into a python function:

de f prem dens ity ( rad iu s ) :
x=rad iu s /6371 . e3
i f rad ius >6371e3 :

densprem=0
e l i f rad ius <=1221.5 e3 :

densprem=13.0885=8.8381*x**2
e l i f rad ius <=3480e3 :

densprem=12.5815=1.2638*x=3.6426*x**2=5.5281*x**3
e l i f rad ius <=3630. e3 :

densprem=7.9565=6.4761*x+5.5283*x**2=3.0807*x**3
e l i f rad ius <=5600. e3 :

densprem=7.9565=6.4761*x+5.5283*x**2=3.0807*x**3
e l i f rad ius <=5701. e3 :

densprem=7.9565=6.4761*x+5.5283*x**2=3.0807*x**3
e l i f rad ius <=5771. e3 :

densprem=5.3197=1.4836*x
e l i f rad ius <=5971. e3 :

2Deep Earth pressure and temperature conditions can be produced in a Diamond Anvil Cell (DAC), see http:

//en.wikipedia.org/wiki/Diamond_anvil_cell.
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densprem=11.2494=8.0298*x
e l i f rad ius <=6151. e3 :

densprem=7.1089=3.8045*x
e l i f rad ius <=6291. e3 :

densprem=2.6910+0.6924*x
e l i f rad ius <=6346. e3 :

densprem=2.6910+0.6924*x
e l i f rad ius <=6356. e3 :

densprem=2.9
e l i f rad ius <=6368. e3 :

densprem=2.6
e l s e :

densprem=1.020
return densprem *1000
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Top: PREM density as computed with the function above. Code available in /images/prem/;

Bottom: ak135 density from [696]. Data available in /images/ak135/

Early models of the Earth’s density

The total Earth mass M⊕ and average density ⟨ρ⟩ were not known before independent measurement
of Newton’s gravitational constant by Cavendish, (see Section 10.4). When the average density had
been determined as approximately 5.5 ·103 kg ·m−3 it became clear, from the lower density of surface
rocks of around 2.7 · 103 kg ·m−3, that the Earth’s interior must consist of higher density material.

Besides the mass or average density the (average) moment of inertia I (defined in Section 10.3)
provides a constraint on the radial distribution of density.

These two integral parameter values have been applied in several two-parameter models for the
radial density distribution of the Earth. At the end of the nineteenth century Wiechert3 assumed that
the compressibility of Earth materials would be negligible to first approximation and that Earth’s
high mean density was due to a dense, probably metallic, core. He assumed an iron core based on
astronomical evidence of high iron content of the sun’s outer layers (see also Section 10.5.4).

Wiechert considered in particular layered spherically symmetric models consisting of two uniform
layers, core and mantle. Since the radius of the Earth’s core had not yet been determined by
seismology, Wiechert used the core radius Rc and density ρc as unknown parameters to be determined
from the known data. Wiechert assumed the density of the mantle to be ρm = 3.2 · 103kg ·m−3 and
using known values for M and I he derived for the radius of the core Rc/R = 0.779 corresponding to
a mantle depth of about 1400 km and a core density ρc = 8.2·103 kg ·m−3. This model is investigated
in problem 3.

Later, after Rc/R = 0.545 had been determined using seismic data, Jeffreys substituted the
known value of the core radius and derived for the mantle and core densities ρc = 12.6 · 103 kg ·m−3

3Emil Johann Wiechert (26 December 1861 - 19 March 1928) was a German physicist and geophysicist who made
many contributions to both fields, including presenting the first verifiable model of a layered structure of the Earth
and being among the first to discover the electron.
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and ρm = 4.14 · 103 kg ·m−3 (Bullen (1975) [168]). This model is investigated in problem 4.
The (radially averaged) density distribution in the Earth remains a topic of research [695].

10.3 The moment of inertia of a spherically symmetric den-

sity distribution

The moment of inertia I of a point mass of mass m, with respect to a given rotation axis is defined as
I = md2 where d is the distance from the point mass to the axis. This quantity relates the angular
velocity ω, about the rotation axis, to the angular momentum J , of the point mass, in J = Iω.
This is an analogous relation as the one between the linear momentum p and the linear velocity v,
p = mv. For an extended mass distribution in a volume V , a moment of inertia tensor, Iij, relating
the angular momentum vector J to the rotation vector Ω can be defined as Ji = IijΩj, where the
summation convention for repeated indices is implied. This tensor is described by a 3 × 3 matrix
defined by volume integration over point masses in the volume. Here we only consider spherically
symmetric mass distributions where the moment tensor is isotopric, Iij = Iδij, with scalar coefficient
I. 4 In simple terms, the moment of inertia is the same for any rotation axis through the centre of
the spherically symmetric body.

The moment of inertia I can be determined from Earth’s global gravity field and the precession
rate of the rotation axis determined from astronomical data, see Bullen, The Earth’s density, 1975.
The principal moments of inertia can also be calculated with the hydrostatic equilibrium figure of
the Earth [795].

The scalar moment of inertia is defined as a volume integral over point masses,

I =

∫
V

ρ(r⃗)d(r⃗)2dV. (10.1)

where d(r⃗) is the distance from point r⃗ to the rotation axis.
For a spherically symmetric body of finite volume, it is often expressed in terms of the total mass

M , the outer radius R and a prefactor f as,

I = fMR2 (10.2)

Taken from Wikipedia5

We have seen that the planetary mass and surface density were used to constrain models for the
interior density distribution. These models are further constrained by the planets moment of inertia

4δij is the Kronecker delta, i.e. δij = 1 for i = j and zero otherwise.
5https://en.wikipedia.org/wiki/Moment_of_inertia_factor
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I that can be determined from (satellite) geodetic and astronomical observations. For Earth the
following values for the total mass and moment of inertia prefactor have been found,

M = 5.97 · 1024kg
I = 0.3307MR2kgm2

where R = 6371km is the mean radius. The observed moment of inertia prefactor f = 0.3307 is
smaller than the value 0.4 for a homogeneous sphere (see problem 2), another indication of mass
concentration towards the earth’s centre.

problem: 1. Derive the following expression for the moment of inertia of a spherically sym-
metric Earth model with outer radius R,

I =
8π

3

∫ R

0
ρ(r)r4dr (10.3)

Hint: use the symmetry and compute I = 1
3(Ix+ Iy + Iz), where Ix is the moment of inertia with

respect to a rotation axis coinciding with the x-axis.

problem: 2. Derive from Eq. (10.3) the value of the prefactor f of the moment of inertia for
a uniform sphere. answer: f = 2/5.
In general the moment of inertia prefactor f is an indicator of the degree of mass concentration
towards the centre of a spherically symmetric mass distribution. Endmembers of mass concentra-
tion are a) a concentrated central point mass and b) all mass concentrated on a spherical surface
of zero thickness.

Verify that the moment of inertia of the point mass endmember equals zero and that for the

prefactor for a spherical shell of vanishing thickness we have f = 2
3 .

Add bit of theory for delta function is sph coords

Wiechert’s two-layer model with a distinct core is constrained by the moment of inertia prefactor
f , the mantle radius R and density ρm and the total mass M or, equivalently, the mean density ⟨ρ⟩.
Expressions for the core radius Rc and density ρc can be formulated for this model as specified in
the following exercise (Bullen, 1975).
for 2025: add figure for pb 2,3. Add plot of rho(r) for pb 3.
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problem: 3. Derive a 2-parameter model for the earth’s 1-D radial density distribution ρ(r)
consisting of two uniform layers (core and mantle) of radius Rc and R respectively and with
contrasting uniform densities ρc and ρm for core and mantle respectively. Assume ρm to be
known, leaving ρc and Rc as unknown parameters that can be determined from the known moment
of inertia prefactor f and the average density ⟨ρ⟩.
Compute the total mass M
Compute the average density and arrive at:

⟨ρ⟩ = 3

R3

∫ R

0
ρ(r)r2dr (10.4)

Use I = fMR2 and the total mass to arrive at:

fR5 ⟨ρ⟩ = 2

∫ R

0
ρ(r)r4dr (10.5)

Derive the following expressions for Rc and ρc,

Rc
R

=

 5
2f

⟨ρ⟩
ρm
− 1

⟨ρ⟩
ρm
− 1

1/2

, ρc = ρm

{
1 +

(
R

Rc

)3(⟨ρ⟩
ρm
− 1

)}
(10.6)

In Bullen’s two-layer model the core radius is assumed to be known from seismology. For this
model the mantle and core densities can be expressed in the known parameters in the following
problem.

problem: 4. Assume the core radius Rc to be a known parameter in the following. Derive a
2-parameter model for the earth’s 1-D radial density distribution ρ(r) consisting of two uniform
layers (core and mantle), with a core and mantle radius Rc and R and different uniform densities
ρm and ρc for mantle and core. Express the parameters ρm and ρc in terms of the mass and
moment of inertia.
Hint: compute M first, then I, as a function of all other parameters. Establish a relationship of
the form (M, I)T = A · (ρc, ρm)T where A is a 2× 2 matrix.
Solution: in matrix-vector format,(

ρc
ρm

)
=

4π

3∆

(
2
5(R

5 −R5
c) −(R3 −R3

c)
−2

5R
5
c R3

c

)(
M
I

)
(10.7)

where the determinant ∆ = 32π2

45

(
R3
c(R

5 −R5
c)−R5

c(R
3 −R3

c)
)
.

Carry out live demo of python code. Code is in images/geodynamics
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problem: 5. SKIP THIS PROBLEM. The numerical value of the interim expressions in
(10.7) exceeds the magnitude of single precision real type variables in computer programs, that
are limitid to approximately 1.7 · 1038. A work around for this problem may be to use double
precision real variables that have a higher maximum magnitude of about 10308.
An alternative solution is to switch to using non-dimensional parameters, denoted by primes, in
the following way: define R

′
c = Rc/R,M0 = 4/3·πR3ρ0 andM =M0·M/M0 =M0·M

′
, ρc = ρ0ρ

′
c,

ρm = ρ0ρ
′
m and express the moment of inertia in the reference density ρ0 and outer radius as,

I = fMR2 = f4/3 · πR5ρ0. With these definitions rewrite (10.7) into the non-dimensional form,(
ρ
′
c

ρ
′
m

)
=

16π2

9∆′

(
2
5(1−R

′5
c ) −(1−R

′3
c )

−2
5R
′5
c R

′3
c

)(
M
′

f

)
(10.8)

where the determinant ∆
′
= 32π2

45

(
R
′3
c (1−R

′5
c )−R

′5
c (1−R

′3
c )
)
.
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10.4 Density, gravity and pressure in the Earth

In the Earth’s mantle major solid state phase transitions occur in the silicate material which consti-
tutes the planetary mantle outside the metallic iron/nickle core. These phase transitions are induced
by the increase in the static pressure from a 1 bar (105Pa) atmospheric value at the Earth’s surface
to 136 · 109Pa at the core mantle boundary at a depth of approximately 2900km. Phase transitions
in the Earth’s interior are associated with changes in the elastic wave velocities that can be deduced
from seismological observations. In high pressure experiments, phase transitions in candidate mantle
silicates can be studied and correlated with the seismological data to constrain the mineralogy and
pressure/temperature distribution in the mantle. Knowledge of the internal material constitution
of the Earth, such as the mineral phase, is a requirement for understanding the main geodynamical
processes that determine Earth’s evolution.

Density and pressure inside the Earth are linked with self-gravitation. This means that the
hydrostatic or lithostatic pressure is a direct result of the gravity field generated by the Earth’s own
mass distribution. The lithostatic pressure can be expressed as the weight of a column of unit cross-
sectional area extending from zero depth, at the Earth’s surface, to the depth z of the evaluation
point,

P (z) =

∫ z

0

ρ(z′)g(z′)dz′ (10.9)

where ρ is the mass density and g is the magnitude of the gravitational acceleration.
The gravity field defining g is generated by the Earth’s own density distribution. Weak periodic

gravity ‘perturbations’ are generated by celestial bodies, expressed in the external tides, both ocean
tides and solid earth tides. The main tides are generated by the Earth’s moon and by the Sun.

In the following section expressions for the gravity field in terms of the density distribution are
given, based on Newton’s law of gravitation.

In the description of the density distribution we will first neglect the role of self-compression and
consider a number of one-dimensional (1-D), spherically symmetric, parameterized density distri-
butions. Self-compression and compressibility are then treated in section 10.5.2. Self-compression
and finite compressibility result in a continuous increase of density with pressure in agreement with
several geophysical observations.

problem: 6. Derive the expression (10.9) (where the depth z is not to be confused with a carte-
sian coordinate) for the lithostatic pressure in a spherically symmetric planet from the elastostatic
equation for a static medium,

∂jσij + ρgi = 0 ⇔ ∇⃗ · σ + ρg⃗ = 0⃗ (10.10)

Hint: Assume hydrostatic conditions where the stress tensor can be written as σij = −Pδij, with
δij the Kronecker delta, and derive from equation (10.10) for the pressure gradient, ∇⃗P = ρg⃗.

Gravity field of a mass distribution

Newton formulated the attraction force acting on a point mass m0, located in a point with position
vector r⃗ = (x, y, z), with x, y, z the cartesian coordinates, from a second point mass m1 located at
r⃗1 = (x1, y1, z1), illustrated in the following figure as,

F⃗ (r⃗) =
Gm0m1

|r⃗1 − r⃗|2
e⃗r⃗r⃗1 (10.11)
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Vector diagram of the gravitational forces acting on the two point masses m0, m1 in vector locations r⃗ and r⃗1 respectively. From the expression for the

gravity field (10.11) it follows that the forces on both masses are of equal magnitude and in opposite direction.

Where e⃗r⃗r⃗1 is the unit vector in r⃗ pointing towards r⃗1 and F⃗ (r⃗1) = −F⃗ (r⃗). r⃗, r⃗1 are the position
vectors of the two point masses and |r⃗1 − r⃗| =

√
(x1 − x)2 + (y1 − y)2 + (z1 − z)2 is the distance

between the points r⃗ and r⃗1. G is the gravitational constant G ≃ 6.67× 10−11Nm2 kg−2, m0,m1 the
mass of the respective pointmasses.

This gravitation effect is usually specified as a gravitation force per unit mass or acceleration
vector g⃗,

g⃗(r⃗) =
Gm1

|r⃗1 − r⃗|2
e⃗r⃗r⃗1 (10.12)

It can be verified by inspection that the acceleration vector field can be written as the gradient of a
scalar potential field U(r⃗) (i.e. the potential energy per unit mass) with

g⃗ = −∇⃗U = (−∂U
∂x

,−∂U
∂y

,−∂U
∂z

),

in Cartesian coordinates (see problem 9), and

U(r⃗) = − Gm1

|r⃗1 − r⃗|
(10.13)

The gravity acceleration and corresponding potential field are additive such that the total force
or potential of a collection of N point masses is obtained by summation over individual point con-
tributions,

g⃗(r⃗) =
N∑
j

Gmj

|r⃗j − r⃗|2
e⃗r⃗r⃗j , U(r⃗) = −

N∑
j

Gmj

|r⃗j − r⃗|
(10.14)

With this definition and sign convention the potential field of a point source in the origin is represented
by a potential well (U(r⃗) < 0). This is known as Coulomb’s law and the equivalent form for a
continuous mass distribution of density ρ (mass per unit volume) contained in a volume V is,

g⃗(r⃗) =

∫
V

Gρ(r⃗′)
|r⃗′ − r⃗|2

e⃗r⃗r⃗′ dV (r⃗
′
), U(r⃗) = −

∫
V

Gρ(r⃗′)
|r⃗′ − r⃗|

dV (r⃗
′
) (10.15)

Besides the integral expression for the gravity field defined in (10.15) there is also the differential
form using the second order partial differential equations of Laplace and Poisson. It can be shown
by verification (see hereafter) that U in (10.15) satisfies Poisson’s equation,
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∇⃗2U = 4πGρ (10.16)

which reduces to Laplace’s equation ∇⃗2U = 0 outside the mass distribution in V (where ρ = 0).
To show that U in (10.15) satisfies Poisson’s equation integrate the normal component of the

acceleration field over an arbitrary closed surface S enclosing V and change the order of integration
for the volume and surface integral.∫

S

∇⃗U(r⃗) · n⃗ dA(r⃗) = −
∫
V

Gρ(r⃗′)
{∫

S

∇⃗
(

1

|r⃗′ − r⃗|

)
· n⃗ dA(r⃗)

}
dV (r⃗

′
) (10.17)

The surface integral on the right is independent of the choice of the surface S as long as it contains
r⃗
′
. We therefore replace this surface by a sphere of radius R centered at r

′
and find for the surface

integral the value −4π.
Next we apply the Gauss divergence theorem to the left hand surface integral to obtain,∫

V

∇⃗2U dV =

∫
V

4πGρ dV (10.18)

Note that the surface has been contracted on the volume V to obtain (10.18). Since the surface and
enclosed volume are arbitrary we obtain the Poisson equation,

∇⃗2U = 4πGρ (10.19)

In Newton’s time the numerical value of G had not been determined yet. As a result it was not
possible to determine the mass of the Earth M⊕ by measuring the gravitation force of the Earth
on a known ‘test mass’. This way only the value of GM⊕ could be determined. Only with the
experiment named after Cavendish (1798) 6 it became possible to measure G directly, in a torsion
balance experiment, by determining the gravitational attraction of two closely spaced test masses
shown here:

Since Cavendish many experiments have been conducted in order to determine the value of this
constant:

6http://en.wikipedia.org/wiki/Cavendish_experiment
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This chart compares the results from a dozen experiments measuring G. The vertical stripe represents the most recent recommended value for G (black line)

with its error bar (gray). Far to the right are the two outlying BIPM measurements, in blue. Taken from

https://www.nist.gov/image/glabel2016plotfromstephanpng

The recommended value is G = 6.67430(15)·10−11m3 kg−1 s−2, see for instance https://physics.
nist.gov/cgi-bin/cuu/Value?bg.

Multipole expansion

The idea behind the multipole expansion is simple: the denominator in Eq. (10.13) can be rewritten
in such a way that it can be expanded as a Taylor series. We have

1

|r⃗ − r⃗′|
=

1√
(r⃗ − r⃗′) · (r⃗ − r⃗′)

=
1√

r⃗ · r⃗ − 2r⃗ · r⃗′ + r⃗′ · r⃗′
=

1

r2
1√

1− 2 r⃗·r⃗
′

r2
+
(
r′

r

)2
The potential can be expanded in a series of Legendre polynomials.

(1− 2XZ + Z2)−1/2 =
∞∑
n=0

ZnPn(X)

valid for |X| ≤ 1 and |Z| ≤ q. The coefficients Pn are the Legendre polynomials of degree n.
FINISH!

Gravitational potential energy

For two pairwise interacting point particles, the gravitational potential energy U is given by

U =
−GMm

R

where M and m are the masses of the two particles, R is the distance between them. Close to the
Earth’s surface, the gravitational field is approximately constant, and the gravitational potential
energy of an object reduces to

U = mgh

where m is the object’s mass, g = GME/R
2
E is the gravity of Earth, and h is the height of the object’s

center of mass above a chosen reference level.
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Let us talk units

The SI units for (gravity) acceleration are m s−2. However in the context of gravity, we will rarely
encounter these.

The Gal is the commonly used unit in gravimetry:

0.01m s−2 = 1Gal

and often measurements are given in mGal or µGal.
As such, the acceleration due to Earth’s gravity at its surface is 976 to 983 Gal, the variation

being due mainly to differences in latitude and elevation.

Gravity Force Inside a Spherical Shell

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to
objects inside or outside a spherically symmetrical body.

Isaac Newton proved the shell theorem and stated that:

1. A spherically symmetric body affects external objects gravitationally as though all of its mass
were concentrated at a point at its centre.

2. If the body is a spherically symmetric shell (i.e., a hollow ball), no net gravitational force is
exerted by the shell on any object inside, regardless of the object’s location within the shell.

These two propositions are not easy to prove. The second one is very important: it states that
if I stand mid-mantle at a radius of, say, 5000km, the 1371km-thick shell of rock above me does not
contribute to the force of gravity that I am feeling. Only the rocks below my feet contribute to this
force. At this location we can write

GmM(r)

r2
= ma

where M(r) is the mass inside a sphere of radius r. The mass m of my body cancels out, and we
obtain

GM(r)

r2
= a

The acceleration in this context is often called g and it clearly depends on r so that if density is
constant, M(r) = 4π

3
r3ρ0 and then

g(r) = G 4π
3
rρ0
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It also follows that the gravity acceleration in the center of the planet (r = 0) must be zero and
the gravity acceleration increases linearly with the distance to the center. If now the density is not
constant (but radially symmetric, i.e. ρ = ρ(r)) then

g(r) = G 4π
r2

∫ r

0

ρ(r′)r′2dr′

Remember that this is true because of the spherical symmetry!

Nonuniqueness

Given a body with mass M at a distance r from me, the gravitational acceleration that I feel is

a =
GM
r2

If the mass is now twice as far (distance 2r) then

a′ =
GM
(2r)2

=
1

4

GM
r2

=
1

4
a

Because of the inverse square of the distance the acceleration is four times as small.
However, if I now ’make’ the mass of the body four times as large and twice as far,

a′′ =
G(4M)

(2r)2
=
GM
r2

= a

There lies a very important fact: There is an inescapabale trade-off between distance and mass.
If gravity is measured at a single point in space nothing certain can be said about what lies below:

the object generating the gravity anomaly could be ’close’ and not so massive, or ’far’ and really
massive, both situations potentially leading to the same measurement.

Taken from Meijde, Pail, Bingham, and Floberghagen [861] (2015).
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The Netherlands

As explained in Crombaghs, Min, and Hees [287] (2002), in The Netherlands gravity values increase
from south to north with about 1 milligal per kilometer. Smallest values occur in Limburg (981,100
milligal), while the largest values occur in Groningen (981,350 milligal). Local variations are limited
to 1 milligal over some kilometers.

Left: Taken from https://www.nlog.nl/en/gravity-and-magnetic-field. The size of the Bouguer anomaly at a particular location is a measure of the mass deficit
or mass excess in the underlying rocks. A mass deficit exists where the stratigraphic succession is composed of relatively light rocks; this yields a negative

Bouguer anomaly. A mass excess exists where the stratigraphic succession is composed of relatively heavy rocks, this yields a positive anomaly. Right: Taken
from https://upload.wikimedia.org/wikipedia/commons/c/ce/Valversnelling_in_Nederland.svg.

Taken from https://bodemdalingskaart.nl/portal/index. Is the continuous sinking of certain parts of the Netherlands visible in the satellite gravity rate

measurements ?

write about Anomalies, Additivity, Inversion

A few problems more to solve

problem: 7. Verify that the familiar surface value of the Earth’s gravity acceleration g0 =

9.8 m/s2 corresponds to the value of a point mass at the Earth’s centre with the same mass as

the Earth (see Table).

Radius Mass Density
km kg kg/m3

Earth 6371 5.97 · 1024 5.515× 103

Moon 1738 7.34 · 1022 3.34× 103

Mars 3394 6.42 · 1023 3.93× 103

Jupiter 71492 1.9 · 1027 1.326× 103

Sun 6.96 · 105 1.99 · 1030 -
Radius-mass parameters of Earth moon and planets.

686

https://www.nlog.nl/en/gravity-and-magnetic-field
https://upload.wikimedia.org/wikipedia/commons/c/ce/Valversnelling_in_Nederland.svg
https://bodemdalingskaart.nl/portal/index


Left: Mars gravity, taken from Hirt et al. (2011) [576]; Right: Moon gravity, taken from https://en.wikipedia.org/wiki/Gravitation_of_the_Moon

problem: 8. The PREM profile suggests that the magnitude of the gravity aceleration is ap-

proximately constant throughout the Earth’s mantle. Assume an approximate uniform value of g

in the Earth’s mantle, equal to the surface value g0 ∼ 9.8m/s2 and use an approximate average

mantle density ρm ∼ 4.5 × 103kg/m3 to obtain from Eq. (10.9) an approximation of the static

pressure at the core mantle boundary at a depth of 2891km.

problem: 9. Verify the consistency of the expression for the gravity acceleration and potential
of a point mass in (10.12) and (10.13), i.e. prove from these expressions by explicit calculation
of the gradient vector from the scalar potential field that g⃗ = −∇⃗U .

Hint: specify the potential in (10.13) in Cartesian coordinates (i.e. write explicitely |r⃗1 − r⃗|) and

differentiate the result with respect to the coordinates x, y, z. What is the derivative of (f(x))α

with respect to x? After a few steps you should then arrive at (10.12).

problem: 10. Apply the Poisson equation (10.16) to obtain the gravity field of a point-mass
distribution with mass M , described by a Dirac delta function, ρ(r⃗) = Mδ(r⃗ − r⃗0). Where the
following property holds for the delta function,∫

V
δ(r⃗ − r⃗0)dV =

{
1, r⃗0 ∈ V
0, r⃗0 ∋ V

or, more general

∫
V
f(r⃗)δ(r⃗ − r⃗0)dV =

{
f(r⃗0), r⃗0 ∈ V
0, r⃗0 ∋ V

(10.20)
Hint: integrate (10.16) over a spherical volume, centered at r⃗0 and apply the Gauss divergence
theoreme: for a vector field A⃗ = (A1, A2, A3) with divergence ∇⃗ · A⃗ = ∂A1

∂x + ∂A2
∂y + ∂A3

∂z∫
V
∇⃗ · A⃗dV =

∫
∂V
A⃗ · n⃗dS (10.21)

where ∂V is the closed boundary surface of V .
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problem: 11. Check the dimensional units in (10.16) and verify that the gravitational potential

has the dimension of energy per unit mass. This is in agreement with the identification of the

gravity potential with the potential (gravitational) energy of a unit mass in the gravity field. a

aThe local potential field value U(r1) equals the negative of the (gravitational) potential energy W (r1)
of a unit point mass positioned at r1. It can be shown that the change in potential energy ∆W that results
from moving a unit mass from r1 to r2 follows directly from the potential field values U(r1), U(r2) and is
independent of the path taken between r1 and r2. This property defines a so called conservative field U .
To derive this result we compute the potential energy difference as the path (line) integral of the work

done by the gravity force field on a unit mass and apply the gradient property g⃗ = −∇⃗U . The work done
by moving a unit point mass from a location r1 to r2 is defined by the line integral,

∆W =

∫ r2

r1

F · dr =

∫ r2

r1

g · dr =

∫ r2

r1

−∇⃗U · dr =

∫ U(r2)

U(r1)

−dU = − (U(r2)− U(r1)) = −∆U(10.22)

Here the following gradient property has been used, relating the gradient vector to the differential of the
scalar potential field,

dU =
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz = ∇⃗U · dr⃗ (10.23)

The gravitational potential field can thus be defined in terms of the work done by the gravity field to move
a unit mass from infinity to the evaluation point.

W (r1) =

∫ r1

r∞

g · dr =

∫ r1

r∞

−∇⃗U · dr =

∫ U(r1)

U(r∞)

−dU = −U(r1) + U(r∞) = −U(r1) (10.24)

Where U(r∞) = 0 has been used.

The above can be applied in the determination of the escape velocity from the surface of a planet.
This is the minimum launch velocity to escape from the planet’s gravity field. For a spherically
symmetric planet the external gravity potential is given by (10.33). Moving an object from the
surface, the gravity potential changes by ∆U = U(r) − U(R) = GM(−1

r
+ 1

R
). Applying an energy

conservation argument we require the change in total (potential plus kinetic) energy per unit mass
to be: ∆E = ∆U +∆K = 0. With ∆K = −v2ex/2 we get vesc =

√
2GM/R.

problem: 12. Compute the surface escape velocities for different celestial bodies using the

parameters given in the Table above.

To watch:

� Tossing Satellites into Orbit with SpinLaunch: Is that Possible? (3min)
https://www.youtube.com/watch?v=-BCeanUiKwM

� Can We Throw Satellites to Space? (42min)
https://www.youtube.com/watch?v=yrc632oilWo
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problem: 13. The potential energy of a self-gravitating planet in its own gravity field is defined
in terms of the volume density ρU as,

E = −
∫
V
ρUdV (10.25)

Derive the following expression for the potential energy of a spherically symmetric, uniform den-
sity model, using the expression for the internal gravity potential defined in (10.32)

E =
8π

5
Gρ0MR2 (10.26)

Compute the potential energy value E, assuming a density ρ0 = 5.5 · 103kg/m3 and planetary

radius R = 6371km.

answer: 4.4 · 1032J

The gravitational energy considered above plays an important role in major compositional differ-
entiation processes that occurred in the early Earth and are still occuring today.

� A so called ‘core catastrophe’ occured when the iron/nickel core of the Earth differentiated
from the silicate mantle in the first few million years after the formation of the Earth in the
early solar system. This event has probably freed enough potential energy to melt the mantle
completely, resulting in a global magma ocean 7.

� Crystallization of the solid inner core from the liquid outer core, as a result of core cooling, is
accompanied by compositional differentiation. The liquid outer core contains a lighter fraction,
possibly sulfur, which stays behind in the liquid during freezing of the inner core. The enriched
residual liquid near the inner core boundary is less dense than the average liquid of the outer
core and this results in a gravitationally unstable layering that induces ‘chemically driven’
convective flow in the outer core. The potential energy released in this chemical convection is
probably an important energy source in powering the geodynamo that generates the Earth’s
present day magnetic field.

10.5 The gravitational potential for spherical problems

Starting from the Poisson equation,
∆U = 4πGρ

and using Gauss’ theorem (noting that ∆U = ∇⃗ · ∇⃗U):∫
V

∆UdV =

∫
V

∇⃗ · ∇⃗UdV =

∫
Γ

∇⃗U · n⃗ dS =

∫
V

4πGρ dV = 4πG
∫
V

ρ dV

where n⃗ is the outward pointing normal vector.
A uniform sphere of mass M and radius a (and therefore density ρ = M/(4πa3/3)) has the

potential

U(r) =

{
−2πGρ(a2 − r2/3) r ≤ a

−GM/r r ≥ a
(10.27)

Outside the sphere the potential is Keplerian, while inside it has the form of a parabola; both
the potential and its derivative are continuous at the surface of the sphere.

A sphere with density profile
ρ(r) = ρ0(r/r0)

−2

7https://en.wikipedia.org/wiki/Iron catastrophe
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has the potential
U(r) = 4πGρ0r20 ln(r/r0) (10.28)

problem: 14. Verify (10.27) and (10.28). Sketch the density field and the resulting gravity field

and potential.

problem: 15. Assume a spherically symmetric non-rotating Earth in hydrostatic equilibrium.
In spherical coordinates the divergence of a vector field a⃗(r), which only depends on the radius r
is

∇⃗ · a⃗ =
1

r2
d

dr
(r2ar)

a) Prove that the acceleration of gravity at radius r only depends on the mass contained in the

sphere of radius Ri. Hint: start from ∇⃗ · g⃗.
b) Assume that the mass of the Earth’s core is Mc. Assume a linear density profile for the crust

and mantle and determine the acceleration of gravity as a function of the radius in the mantle.

As it turns out, pairs of functions related by Poisson’s equation provide convenient building-blocks
for galaxy models. Three such functions often used in the literature are listed here; all describe models
characterized by a total mass M and a length scale a:

� Plummer (1905) [325]

ρ(r) =
3M

4πa3

(
1 +

r2

a2

)−5/2

U(r) = − GM√
r2 + a2

� Hernquist (1990)

ρ(r) =
M

2π

a

r(r + a)3
U(r) = − GM

r + a

� Jaffe (1983)

ρ(r) =
M

4π

a

r2(r + a)2
U(r) =

GM
a

ln
a

r + a

(VERIFY?)

10.5.1 The gravity and pressure field for parameterized density models
with self-gravitation

In the following problems a number of simple density distributions are investigated that will serve
as a reference for models more constrained by geophysical observations to be introduced in later
sections. The gravity field can be determined by solving the governing Poisson equation (10.16)
using suitable boundary conditions. For the special case of spherically symmetric mass distributions
simple 1-D integral expressions can be used to derive the corresponding radial pressure distribution.
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problem: 16. The internal and external gravity field for a simple model of a planet can by
derived by solving the Poisson equation (10.16), and applying appropriate boundary conditions to
the general solution. Consider a spherically symmetric planet of radius R and uniform density
ρ0.

1. Derive expressions for the gravity potential field U and the gravity force field g = |g| inside
and outside the planet.

Hints: Solve Poisson’s equation in spherical coordinates for the interior (r ≤ R) and ex-
terior domain r ≥ R separately. The separate solutions for the interior Uint, gint and
exterior Uext, gext domain each contain two integration constants which can be determined
by applying the following boundary conditions,

lim
r→∞

Uext(r) = 0, lim
r→0

gint(r) <∞ (10.29)

Continuity of the gravity accelaration g at the surface r = R,

gint(R) = gext(R) (10.30)

Continuity of the gravity potential U at the surface r = R,

Uint(R) = Uext(R) (10.31)

Answers

gint =
4π

3
Gρ0r , Uint =

2π

3
Gρ0r2 −

3

2

GM
R

(10.32)

where M = 4π
3 R

3ρ0 is the planet mass and G is the gravitational constant.

gext =
GM
r2

, Uext = −
GM
r

(10.33)

2. Verify that the external gravity force field is identical to the field of a concentrated point
mass at r = 0.

3. Derive an expression for the radial distribution of the pressure in the planetary interior and
compute the central pressure for a case with ρ0 = 5.5 · 103kgm−3 and R = 6.371× 106m.

Solution: P (r) = 2π
3 ρ

2
0G
(
R2 − r2

)
The gravity field of a spherically symmetric density distribution is identical to the field of an

equivalent point-mass. (see problem 16 for the spatial case of a uniform density distribution). This
can be formulated as follows,

g(r) =
Gm(r)

r2
, (10.34)

with

m(r) =

∫
V (r)

ρdV =

∫ r

0

ρ(r′)4πr′2dr′ (10.35)

Here m(r) is the mass inside a sphere of radius r and g(r) is the corresponding magnitude of the
gravity acceleration. For the corresponding gravity potential this implies, with

∫∞
r

dU
dr′
dr′ = U(∞)−

U(r) = −U(r),

U(r) = −
∫ ∞

r

dU

dr′
dr′ =

∫ ∞

r

gr(r
′)dr′ =

∫ ∞

r

−g(r′)dr′ = −
∫ ∞

r

Gm(r′)

r′2
dr′ (10.36)

where the radial vector component gr has been expressed in the vector length g as gr = g · er = −g.
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To derive (10.34), the potential field at the radial coordinate r can be split in contributions origi-
nating from an internal- and external density distribution U(r) = Ui(r)+Ue(r). With corresponding
pairs, Ui ↔ ρi, and Ue ↔ ρe, where ρe(r

′) = 0, r′ ≤ r, and ρe(r
′) = ρ(r′), r′ > r. This follows from

the linearity of the governing Poisson equation.
The field generated by the internal mass distribution is obtained by integrating the corresponding

Poisson equation in spherical coordinates,

1

r′2
d

dr′
r′2
dUi
dr′

= 4πGρi (10.37)∫ r

0

d

dr′

(
r′2
dUi
dr′

)
dr′ =

∫ r

0

4πGρir
′2dr′ (10.38)

The left hand side becomes simply r2 dUi
dr

so the radial component of the gravity acceleration becomes

gr(r) = −
dUi
dr

= − 1

r2

∫ r

0

4πGρir
′2dr′ (10.39)

Furthermore the acceleration field ge from the external mass distribution ρe for internal evaluation
points r′ < r is zero. The corresponding gravity potential Ue is uniform, which follows from the
relevant Poisson equation, in spherical coordinates for a spherically symmetric mass distribution,

1

r′2
d

dr′
r′2
dUe
dr′

= 4πGρe = 0 → r′2
dUe
dr

= A → ge(r
′) = −dUe

dr′
= − A

r′2
(10.40)

A non-singular field requires A = 0, ge(r
′) = 0, r′ ≤ 0 and,

dUe
dr′

= 0 → Ue(r
′) = B, r′ ≤ r (10.41)

Looking back at the PREM model, it is a radial model ρ(r) so can compute gr at the surface of
the Earth. The code is available in /images/prem/ and uses a somewhat naive numerical quadrature
of Eq. (10.39):
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prem

Radial gravity component measured at the surface of the Earth as a function of the cell size used for the integration.

For very high resolutions we do recover the analytical value as computed in Section 18.1.

problem: 17. Verify that 10.36, applied to the special case of a homogeneous sphere of density

ρ0, lead to the same expression for the internal and external potential and acceleration field as

given in problem 16.
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For a two-parameter spherically symmetric planet model consisting of a uniform core and mantle
with radius Rc and Rm and contrasting densities ρc and ρm, the gravity field can also be determined
by solving the Poisson equation for the particular density distribution and determination of the
integration constants from the boundary conditions. However in this case the formula (10.34) are
more convenient to obtain expressions for the gravity field.

problem: 18. Derive expressions for the gravity acceleration and internal pressure distribution
for the two-parameter model

ρ(r) =


ρc, r < Rc
ρm, Rc < r ≤ R

ρe = 0, r > R
, g(r) =


gc, r < Rc
gm, Rc < r ≤ R
ge, r > R

, P (r) =

{
Pc, r < Rc
Pm, r ≥ Rc

(10.42)
using (10.34) and (10.9). See also (10.48).
Answer:

gc(r) =
4π

3
Gρcr, gm(r) =

G

r2

{
4π

3
ρm
(
r3 −R3

c

)
+Mc

}
, ge(r) =

G

r2
(Mm +Mc) (10.43)

Mc =
4π

3
R3
cρc , Mm =

4π

3
ρm
(
R3 −R3

c

)
(10.44)

Pc(r) = Pm(Rc) +
2π

3
Gρ2c

(
R2
c − r2

)
(10.45)

Pm(r) =
2π

3
Gρ2m

{
R2
m − r2 + 2

(
ρc
ρm
− 1

)
R3
c

(
1

r
− 1

Rm

)}
(10.46)

10.5.2 The pressure effect on density

In the previous sections we considered the gravity field of a given mass distribution. For self-
gravitating planets of sufficient size the local density depends on the pressure, through
selfcompression i.e. the compression of the material caused by the planets own gravity field.
As we have seen in previous sections the lithostatic pressure depends on the gravity field and the
density distribution. It follows that the determination of the density, gravity and pressure are coupled
problems that must be solved simultaneously and can not be solved separately. Here we will consider
the solution of such coupled problems.

From observations of the average density of surface rocks of some 2.7 · 103 kg/m3 and the known
mean density of the Earth 5.5·103 kg/m3, it follows that the surface density is less than half the mean
Earth value. The difference between both density values suggests a density increase in
the interior which could be related either to different composition at depth, for example
corresponding to a dense metallic core, and/or the effect of selfcompression in an otherwise
homogeneous planet. Solid state phase transitions of mantle material due to increasing pressure
can also explain part of the high mean density value.

From the nineteenth century on, models of the internal density distribution of the earth have been
investigated. These models have in common that the radial density distribution is parameterized
in a simple way with a small number of parameters, typically two, which are then adjusted to the
known data such as the surface density and the Earth’s total mass or moment of inertia.

In the following the relation between density, gravity and pressure in a self-gravitating planet will
be investigated in a more self consistent way.

For a spherically symmetric density distribution the corresponding magnitude of the gravity accel-
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eration vector is given by (10.39),

g(r) = |g(r)| = |gr(r)| =
4πG

r2

∫ r

0

ρ(r
′
)r
′2dr

′
=
Gm(r)

r2
(10.47)

where m(r) is the mass of a sphere of radius r and ρ(r) is the corresponding radial density profile.

problem: 19. Use (10.47) to show that it is not possible to derive a unique radial mass distri-
bution of a spherically symmetric planet from the observed surface value of the gravity field alone.
This can be verified by showing that multiple density profiles exist that produce the same surface
gravity. To illustrate this sketch a schematic internal radial profile of the gravity acceleration in
a comparison of two spherically symmetric planets of identical mass M and radius R. The first
one is a homogeneous planet with density ρ0 and the second one is a differentiated planet with a
uniform high density core ρc = ρ0 + δρ and less dense mantle ρm = ρ0 − δρ. Verify that these
assumptions correspond to this special case with volume fraction of the core ϕc = 1/2.

From the above results the lithostatic pressure distribution can be obtained by substitution for the
gravity acceleration and integrating the pressure gradient dP/dr = −ρg. Assuming a zero pressure
value at the surface this results in,

P (r) =

∫ R

r

ρ(r
′
)g(r

′
)dr

′
= 4πG

∫ R

r

ρ(r
′
)

{
1

r′2

∫ r
′

0

ρ(r
′′
)r
′′2dr

′′

}
dr
′

(10.48)

The pressure in the Earth’s interior reaches values over 350 GPa as shown in Fig. ??. For such
high pressure values the effect of self-compression on the density is significant. In the following this
effect is further explored.

The bulkmodulus An isotropic linear elastic solid can be described by two independent elasticity
parameters, for instance the Lamé parameters λ and µ 8. The bulkmodulus can be expressed in
the Lamé parameters as, K = λ + 2

3
µ. The bulkmodulus K and the shearmodulus µ are the most

commonly used parameters to specify the elastic parameters of Earth materials.
The bulk modulus K of a substance measures the substance’s resistance to uniform compression.

It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the
volume. Its SI unit is the Pascal, and its dimensional form is M1L−1T−2.

The incompressibility K, or bulkmodulus , is defined as,

1

K
=

1

ρ

dρ

dP
(10.49)

By substitution of dP = −ρgdr in (10.49) we derive a differential equation for the density profile of
a compressible planet model,

1

K
=
−1
ρ2g

dρ

dr
⇒ dρ

dr
= −ρ

2g

K
(10.50)

8https://en.wikipedia.org/wiki/Elastic modulus
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Parameterization of the bulkmodulus The radial density distribution for a selfcompressing
planet can be obtained from (10.50) once the bulkmodulus K is known. We will first consider simple
cases where K is either a uniform constant or it is parameterized in terms of the density.

problem: 20. Assume both K and g in (10.50) to be uniform in the mantle and derive the
following density profile,

ρ(z) =
ρ0

1− ρ0gz
K

(10.51)

where z = R− r is the depth coordinate and ρ0 = ρ(0) is the surface density value.

� Compute the depth z1 where the expression (10.51) becomes singular, i.e. ρ→∞, suggest-
ing infinite compression of the material. To do this assume Earth(mantle)-like values of
the incompressibility, K = 400GPa (see Fig.??) and the surface density ρ0 = 3 ·103 kg/m3.

� Now consider a simplified model of a large rocky exoplanet of Earth-like composition with
M = 8M⊕ and R = 1.5R⊕. Assume uniform gravity (adapted for the given M,R) and
uniform incompressibility K. Do you now find the singular depth z1 within the depth range
of the planet? Comment on the assumption of a uniform gravity field in view of the models
presented in section 10.5.1.

problem: 21. The result of problem 20 gives the density depth distribution for the model with
constant properties. The resulting expression (10.51) also contains the uniform gravity acceler-
ation. A more fundamental relation between density and pressure, not including gravity, can be
derived for this model with constant material property K as an equation of state (EOS) for the
density.
Derive from the definition of the bulkmodulus (10.49) the following logarithmic EOS for the density
in terms of the static pressure,

P = ln

((
ρ

ρ0

)K)
(10.52)

Show that the above EOS (10.52) can be inverted to obtain an explicit expression for density as

a function of pressure.

The singular behavior in the density model of problem 20 is a result of the assumed uniform g and
K in (10.50). While g is reasonably constant with depth in the mantle, as illustrated in Fig. ??, K is
not. The incompressibility increases with increasing depth/pressure and as a result the compression
remains finite for earth-like conditions. The incompressibility can be expressed in the density and
the seismic wave velocities, vp =

√
(λ+ 2µ)/ρ, vs =

√
µ/ρ. With K = λ + 2

3
µ this becomes

K = ρ(v2p − 4/3v2s). A radial profile K(P (r)) can therefore be derived, from the seismic velocities
determined from inversion of traveltime tables of longitudinal and shearwave seismic arrivals.

The K(P (r)) profile derived from the PREM model of Dziewonski and Anderson (1981) appears
to be roughly linear as shown in the following figure:
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Incompressibility profile derived from the PREM model.

A linear relation between bulkmodulus and pressure as suggested by this figure is also obtained
using the following power law parameterization for the bulkmodulus in terms of the density K(ρ).

K = Cρn ⇒ ln(K) = ln(C) + n ln(ρ) ⇒ n =
d ln(K)

d ln(ρ)
=
dK

dP
= K

′

0 (10.53)

where C is a constant. The constant pressure derivative in this model implies a linear pressure
relation K(P ) = K0 +K

′
0P . This appears to approximate the distribution of K in particular in the

lower mantle as determined from seismological data in the PREM model. K
′
0 ≈ 4 for the magnesium-

iron sillicates (Mg,Fe)SiO3 (perovskite) and dense oxides (Mg,Fe)O (wüstite), representative for the
earth’s deep mantle.

The Murnaghan e.o.s. An equation of state directly relating the density or specific volume, V =
1/ρ, to pressure can be derived from such an ‘ansatz’ of a linear pressure dependence K = K0+K

′
0P

as shown in the following,

1

ρ

dρ

dP
=

1

K
→ 1

V

dV

dP
= − 1

K
→ dP = −(K0 +K ′

0P )
1

V
dV (10.54)

∫ P

0

dP ′

K0 +K ′
0P

′ = −
∫ V

V0

1

V ′dV
′ =

∫ V0

V

1

V ′dV
′ = ln

(
V0
V

)
(10.55)

Substitution in the integral over pressure of K0 +K ′
0P

′ = x, dx = K ′
0dP

′ gives,∫ xP=K0+K′0P

x0=K0

1

K ′
0

dx

x
=

1

K ′
0

ln

(
K0 +K ′

0P

K0

)
= ln

(
V0
V

)
(10.56)

1 +
K ′

0P

K0

=

(
V0
V

)K′0
→ P =

K0

K ′
0

((
V0
V

)K′0
− 1

)
(10.57)

This relation is known as the Murnaghan equation of state (EOS).
The Murnaghan equation of state is a relationship between the volume of a body and the pressure

to which it is subjected. This is one of many state equations that have been used in earth sciences and
shock physics to model the behavior of matter under conditions of high pressure. It owes its name to
Francis D. Murnaghan who proposed it in 1944 to reflect material behavior under a pressure range
as wide as possible to reflect an experimentally established fact: the more a solid is compressed,
the more difficult it is to compress further.

The Murnaghan equation is derived, under certain assumptions, from the equations of continuum
mechanics. It involves two adjustable parameters: the modulus of incompressibility K0 and its
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first derivative with respect to the pressure, K ′
0, both measured at ambient pressure. In general,

these coefficients are determined by a regression on experimentally obtained values of volume V as
a function of the pressure P . These experimental data can be obtained by X-ray diffraction or by
shock tests. Regression can also be performed on the values of the energy as a function of the volume
obtained from ab-initio and molecular dynamics calculations.

problem: 22. Derive an explicit expression for the pressure dependent density from the Mur-
naghan equation of state (10.57).
Answer:

ρ(P ) = ρ0

(
K
′
0P

K0
+ 1

)1/K
′
0

(10.58)

problem: 23. In problem 20 we have seen that a simple model with uniform incompressibility
and gravity K = K0 and g = g0 leads to physically impossible solutions. In a refined version
of this model, applied to the Earth’s mantle, g = g0 is maintained (compare Fig.??), and K is
parameterized using the powerlaw relation (10.53).
Derive the following density profile for the model corresponding to (10.53).

ρ(r) = ρ0

(
1 + (n− 1)

ρ0g0z

K0

) 1
n−1

(10.59)

where z = R − r is the depth coordinate and the 0 subscript refers to zero pressure conditions.

Note that the singularity for ρ0g0z/K0 = 1 in problem 20 is absent in this model.

A more widely used and more accurate EOS for a higher pressure range is the equation derived
by Birch (1952) from a consideration of elastic strain energy, known as the Birch-Murnaghan EOS
(Poirier, 2000).

In other cases than the special simplified cases discussed above, in particular in problems 20 and
23, the gravity acceleration varies also with depth. Also more accurate equations of state may be
necessary for very high pressure, encountered in the deep interior of large (exo)planets, that result in
large compression. Such models can be formulated in a more general way by the following coupled
set of equations for pressure, gravity and density.

dP

dr
= −ρg (10.60)

g(r) =
Gm(r)

r2
(10.61)

F (ρ, P, T ) = 0 (10.62)

where the radial mass distribution m(r) is defined as in (??). A model based on (10.60), (10.61),
and (10.62) can be constructed for the internal structure (density, gravity, pressure) of a planet of
given mass M and composition, i.e. with given parameters of the EOS (10.62) such as ρ0, K0, K

′
0

in the Murnaghan EOS (10.57). Consider the application of such a model to a planet for which
only the planet mass M is known. 9 Assume a homogeneous terrestrial (rocky) planet without a
distinct metallic core. Assuming an earth-mantle like composition, representative values of the EOS
parameters can be used, to solve the coupled model equations in the following iterative scheme.

1. Define a grid along the radial coordinate ri, i = 1, . . . , N, r1 = 0. This grid defines a subdivision
of the interior in N − 1 concentric layers and must be chosen large enough, i.e. rN > R.

9Such models can be applied to exoplanets that are recently being discovered
https://en.wikipedia.org/wiki/Methods of detecting exoplanets . For some of these planets, detected from ra-
dial velocity variations of the star, only the planet mass M is known.
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2. Choose an initial estimate of the central pressure P (1)(0).

3. In a loop over the internal layers, starting upward from the centre, first compute the pressure
decrement over the layer from (10.60). This is then used to obtain the pressure at the next
grid point and corresponding density from the EOS (10.62). From the computed density the
corresponding mass distribution m(ri) and gravity g(ri) (10.61) follow.

4. The layer iteration in the previous item is stopped when a zero pressure value has been reached.
The radial level reached this way now defines the next approximation of the planetary radius
R(j) and M (j) = m(R(j)) is a new approximation of the planet mass M .

5. From the total mass defect ∆M (j) =M (j)−M a correction to the central pressure is computed
as ∆P (j), (problem 24). In the next iteration the radial integration is repeated from item 3
with an updated central pressure P (j+1)(0) = P (j)(0) + ∆P (j) and this iterative procedure is
repeated until convergence is reached, i.e. until |∆M (j)|/M drops below a specified tolerance
value.

problem: 24. A correction for the central pressure in item 4 can be estimated by distributing
the mass defect ∆M (j) over a spherical shell of thickness ∆R(j), positioned at the surface, and
computing an approximate pressure ∆P (j) at the bottom of this shell.
Derive the following expression for the thickness of this spherical shell,

∆R(j)

R(j)
=

(
∆M (j)

M∗(j) + 1

)1/3

− 1 (10.63)

Where M∗(j) = 4π
3 ρ(R

(j))R(j)3.

The correction for the central pressure is then defined as, ∆P (j) = ρ(R(j))g(R(j))∆R(j).

10.5.3 Adiabatic density distribution

In the previous section density models were based on assumptions about the parameterization of
the bulkmodulus K. The density model of Williamson and Adams (1923), (Hemley, 2006) does not
depend on a parameterized K. Instead it is defined in terms of the seismic wave velocities vp and vs
that can be determined from inversion of seismological traveltime data as K/ρ = v2p − 4/3v2s .

TheW-A model can be derived from thermodynamic principles for a homogeneous self-compressing
layer which is in an adiabatic state. The bulkmodulus applied in this model is expressed in the seis-
mic wave velocities which in turn depend on the elasticity parameters and the density. The elastic
deformation proces in seismic wave propagation occurs on a relatively short time scale (seconds-
minutes) compared to the characteristic time scale of conductive heat transport in solids (see ??).
Therefore (diffusive) heat exchange can be neglected and adiabatic conditions apply in seismic wave
propagation. This implies that the elasticity parameters determined from seismic data, including the
bulkmodulus K pertain to adiabatic conditions (see also Appendix ??).

Other processes such as convective mantle flow that occur on a much longer time scale may take
place under more general (non-adiabatic) conditions.

In section ?? on the thermal state of the Earth it is shown that adiabatic conditions hold for
the interior of a fluid layer when heat transport is dominated by advection and heat diffusion by
conduction/radiation plays a minor role. Assuming the Earth’s mantle to be in a state of vigorous
thermal convection it also follows that the average temperature profile, the geotherm, corresponds
to an adiabatic distribution.
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In general the density differential can be written as,

dρ =

(
∂ρ

∂P

)
S

dP +

(
∂ρ

∂S

)
P

dS (10.64)

where the differential of the entropy S is dropped in case of adiabatic conditions and the pres-
sure derivative is written in terms of the adiabatic bulkmodulus KS defined in (10.49), 1/Ks =
(∂ρ/∂P )S /ρ.

problem: 25. Derive the Williamson-Adams equation for a homogeneous adiabatic layer from
the density differential (10.64) and assumption of isentropic (adiabatic) conditions with dS ≡ 0,

dρ

dr
= −ρ

2g

KS
(10.65)

The density solution of the W-A equation can be expressed in terms of the seismic parameter Φ =
KS/ρ which in turn can be obtained from seismic velocity models: Φ = v2p − 4

3
v2s for P and S waves.√

Φ =
√
KS/ρ is known as the bulkvelocity. For a given bulkvelocity profile, obtained from seismic

observations, the W-A density profile is derived from (10.65) as,

ln

(
ρ(r)

ρ(R)

)
=

∫ R

r

Φ−1(r
′
)g(r

′
)dr

′
(10.66)

problem: 26. Derive (10.66) by integration of the W-A equation (10.65).

In (10.66) the gravity acceleration g depends on the density distribution ρ(r) in the lefthand
side. Therefore the density profile can not be simply obtained from a seismologically determined
Φ(r) profile and a single evaluation of the integral in (10.66). The expression represents an integral
equation that can be solved iteratively as specified in problem 27.

problem: 27. Assume that a seismic parameter profile for the mantle Φ(r), obtained from

seismic travel times, is available. Investigate how (10.66) can be used to compute a sequence of

mantle density profiles ρ(j)(r), j = 1, 2, . . . in an iterative procedure, by succesive substitution.

How would you define a starting profile ρ(1)(r) for this iterative procedure?

Hint: Substitute the density profile for iteration number j in the gravity acceleration in the right-

hand side of (10.66) for the computation of an updated profile j + 1. This is an example of

a general solution strategy for non-linear problems known as ‘succesive substitution’ or Picard

iteration.

Williamson and Adams (1923) [1363] used the iterative scheme in problem 27 to test the hypothesis
that the mass concentration towards the Earth’s centre is completely explained by compression of a
homogeneous self-gravitating sphere. They showed that integrating (10.66) from a surface value of
3.3 · 103 kg/m3 results in unrealistically high density values for depths greater than the core-mantle
boundary. This way they concluded that an inhomogeneous earth with a dense, compositionally
distinct core, probably iron-nickle, was required by the observations. The necessary multiple integrals
in the evaluation of (10.66) had to be computed by means of graphical approximation methods in
1923, several decades before the advent of electronic computers.

In a later analysis Bullen (1936) showed that the assumption of a homogeneous selfcompressing
mantle described by the W-A equation, and a chemically distinct dense core, leads to unrealistically
high values of the moment of inertia for the core Ic = fMcR

2
c , with a prefactor value f ∼ 0.57

greater than the value of a core with uniform density, 0.4. Since this would imply a density decrease
towards the centre Bullen concluded that the applicability of the W-A model for the whole mantle
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can not be maintained and that instead a distinct mantle transition layer, labeled C-layer, must be
included between the upper and lower mantle proper, related to transitions in mineral phase and/or
composition (Bullen, 1975).

problem: 28.

1. Derive the following equation for the temperature distribution of a W-A layer (see Appendix
??),

dT

dr
= −αg

cP
T (10.67)

where α and cP are the thermal expansion coefficient and the specific heat at constant
pressure.
Hint: Use the differential for the entropy,

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP (10.68)

and the thermodynamic relations: (∂S/∂T )P = cP /T and (∂S/∂P )T = −α/ρ.

2. Derive the expression for the temperature profile for an adiabatic layer, sometimes referred
to as the ‘adiabat’, by solving equation (10.67),

T (r) = T (R) exp

(∫ R

r

αg

cP
dr
′
)

(10.69)

The temperature extrapolated to the surface, TP = T (R) is known as the potential temper-
ature of the layer. The quantity HT = (αg/cP )

−1 is known as the thermal scale height of
the layer.

3. Derive an expression from (10.69) for the special case with a constant value of the scale
height parameter.

The W-A equation for the density of an adiabatic layer can be generalized introducing the Bullen
parameter η which is used as a measure of the departure of the actual density/temperature profile
from an adiabat. This is done by writing,

η(r) = − Φ

ρg

dρ

dr
(10.70)

where η(r) has been substituted for the constant value (≡ 1) in the W-A equation.

Current density models

The concept of an adiabatic layer was essential when no independent determinations for the density
distribution were available and the W-A equation was used to compute ρ(r) for given values of the
seismic parameter Φ(r) determined from seismological observations (Bullen, 1975).

During the 1970s a radial density distribution has been obtained for the Earth from inversion of
seismological observations, incorporating spectral analysis of the Earth’s eigenvibrations, under the
constraints of the given values for M and I. This, together with seismic velocities determined from
bodywave traveltimes and surfacewave dispersion, has resulted in the Preliminary Reference Earth
Model (PREM), (Dziewonski and Anderson, 1981 [357]).

Since ρ(r) can be determined from analysis of the earth’s normal modes (radial eigenvibrations)
the ‘adiabaticity’ of the mantle is no longer assumed.
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The degree of ‘adiabaticity’ is used in numerical modelling experiments as a diagnostic for the
dynamic state - where a high degree of adiabaticity indicates vigorous thermal convection and pre-
dominantly convective heat transport (van den Berg and Yuen, 1998, [1305] Matyska and Yuen, 2000,
[843] Bunge et al. , 2001).

Usually the outcome of such experiments shows that the upper and lower mantle separately are
approximately adiabatic - away from boundary layers were conductive transport dominates. In recent
years models of the deep lower mantle have become popular were a compositionally distinct dense
layer occupies the bottom 30% (roughly) of the lower mantle (Kellog et al. (1999) [693], Albarede
and van der Hilst (2002) [4]).

10.5.4 Earth’s chemical composition

For a complete description of the Earth’s interior we need to know it’s chemical composition, tem-
perature and pressure. In section 10.4 the pressure is expressed in the density distribution and the
related internal gravity field. Once the internal pressure distribution is known, sharp transitions
or discontinuities in the material properties, like the seismic velocities vp, vs and the density in the
PREM model, can be identified with mineral phase transitions and as such they can be related to
the mineral (P, T ) phase diagram of candidate mantle silicate materials in order to estimate the
temperature in the Earth’s interior. Such phase diagrams are determined from experimental (HPT)
and theoretical work in mineral physics.

What do we know about Earth’s bulk chemical composition? Candidate mantle materials have
been defined based on cosmochemical and petrological considerations. Models of the chemical compo-
sition of the Earth are commonly based on the hypothesis that the planet was formed in a multi-stage
accretion proces from material that condensated from the original solar nebula approximately 4.6
billion years ago at the time of formation of the solar system. The chemical composition of chon-
dritic meteorites, in particular the carbonaceous chondrites (CI type) (McBride and Gilmour (2003)
[849]) show a strong correlation with the composition of the outer layer of the sun (photosphere),
determined from spectral analysis of the solar light, as illustrated in the following figure:

Left: Element abundance (normalized with Si = 106), of the solar shallow photosphere compared to chondritic meteorites (Anders & Grevesse (1989) [18]).

Right: amounts of Earth’s major elements assuming a chondritic composition (Brown & Musset (1993) [155]).

The solar-chondritic data in the lefthand frame show that Mg, Fe and Si are by far the most
abundant (non-volatile) elements. According to the chondritic Earth hypothesis a similar abundance
can be expected for the bulk-earth. This is illustrated in the righthand pie diagrams. Note the large
proportion of oxygen, bound in oxides. In most crust-mantle rocks S is less abundant than Al or
Ca. This is usually explained by assuming that S is relatively volatile and also ‘siderophile’, meaning
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that a significant fraction may have ended up in the iron-nickle core during an early core-mantle
differentiation.

The chondritic meteorites are thought to be representive of the undifferentiated material conden-
sated from the solar nebula.

Around 1960 a model chemical composition for the bulk of the Earth’s mantle, coined pyrolite,
was introduced by Ringwood (see (Ringwood, 1975) and original references therein). This is still
used as a reference model. The pyrolitic composition is associated with the main upper mantle rock
type peridotite that is brought to the Earth’s surface in small fragments included in volcanic rocks
(xenoliths) and also in larger, kilometer sized, fragments in so called peridotite bodies (Spengler et
al. , 2006). The pyrolitic composition of the upper mantle rocks is also strongly correlated with the
composition of chondritic meteorites, in agreement with the hypothesis of a chondritic origin of the
Earth.

Mantle peridotites are found with different degrees of depletion (mass fraction lost) by partial
melting. More depleted material is denoted as harzburgite and the relatively undepleted peridotite is
known as lherzolite. During progressive partial melting the mineral composition of the residual rock
material, a mineral assemblage consisting of olivine, pyroxene and garnet, shifts towards the olivine
composition. The olivine enriched harzburgitic residue appears to be the chemical complement of
the basaltic melt product, with respect to the original lherzolitic mantle source rock. This depletion
relation, between oceanic and continental crust on the one hand and peridotitic mantle rock on the
other, is reflected in the element abundance of crust and mantle rocks, illustrated in the following
figure:

Chemical abundance of crustal and mantle rocks, normalized with respect to CI chondritic values. Data from (McBride and Gilmour, 2003 [849]).

This figure shows abundance ratio’s relative to the CI-chondritic composition. The curve for
mantle rock appears to be relatively close to the chondritic composition, whereas the crustal material
is enriched with respect to the mantle in most elements shown.

A notable exception to this crustal enrichment is found for magnesium which appears to be
enriched in average mantle peridotite. This is in agreement with the previous observation that the
olivine/pyroxene content ratio of the residual increases with the degree of partial melting. Magnesium
content increases with the olivine (forsterite Mg2SiO4)/pyroxene MgSiO3 ratio.

An other observation that can be made from the figure above is the apparent depletion of the
siderophile elements Fe and Ni, both in crust and mantle material, with respect to the chondritic
composition. This is usually explained by the formation of a liquid Fe, Ni rich metal core of the
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Earth during the first few million years of the accretion proces, in the early solar system. During this
event the molten liquid metal would have differentiated from the silicate mantle, leaving the mantle
depleted in siderophile (iron loving) elements.

Core formation is also sometimes used as an explanation of the apparent K (potasium) depletion
of both mantle and crust with respect to chondrites. In this explanation K is disolved in liquid iron
in significant quantity at high pressure and temperature (Rama Murthy et al. , 2003). An alternative
explanation for the Earth’s K depletion is an escape of K due to significant volatilization during the
planetary accretion proces.

problem: 29. From Figure ?? it can be concluded that the Earth’s mantle and crust lost roughly

2/3 of its original iron content corresponding to a chondritic composition. Verify how this iron-

depletion of crust and mantle could be explained by differentiation of the Earth’s mostly-iron core.

Use the following data in your argument: a) The mass fraction of the core Xc =Mc/M⊕ = 0.315.

b) The Fe mass fraction XmFe ∼ 10% of the pyrolitic mantle, c) The mass fraction of lighter

elements in the core - (S, Si, O) amounts to about 20%. d) The Fe mass fraction of the bulk

Earth X⊕Fe ∼ 33% (Fig. ??)

10.5.5 Phase transitions as anchor points of the geotherm

Major phase boundaries in the Earth’s mantle and core have been identified with sharp transitions
in the seismic wave velocities and the density distribution of the PREM model.

The depth distribution of the mineral composition for a pyrolitic mantle model is shown in the
following figure:

Pressure/depth distribution of mineral assemblage for a pyrolitic mantle model. Cpx: clinopyroxene, Opx: orthopyroxene, Mj: majorite garnet, Ol: olivine,

Wd: wadsleyite, Rw: ringwoodite, CaPv: CaSiO3 perovskite MgPv: MgSiO3-rich perovskite, MgPP: MgSiO3-rich post-perovskite, Mw: magnesiowüstite.

(From: (Hirose, 2007))

This figure clearly illustrates the different mineral composition of the upper and lower mantle
regions separated by the major phase boundary near 660 km depth (∼ 24 GPa), where the ringwoodite
polymorph of olivine, (Mg,Fe)2SiO4, transforms (dissociates) into a mineral assemblage of perovskite,
(Mg,Fe)SiO3 and magnesiowüstite, (Mg,Fe)O.

For a given mantle composition, for instance for a pyrolitic mantle, the pressure-temperature
mineral phase diagram can be determined for the relevant P, T range of the Earth’s mantle by
HPT experiments and mineral physics theory. A sharp transition at a pressure Pt in the PREM
model can then be located at the corresponding pressure in the phase diagram by the intersection
of the Pt isobar with the diagram phase boundaries. The (possibly multiple) intersection points
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define the corresponding transition temperature Tt. The pressure-temperature point located in the
phase diagram defines an ‘anchor point’ that constrains the geotherm. In this procedure the phase
transition is used as a mantle/core thermometer.

This way several (P, T ) ‘anchor points’ of the geotherm have been determined, related to the solid
state phase transition near 660 km depth and the solid/liquid inner/outer core boundary at 1220 km
from the Earth’s centre.

The following figure from Boehler (1996) [106]) illustrates the determination of anchor points of
the geotherm at the phase boundary near 660 km depth (P660 = 24GPa, T660 = 1900 ± 100 K) and
at the boundary between the outer and inner core at 5150 km depth, (PICB = 330GPa, TICB =
4850± 200 K).

Schematic radial temperature distribution in the mantle and core, constrained by major phase transitions (Boehler, 1996), (UM-upper mantle, LM lower

mantle, OC outer core, IC inner core). The temperature of the upper/lower mantle boundary is constrained by the γ-spinel to postspinel phase transition at

660 km depth. The temperature at the inner/outer core boundary at 5150 km depth (radius 1220 km) is constrained by the melting temperature of the

hypothetical core ‘Fe-O-S’ alloy. The right hand frame shows a schematic core temperature distribution (geotherm) labeled ‘CORE ADIABAT’ in the liquid

outer core versus pressure and the melting curve (liquidus) of the core ‘Fe-O-S’ alloy. (CMB core-mantle boundary, ICB inner core boundary). The ICB is

determined by the intersection of the liquidus and the geotherm. During core cooling the ICB moves outward as the inner core grows by crystallisation.

Starting from these anchor points the temperature is then extrapolated from both sides to the
core mantle boundary at 2900 km depth. For this temperature extrapolation assumptions have to
be made about the dominant heat transport mechanism and in this case it is assumed that heat
transport operates mainly through thermal convection. This will be further investigated in later
sections dealing with heat transport in the Earth’s mantle.

problem: 30. Estimate the temperature near the bottom of the mantle by adiabatic extrapolation
of the temperature T660 ∼ 1900K of the phase transition near 660 km depth, to the depth of the
core mantle boundary, using the general expression for the adiabat in a homogeneous layer.

Hints: apply the result of problem 28 and assume uniform values of the ‘scale height parameter’

HT = (αg/cP )
−1, with α = 2 ·10−5K−1, g = 10ms−2, cP = 1250Jkg−1K−1. Further: approximate

the adiabat by a linear depth function, in agreement with the schematic diagram of Boehler (1996)

- see figure above -to obtain a uniform adiabatic temperature gradient.

The ‘head’ of the extrapolated outer core adiabat is at a temperature of approximately 4000 K
and the ‘foot’ of the lower mantle adiabat at approximately 2700 K. This result indicates a large
temperature contrast of about 1300 K across the CMB.

How can such a large contrast be explained physically? As we will see later, this can be explained
by interpreting the CMB as a boundary between two separately convecting fluid layers, each with
a thermal boundary layer where the main heat transport mechanism shifts from convection in the
interior of the fluid layers, to conduction near the boundary interface, where vertical convective
transport vanishes with the flow velocity component normal to the boundary. Separately convecting
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layers are in agreement with the large density contrast across the CMB where the density almost
doubles, as illustrated in the PREM profile. The resulting strong temperature contrast across the
CMB is consistent with a lower mantle in a state of vigorous thermal convection.

problem: 31. Explain why we can not turn this argument around and conclude from these
indications for a strong temperature contrast at CMB that the mantle convects vigorously.

Hint: Check Appendix ?? for the assumptions made for an adiabatic geotherm in the lower mantle.

More recent developments, providing independent information, shed new light on the temperature
distribution in the bottom layer of the lower mantle. A previously unknown mantle phase transition
has been identified, in the main constituent magnesium-perovskite, to a (∼ 1.5%) denser phase
(post-perovskite) both in experimental HPT and theoretical (mineral physics) work at temperatures
and pressure conditions corresponding to a region in the lowermost mantle close to the core-mantle
boundary. This is illustrated in the figure hereafter showing experimental data points delineating
the phase boundary.

Left: phase relations near the bottom of the mantle for pyrolitic material (Hirose, 2007). The solid- and dashed line correspond to different pressure calibration

of the HPT experiments. The Clapeyron slope of the phase boundary is assumed 11.5 MPa/K. CaPv: CaSiO3 perovskite MgPv: MgSiO3-rich perovskite,

MgPP: MgSiO3-rich post-perovskite, Mw: magnesiowüstite. Right: schematic temperature profiles in the lower mantle in relation to the perovskite (PV) to

postperovskite (PPV) phase transition and the melting curve for pyrolitic mantle material and subducted basaltic crust (MORB) (Hirose et al. (2007) [573]).

This phase transition has a high valued positive slope of the phase boundary (Clapeyron param-
eter) dPt/dT ∼ 10 MPaK−1. The intercept of the phase boundary with the core mantle boundary
at ∼ 136 GPa appears to be at a temperature several hundred Kelvin below the temperature of
the liquid metal outer core as illustrated in the right part of the above figure. As a consequence
the geotherm may intersect the phase boundary at multiple depth’s, depending on the local mantle
temperature, a phenomenon known as ‘double crossing’ (Hernlund et al. ., 2005). When a double
crossing of the geotherm occurs, a thin layer exists directly bordering the core, where perovskite is
the stable phase while on top of this bottom PV layer, a postperovskite layer exists with a variable
thickness of up to several hundred kilometers.

A further implication of the phase diagram illustrated in is that the PPV layer will be absent
in hot regions where the geotherm is completely above the PV-PPV phase boundary. This post-
perovskite phase boundary has also been associated with the top of the D” layer at variable height
∼ 100− 300 km above the CMB (Lay et al. ., 2005).

These seismological interpretations of the postperovskite phase boundary have been based on
limited resolution methods applying 1-D radial velocity models. In a more recent development,
techniques related to seismic wave migration methods, used in the oil and gas exploration industry,

705



are applied to delineate reflecting interfaces in 2-D and 3-D models in seismic stratigraphy of the
CMB region (van der Hilst et al. ., 2007). This way the spatial resolution has been brought down
to about 20 km, allowing mapping of detailed structures in the lowermost mantle. An important
target of these high resolution seismic methods is the bottom interface of a postperovskite layer,
associated with the ‘double crossing’, where mantle material transforms back from postperovskite
into perovskite due to the steep increase in temperature in the bottom thermal boundary layer,
illustrated in the figure above, related to the temperature contrast across the CMB.

In a similar way as for the spinel-postspinel phase transition the temperature at the seismic in-
terfaces can then be estimated from the given depth(pressure) and the experimentally determined
parameters of the postperovskite phase transition. This way a mantle adiabatic geotherm and bound-
ary layer structure (error function) have been estimated with a CMB temperature Tcmb ∼ 4000 K
(van der Hilst et al. ., 2007). The ‘foot’ of the adiabatic mantle geotherm derived from this lies at
a temperature of approximately 2500 K. Both the estimated CMB temperature and the foot of the
adiabat seem to confirm independent earlier findings based on adiabatic temperature extrapolation
over large depth ranges (Boehler, 1996 [106]).

The temperature contrast of about 1500 K across the core-mantle boundary resulting from these
interpretations identify the bottom of the mantle as a thermal boundary layer, characteristic of a
vigorously convecting layer where the boundary interface has a fixed or slowly varying temperature, as
we will see in the section on heat transport in the mantle. As such these results from mineral physics
and seismology have produced new evidence for strong mantle convective flow near the core-mantle
boundary.

10.6 geostationary orbit

In spherical coordinates10 the position, velocity and acceleration of a point are given by

r⃗ = re⃗r

ν⃗ = ṙe⃗r + rθ̇e⃗θ + rϕ̇ sin θe⃗ϕ

a⃗ = (r̈ − rθ̇2 − rϕ̇2 sin2 θ)e⃗r

+(rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θ)e⃗θ

+(rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ϕ̇ cos θ)e⃗ϕ

For an orbit at constant height (r = R, ṙ = 0), and constant angular velocities (i.e. θ̈ = 0 and
ϕ̈ = 0) we arrive at

ν⃗ = Rθ̇ e⃗θ +Rϕ̇ sin θ e⃗ϕ (10.71)

a⃗ = (−Rθ̇2 −Rϕ̇2 sin2 θ) e⃗r + (−Rϕ̇2 sin θ cos θ) e⃗θ + (2Rθ̇ϕ̇ cos θ) e⃗ϕ (10.72)

If the orbit is the equatorial plane, we have θ = π/2, sin θ = 1, cos θ = 0 (and of course θ̇ = 0) so
now

ν⃗ = Rϕ̇ e⃗ϕ (10.73)

a⃗ = −Rϕ̇2 e⃗r (10.74)

10https://en.wikipedia.org/wiki/Spherical_coordinate_system
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The acceleration is the so-called centripetal11 acceleration. We coin ϕ̇ = ω is the constant angular
velocity.

“ A centripetal force (from Latin centrum, ”center” and petere, ”to seek”) is a force that makes a
body follow a curved path. The direction of the centripetal force is always orthogonal to the motion
of the body and towards the fixed point of the instantaneous center of curvature of the path.

One common example involving centripetal force is the case in which a body moves with uniform
speed along a circular path. The centripetal force is directed at right angles to the motion and also
along the radius towards the centre of the circular path. The mathematical description was derived
in 1659 by the Dutch physicist Christiaan Huygens.

In the case of an object that is swinging around on the end of a rope in a horizontal plane, the
centripetal force on the object is supplied by the tension of the rope. The rope example is an example
involving a ’pull’ force.

Newton’s idea of a centripetal force corresponds to what is nowadays referred to as a central
force. When a satellite is in orbit around a planet, gravity is considered to be a centripetal force
even though in the case of eccentric orbits, the gravitational force is directed towards the focus, and
not towards the instantaneous center of curvature.”12

“ A geostationary orbit, also referred to as a geosynchronous equatorial orbit, is a circular geosyn-
chronous orbit 35,786 km in altitude above Earth’s equator, 42,164 km in radius from Earth’s center,
and following the direction of Earth’s rotation. An object in such an orbit has an orbital period equal
to Earth’s rotational period, one sidereal day, and so to ground observers it appears motionless, in a
fixed position in the sky. ”13

The centripetal force of an orbiting body of mass m is then

F⃗c = ma⃗ = −mRϕ̇2 e⃗r

The gravitational force is

F⃗g = −
GMm

R2
e⃗r

From Newton’s second law of motion (sum of forces = mass * acceleration) we can write

ma⃗ = −mRϕ̇2 e⃗r = −
GMm

R2
e⃗r

or,

Rϕ̇2 =
GM
R2

We have ϕ̇ = ω = v
R
so

R
( v
R

)2
=
GM
R2

v2 =
GM
R

The velocity is given by 2πR/T where T is the desired period so now(
2πR

T

)2

=
GM
R

where T is the orbital period (i.e. one sidereal day), and is equal to 86164.09054 s. In the end

R =

(
GMT 2

4π2

)1/3

11Moving or tending to move towards a centre, as opposed to centrifugal: moving or tending to move away from a
centre.

12https://en.wikipedia.org/wiki/Centripetal_force
13https://en.wikipedia.org/wiki/Geostationary_orbit
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The resulting orbital radius is 42,164 kilometres. Subtracting the Earth’s equatorial radius, 6,378
kilometres, gives the altitude of 35,786 kilometres.

The orbital speed is calculated by multiplying the angular speed by the orbital radius:

v = ωR ≃ 3074.6m/s
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10.7 Programming exercises - February 2024

gravity exercises.tex

Background

We have seen that the calculation of the gravity vector and/or the gravity potential for a mass
distribution in 3D space is of the form

ξ(r⃗) = G
∫
V

f(r⃗, r⃗′)ρ(r⃗′)dr⃗′

where ξ is either gx, gy, gz or U and f is a function of the coordinates r⃗ and r⃗′.
Let us now assume that the body under consideration can be subdivided into Ne smaller block-

s/elements. By virtue of the linearity of the integral, we have

ξ(r⃗) = G
Ne∑
e=1

∫
Ve

f(r⃗, r⃗′)ρ(r⃗′)dr⃗′

We can further assume that inside each element the density is constant so that

ξ(r⃗) = G
Ne∑
e=1

ρe

∫
Ve

f(r⃗, r⃗′)dr⃗′

We will now make a strong assumption which is only valid when elements are (very) small: we will
assume that we can replace f(r⃗, r⃗′) by f(r⃗, r⃗e) where r⃗e is the location of the ’center’ of the element.
We then get:

ξ(r⃗) = G
Ne∑
e=1

ρef(r⃗, r⃗e)

∫
Ve

dr⃗′

And finally the integral term is simply the volume of the element Ve:

ξ(r⃗) = G
Ne∑
e=1

ρef(r⃗, r⃗e)Ve

In the end, assuming that the body of interest can be split into many small elements of constant
density, the gravity fields at a location r⃗ = (x, y, z) can be computed as follows:

gx(x, y, z) = G
Ne∑
e=1

ρeVe
x− xe
|r⃗ − r⃗e|3

(10.75)

gy(x, y, z) = G
Ne∑
e=1

ρeVe
y − ye
|r⃗ − r⃗e|3

(10.76)

gz(x, y, z) = G
Ne∑
e=1

ρeVe
z − ze
|r⃗ − r⃗e|3

(10.77)

U(x, y, z) = −G
Ne∑
e=1

ρeVe
1

|r⃗ − r⃗e|
(10.78)

where
|r⃗ − r⃗e| =

√
(x− xe)2 + (y − ye)2 + (z − ze)2
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The following exercises are designed to test this approach which lends itself to numerical imple-
mentation. The basic idea is rather simple: generate a cloud of points in a regular manner such that
we can assign them a corresponding volume and a density (and therefore a mass) when they are in
the geometry of interest, and then use the formula above to compute the gravity vector and potential,
and finally compare these values with the analytical solutions we derived for simple spherical bodies.

All quantities in the code(s) must be expressed in S.I. units, i.e. m, s, kg.

NO JUPYTER NOTEBOOK

Exercise 1: Full sphere

(1A) We consider a domain of size 2R×2R×2R centered on the origin. It is partitioned in N×N×N
cells as shown in the following figure.

−R R
x

z

.

.

i

g⃗i

h

h

2D representation of the exercise. N = 10

Compute the total number of points NP as a function of N, the associated volume dV of a point
(i.e. the volume of the cell the point is in) as a function of R and N and the size of a cell h as
a function of R and N . Here is how your code should look like:

N=10
NP=
h=
dV=

(1B-1) To get started, start in 1D. Assume that we consider a 1D cube, i.e. the segment [−R,R] that is
divided into N cells. What is h? First, using the linspace function compute the x-coordinates
of the N cell centers. Second, compute the same array x using a single for loop. This second
approach will be the building block of the next question.

(1B-2) In the middle of each cell we place a point. Compute and store the coordinates of the N3

points (use R = 6371 km). Please use arrays x, y and z to store the coordinates. how your
code should look like:
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x = np . z e ro s (NP, dtype=np . f l o a t 6 4 ) # x coord ina t e s o f a l l p o in t s
y = np . z e ro s (NP, dtype=np . f l o a t 6 4 ) # y coord ina t e s o f a l l p o in t s
z = np . z e ro s (NP, dtype=np . f l o a t 6 4 ) # z coord ina t e s o f a l l p o in t s
f o r i in range ( ? ) :

f o r j in range ( ? ) :
f o r k in range ( ? ) :

x [? ]=?
y [? ]=?
z [? ]=?

Important: these arrays are N3 long because they contain the coordinates of all points (cell
centers).
Help: draw on paper a 3×3×3 elements grid. Place the axis system on the plot and explicitely
write the arrays for all 27 points. Example:

x[0]=..... y[0]=..... z[0]=.....

x[1]=..... y[1]=..... z[1]=.....

x[2]=..... y[2]=..... z[2]=.....

...

x[26]=.... y[26]=.... z[26]=.....

Once you have done so, run your code for N = 3, print the arrays and compare their content
with what you have on paper (tip: for this test temporarily set R = 3).

(1C) Assign a density ρ0 = 3000 kgm−3 to points (cells) inside a sphere of radius R and zero
otherwise, store these values in the rho array.

Example of density field (ρ = 1) for a 103, 503 and 1503 mesh.

(1D) Fix N = 10. Compute the total mass of the sphere

Ms =

∫
V

ρ dV =
∑
e

ρeVe

and its volume14

Vs =

∫
V

dV =
∑
e

Ve.

(1E) Fix N = 10. Compute the moment of inertia of the sphere with respect to rotation axis z using
Eq. (10.1).

14Note that the sums run over the cells which center lies inside the sphere.
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(1F) Repeat the last measurements (1D & 1E) with different values of N ∈ (20, 30, 40, 50, ...?) . For
both the mass and moment of inertia report on the relative error as a function of h.

(1G) Compute the coordinates of 6 points situated at z = 10m meters above the north pole with
m = 0, 1, 2, 3, 4, 5 and store these coordinates in arrays xm, ym zm.

xm = np . z e r o s (6 , dtype=np . f l o a t 6 4 ) # x coord ina t e s o f a l l p o in t s
ym = np . z e r o s (6 , dtype=np . f l o a t 6 4 ) # y coord ina t e s o f a l l p o in t s
zm = np . z e r o s (6 , dtype=np . f l o a t 6 4 ) # z coord ina t e s o f a l l p o in t s

(1H) Fix N = 10 for now. Compute the gravity potential U and acceleration vector compo-
nents gx, gy, gz at each of these 5 points using Eq. (10.14) (actually its discretised version,
i.e. Eqs. (10.75), (10.76), (10.77) and (10.78).

(1I) Plot the computed quantities as a function of z and plot on the same graphic the analytical
values.

(1J) Fix m = 4. Progressively increase N and record the absolute error on the gravity vector norm
as a function of h. Plot this in log-log scale. Discuss.

(1K) Use the prem density function to assign the PREM [357] density to the points. Compute the
mass of the planet with this new density distribution and compare it with the mass of the
Earth. Compute the gravity at the surface. hint: use a large(r) N for good results. How long
are you willing to wait?

(1L) Bonus: time how long it takes to compute U, gx, gy, gz at a single location for N = 20. Report
these times. Can you think of a way (and implement it) to arrive at the same results in less
time?

Exercise 2: Hollow sphere

This is based on the previous exercise.

� For points with radius r such that R/2 ≤ r ≤ R assign a density ρ0 = 3000kgm−3 and zero
otherwise.

� Compute the gravity potential and vector components on the x-axis between r = 0 and r = 3R
with steps of R/100.

� Plot the results and the analytical solution on the same plot as a function of r.

� Repeat the exercise with different values of N . Discuss.

Exercise 3: Full sphere - revisited

...NOT for 2024...
We are now going to re-do the first exercise but this time we do not want any point outside of

the sphere. We shall therefore use the spherical coordinates (see Section 2.3.4). We will use three
for loops, one over r ∈ [0, R] values, one over θ ∈ [0, π] values and one over ϕ ∈]− π, π] values. The
number of points in each direction in this space is still N so that the total number of points is still
N3.

� Compute and store the coordinates of the points in the r, θ, ϕ space. Store these in arrays r,
theta, phi.
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� Use these coordinates to compute and store the Cartesian coordinates of these points.

� Plot this cloud of points in 3D. Discuss.

� Repeat the calculations of the first exercise.

� The cost of the calculation is the same as in exercise 1, but what about accuracy?

Report

The report should contain results from exercises 1 and 2. I expect one pdf file per student (maximum
10 pages) and the corresponding python file(s), all delivered in a single zip file. Your report does
not have to follow questions 1A to 1K in sequential order. Please send all files in a single email per
March 29th, 2024, 23:59.

You should have the following guidelines in mind when writing your report:

� Layout: is the document visually pleasing? Is it well structured? are the student names and
numbers present ?

� Is there a complete bibliography (if/when applicable)?

� Introduction: is the context clear? Are the methods presented?

� Figures: Are they properly numbered? captioned? all figures must be referenced in the text.
Are they of good quality? are they readable? are all axis labelled?

� Text: Overall quality of the language. Are there still typos ? Do all sentences make sense?

� If results are wrong, was an attempt made to document/explain the (probable) source of the
problem?

� Discussion: are the results properly discussed, analyzed? are potential problems, errors, limi-
tations discussed?

� Conclusion: Are the report’s findings summarized and when applicable generalized?

For concrete examples of what not to do, check Appendix J.

713



10.8 Exam - February 2020

This is not the full 2020 exam, only the first two exercises.

Exercise 1

Let us consider a spherically symmetric body of radius R.

1. (1 pt) use symmetry considerations with regards to the 3 axis to arrive at the moment of inertia
I:

I =
8π

3

∫ R

0

ρ(r)r4dr (10.79)

2. (1/2 pt) The density inside the sphere is given by

ρ(r) = ρ0

[
a
( r
R

)2
+ b
( r
R

)
+ c

]
Compute coefficients a, b, c such that the density matches the curve on the following figure:

 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

ρ
/ρ

0

r/R

3. (1 pt) Compute the total mass M of the planet using this expression for the density.

4. (1 pt) Compute the moment of inertia I

5. (1/2 pt) Can I be written I = fMR2? if so, give f .

6. (1/2 pt) What are the dimensions of ρ, I and M?

Exercise 1 - answer

Question 1 was treated in class. Looking at the figure, we see that ρ(r = 0) = ρ0, i.e. c = 1. Also,
we see that ρ(r = R) = 0, i.e.

ρ0 [a+ b+ 1] = 0

or, a+ b = −1. Finally, we see that ρ(r = R/2) = 3ρ0/4, so

ρ0

[
a

4
+
b

2
+ 1

]
=

3

4
ρ0

or, a/4 + b/2 = −1/4. This leads to a = −1 and b = 0 so

ρ(r) = ρ0

[
1−

( r
R

)2]
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The total mass is given by

M =

∫
V

ρ(r)dV

= 4π

∫ R

0

ρ(r)r2dr

= 4π

∫ R

0

ρ0

[
1−

( r
R

)2]
r2dr

= 4πρ0

∫ R

0

[
r2 − r4

R2

]
dr

=
8π

15
ρ0R

3 (10.80)

The moment of inertia I is

I =
8π

3

∫ R

0

ρ(r)r4dr

=
16π

105
ρ0R

5 (10.81)

Finally,

I =
16π

105
ρ0R

5 =
2

7
(
8π

15
ρ0R

3)R2

so f = 2/7.

Exercise 2

Let us consider the same sphere as in the previous exercise, and the same density profile ρ(r). The
gravitational potential satisfies the Poisson equation:

∆U = 4πGρ(r⃗) (10.82)

and we have the following relationship between the gravitational acceleration vector and the potential:
g⃗ = −∇⃗U .

1. (1/2 pt) Write explicitely Eq.(10.82) for a point inside the sphere and a point outside the
sphere.

2. (1 pt) Compute g(r) and U(r) for a point inside the sphere as a function of r. Use limr→0 g(r) ̸=
∞ to get rid of an integration constant.

3. (1 pt) Compute g(r) and U(r) for a point outside the sphere as a function of r. Use limr→∞ U(r) =
0 to get rid of another integraion constant.

4. (1 pt) Use the continuity of g(r) and U(r) at r = R to compute the last two remaining
integration constants.

Exercise 2 - answer

Inside the sphere Eq.(10.82) is

1

r2
∂

∂r

(
r2
∂U

∂r

)
= 4πGρ0

[
a
( r
R

)2
+ b
( r
R

)
+ c

]
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We could use the values of a, b and c obtained above but I here choose not to, in order to show
that this exercise can be carried out independently from the first one. Then:

∂

∂r

(
r2
∂U

∂r

)
= 4πGρ0

[
a
r4

R2
+ b

r3

R
+ cr2

]

r2
∂U

∂r
= 4πGρ0

[
a
r5

5R2
+ b

r4

4R
+ c

r3

3

]
+ A

∂U

∂r
= 4πGρ0

[
a
r3

5R2
+ b

r2

4R
+ c

r

3

]
+
A

r2

so that

g(r) = −∂U
∂r

= −4πGρ0
[
a
r3

5R2
+ b

r2

4R
+ c

r

3

]
+
A

r2

We use limr→0 g(r) ̸=∞ to arrive at A = 0. Finally

Uin(r) = 4πGρ0
[
a
r4

20R2
+ b

r3

12R
+ c

r2

6

]
+B

With a = −1, b = 0 and c = 1:

gin(r) = −4πGρ0
[
− r3

5R2
+
r

3

]
Uin(r) = 4πGρ0

[
− r4

20R2
+
r2

6

]
+B

Outside the sphere we must solve

1

r2
∂

∂r

(
r2
∂U

∂r

)
= 0

r2
∂U

∂r
= C

∂U

∂r
=
C

r2

Uout(r) = −
C

r
+D

We use limr→∞ U(r) = 0 to arrive at D = 0 so that

gout(r) = −C
r2

Uout(r) = −C
r

Both fields should match at r = R:

gin(r = R) = gout(r = R)

Uin(r = R) = Uout(r = R)

i.e.

−4πGρ0
[
a
R3

5R2
+ b

R2

4R
+ c

R

3

]
= − C

R2
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so

C = 4πGρ0R3

[
a

5
+
b

4
+
c

3

]
Now,

4πGρ0
[
a
R4

20R2
+ b

R3

12R
+ c

R2

6

]
+B = −C

R

4πGρ0R3

[
a

20
+

b

12
+
c

6

]
+BR = −4πGρ0R3

[
a

5
+
b

4
+
c

3

]
so

BR = −4πGρ0R3

[
a

5
+

a

20
+
b

4
+

b

12
+
c

3
+
c

6

]
B = −4πGρ0R2

[
a

4
+
b

3
+
c

2

]
With a = −1, b = 0 and c = 1:

B = −πGρ0R2 C =
8π

15
Gρ0R3

Finally

gin(r) = −4πGρ0
[
− r3

5R2
+
r

3

]
Uin(r) = 4πGρ0

[
− r4

20R2
+
r2

6

]
− πGρ0R2

gout(r) = −8π

15
Gρ0R3 1

r2

Uout(r) = −8π

15
Gρ0R31

r

Also, remembering that the mass of the planet is M = 8π
15
ρ0R

3 so that

gout(r) = −GM
r2

Uout(r) = −GM
r

No surprise there...
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10.9 Exam - March 2021

Exercise 1

Let us consider a spherically symmetric body of radius R.

1. (1 pt) use symmetry considerations with regards to the 3 axis to arrive at the moment of inertia
I:

I =
8π

3

∫ R

0

ρ(r)r4dr (10.83)

2. (1 pt) The density inside the sphere is given by

ρ(r) = a
r

R
+ b

Compute the total mass M of the planet using this expression for the density.

3. (1 pt) Compute the moment of inertia I also as a function of a and b.

4. (1/2 pt) Can I be written I = fMR2? if so, give f .

5. (1/2 pt) What are the dimensions of a, b, ρ, I and M?

6. (1/2 pt) Set a = 0 and b = ρ0 and look again at M and I. Conclude.

Exercise 1 - answer

The first question is answered in Problem 1, see Section 10.3.
The mass of the planet is given by

M =

∫∫∫
V

ρ(r)dV

=

∫∫∫
V

ρ(r)r2 sin θdrdθdϕ

=

∫∫∫
V

(
a
r

R
+ b
)
r2 sin θdrdθdϕ

= 4π

∫ R

0

(
a
r

R
+ b
)
r2dr

= 4π

[
a

R

∫ R

0

r3dr + b

∫ R

0

r2dr

]
= 4π

[
a

R

1

4
R4 + b

1

3
R3

]
= 4πR3

(
a

4
+
b

3

)
(10.84)
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The moment of inertia of the planet is given by

I =
8π

3

∫∫∫ R

0

ρ(r)r4dV

=
8π

3

∫∫∫ R

0

(
a
r

R
+ b
)
r4dV

=
8π

3

(
a

6
+
b

5

)
R5

= (4πR3)

(
a

4
+
b

3

)
︸ ︷︷ ︸

M

(
a

4
+
b

3

)−1

R22

3

(
a

6
+
b

5

)

=

(
a

4
+
b

3

)−1
2

3

(
a

6
+
b

5

)
︸ ︷︷ ︸

f

MR2 (10.85)

The dimensions of a, b, I and M are as follows:

[a] = [b] =ML−3 [I] =ML2 [M ] =M

When a = 0 and b = ρ0 we find the standard mass of a constant density sphere M = 4
3
πR3ρ0 and

f = 2/5.

Exercise 2

Let us consider the same sphere as in the previous exercise, and the same density profile ρ(r). The
gravitational potential satisfies the Poisson equation:

∆U = 4πGρ(r⃗) (10.86)

and we have the following relationship between the gravitational acceleration vector and the potential:
g⃗ = −∇⃗U .

1. (1/2 pt) Write explicitely Eq.(10.86) for a point inside the sphere and a point outside the
sphere.

2. (1 pt) Compute g(r) and U(r) for a point inside the sphere as a function of r. Use limr→0 g(r) ̸=
∞ to get rid of an integration constant.

3. (1 pt) Compute g(r) and U(r) for a point outside the sphere as a function of r. Use limr→∞ U(r) =
0 to get rid of another integraion constant.

4. (1 pt) Use the continuity of g(r) and U(r) at r = R to compute the last remaining integration
constants.

5. (1/2 pt) Set a = 0 and b = ρ0 and sketch the obtained fields.

Exercise 2 - answer

outside ∆U = 0. Inside ∆U = 4πG(a r
R
+ b)

1

r2
∂

∂r

(
r2
∂U

∂r

)
= 4πG

(
a
r

R
+ b
)
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⇒ ∂

∂r

(
r2
∂U

∂r

)
= 4πG

(
a
r3

R
+ br2

)
⇒ r2

∂U

∂r
= 4πG

(
a
r4

4R
+ b

r3

3

)
+ A

⇒ ∂U

∂r
= 4πG

(
a
r2

4R
+ b

r

3

)
+
A

r2

so that

g(r) = −∂U
∂r

= −4πG
[
a
r2

4R
+ b

r

3

]
+
A

r2

We use limr→0 g(r) ̸=∞ to arrive at A = 0. Finally

gin(r) = −4πG
(
a
r2

4R
+ b

r

3

)
(10.87)

and

Uin = −
∫
g(r)dr = 4πG

(
a
r3

12R
+ b

r2

6

)
+B

Outside the sphere we must solve
1

r2
∂

∂r

(
r2
∂U

∂r

)
= 0

⇒ r2
∂U

∂r
= C

⇒ ∂U

∂r
=
C

r2

⇒ Uout(r) = −
C

r
+D

We use limr→∞ U(r) = 0 to arrive at D = 0 so that

gout(r) = −C
r2

Uout(r) = −C
r

Both fields should match at r = R:

gin(r = R) = gout(r = R)

Uin(r = R) = Uout(r = R)

i.e.

−4πG
(
a
R2

4R
+ b

R

3

)
= − C

R2
(10.88)

⇒ C = 4πGR3

(
a

4
+
b

3

)
=MG

so unsurprisingly (!):

gout(r) = −MG
r2

Uout(r) = −MG
r
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and

4πG
(
a
R3

12R
+ b

R2

6

)
+B = −MG

R

4πGR2

(
a
1

12
+ b

1

6

)
+B = −MG

R

B = −MG
R
− 4πGR2

(
a
1

12
+ b

1

6

)
so

Uin = 4πG
(
a
r3

12R
+ b

r2

6

)
− MG

R
− 4πGR2

(
a
1

12
+ b

1

6

)
If a = 0 and b = ρ0, then

gin(r) = −4πGρ0
r

3

and

Uin = 4πG
(
ρ0
r2

6

)
− MG

R
− 4πGR2

(
ρ0

1

6

)
=

2π

3
Gρ0r2 −

3

2

MG
R

which is the solution to problem 14.
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10.10 WORK in PROGRESS. DUH.

What follows on this page is an unfinished attempt to link spherical harmonics with my 2018 paper.
We start from the Poisson equation for the gravity potential:

∆U = 4πGρ(r⃗) (10.89)

As a consequence, inside a domain where ρ = 0, the equation becomes ∆U = 0.
Let us assume that the spherical coordinates are appropriate for the problem at hand, and that

the potential can be decomposed as follows:

U(r, θ, ϕ) = Ur(r)U⊥(θ, ϕ)

The full Laplacian operator in spherical coordinates is given by15:

∆U =
1

r2
∂

∂r

(
r2
∂U

∂r

)
︸ ︷︷ ︸

∆r

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1

r2 sin2 θ

∂2U

∂ϕ2︸ ︷︷ ︸
∆⊥

we then have:
(∆r +∆⊥)(UrU⊥) = 0

i.e.,
U⊥∆rUr + Ur∆⊥U⊥ = 0

Assuming U⊥ =
∑

l

∑
m UlmYlm, knowing that spherical harmonics functions verify

r2∆⊥Y
m
l (θ, ϕ) = −l(l + 1)Y m

l (θ, ϕ)

and assuming for now that the problem at hand is 1st degree (l=1), then

∆⊥Y
m
l (θ, ϕ) = − 2

r2
Y m
l (θ, ϕ)

and then

∆rUr − Ur
2

r2
= 0

make a link with my 2018 paper.

15https://en.wikipedia.org/wiki/Laplace_operator
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In spherical coordinates, the Laplacian is given by

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin2 θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

We wish to solve Laplace’s equation ∆T (r, θ, ϕ) = 0 using the method of separation of variables:

T (r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ)

We can insert this decomposition into the Laplace equation and multiply it by r2/RΘΦ to obtain

1

R

d

dr

(
r2
dR

dr

)
+

1

Θ

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ

1

sin2 θ

d2Φ

dϕ2
= 0

For reasons that will become clear later, the separation constant is taken to be −m2:

1

Φ

d2Φ

dϕ2
= −m2 (10.90)

−sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
− sin2 θ

R

d

dr

(
r2
dR

dr

)
= −m2 (10.91)

The first equation yields

Φ(ϕ) =

{
eimϕ

e−imϕ
for m = 0, 1, 2, 3, ...

Note that m must be an integer since ϕ is a periodic variable and Φ(ϕ + 2π) = Φ(ϕ). In the case
of m = 0, the general solution is Φ(ϕ) = aϕ + b, but we must choose a = 0 to be consistent with
Φ(ϕ+ 2π) = Φ(ϕ). Hence in the case of m = 0, only one solution is allowed.

Eq. (10.91) can now be recast in the following form:

1

R

d

dr

(
r2
dR

dr

)
= − 1

Θ

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

m2

sin2 θ
(10.92)

where the separation variable at this step is denoted by l(l+ 1) for reasons that will shortly become
clear. The resulting radial equation is

1

R

d

dr

(
r2
dR

dr

)
= l(l + 1)

or,

r2
d2R

dr2
+ 2r

dR

dr
− l(l + 1)R = 0

The solution is of the form R = rs. To determine the exponent s, we insert this solution back into
the above ODE. The end result is

s(s+ 1) = l(l + 1) ⇒ s = l or s = −l − 1

or,

R(r) =

{
rl

r−(l+1)

Eq. (10.92) also yields:

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
l(l + 1)− m2

sin2 θ

]
Θ = 0
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One can then carry out the following change of variables x = cos θ and y = Θ(θ) so that the above
equation reduces to:

(1− x2)d
2y

dx2
− 2x

dy

dx
+

[
l(l + 1)− m2

sin2 θ

]
y = 0

This equation is the differential equation for associated Legendre polynomials16. We then have

y = Pm
l (x) for l = 0, 1, 2, 3, ... and m = −l,−l + 1, ...0, ...l = 1, l

and

Pm
l (x) =

(−1)m

2l l!
(1− x2)m/2 d

l+m

dxl+m
(x2 − 1)l

with m ≥ 0 and l ≥ 0. The first few polynomials are

P 0
0 (cos θ) = 1

P−1
1 (cos θ) =

1

2
sin θ

P 0
1 (cos θ) = cos θ

P+1
1 (cos θ) = − sin θ

P−2
2 (cos θ) =

1

8
sin2 θ

P−1
2 (cos θ) =

1

2
sin θ cos θ

P 0
2 (cos θ) =

1

2
(3 cos2 θ − 1)

P+1
2 (cos θ) = −3 sin θ cos θ
P+2
2 (cos θ) = 3 sin2 θ

In our case the differential equation for the associated Legendre polynomials, given above, depends
on m2 and is therefore not sensitive to the sign of m. Consequently, Pm

l (x) and P−m
l (x) must be

equivalent solutions and hence proportional to each other, and one can show that

P−m
l (cos θ) = (−1)m (l −m)!

(l +m)
Pm
l (cos θ) (10.93)

Combining all the results obtained above, we have found that the general solution to Laplace’s
equation is of the form

T (r, θ, ϕ) =

{
rl

r−(l+1)

}
Pm
l (cos θ)

{
eimϕ

e−imϕ

}
where l = 0, 1, 2, 3, ... and m = −l,−l + 1, ..., l − 1, l.

When solving the Laplace’s equation in spherical coordinates, it is traditional to introduce the
spherical harmonics, Y m

l (θ, ϕ):

Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ for l = 0, 1, 2, 3, ... and m = −l,−l+1, ..., l−1, l

(10.94)

16https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
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The phase factor (−1) , introduced originally by Condon and Shortley, is convenient for applications
in quantum mechanics. Note that Eq. (10.93) implies that

Y −m
l (θ, ϕ) = (−1)mY m

l (θ, ϕ)∗

where the star means complex conjugation.
The normalization factor in Eq. (10.94) has been chosen such that the spherical harmonics are

normalized to one. In particular, these func- tions are orthonormal and complete. The orthonormality
relation is given by: ∫

Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ)dΩ = δll′δmm′

where dΩ = sin θdθdϕ is the differential solid angle in spherical coordinates.
It is important to note that there are different normalisations for spherical harmonics. In this

document we choose:

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ for l = 0, 1, 2, 3, ... and m = −l,−l + 1, ..., l − 1, l

(10.95)
which is Eq.(7.8.1) in the Schubert, Turcotte & Olson book [1140]. In this case the (−1)m is inside
the Pm

m . The first few spherical harmonics are shown below in the real representation (i.e.cusing
cosmϕ instead of eimϕ) 17 18:

Y 0
0 (θ, ϕ) =

√
1

4π

Y −1
1 (θ, ϕ) =

√
3

8π
cosϕ sin θ

Y 0
1 (θ, ϕ) =

√
3

4π
cos θ

Y +1
1 (θ, ϕ) = −

√
3

8π
cosϕ sin θ

Y −2
2 (θ, ϕ) =

√
15

32π
cos(2ϕ) sin2 θ

Y −1
2 (θ, ϕ) =

√
15

8π
cosϕ sin θ cos θ

Y 0
2 (θ, ϕ) =

√
5

16π
(3 cos2 θ − 1)

Y +1
2 (θ, ϕ) = −

√
15

8π
cosϕ sin θ cos θ

Y +2
2 (θ, ϕ) =

√
15

32π
cos(2ϕ) sin2 θ

replace those my complex ones !

Another normalisation is sometimes used:

Y m
l (θ, ϕ) =

√
(2l + 1)

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ for l = 0, 1, 2, 3, ... and m = −l,−l + 1, ..., l − 1, l

(10.96)

17https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
18https://mathworld.wolfram.com/SphericalHarmonic.html
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with
1

4π

∫
Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ)dΩ = δll′δmm′

Remark. In [1412] the authors use a normalized associated Legendre polynomial that is related to
the associated Legendre polynomial Pm

l as:

plm(θ, ϕ) =

√
2l + 1

2π(1 + δm0)

(l −m)!

(l +m)!
Pm
l (cos θ)

Note the absence of the (−1)m term and the presence of the kronecker delta in the denominator.

Relevant Literature: SHTools: Tools for Working with Spherical Harmonics [1354]

10.11 Gravity benchmarks

gravity benchmarks.tex

There are many analytical solutions for buried bodies of simple shape. Hereafter are the most
common ones:

10.11.1 Buried sphere (3D)

To calculate the pull of gravity, we can use the fact that a sphere has the same gravitational pull as
a point mass located at its centre. The distance between the measurement point and the center of
the sphere is

√
x2 + d2, so

gz =
GMsphered

(x2 + d2)3/2

Let us take the following example: radius a=50m, ∆ρ = 2000, variable depth d=100m

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-150 -100 -50  0  50  100  150

depth=90m
depth=100m
depth=110m

gz has its maximum value directly above the sphere at x = 0m and is given by

gmaxz =
GMsphered

(d2)3/2
=
GMsphere

d2

We can then find the half width of the curve by finding x1/2 such that

GMsphered

(x21/2 + d2)3/2
=
gmaxz

2
=
GMsphere

2d2

or, FINISH , derive x1/2
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10.11.2 Buried horizontal cylinder (3D)

anticline can be approximated by a horizontal cylinder

gz =
2Gπa2d∆ρ
x2 + d2

the maximum value of g z is located directly above the axis of the cylinder
g zmax for a cylinder is larger than g zmax for a sphere of the same radius.
Cannot distinguish a buried sphere from a cylinder with just a single profile. Need to collect

gravity on a grid and make a map.

10.11.3 Buried column (2D)

gz = 2G∆ρb ln r2
r1

10.11.4 Buried columns (2D)

gz = 2G
∑
i

∆ρibi ln
r2,i
r1,i

in ./images/gravity/columns/

10.11.5 Uniform layer of rock

A layer of rock has an infinite extent, thickness ∆z and a density ρ. The gravitational attraction of
this slab at the point P at height z obove the layer is

gz = 2πGρ∆z

Note that g z does not depend on the distance from the layer to the measurement point.
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10.11.6 A constant density shell (Root et al. , 2021)

Results & raw data in ./images/benchmark gravity/bench1

The shell is defined between R1 and R2. It contains a single material of density 3300kgm−3.
The layer is centered around depth 100km. Gravity is measured 250km above the surface, i.e.
r = 6621km. The thickness of the shell is 2, 5 or 10km.

The analytical gravity vector norm is given by

g =
4π

3
ρ
R3

2 −R3
1

r2
G

where we take G = 6.67384 · 10−11 (default in Aspect ) or G̃ = 6.67428 · 10−11 sometimes.

shell thickness volume mass gravity using G gravity using G̃
(km) (m3) (kg) (m s−2) (m s−2)

2 9.8835614e17 3.2615753e21 496.542034795 496.574771345
5 2.4708905e17 8.1539385e21 1241.35514223 1241.43698361
10 4.9417817e18 1.630788e22 2482.71067903 2482.87436182

In the Aspect input file there are three main parameters which may influence the results:

� the radial resolution, controlled in the input file by: set Number of slices = 1,2,3,4

� the tangential/lateral resolution, controlled by: set Initial lateral refinement = 3,4,5,6

� the number of (additional) quadrature points, controlled by: set Quadrature degree increase

=0,1,...6

We set here the default values at 1, 6 and 3 respectively.

lat. res. 3 lat. res. 4 lat. res. 5 lat. res. 6 lat. res. 7

nslice=1 (1 cells radial) # cells 384 1,536 6,144 24,576 98,304
6× 64 6× 256 6× 1, 024 6× 4, 096 6× 16, 384
6× 82 6× 162 6× 322 6× 642 6× 1282

nslice=2 (2 cells radial) # cells 768 3,072 12,288 49,152 196,608
nslice=3 (3 cells radial) # cells 1,152 4,608 18,432 73,728 294,912
nslice=4 (4 cells radial) # cells 1,536 6,144 24,576 98,304 393,216
average area (m2) 1.328292e+12 3.320732e11 8.30183e10 2.075457e10 5.188644e9
approx size (km) 1152km 576 288km 144km 72km
approx size (degree) 10.5 5.2 2.6 1.3 0.65

Earth has a surface of S = 4πR2 ≃ 5.1006447 · 1014m2. An average degree resolution means that
this surface would be tesselated in blocks of approximately 2πR/360 ≃ 111km size. There would
then be about 41,398 of such blocks. If a resolution of 2 degrees is required, then the blocks would
be about 220km in size and there would be about 10,349 blocks.

Results obtained with Aspect with G̃ are in the following table:
Thickness (km) 2 5 10
Shell formula (mGal) 496.574771345 1241.43698361 2482.87436182
m = 4, ∼ 5◦ 496.554320/496.602897/496.574854 1241.385829/1241.507337/1241.437190 2482.771870/2483.015344/2482.874775
m = 5, ∼ 2.6◦ 496.574748/496.574819/496.574771 1241.436926/1241.437102/1241.436983 2482.874246/2482.874599/2482.874361
m = 6,∼ 1.3◦ 496.574771/496.574771/496.574771 1241.436984/1241.436984/1241.436984 2482.874362/2482.874362/2482.874362
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Results for a 10km thick shell with Aspect
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I then define the concept of ’cost’. In terms of computational cost, there is a tradeoff between
resolution and number of quadrature points. The cost is then defined as

C = nel × nq3

where nel is the number of elements in the mesh and nq is the number of quadrature points per
element and per dimension.
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in ./images/benchmark gravity/bench1/

Preliminary conclusion: nq+ at least 3, nslice not so important here, lat res at least 6
TODO RUN 2 and 5 km shells !
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10.11.7 The WINTERC mono-layer benchmark (Root et al. , 2021)

A single data file is used, rho 56km SH W32.txt, stored in images/benchmark gravity/bench2. It
contains density values for a single layer comprised between 56 and 80km depths, i.e. there is no radial
variation of the density. Because of how Aspect works, the density values need to be transformed
into initial temperatures. Using the simple material model we have

ρ = ρ0(1− α(T − T0))

so

T =
1

α

(
1− ρ

ρ0

)
and we here take α = 3 ·10−5, T0 = 0 and ρ0 = 3300, so that the temperatures range between -1198.9
and 141.5. These values make no sense, but all we want is that the densities ρ(T ) generated by the
material model are those of the original dataset.

Furthermore, the rho 56km SH W32.txt file contains 720x360 lines, i.e. the resolution is a half de-
gree for longitude and latitude. These range from 0.25 to 359.75 and from -89.75 to 89.75 respectively.
These must be transformed into spherical coordinates ϕ ∈ [0, 2π] and θ ∈ [0, π].

Also the original data file contains longitude, latitude and density values for a thick layer.
The ascii data file which Aspect can read requires radial values in increasing order as well, so
for each combination ϕ − θ I generate two values, one at radius 6371-81km and one at 6371-
55km so that the depth layer 56-80km fits in it. The data format of the ascii file is specified in
data/initial-temperature/ascii-data/test/shell 3d.txt in Aspect .

Stone 98 reads in rho 56km SH W32.txt and generates the bench2.txt file which is to be read
by Aspect . Note that the first line of this file is mandatory and reads: # POINTS: 2 720 360

in ./images/benchmark gravity/bench2/
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Results obtained with Aspect . Top to bottom, level 4, 5, 6. Measurements grid is 181x91 points.

in ./images/benchmark gravity/bench2/

From Stone 98. Resolution of measurement grid is 181x91. It took about 19,100 seconds to run, averaging 1.16s per measurement point. Potential isocontours
at -400.5e3, -401e3, -401.5e3, -402e3. Radial acceleration contours at 0.0603, 0.0606 and 0.0609.

in ./python codes/images/

level avrg density total mass number of cells time

4 3323 3.981e+22 1,536 503s
5 3323 3.981e+22 6,144 2030s
6 3323 3.981e+22 24.576 8190s
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10.11.8 Moho benchmark (Root et al. , 2021)

We consider an 80km thick shell with a density interface inside, using CRUST1.0 Moho for the
boundary (upper dens = 2900kg/m3, lower dens = 3300 kg/m3). Stone 97 reads the CRUST1.0 file
and transforms it into bench3.ascii in the right ASPECT format.

bench3.ascii file has 301 points in the radial direction, i.e. a 300m resolution. 181x91 gravity measurement points. Lateral refinement level is 6, 25 slices.

in ./images/benchmark gravity/bench3/
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10.11.9 Gravity potential and gravity field of a two-layer spherically
symmetric planet

Note: see also problem 16 in previous section.
Let us assume that the planet consists of two layers: the core (of density ρc) and the mantle (of

density ρm). Its outer radius is R2 and the cmb is at R1. We wish to compute the gravitational
potential of this system and we start from the spherically symmetric Poisson equation:

1

r2
∂

∂r

(
r2
∂U

∂r

)
= 4πGρ (10.97)

We have three domains on the r-axis (a stands for air):

� r ∈ [0, R1], density ρc

� r ∈ [R1, R2], density ρm

� r ∈ [R2,+∞), density ρa = 0

We denote ρ̂ = 4πGρ. In the end we have to solve Eq. 10.97 in all three domains:

1

r2
∂

∂r

(
r2
∂U

∂r

)
= ρ̂c r ∈ [0, R1] (10.98)

1

r2
∂

∂r

(
r2
∂U

∂r

)
= ρ̂m r ∈ [R1, R2] (10.99)

1

r2
∂

∂r

(
r2
∂U

∂r

)
= 0 r ∈ [R2,+∞)] (10.100)

The generic solution of Eq. (10.97) is obtained as follows:

1

r2
∂

∂r

(
r2
∂U

∂r

)
= ρ̂ (10.101)

⇒ ∂

∂r

(
r2
∂U

∂r

)
= ρ̂r2 (10.102)

⇒ r2
∂U

∂r
=

1

3
ρ̂r3 + A (10.103)

⇒ ∂U

∂r
=

1

3
ρ̂r +

A

r2
= g(r) (10.104)

⇒ U(r) =
1

6
ρ̂r2 − A

r
+B (10.105)

So now we have the following set of equations:

g(r) =
1

3
ρ̂cr +

A

r2
U(r) =

1

6
ρ̂cr

2 − A

r
+B r ∈ [0, R1] (10.106)

g(r) =
1

3
ρ̂mr +

C

r2
U(r) =

1

6
ρ̂mr

2 − C

r
+D r ∈ [R1, R2] (10.107)

g(r) =
1

3
ρ̂ar +

E

r2
U(r) =

1

6
ρ̂ar

2 − E

r
+ F r ∈ [R2,+∞) (10.108)

We know that ρa = 0 and we additionally impose

lim
r→0

g(r) = 0 lim
r→+∞

U(r) = 0
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which automatically leads to A = F = 0.
In the end we have:

g(r) =
1

3
ρ̂cr U(r) =

1

6
ρ̂cr

2 +B r ∈ [0, R1] (10.109)

g(r) =
1

3
ρ̂mr +

C

r2
U(r) =

1

6
ρ̂mr

2 − C

r
+D r ∈ [R1, R2] (10.110)

g(r) =
E

r2
U(r) = −E

r
r ∈ [R2,+∞) (10.111)

We have now four unknowns B,C,D,E. Since the two fields g and U must be continuous at
r = R1 and r = R2, then we have four constraints and that will allow us to determine the four
unknowns.

Let us start with the continuity at r = R1:

g(r = R1) =
1

3
ρ̂cR1 =

1

3
ρ̂mR1 +

C

R2
1

(10.112)

U(r = R1) =
1

6
ρ̂cR

2
1 +B =

1

6
ρ̂mR

2
1 −

C

R1

+D (10.113)

The first equation yields

C =
R3

1

3
(ρ̂c − ρ̂m)

which we plug in the second equation:

1

6
ρ̂cR

2
1 +B =

1

6
ρ̂mR

2
1 −

R2
1

3
(ρ̂c − ρ̂m) +D

1

6
(ρ̂c − ρ̂m)R2

1 +B = −R
2
1

3
(ρ̂c − ρ̂m) +D

(
1

6
+

1

3
)(ρ̂c − ρ̂m)R2

1 +B = D

1

2
(ρ̂c − ρ̂m)R2

1 +B = D

We cannot go any further so we turn to r = R2:

g(r = R2) =
1

3
ρ̂mR2 +

C

R2
2

=
E

R2
2

(10.114)

U(r = R2) =
1

6
ρ̂mR

2
2 −

C

R2

+D = − E

R2

(10.115)

in which we insert the known value of C:

1

3
ρ̂mR2 +

1

R2
2

R3
1

3
(ρ̂c − ρ̂m) =

E

R2
2

(10.116)

1

6
ρ̂mR

2
2 −

1

R2

R3
1

3
(ρ̂c − ρ̂m) +D = − E

R2

(10.117)

Multiplying the first equation by R2
2 and the second one by R2:

1

3
ρ̂mR

3
2 +

R3
1

3
(ρ̂c − ρ̂m) = E (10.118)

1

6
ρ̂mR

3
2 −

R3
1

3
(ρ̂c − ρ̂m) +DR2 = −E (10.119)
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The first equation then gives us E:

E =
1

3
ρ̂m(R

3
2 −R3

1) +
1

3
R3

1ρ̂c

So in the end, we have

C =
R3

1

3
(ρ̂c − ρ̂m) (10.120)

E =
1

3
ρ̂m(R

3
2 −R3

1) +
1

3
R3

1ρ̂c (10.121)

D =
1

R2

(
−E − 1

6
ρ̂mR

3
2 +

R3
1

3
(ρ̂c − ρ̂m)

)
(10.122)

=
1

R2

(
−1

3
ρ̂m(R

3
2 −R3

1)−
1

3
R3

1ρ̂c −
1

6
ρ̂mR

3
2 +

R3
1

3
(ρ̂c − ρ̂m)

)
(10.123)

=
1

6R2

[
(−2R3

2 + 2R3
1 −R3

2 − 2R3
1)ρ̂m + (−2R3

1 + 2R3
1)ρ̂c

]
(10.124)

=
1

6R2

(
−3R3

2ρ̂m
)

(10.125)

= −R
2
2

2
ρ̂m (10.126)

B = D − 1

2
(ρ̂c − ρ̂m)R2

1 (10.127)

= −R
2
2

2
ρ̂m −

1

2
(ρ̂c − ρ̂m)R2

1 (10.128)

=
1

2
(R2

1 −R2
2)ρ̂m −

1

2
R2

1ρ̂c (10.129)

We set R1 = 3400km, R2 = 6400km, ρc = 6000kg/m3 and ρm = 4000kg/m3 and obtain the
following fields:
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We find that the fields fulfill all conditions and are continuous, as expected.
Also, setting ρc = 0 (i.e. the planet is a hollow sphere), we recover the following fields:
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These are similar to the results presented in Appendix A of Thieulot [1259].
We can also consider the case of a constant density planet, i.e. ρm = ρc = ρ0 = 5000kg/m3 In

that case C = 0,

E =
1

3
ρ̂0R

3
2 =

4π

3
Gρ0R3

2 =MG

D = −1

2
R2

2ρ̂0

B = −1

2
R2

2ρ̂0

so that

g(r) =
4π

3
Gρ0r U(r) =

1

6
ρ̂0r

2 − 1

2
R22ρ̂0 r ∈ [0, R1] (10.130)

g(r) =
4π

3
Gρ0r U(r) =

1

6
ρ̂0r

2 − 1

2
R2

2ρ̂0 r ∈ [R1, R2] (10.131)

g(r) =
GM
r2

U(r) = −GM
r

r ∈ [R2,+∞) (10.132)

Unsurprisingly we obtain the same expressions inside the core and the mantle and we recover the
expressions of problem 14 (see previous section).

In the end the fields are as follows:
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10.12 Gravity forward calculations in practice

g⃗(r⃗) = −∇⃗U(r⃗)

with

U(r⃗) = G
∫ ∫ ∫

ρ(r⃗′)

|r⃗ − r⃗′|
dV

with (in a Cartesian coordinates system):

|r⃗ − r⃗′| =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 dV = dx′dy′dz′

We then have

gx(x, y, z) = −G
∫ ∫ ∫

∂

∂x

ρ(r⃗′)

|r⃗ − r⃗′|
dx′dy′dz′

= G
∫ ∫ ∫

ρ(r⃗′)(x− x′)
|r⃗ − r⃗′|3

dx′dy′dz′

gy(x, y, z) = −G
∫ ∫ ∫

∂

∂y

ρ(r⃗′)

|r⃗ − r⃗′|
dx′dy′dz′

= G
∫ ∫ ∫

ρ(r⃗′)(y − y′)
|r⃗ − r⃗′|3

dx′dy′dz′

gz(x, y, z) = −G
∫ ∫ ∫

∂

∂z

ρ(r⃗′)

|r⃗ − r⃗′|
dx′dy′dz′

= G
∫ ∫ ∫

ρ(r⃗′)(z − z′)
|r⃗ − r⃗′|3

dx′dy′dz′

In order to compute the gravity tensor T = ∇⃗g⃗, also called gravitational gravity tensor [1090] or
Marussi tensor, we need to compute ∂2U

∂α∂β
with α, β = x, y, z and we obtain (See Arroyo et al. (2015)

[30]):

Txx(x, y, z) = −G
∫ ∫ ∫

3(x− x′)2 − (r⃗ − r⃗′)2

|r⃗ − r⃗′|5
ρ(r⃗′)dx′dy′dz′ (10.133)

Tyy(x, y, z) = −G
∫ ∫ ∫

3(y − y′)2 − (r⃗ − r⃗′)2

|r⃗ − r⃗′|5
ρ(r⃗′)dx′dy′dz′ (10.134)

Tzz(x, y, z) = −G
∫ ∫ ∫

3(z − z′)2 − (r⃗ − r⃗′)2

|r⃗ − r⃗′|5
ρ(r⃗′)dx′dy′dz′ (10.135)

Txy(x, y, z) = −G
∫ ∫ ∫

3(x− x′)(y − y′)
|r⃗ − r⃗′|5

ρ(r⃗′)dx′dy′dz′ (10.136)

Txz(x, y, z) = −G
∫ ∫ ∫

3(x− x′)(z − z′)
|r⃗ − r⃗′|5

ρ(r⃗′)dx′dy′dz′ (10.137)

Tyz(x, y, z) = −G
∫ ∫ ∫

3(y − y′)(z − z′)
|r⃗ − r⃗′|5

ρ(r⃗′)dx′dy′dz′ (10.138)

Note that the trace satisfies the Laplace equation Txx + Tyy + Tzz = ∆U = 0.
redo all calculations to be sure

Unless the geometry is conveniently chosen with lots of symmetry and the density is also very sim-
ple the above integrals cannot be computed analyticaly and one must resort to numerical integration
based on a tesselation of the space, such as prisms or tesseroids.
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Prisms

The gravitational potential U of a right rectangular parallelopiped (prism) of homogeneous mass-
density ρ0 is described by Newton’s integral [556]

U(x, y, z) = Gρ0
∫ z2

z1

∫ y2

y1

∫ x2

x1

1

|r⃗ − r⃗′|
dx′dy′dz′ = Gρ0

∫ z2

z1

∫ y2

y1

∫ x2

x1

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′dy′dz′

Taken from [556].

The denominator is the distance between the computation point P (x, y, z) and the running in-
tegration point Q(x′, y′, z′). The coordinate axes have been assumed to be parallel to the edges of
the prism, which extends between the coordinate surfaces related to the bounds x1, x2, y1, y2, z1,
z2. It is well known that the integral can be solved analytically (Mader (1951) [822], see also Nagy
et al. [922, 921]), resulting in the formula for the potential U(x, y, z):

U(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
A+B + C − 1

2
D

)
with

A = (x− xi)(y − yj) ln

∣∣∣∣∣ z − zk + rijk√
(x− xi)2 + (y − yj)2

∣∣∣∣∣
B = (y − yj)(z − zj) ln

∣∣∣∣∣ x− xi + rijk√
(y − yj)2 + (z − zk)2

∣∣∣∣∣
C = (x− xi)(z − zk) ln

∣∣∣∣∣ y − yj + rijk√
(z − zk)2 + (x− xi)2

∣∣∣∣∣
D = (x− xi)2 arctan

(y − yj)(z − zk)
(x− xi)rijk

+ (y − yj)2 arctan
(z − zk)(x− xi)
(y − yj)rijk

+ (z − zk)2 arctan
(x− xi)(y − yj)
(z − zk)rijk

and

rijk =
√
(x− xi)2 + (y − yj)2 + (z − zk)2

Remark. The direct application of this equation will fail when the computation point P is situated
on an edge or on a corner of the prism; the respective limit values have been derived by Nagy et
al. [922, 921]
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The gravity vector and tensor can then be computed [1004, 30, 279]:

gx(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ×[
(y − yj) ln((z − zk) + rijk) + (z − zk) ln((y − yj) + rijk)− (x− xi) arctan

(y − yj((z − zk)
(x− xi)rijk

]
gy(x, y, z) = Gρ0

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ×[
(z − zk) ln((x− xi) + rijk) + (x− xi) ln((z − zk) + rijk)− (y − yj) arctan

(x− xi)(z − zk)
(y − yj)rijk

]
gz(x, y, z) = Gρ0

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ×[
(y − yj) ln((x− xi) + rijk) + (x− xi) ln((y − yj) + rijk)− (z − zk) arctan

(x− xi)(y − yj)
(z − zk)rijk

]
Txx(x, y, z) = Gρ0

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k arctan (y − yj)(z − zk)
(x− xi)rijk

Tyy(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k arctan (x− xi)(z − zk)
(y − yj)rijk

Tzz(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k arctan (x− xi)(y − yj)
(z − zk)rijk

Txy(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln((z − zk) + rijk)

Txz(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln((y − yj) + rijk)

Tyz(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln((x− xi) + rijk)

Note that Heck & Seitz [556] report that the logarithmic terms can be transformed in order to
provide a better numerical stability and then

gx(x, y, z) = Gρ0
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
[
(y − yj) ln

∣∣∣∣∣ (z − zk) + rijk√
(x− xi

2
+ (y − yj)2

∣∣∣∣∣
+(z − zk) ln

∣∣∣∣∣ (y − yj) + rijk√
(x− xi

2
+ (z − zk)2

∣∣∣∣∣− (x− xi) arctan
(y − yj)(z − zk)
(x− xi)rijk

]
(10.139)

The gravitational potential of the homogeneous rectangular prism, neglecting terms of order four
and higher in x, y, z, is then given by MacMillan’s (1930)19 formula:

U(x, y, z) = Gρ0∆x∆y∆y

[
1

l0
+

3(x0 − x)2 − l20
24l50

∆2
x +

3(y − y0)2 − l20
24l50

∆2
y +

3(z − z0)2 − l20
24l50

∆2
z +O(∆4)

]
19MacMillan WD (1930) Theoretical Mechanics, vol 2: the The- ory of the potential. McGraw-Hill, New York

(reprinted by Dover Publications, New York 1958)
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Taken from [556].

It is obvious that the zero-order approximation is identical with the potential of a point-mass at
P0 when the total mass of the prism m = ρ0∆x∆y∆z is concentrated at its geometrical centre P0:

U(x, y, z) = Gρ0∆x∆y∆y
1

l0

It is also common [348] to look at:

� the differential curvature magnitude (DCM) which is also known as the horizontal directive
tendency, computed by a combination of components of tensor Txx , Txy and Tyy . It emphasizes
greatly the effects of shallower sources (Saad, 2006);

DCM =
√

(Txx − Tyy)2 + 2T 2
xy

� the horizontal gradient magnitude (HGM) of gz can be computed from the horizontal derivative
components of gz and can be used as edge detector or to map the body outline as it verifies
the prism boundaries

HGM =
√
T 2
zx + T 2

zy =

√(
−∂gz
∂x

)2

+

(
−∂gz
∂y

)2

� the total gradient magnitude (TGM) is computed from the three derivatives of vertical com-
ponent of gravity:

TGM =
√
T 2
zx + T 2

zy + T 2
zz =

√(
−∂gz
∂x

)2

+

(
−∂gz
∂y

)2

+

(
−∂gz
∂z

)2
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Example 1 The result of calculating the components of a prism measuring 200m3 at a height of
0.01 km, with an observation mesh of 1km×1km, and discretized every 20m is shown hereunder:

Taken from Arroyo et al. (2015) [30]. Gravity gradient response for a prism buried a depth of 100m,

Each side having a length of 200 m and constant density contrast of 100 kg/m3.
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Example 2 . Buried prims of size 8x4x1 km along x, y and z directions respectively. Density is
2700. Mapped gravity field and its gradient on a plane of constant 1000m height.

(a) A model containing a prism and (b-d): corresponding gravity vector components and (e-j) GGT components with sampling interval of 0.2 km in x and y

directions. Taken from [348]
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A map view of complex behavior of gravity gradients for prism model. Taken from [348]

Computed vertical gravity component G z and three invariants map of HGM, DCM and TGM for given prism model. HGM = Horizontal Gradient Magnitude,

DCM = Differential Curvature Magnitude and TGM = Total Gradient Magnitude. Taken from [348]

Relevant Literature:

� Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent
Density [646]

744



� New computationally efficient quadrature formulas for triangular prism elements [734]

� 3D Gravity Modeling of Complex Salt Features in the Southern Gulf of Mexico [931].

� Spherical prism gravity effects by Gauss-Legendre quadrature integration [32]

� Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other
gravity data modelling: Application to the Atlantic-Mediterranean transition zone [424]

Tesseroids

A tesseroid, or spherical prism, is segment of a sphere.

Taken from [1298]

Tesseroids is a collection of command-line programs for modeling the gravitational potential,
acceleration, and gradient tensor. Tesseroids supports models and computation grids in Cartesian
and spherical coordinates. https://tesseroids.readthedocs.io/en/stable/

Relevant Literature:

� Forward modeling and inversion of gravitational fields in spherical coordinates, L. Uieda, Phd
Thesis [1297]

� Tesseroids: Forward-modeling gravitational fields in spherical coordinates [1296]

� Optimal forward calculation method of the Marussi tensor due to a geologic structure at GOCE
height [1298]

� Optimized formulas for the gravitational field of a tesseroid [498]

Tetrahedra

Werner and Scheeres [1350] (1997) derived analytical expressions for the gravity potential, field and
tensor generated by any polyhedron. These can be applied to tetrahedra.

Metherell and Quinn [866] (1986) derived analytical expressions for the gravity field generated
by so-called 111-tetrahedra. Note the corrections in Carré, Metherell, and Quinn [209] (1986).

Chanut, Aljbaae, and Carruba [218] (2015) used a mascon approach (point mass approach?) on
tetrahedra making up an asteroid:
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Taken from Chanut, Aljbaae, and Carruba [218]. Polyhedron model 3D of asteroid (216) Kleopatra. The shape was built with 4092 faces.

This is implemented in stone 113.

Other shapes

Relevant Literature
Rapid Gravity Computations for Two-Dimensional Bodies [1233]
Rapid Computation of Gravitational Attraction of Three-Dimensional Bodies of Arbitrary Shape

[1232]

10.13 Instruments to measure gravity

Gravity meters

include here pic of Vening Meinesz

Taken from website20. The pendulum apparatus of Vening Meinesz, also known as ”Het Gouden Kalf” (the Golden Calf). Positioned on the left side is the

protective casing with the recording instrument on top. On the right side is the pendulum apparatus with the three pendulums at the back.

See video by Bart Root: https://youtu.be/SVTJA3KAnck?si=-OZ1lPnHQwHy0kEl

Absolute gravity measurements After a time t an object has fallen by a distance x in a gravity
field g with x = gt2/2 so that g = 2x/t2.

20http://deepearthscience.blogspot.com/2016/06/the-gravimeter-of-professor-vening.html
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by Micro-g LaCoste. The FG521 operates by using a free-fall method. An object is dropped inside a vacuum chamber and its position is monitored very

accurately using a laser interferometer. Dropping chamber of 33cm. Accuracy of approx. 2µGal.

Planes

Satellites

GRACE Note that GRACE consists of two satellites which are in a low orbit and the distance
between them is accurately measured. Changes in this separation are caused by increases and
decreases in gravity.

https://upload.wikimedia.org/wikipedia/commons/e/e6/GRACE_artist_concept.jpg

Examples of applications using GRACE data:

21http://microglacoste.com/product/fg5-x-absolute-gravimeter/
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� Inference of mantle viscosity from GRACE and relative sea level data [983]

� Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface:
implications for the global water and sea level budgets [96]

GOCE Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) was the first of ESA’s
Living Planet Programme satellites intended to map in unprecedented detail the Earth’s gravity
field with a spatial resolution up to 80 km. The spacecraft’s primary instrumentation was a highly
sensitive gravity gradiometer consisting of three pairs of accelerometers which measured gravitational
gradients along three orthogonal axes.

Examples of applications using GOCE data:

� GOCE gravitational gradients along the orbit [121]

� Moho Estimation Using GOCE Data: A Numerical Simulation [1057]

� Global Moho from the combination of the CRUST2.0 model and GOCE data [1058]

� Advancements in satellite gravity gradient data for crustal studies [359]

� Sensitivity of GOCE Gravity Gradients to Crustal Thickness and Density Variations: Case
Study for the Northeast Atlantic Region [358]

� Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients [972]

� GOCE gravity gradient data for lithospheric modeling [122]

� Exploration of tectonic structures with GOCE in Africa and across-continents [131]

� GEMMA: An Earth crustal model based on GOCE satellite data [1056]

� GOCE data, models, and applications: A review [861]

� Geological units and Moho depth determination in the Western Balkans exploiting GOCE data
[1101]

� The combined inversion of seismological and GOCE gravity data: New insights into the current
state of the Pacific lithosphere and upper mantle [1272]

10.14 Gravity anomalies

Caves and cavities
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Underground man-made structures (bunkers)

Mineral deposits

Impact craters

Salt layers

10.15 Gravity reductions

In gravity work, more than in any other branch of geophysics, large and (in principle) calculable
effects are produced by sources which are not of direct geological interest. These effects are removed
by reductions involving sequential calculation of a number of recognized quantities.

Latitude correction Because of the shape of the Earth, latitude has a large effect on gravity
measurements, as visible in the following figure:

gravity as measured by V. Meinesz onboard the K-XVIII submarine. On the left: chronological order.

On the right: same measurements, but organised per latitude.

It is obvious that we are not interested in this long wavelength pattern, but rather in the deviations
from it.

The formula is as follows:

gn = 978031.85(1.0 + 0.005278895 sin2(lat) + 0.000023462 sin4(lat))(mgal)

where lat is the latitude.

Free-air correction After substracting the above signal, the observed gravity will be due in part
to the height of the gravity station above the sea-level reference surface. An increase in height implies
an increase in distance from the Earth’s centre of mass and the effect is negative for stations above
sea level (g ∝ r−2). The free-air correction is thus positive and the quantity obtained after applying
both the latitude and free-air corrections is termed the free-air anomaly or free-air gravity.

Bouguer correction

Terrain correction material10.pdf
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10.16 How not to think about gravity (or Earth Sciences)
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Chapter 11

Mantle Dynamics GEO4-1416 syllabus
(Utrecht University)

Remark. This handout was written by W. Spakman and is for a large part based on a syllabus by
Dr. A.P. van den Berg and Prof. N.J. Vlaar and on material from the book “Mantle convection in
the Earth and Planets” by Schubert, Turcotte, and Olson, Cambridge University Press, 2002.

Additional resources:

Left: William I Newman. Continuum Mechanics in the Earth Sciences. Cambridge University Press, 2012. isbn: 978-0-521-56289-8; Right: G. Schubert,

D.L. Turcotte, and P. Olson. Mantle Convection in the Earth and Planets. Cambridge University Press, 2001. isbn: 0-521-70000-0. doi: 10.1017/CBO9780511612879.

In what follows (and in the entire fieldstone document) vectors are denoted by an arrow, e.g. v⃗,
while tensors are denoted by a bold font, e.g. σ. It is also my experience that each book/syllabus
uses its own set of notations. In particular, and rather to my own confusion, some books call the
full stress tensor τ and not σ, and call the deviatoric stress σ. Some sources make no difference
between the viscous stress tensor and the deviatoric stress tensor. Also it happens (especially in the
mathematical literature) that the strain rate tensor is called D instead of ε or ε̇, and that the stress
tensor is called T . All in all be careful when reading additional sources.
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Continuum mechanics ↔ continuummechanica
Coordinate system ↔ coordinatenstelsel
Cartesian coordinates system ↔ cartesische coordinatenstelsel
Scalar ↔ scalair, scalaire grootheid of scalar
Vector ↔ vector
Tensor ↔ tensor
Axis ↔ axis
Unit vector ↔ eenheidsvector
Cross product ↔ vectorprodukt of uitprodukt
volume forces ↔ volumekrachten
Surface forces ↔ oppervlaktekrachten
Stress tensor ↔ spanningstensor

11.0.1 The continuity equation

11.1 Review of some essentials of continuum mechanics

Newtonian mechanics deal with particles and rigid (undeformable) bodies on which forces are act-
ing. The application of Newtonian mechanics to realistic media (gases, fluids, solids) is undoable
simply because of the many particles (atoms, molecules) involved. Continuum mechanics tackles
this problem by assuming that physical fields (e.g. density, temperature, velocity) can be viewed as
(piece-wise) continuous functions defined on the time and space coordinates involved in the descrip-
tion of macroscopic matter. The idea is essentially that a tiny cube with sides of, say, 10−8 m already
contains a sufficient number of atoms (millions) which allows for establishing physically meaningful
descriptions of quantities as temperature and density of the cube. In continuum mechanics we are
mostly interested in material behavior on much larger scales than 10−8 m for which is assumed that
physical quantities are smooth functions of time and spatial coordinates.

The forces involved in the deformation of a continuum are postulated to be body forces b⃗
[Nm−3], such that b⃗dV is the force acting on the infinitesimal volume dV , and surface tractions t⃗ n⃗

[Nm−2] (e.g. internal friction, applied surface tractions), such that t⃗ n⃗dS is the force acting on the

infinitesimal surface dS. It is usual to write b⃗ = ρg⃗, with ρ [kgm−3] the mass density and with g⃗
[m s−2] the acceleration due to the body force, which in mantle dynamics is gravity.

b⃗ and t⃗ n⃗ are force densities which after integration over a volume or a surface, respectively, lead
to net forces acting on the volume or surface. The traction (or stress vector) is defined as

t⃗n⃗ = lim
∆S→0

∑
i

f n⃗i

∆S
,

which expresses the force per unit area working on a tiny surface ∆S with unit normal n⃗ (defining
the orientation of the surface). The forces f n⃗i can be viewed as the atomic forces [N] that are applied
at the n⃗-side of ∆S to atoms at the other side of the surface. To maintain equilibrium, by the third
law of Newton, the traction applied to the −n⃗− side of the surface is t⃗−n⃗ = −t⃗ n⃗. Tractions depend
on the orientation of the surface. In principle, one can draw an infinite number of oriented surfaces
through one point, each associated with a different traction.

Tractions are usually separated into the thermodynamic pressure force pn⃗ and the traction τ⃗
related to mechanical deformation: t⃗ n⃗ = −pn⃗ + τ⃗ (p > 0). The thermodynamic pressure (a
traction always acting perpendicular to any surface) is obtained from the equation of state f(ρ, p, T )
relating thermodynamic quantities density, pressure, and temperature of a continuum. The sign
convention in continuum mechanics is that compression is negative and tension is positive (in
geology this is usually the other way around).
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11.1.1 Stress

Stress is a second order tensor quantity, which is defined by the following steps:

1. Assume a Cartesian coordinate frame in a point of interest for which the coordinate axis are
spanned by three unit orthogonal vectors e⃗i (i = 1, 2, 3),

2. Imagine a tiny cube centered about the origin and with its faces parallel to the coordinate
planes,

3. Consider the 3 tractions t⃗ e⃗i that are acting on the three positive faces of the cube (i.e. the
faces which have the normal vectors e⃗i),

4. Lastly, define the components σij of the stress tensor σ as

σij = t⃗e⃗i · e⃗j (11.1)

When the stress tensor is visualized as a matrix, the three rows are the tractions on the positive
faces of the cube. The diagonal elements of the stress tensor σ are called normal stresses and the
off-diagonal elements are the shear stresses.

Stress is a physical quantity, independent of coordinate frame, but the actual values of components
σij of the stress tensor can only be computed in a coordinate system. These numbers are dependent
on the frame adopted like the components of a flow vector (a first order tensor) are frame dependent.
Second order tensors follow (by definition) the coordinate transformation rules of 3 × 3 matrices.
From an analysis of force and force- moment balance it can be demonstrated that the stress tensor
is symmetric: σ = σT or σij = σji.

An eigenvalue-eigenvector analysis leads to the three principal stresses σk (eigenvalues) and the
corresponding three corresponding principal directions q⃗k (eigenvectors of unit length). The latter
span three mutually orthogonal (Cartesian) axes. In the principal-axes frame the stress tensor is
diagonal with the three principal stresses as diagonal elements. In the principal-axes frame the
tensor components are the maximal normal stresses (tractions perpendicular to the faces of a tiny
cube oriented along the principal coordinate planes) compared to the normal stresses in any other
coordinate system.

An important relation (the Cauchy relation) exists between the local state of stress (i.e. the stress
tensor σ) and the traction t⃗n⃗ acting on an (arbitrarily) oriented tiny surface ∆S with unit normal n⃗:

σ · n⃗ = t⃗ n⃗ (11.2)

or in components σijnj = tn⃗i (summation convention implied). This relation states how traction
can be computed from the local stress and conversely, that from known tractions on independently
oriented surfaces the stress tensor can be constructed by solving Eq. (11.2). Note that it is required
that n⃗ is a unit normal, i.e. n⃗ · n⃗ = njnj = 1.

Exercise: 1. Determine the tractions acting on the negative faces of a tiny cube (of which the

faces are aligned with the local coordinate axes) when the stress is given.

11.1.2 Force balance equation of a continuum at rest

Assume a continuum (gas, liquid, solid) at rest. In this situation the net force acting on the entire
continuum is 0⃗ (Newton). The sum of body forces and applied surface tractions cancel in some way.
This also holds for any sub-volume V . An internal stress field may still exist as a result of the applied
forces and surface tractions. The relation between the body force, tractions, and the internal stress
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field is derived as follows: Consider an arbitrary sub-volume V with boundary S. Internal tractions
act on the boundary S (e.g. to be determined with equation (11.2) from the internal stress field at
S). The following equation postulates that the total sum of body forces∫

V

ρg⃗dV +

∫
S

t⃗ n⃗dS = 0⃗ (11.3)

acting on V and of tractions on S leads to a zero net force acting on V.
Substituting (11.2) in the surface integral and next applying the Divergence theorem1 one arrives

at ∫
V

ρg⃗dV +

∫
V

∇⃗ · σdV = 0⃗

Because V is an arbitrary volume the integrant must equal 0, which leads to the equilibrium
equation (or momentum conservation equation):

∇⃗ · σ + ρg⃗ = 0⃗ or,
∂σij
∂xj

+ ρgi = 0 (11.4)

This equation holds for any point in the interior of the continuum. Any traction applied at the
boundary of the continuum relates to the (local) stress through equation (11.2). Equation (11.4)
states that body forces are in equilibrium with the divergence of the stress tensor. Note: Gravity
implies spatial variation in stress.

A similar analysis for the equilibrium of torques leads to the symmetry of the stress tensor. In
this case the equilibrium equation is∫

V

ρr⃗ × g⃗dV +

∫
S

r⃗ × t⃗ n⃗dS = 0⃗,

where r⃗ is the position vector r⃗ = (x1, x2, x3)
T . The cross products can be written in index notation

using the permutation symbol ϵijk which equals zero if at least two indices have the same value (e.g.
ϵ121 = 0), equals +1 if ijk is an even permutation of 123, and equals -1 if ijk is an odd permutation

of 123. This leads to the following notation of the cross product of two vectors a⃗× b⃗ = ϵijke⃗iajbk and

per component (⃗a× b⃗) = ϵijkajbk leading to the torque balance for component i:∫
V

ρϵijkxjgkdV +

∫
S

ϵijkxjt
n⃗
kdS = 0.

Exercise: 2. a) Derive equation (11.4)

b) Using a similar approach, prove the symmetry of the stress tensor from the balance of torques

(assuming that no internally applied tractions exist)

c) Derive (11.4) by considering the force balance of a tiny cube

11.1.3 The material derivative

For a mathematical intro see Appendix W. Consider a continuum with a three-dimensional flow field
v⃗(x1, x2, x3, t) dependent on the 3 spatial coordinates xj and time t. For any differentiable scalar
function T defined on these 4 parameters we can write the total differential 2

dT =
∂T

∂t
dt+

∑
j

∂T

∂xj
dxj (11.5)

1https://en.wikipedia.org/wiki/Divergence_theorem
2See any basic textbook on Calculus.
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This equation can be interpreted as follows: Consider a certain point (r⃗, t) in which the scalar function
T (r⃗, t) has continuous partial derivatives. The infinitesimal change dT , which results from going from
(r⃗, t) to (r⃗ + dr⃗, t + dt) in de domain of T is given by Eq. (11.5). Importantly, dr⃗ and dt can be
arbitrarily chosen (including 0 values). The total differential is at the basis of the definition of the
so-called directional derivative. Differentiable functions of more than 1 variable can be differentiated
in arbitrary directions (in their domain) to find their rate of change in this direction with respect to
a specified parameter. Particularly, we can consider the rate of change of T with the time parameter
t and (spatially) in the direction of the velocity field ν⃗(r⃗, t). This time- derivative is easily obtained
from (11.5) by coupling dt and the spatial increment dr⃗ such that dr⃗ = v⃗dt. Substitution in (11.5)
leads to the time derivative of T in the direction of the velocity vector:

DT

Dt
=
∂T

∂t
+ ν⃗ · ∇⃗T =

∂T

∂t
+
∑
j

νj
∂T

∂xj
with ν⃗ =

dr⃗

dt
(11.6)

which is called the material derivative of T giving the rate of change of T with time in the direction of
the flow ν⃗(r⃗, t) at a certain point (r⃗, t). The lhs of (11.6) treats T as a function of t only in the point
(r⃗(t), t) whereas the rhs of (11.6) shows how this can be computed from the partial derivatives of
T (r⃗, t) and the local velocity ν⃗(r⃗, t). The partial derivative ∂T/∂t gives the temporal rate of change

at fixed position r⃗, while the second term gives the spatial contribution at fixed time, i.e ν⃗ · ∇⃗T
expresses the advective contribution (carried with the flow) to DT/Dt.

Without reference to a particular scalar function the material derivative (operator) is:

D

Dt
=

∂

∂t
+ ν⃗ · ∇⃗ (11.7)

The material derivative holds for any scalar function, particularly, for the components vi of the
velocity field leading to the particle acceleration:

Dν⃗

Dt
=
∂ν⃗

∂t
+ ν⃗ · ∇⃗ν⃗ (11.8)

Note that if the velocity field is time-stationary, i.e. ∂t = 0, there is still acceleration. In this case
the velocity vector field does not change with time. But, there can still be a spatial variation which
gives rise to a stationary acceleration field and material velocity still changes in space, although the
velocity is a constant vector in each point.

Exercise: 3. Assume 2-D space. Let the temperature field T be given by

T (r⃗, t) = T0
1

r
exp(−t) t > 0, r > 0

The temperature field belongs to a flow field given by ν⃗(r⃗, t) = 1
r2

exp(−t)r⃗.
a) Determine the divergence of the velocity field.

b) Compute the particle acceleration.

c) Compute the material derivate of T at any position and time.

11.1.4 The material derivative of a material volume integral

Let V be a material volume, i.e. a volume that encompasses for all t the same flow particles. This
volume is following the flow, possibly being deformed, while there is no material exchange with the
region outside V . Let T be again a scalar function of the space and time coordinates. The material
derivative of the (material) volume integral of T is (See Appendix W.0.4):

D

Dt

[∫
V (t)

T (r⃗, t)dV

]
=

∫
V (t)

DT

Dt
+ T ∇⃗ · ν⃗dV =

∫
V (t)

DT

Dt
+ T

∂vk
∂xk

dV (11.9)
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Exercise: 4. Derive from (11.9) the alternative formula

D

Dt

[∫
V (t)

T (r⃗, t)dV

]
=

∫
V (t)

∂T

∂t
+
∂Tvk
∂xk

dV

11.1.5 Diffusion processes

Diffusion processes are in many cases described by (empirical) laws of the form a⃗ = −D ·∇⃗H where a⃗
is a vector and D is the (anisotropic) diffusion (coefficient) tensor, and H a scalar field. Examples are

Fourier’s (isotropic) heat flow vector q⃗ = −k∇⃗T where k is thermal conductivity and T temperature,

or the isotropic diffusion of matter (atoms) given by the mass density flow vector J⃗ = −D∇⃗c where
D is the diffusion coefficient and c the concentration of the substance.

11.2 The basic equations of continuum mechanics

De algemene bewegingsvergelijking en de continuiteitsvergelijking vormen de ba-
sisvergelijkingen van de continuummechanica. Elke deformeerbare stof voldoet eraan.
The fluid ↔ de vloiestof
The continuity equation ↔ de continuiteitsvergelijking
The general equation of motion ↔ de algemene bewegingsvergelijking
An incompressible material ↔ en onsamendrukbare stof
Strain rate ↔ de deformatiesnelheid
stress(tensor) ↔ de spanning(stensor)
velocity gradient ↔
rotation rate ↔
pressure ↔ de druk
The constitutive equation ↔ de constitutievergelijking

11.2.1 The continuity equation

The continuity equation is also called mass conservation equation or Reynold’s transport theorem.
Consider an arbitrary material volume V within a continuum. By definition of a material volume,
the mass it contains is conserved, M=constant, or DM/Dt = 0. The mass is given by

M =

∫
V (t)

ρ(r⃗, t)dV

Applying (11.9) to DM/Dt = 0 we find (for arbitrary V) the continuity equation as a local expression
of mass conservation:

Dρ

Dt
+ ρ

∂νk
∂xk

= 0 (11.10)

or, when substituting the material derivative:

∂ρ

∂t
+
∂(ρνk)

∂xk
= 0

∣∣∣∣ ∂ρ

∂t
+ ∇⃗ · (ρν⃗) = 0 (11.11)

In incompressible fluids the density cannot change: Dρ/Dt = 0. Consequently, mass conservation
requires that the divergence of the velocity is 0, i.e.

∂νk
∂xk

= 0

∣∣∣∣ ∇⃗ · ν⃗ = 0 (11.12)
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Note that an equation like (11.10) can also be derived for any other quantity that is conserved by a
material volume.

Exercise: 5. Prove that in a flowing medium with density ρ the following relation holds

D

Dt

[∫
V (t)

ρTdV

]
=

∫
V (t)

ρ
DT

Dt
dV (11.13)

for any differentiable scalar function T and material volume V . This formula will be frequently

used.

Exercise: 6. a) Prove that in an incompressible fluid the cubic-meter content of a material

volume does not change (hence, only the shape of boundary of the material volume is allowed to

change).

b) Prove that in an incompressible fluid the boundary S of a material volume obeys the following

integral
∫
S νknkdS = 0. (Interpret this integral)

Exercise: 7. Let V be an imaginary volume fixed in space. Derive the alternative mass conser-
vation law: ∫

V

∂ρ

∂t
dV = −

∫
S
J⃗ · n⃗dS

where J⃗ = ρν⃗ is the mass-density flow. (Interpret this equation).

Exercise: 8. We wish to describe the transport of a polluting substance X carried by a fluid
flow. We assume the substance is chemically non-reactive (passive) and dissolved in the fluid.
The spatial distribution of X is given by the concentration function c(r⃗, t) [kgm−3]. Pollutant is
also being produced/destroyed according to the function H(r⃗, t) [kg s−1m−3].

a) Assume for the moment that mass diffusion of X can be ignored. Derive a conservation law

in the form of a differential equation for the concentration function c(r⃗, t). [Hint: start with

computing the total mass of X (integral form) contained in a material volume V . Next consider

the (material) time derivative of this integral. Is equal to what?]

b) Now assume that mass diffusion of the pollutant is important. This implies material diffusion

(not controlled by the fluid flow) across the boundary S of the control volume V . Assume that

the mass flow density vector J⃗ [kg s−1m−2] is given by J⃗ = −D∇⃗c where D is the diffusion

coefficient. Extend the answer obtained at a) for this situation.

11.2.2 The general equation of motion (momentum equation)

The second law of Newton postulates that the sum of applied forces equals the rate of change of the
linear momentum of a particle with mass m:∑

i

F⃗i =
dp⃗

dt
, p⃗ = mν⃗.

To arrive at a similar postulate for continuum mechanics, the total linear momentum of an arbitrary
material volume is defined as:

∫
V (t)

ρν⃗dV .

Newton’s second law leads to the following postulate of continuum mechanics:

D

Dt

∫
V (t)

ρν⃗dV =

∫
V

ρg⃗dV +

∫
S

t⃗ n⃗dS
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Using (11.13) to evaluate the left side of this equation for each velocity component and applying the
derivation following equation (11.3) to the right side we find (as V is arbitrarily chosen):

ρ
Dνi

Dt
=
∂σij
∂j

+ ρgi

∣∣∣∣ ρ
Dν⃗

Dt
= ∇⃗ · σ + ρg⃗ (11.14)

which is the general equation of motion. Recall that

Dν⃗

Dt
=
∂ν⃗

∂t
+ ν⃗ · ∇⃗ν⃗

is the material derivative of velocity which renders (11.14) to be a non-linear equation in the unknown
velocity field.

11.2.3 Velocity gradient, strain rate, and rotation rate

The velocity gradient tensor is ∇⃗ν⃗ = ∂νj/∂xi and can be separated in a symmetric part, the strain
rate tensor

ε̇ij =
1

2

(
∂νj
∂xi

+
∂νi
∂xj

) ∣∣∣∣ ε̇(ν⃗) =
1

2

(
∇⃗ν⃗+ (∇⃗ν⃗)T

)
and in an anti-symmetric part called the rotation rate tensor or spin-rate tensor

ω̇(ν⃗) =
1

2

(
∇⃗ν⃗− (∇⃗ν⃗)T

)
Note that ω̇11 = ω̇22 = ω̇33 = 0. The strain rate tensor is associated with the rate of deformation (rates
of relative length and volume changes and shear) while the spin rate tensor describes an increment of

uniform rotation in a continuum (i.e. without internal deformation). Note that ∇⃗·ν⃗ = ∂νk/∂xk = ε̇kk
gives the rate of relative volume change during deformation.

Exercise: 9. Make a detailed derivation of equation (11.14).

Exercise: 10. Assume a velocity field ν⃗ = ω⃗×r⃗ with ω⃗ = [0, 0,Ωf(x1, x2))]
T and r⃗ = (x1, x2, 0)

T

where f is an unknown function and Ω is a constant angular speed (radians/sec). Compute the

velocity gradient field, the strain rate field and the rotation rate field. Determine a function f

that leads to incompressible flow and a function f that leads to flow without shear strain rate.

Exercise: 11. Demonstrate that

ω̇ =

 0 −1
2Ω3

1
2Ω2

1
2Ω3 0 −1

2Ω1

−1
2Ω2

1
2Ω1 0


where

Ω⃗ = ∇⃗ × ν⃗

is the so-called vorticity.
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11.2.4 Pressure and stress

Similar to traction, the total stress σ(r⃗, t) is usually separated in the thermodynamic pressure p
and the rheological (mechanical) stress π(r⃗, t) ( also commonly called viscous stress tensor):

σij = −pδij + πij

∣∣∣∣ σ = −p1+ π (11.15)

Note: π is not the deviatoric stress. Keep reading.
In absence of deforming stresses σ = −p1 and in the equilibrium state (0 inertial force), Eq. (11.14)

reduces to the hydrostatic equation

0 = − ∂p

∂xi
+ ρgi

∣∣∣∣ ∇⃗p = ρg⃗ (11.16)

relating the pressure to the gravitational acceleration.

Exercise: 12. Let C be a line contour in a continuum, which starts at point A and ends at

point B. The continuum is in hydrostatic equilibrium.

a) Show that the pressure difference between B and A equals p(B) − p(A) =
∫
C ρg⃗ · dr⃗ where dr⃗

is a line element of C.

b) Assume that the continuum is a spherically symmetric body: Show that the pressure difference

between B and A is: p(rB)− p(rA) =
∫ rB
rA

ρg(r)dr where quantities only depend on the radius.

c) Show that the density field ρ should satisfy ∇⃗ρ//∇⃗Φ where Φ is the gravitational energy po-

tential implicitly defined by g⃗ = −∇⃗Φ, i.e. the gradient of rho and the gradient of Φ are parallel.

[Hint: take the curl of the hydrostatic equation]

d) Show that surfaces of constant pressure, density and gravitational potential coincide.

The average pressure is defined as p = −1
3
σkk. Using (11.15) we find

p− p = 1

3
πkk (11.17)

which demonstrates that local thermodynamic pressure p can be perturbed by the isotropic part of
mechanical stress. In fluids this situation can occur in locations of local convergence or divergence
of flow (see below).

The deviatoric stress τ is defined as

τij = σ′
ij = σij −

1

3
σkkδij

∣∣∣∣ τ = σ′ = σ − 1

3
Tr[σ]1 (11.18)

The deviatoric stress describes the state of stress relative to the ambient (average) pressure. Substi-
tuting (11.15) we have

σ′
ij = −(p− p)δij + πij (11.19)

Notice that τ = σ′ = π when p = p , i.e. when the mechanical stress does not change the pressure.

Exercise: 13. Consider a two-dimensional state of stress.

a) Prove in 2 different ways that the principal values of the deviatoric stress are equal in magnitude

but opposite in sign.

b) Demonstrate that only shear traction exists on planes bisecting the principal axis of deviatoric

stress
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Exercise: 14. Demonstrate that the principal deviatoric stresses σ′i relate to the principal

stresses σi as: σ
′
i = σi + p

11.3 Constitutive equations

The mass conservation equation (11.10) and the momentum equation (11.14) constitute 4 equations in
10 unknowns ρ, v⃗,σ (remember: the stress tensor is symmetric so there are only 6 independent terms
out of the 9 it contains). Later we will add the energy equation but this also adds the temperature T
as additional unknown. We require knowledge of at least 6 additional independent equations. These
are provided for a particular material by specifying the relation between internal kinematics and stress
and are called constitutive equations. For real fluids (i.e. fluids that cannot maintain shear stresses)
the constitutive relation involves the viscosity as a material parameter. For solids that can deform
brittle, elastic, or exhibit fluid behavior, the constitutive equation(s) will in general involve several
material parameters. When stress in a solid material exceeds the elastic strength (a stress limit) the
material can either break (deform brittle) or enter a regime of so-called ductile behavior where atoms
leave their lattice position and occupy new positions elsewhere. Ductile behavior is accommodated
by atomic diffusion processes and by dislocation processes (dislocations are geometric disturbances
in a crystalline lattice at which fewer atomic bonds exists and which are thus mechanical weakness
zones where applied stress will do its work first). Grain boundary processes are also important agents
of deformation but are basically determined by diffusion and dislocation processes. Finding relations
between stress and strain rate as a function of material properties, temperature, and pressure is the
subject of rheology.

The thermodynamic pressure p is taken to be independent of mechanical deformation. The
thermodynamic pressure gives the state of stress in a static medium which may have a uniform
velocity (either linear, angular of both), i.e. ε̇ = 0. Therefore, constitutive equations take the
general form

σ(ε̇) = −p1+ π(ε̇) (11.20)

with π(0) = 0, showing that stress and strain rate can be interdependent.

11.3.1 Linear rheology

The most general form of linear rheology leading to a linear viscous fluid (also called a Newtonian
fluid) is πij = Cijklε̇kl, where Cijkl is the anisotropic viscosity tensor. This relation breaks down to
the following law for a purely isotropic linearly viscous fluid:

πij = λε̇kkδij + 2ηε̇ij

∣∣∣∣ π = λTr[ε̇]1+ 2ηε̇ (11.21)

where η is the dynamic viscosity [Pa s] and λ is a viscosity parameter without a specific name3.
The mechanical, or rheological, stress πij quantifies the internal friction of the flow. By computing

the trace of the rheological stress we find, using (11.17),

p− p =
(
λ+

2

3
η

)
ε̇kk = ξ∇⃗ · ν⃗ (11.22)

where

ξ = λ+
2

3
η

3It is often called the ’second viscosity coefficient’.
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is the bulk-viscosity. Buresti [176] (2015) states: “We may then interpret ξ∇⃗ · ν⃗ as the difference
between the thermodynamic pressure and the opposite of the average of the normal stresses acting
on any three orthogonal planes passing through a point in the fluid, which is usually referred to as
the mechanical pressure. This difference is generally considered to be due to the time lag with which
the thermodynamic equilibrium condition is reached in a motion that implies an isotropic dilatation
of a fluid element.”

Relation (11.22) demonstrates clearly that for a Newtonian fluid the difference between thermo-
dynamic pressure and average pressure is flow induced, i.e. by either local convergence or divergence
of flow (i.e. ∇⃗ · ν⃗ ̸= 0).

Remark. For incompressible fluids ∇⃗ · ν⃗ = 0. Then, according to (11.22): p = p. Furthermore,
(11.19) leads to σ′

ij = τij = πij.

Remark. In the case that the bulk viscosity ξ is assumed 0 (Stokes condition - or Stokes hypoth-

esis), we have p = p independent of (in)compressibility. Evidently: p − p ↔ ξ = 0 or ∇⃗ · ν⃗ = 0. In
geodynamics the Stokes hypothesis is assumed so that in practice we never distinguish p from p and in
this case π = τ so that the equations are formulated as a function of p and τ (also in the compressible
case!). Buresti [176] (2015) states: “It implies that the thermodynamic pressure coincides with the
mechanical pressure and characterizes the isotropic part of the complete stress tensor; furthermore,
the viscous stress tensor becomes a purely deviatoric tensor and corresponds to the deviatoric part
of σ. In other words, assuming the validity of this hypothesis is equivalent to state that isotropic
dilatations of an elementary volume of fluid do not produce viscous stresses.”

Note that in some books/publications one can find a different formulation of the Stokes hypothesis.
For example in Carey and Oden [208] (1986) we find that “Stokes’ hypothesis is that π is a function
only of the deformation rate tensor ε̇”.

In terms of bulk viscosity and dynamic viscosity Eq. (11.21) reads

πij =

(
ξ − 2

3
η

)
ε̇kkδij + 2ηε̇ij.

∣∣∣∣ π =

(
ξ − 2

3
η

)
ε̇kk1+ 2ηε̇. (11.23)

By using the equation of deviatoric strain rate,

ε̇′ij = ε̇ij −
1

3
ε̇kkδij

∣∣∣∣ ε̇′ = ε̇− 1

3
ε̇kk1 (11.24)

we obtain as alternative expression for Eq. (11.21)

πij = ξε̇kkδij + 2ηε̇′ij

∣∣∣∣ π = ξε̇kk1+ 2ηε̇′ (11.25)

which explicitly shows the role of bulk viscosity and dynamic viscosity. In particular, for an incom-
pressible fluid we have

τij = πij = 2ηε̇′ij = 2ηε̇ij

∣∣∣∣ τ = π = 2ηε̇′ = 2ηε̇ (11.26)

From Eq. (11.25) we can write

σ = (−p+ ξ∇⃗ · ν)1+ 2ηε̇′

Exercise: 15. Prove that for a Newtonian fluid σ′ij = 2ηε̇′ij where the prime denotes the

deviators of stress and strain rate. (Interpret this general equation)
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11.3.2 Non-linear rheology

Microphysical processes in solids like atomic diffusion and dislocation motion lead to permanent
deformation (macroscopic flow). Pure diffusion, either along grain boundaries or through the bulk
of a grain, is a prime example of a Newtonian deformation mechanism. Dislocation glide (low-
temperature creep or exponential creep) and diffusion assisted dislocation climb (power law creep)
are examples of deformation mechanisms with a nonlinear relation between stress and strain rate.
Microphysical considerations (theory) combined with lab experiments (practice) lead to the following
(simplified) constitutive equation relating strain rate to rheological stress:

ε̇ij = A−1τn−1τij (11.27)

where n ≥ 1 is the stress exponent, A is a material parameter and τ = (1
2
τijτij)

1/2 is the effective
stress, i.e. the second invariant of rheological stress (i.e. a scalar stress quantity which value is
independent of coordinate frame). In analogy with linear viscosity in an incompressible fluid we
define the viscosity function

η =
τij
2ε̇ij

. (11.28)

Combined with (11.27), the viscosity function of power law rheology reads:

η(τ) =
1

2
Aτ 1−n. (11.29)

Notice that the viscosity decreases as stress increases. The stress (internal friction) is due to body
forces and/or applied tractions (cf. Eq. (11.14)). In regions of high internal stress, the viscosity
decreases in a power law rheology which causes increasing strain rates (according to τij = 2ηε̇ij)
leading to a localization of deformation.

Exercise: 16. Derive the following relations:

a) τ = (Aε̇)1/n

b) τij = A1/nε̇−1+1/nε̇ij
c) η(ε̇) = 1

2A
1/nε̇−1+1/n

where ε̇ is the effective strain rate.

In the upper mantle n ≃ 3− 5 while in the lower mantle n ≃ 1− 3 (but in both cases not known
for sure!). In theory, if ε̇→ 0 then η →∞ which leads to stagnating flow. In practice, however, other
(competing) deformation mechanism will provide higher strain rates keeping the viscosity finite. The
total strain rate is the sum of strain rate contributions from the different mechanisms active under
the same rheological stress:

ε̇ij =
∑
k

ε̇
(k)
ij =

1

2

∑
k

(η(k))−1τij =
1

2
τij
∑
k

(η(k))−1 =
τij

2ηeff

where the effective viscosity is

ηeff =
∑
k

1

η(k)
(11.30)

A constitutive equation, more detailed than (11.27), encompassing both power law creep and
pure diffusion creep is (see for example Karato and Wu [673] (1993)):

ε̇ij = A

(
b

d

)m
exp

(
−Q+ pV

RT

)(
τ

µ

)n−1

τij (11.31)

with
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� b: length of Burgers (dislocation) vector (∼ 5 · 10−10m)

� d: grain size (0.001-0.1 m)

� Q: activation energy (related to atomic bonding)

� V : activation volume (associated with atomic diffusion)

� R: Universal gas constant 8.31444 J/(mol K)

� p, T : pressure and temperature

� µ: elastic shear modulus (only used to scale stress) (80 GPa)

The combination of n = 1 and m = 2 or 3, gives a Newtonian fluid resulting from pure atomic
diffusion. n > 1 and m = 0 relates to various dislocation (power law) creep mechanisms.

Furthermore, feedback relations can exist between grain growth (due to dynamic crystallization)
and stress, e.g.

d = Kb

(
τ

µ

)−q

K ∼ 19 (11.32)

The above account of deformation laws (constitutive equations) is by no means exhaustive and
only presented to give examples of nonlinear relations between stress and strain rate involving a
viscosity function and, in practice, leading to the notion of effective viscosity derived from a super-
position of competing deformation mechanisms.

Exercise: 17. Discuss the effects of temperature and pressure (as a function of depth) for the

constitutive equation (11.31)

11.4 The Navier-Stokes equation

Recalling the general equation of motion (11.14)

ρ
Dνi

Dt
= ρgi +

∂σij
∂xj

∣∣∣∣ ρ
Dν⃗

Dt
= ρg⃗ + ∇⃗ · σ

and the separation of the total stress in the thermodynamic pressure and mechanical stress (11.15)

σij = −pδij + πij,

∣∣∣∣ σ = −p1+ π (11.33)

we find after substitution:

ρ
Dνi

Dt
= ρgi −

∂p

∂xi
+
∂πij
∂xj

∣∣∣∣ ρ
Dν⃗

Dt
= ρg⃗ − ∇⃗p+ ∇⃗ · π (11.34)

Adopting the constitutive equation (11.23) for linear rheology

πij =

(
ξ − 2

3
η

)
ε̇kkδij + 2ηε̇ij

∣∣∣∣ π =

(
ξ − 2

3
η

)
ε̇kk1+ 2ηε̇ (11.35)

and assuming that viscosities do not depend on the spatial coordinates we find that

ρ
Dνi

Dt
= ρgi−

∂p

∂xi
+η∇⃗2νi+

(
ξ +

1

3
η

)
∂

∂xi
∇⃗·ν⃗

∣∣∣∣ ρ
Dν⃗

Dt
= ρg⃗−∇⃗p+η∇⃗2ν⃗+

(
ξ +

1

3
η

)
∇⃗(∇⃗·ν⃗)

(11.36)
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This is the Navier-Stokes equation for a fluid with constant viscosities.
check this equation!

Exercise: 18. Derive (11.36)

Exercise: 19. Consider a flat layered lithosphere-asthenosphere system with thickness L and

h respectively. Assume the lithosphere is rigid and moving with a horizontal velocity ν0. Fur-

ther, assume a constant viscosity of the asthenosphere and an incompressible fluid. Take the

z-coordinate positive down with z = −L corresponding to the top of the lithosphere, z = 0 with

the base of the lithosphere and z = h with the base of the asthenosphere.

a) Derive the velocity profile with depth z by solving the Navier-Stokes equation using a zero ma-

terial derivative of velocity (an assumption which is valid for mantle convection). The velocity at

the base of the asthenosphere should be taken 0 (as a boundary condition).

b) The horizontal pressure gradient is still an unconstrained parameter in the solution of a). As-

sume that the net amount of mass going through a vertical cross section is zero ( a mass balance

constraint). Use this constraint to determine the horizontal pressure gradient and determine the

velocity profile.

c) Determine for the model under b) the shear stress at the base of the lithosphere. Determine

its value using 4 · 1019 Pa s for the viscosity, 100 km thickness for the lithosphere and for the

asthenosphere and a lithosphere velocity of 5 cmyr−1.

11.5 Density perturbations as a driving force for mantle

convection

The general equation of motion obtained previously

ρ
Dνi

Dt
= − ∂p

∂xi
+
∂πij
∂xj

+ ρgi

∣∣∣∣ ρ
Dν⃗

Dt
= −∇⃗p+ ∇⃗ · π+ ρg⃗ (11.37)

can be rewritten in terms of an equation relative to the hydrostatic reference state of the Earth’s
mantle. We define the hydrostatic reference state as the undeformed state in which no density per-
turbations exist. The hydrostatic, or static, pressure is p0(r) and the density field in the hydrostatic
state is ρ0(r). For the acceleration of gravity in the hydrostatic state we take g0i (r). The hydrostatic
quantities obey the equilibrium equation:

0 = −∂p0
∂xi

+ ρ0g
0
i .

∣∣∣∣ 0⃗ = −∇⃗p0 + ρ0g⃗
0 (11.38)

We separate quantities in the dynamic state in a hydrostatic contribution and a perturbation:

p(r⃗) = p0(r⃗) + p̃(r⃗)

ρ(r⃗) = ρ0(r⃗) + ρ̃(r⃗)

g⃗(r⃗) = g⃗0(r⃗) + ⃗̃g(r⃗)

where p̃(r⃗) is the so-called dynamic pressure. Note that the mechanical stress π is by itself a
perturbation with respect to the hydrostatic state. After substitution in the equation of motion the
hydrostatic terms cancel and we find:

(ρ0 + ρ̃)
Dνi

Dt
= − ∂p̃

∂xi
+
∂πij
∂xj

+ ρ̃g0i + ρ̃g̃i + ρ0g̃i (11.39)
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The term ρ̃Dνi/Dt and the the last two terms can often be neglected as a small second order
perturbation leading to the perturbation equation

ρ0
Dνi

Dt
= − ∂p̃

∂xi
+
∂πij
∂xj

+ ρ̃g0i

∣∣∣∣ ρ0
Dν⃗

Dt
= −∇⃗p̃+ ∇⃗ · π+ ρ̃g⃗ (11.40)

This equation shows explicitly that density perturbations and not the total density field are the
driving forces for mantle convection.

Gravity inside the Earth relates to the density field according to the differential (Poisson) equa-
tion:

∇⃗ · g⃗ = −∇⃗2U = −4πGρ (11.41)

where G is the universal constant of gravity. With g⃗ = −∇⃗U , we obtain the Poisson equation:

∇⃗2U = 4πGρ (11.42)

or, for the dynamic quantities deviating from the hydrostatic state

∇⃗2Ũ = 4πGρ̃ (11.43)

Exercise: 20. Assume a spherically symmetric non-rotating Earth in hydrostatic equilibrium.
In spherical coordinates the divergence of a vector field a⃗(r), which only depends on the radius r
is

∇⃗ · a⃗ =
1

r2
d

dr
(r2ar)

a) Prove that the acceleration of gravity at radius r only depends on the mass contained in the

sphere of radius R.

b) Assume that the mass of the Earth’s core is Mc. Assume a linear density profile for the crust

and mantle and determine the acceleration of gravity as a function of the radius in the mantle.

11.6 Two-dimensional formulation for incompressible fluids:

the stream function approach

Although 2-D formulations of flow problems may seem restrictive at first glance, it is useful for many
applications in which variation in the omitted dimension are small. For instance, slab subduction of
a laterally long subduction zone can be modeled in 2-D perpendicular to the strike of a subduction
zone. Apart from applications, a full 3-D approach is not always necessary in order to get insight
into fundamental problems like the onset of convection, or studies of the influence on the flow
pattern of certain model parameters (e.g. viscosity function, internal heat production), or of specific
model attributes (e.g. phase transitions, boundary layers). Of course, before the age of high- speed
computers, flow calculations where done mostly analytically which is easier in 2-D than in 3-D.

In 2-D we have the 4 unknowns: νx,νy, ρ and p4. By assuming incompressibility we can satisfy
this equation trivially by defining the stream function ψ(x, y) as follows:

νx =
∂ψ

∂y

νy = −∂ψ
∂x

(11.44)

4Here too we assume Stokes hypothesis, so that p = p and π = τ
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Please check that we have indeed ∇⃗ · ν⃗ = 0. This definition does not impose any restriction on the
velocity field or the stream function (apart from being a differentiable function).

Furthermore, assume (for now) that the viscosity is constant and that ρDν⃗/DT ∼ 0 for mantle
convection (this will be demonstrated later). Then, the Navier-Stokes equation (11.36) reduces to

−∇⃗p+ η∇⃗2ν⃗+ ρg⃗ = 0⃗ and then :

0 = −∂p
∂x

+ η

(
∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)
+ ρgx

0 = −∂p
∂y
− η

(
∂3ψ

∂x3
+

∂3ψ

∂y2∂x

)
+ ρgy (11.45)

The pressure terms in (11.45) can be removed by first differentiating the first line w.r.t. y and
the second line w.r.t. x,

0 = − ∂2p

∂x∂y
+ η

(
∂4ψ

∂y4
+

∂4ψ

∂x2∂y2

)
+
∂(ρgx)

∂y

0 = − ∂2p

∂y∂x
− η

(
∂4ψ

∂x4
+

∂4ψ

∂y2∂x2

)
+
∂(ρgy)

∂x
(11.46)

and next by subtracting the resulting equations, leading to:

0 = η

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
+
∂(ρgx)

∂y
− ∂(ρgy)

∂x
(11.47)

or

∇⃗4ψ =
1

η

(
−∂(ρgx)

∂y
+
∂(ρgy)

∂x

)
(11.48)

where

∇⃗4 =

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
Equation (11.48) is the inhomogeneous bi-harmonic equation.

Exercise: 21. Show that (11.48) reduces to the homogeneous bi-harmonic equation ∇⃗4ψ = 0

if density is independent of the spatial coordinates. NB: we assumed ∇⃗ · ν⃗ = 0 which requires,

because of the continuity equation, that density is constant in time.

Exercise: 22. Consider incompressible flow in three dimensions and (implicitly) define the
vector potential ψ⃗ as ν⃗ = −∇⃗ × ψ⃗.
a) Demonstrate that ∇⃗ · ν⃗ = 0.
b) Assume a Newtonian fluid with constant viscosity and assume that ρDνi/Dt ∼ 0.
Demonstrate that

∇⃗ × ∇⃗ × ∇⃗ × ∇⃗ × ψ⃗ = −1

η
∇⃗ × (ρg⃗)

(Use the identity ∇⃗2ν = ∇⃗(∇⃗ · ν⃗)− ∇⃗ × ∇⃗ × ν⃗ and take the curl of the N-S equation)

11.6.1 Application of the stream function approach: Post-glacial re-
bound

We consider the restoration of the Earth’s surface to equilibrium shape in the aftermath of global
de-glaciation. Relatively sudden removal of the huge ice-caps, covering parts of the northern and
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southern hemisphere, left a depression in the Earth surface which, as a result of horizontal pressure
gradients, is being restored to isostatic equilibrium. The uplift resulting from the last glaciation
period started some 8000 years ago and is as yet not complete. To model the isostatic rebound we
adopt an approximate analytical approach originally due to Haskell [551] (1935) - see also Mitrovica
[882] (1996). This analysis will lead to a first estimate of the viscosity of the mantle.

Assume an infinite 2-D half-space filled with an incompressible Newtonian fluid of constant vis-
cosity and with density independent of spatial coordinates. The y-axis is taken positive downward.
The equations to solve are (11.48) for the stream function and next (11.45) for the pressure. As den-
sity is constant the right-hand-side of (11.48) is zero. Furthermore, we assume that the horizontal
component of gravity is 0 which allows for a straightforward solution of (11.45) when the stream
function is known. Because (11.48) is a linear differential equation we assume a spectral approach in
which surface deformation is prescribed as a harmonic function with a specific wavelength λ :

wk(x, t) = w0(t) cos(kx) (11.49)

with the wave number k = 2π/λ.
In this model the surface deflection results from sudden ice-unloading at t = 0 and w0(t) → 0

if t → ∞. Because of the linearity of (11.48) the ’loading’ function wk(x, t) will lead to a stream
function of the form ψ(x, y) = A(y) cos kx+B(y) sin kx (i.e. harmonic with separation of variables).
A more detailed analysis than is given below will show that A(y) = 0. For simplicity, we take

ψ(x, y) = Y (y) sin kx (11.50)

Substitution in (11.48) leads to
d4Y

dy4
− 2k2

d2Y

dy2
+ k4Y = 0 (11.51)

This is an ordinary differential equation (ODE) with constant coefficients. Substituting Y (y) =
Y0 exp(my) gives

m4 − 2k2m2 + k4 = (m2 − k2)2 = 0

hence m = ±k with multiplicity 2. The multiplicity requires two additional solutions y exp(±ky).
The general solution is then

Y (y) = A exp(−ky) +By exp(−ky) + C exp(ky) +Dy exp(ky) (11.52)

To arrive at a specified solution for the problem we have to consider boundary conditions. The first
condition is that when y →∞ then ψ → 0. This guarantees a finite solution at infinity and satisfies
the idea that at large depth the velocity field should approach zero. Substitution in (11.52) leads to
C = D = 0 and to the stream function solution

ψ(x, y) = (A+By) exp(−ky) sin kx (11.53)

The second boundary condition concerns the motion of the surface. We expect that the deflection
wk(x, t) primarily leads to a vertical motion for small wave number k (large wavelength λ) and assume
that horizontal motion is negligibly small5. The condition νx(x, y) = 0 for y = wk(x, t) is only a crude
approximation. Still, for Haskell’s problem it helps finding an analytical solution. Using (11.44) we
find for the velocity components:

νx = (B − k(A+By)) exp(−ky) sin kx (11.54)

νy = −k(A+By) exp(−ky) cos kx (11.55)

5From modern GPS research on surface motions in Scandinavia we know that horizontal surface motions are
between 10-20% of the vertical motion
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Exercise: 23. Derive equations (11.54) and (11.55).

The condition νx(x,wk(x, t)) = 0 leads to B ≃ kA where we used that kwk = 2πwk/λ << 1
because wk is on the order of 1 km while λ is on the order of 3000 km. This leads to the following
results:

ψ(x, y) = A(1 + ky) exp(−ky) sin kx (11.56)

νx = −Ak2y exp(−ky) sin kx (11.57)

νy = −Ak(1 + ky) exp(−ky) cos kx (11.58)

The last boundary condition concerns the zero pressure at the deformed surface y = wk(x, t). To
solve for the pressure the solution (11.56) is first substituted in (11.45) which gives

0 = −∂p
∂x

+ 2ηAk3 exp(−ky) sin kx+ ρgx (11.59)

0 = −∂p
∂y

+ 2ηAk3 exp(−ky) cos kx+ ρgy (11.60)

Exercise: 24. Derive equations (11.59) and (11.60).

With gx ≃ 0, integration of (11.60) leads to

p(x, y) = −2ηAk2 exp(−ky) cos kx+ ρgyy + p0 (11.61)

Exercise: 25. Derive Eq. (11.61) and determine that p0 = 0.

Using that kwk << 1, the condition p(x,wk(x, t)) = 0 gives for the surface deflection

wk(x, t) =
2Aηk2

ρgy
cos kx (11.62)

This solution explicitly relates the amplitude of the surface deflection to the wave length λ = 2π/k
and the principal model parameters density and viscosity. However, there is still an undetermined
coefficient A which must describe the time behavior of the surface deformation (recall that wk(x, t)→
0 if t → ∞). Time has played no role in the derivation because we have basically solved a time-
stationary process. Time stationary problems are characterized by a static velocity field (time-
constant velocity vectors at each position). But, the velocity field still describes material flow and
time is a parameter if we wish to follow a particle in the flow. Particularly, the surface particles move
with the vertical velocity νy(x,wk(x, t)) and thus

∂wk
∂t

= νy(x,wk(x, t)) = −Ak(1 + kwk) exp(−kwk) cos kx ≃ −Ak cos kx (11.63)

Using (11.62) we can eliminate A and arrive at the differential equation

∂wk
∂t

= − ρgy
2ηk

wk (11.64)

which has the solution
wk(x, t) = wk(x, 0) exp(−t/tr) (11.65)
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where the relaxation time is tr = 4πη/ρgyλ.
From geological observations of (e.g. beach uplift, river incisions), data curves of w(x, t) have

been obtained which leads to relaxation times of about 4400 yr for wave lengths of about 3000 km.
Using values of 3300 kgm−3 for density and 10 m s−2 for the acceleration of gravity, we find for the
viscosity η ≃ 1021 Pa s, a number that still stands today as an average value for the 600 to 1000 km
of the mantle.

Left: Taken from Ciskova et al. [259] (2012); Right: Taken from Neuharth and Mittelstaedt [934] (2023).

Modern modeling concentrates on the complex global problem of Global Isostatic Adjustment
(GIA) which also involves the global variation of sea-level which is coupled to ice-sheet formation
and melting. Both are functions of time and surface coordinates (topography!). Positive feedback
exist between water extraction from the oceans (unloading; attraction of mantle flow) and ice-sheet
creation elsewhere (loading; pushing the mantle away). Inverse processes occur during and after
ice cap melting. Much data is available on relative sea-level changes, but much less about actual
ice sheet (un-)loading histories. Results obtained from different GIA modeling strategies still show
disagreement on the detail of viscosity change with depth which also results from the relatively poor
sensitivity of surface motions for the detail of viscosity layering. The interested student can find its
way in the literature through papers of J. Mitrovica, D. Peltier, and K. Lambeck.
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11.7 The energy equation

Mantle convection is driven by density perturbations relative to a hydrostatic state. In part, the
density perturbations ∆ρ are due to thermal perturbations ∆T where the connection is given by
an equation of state involving the thermal expansion coefficient α. The full description of mantle
convection requires also an equation describing the temperature field of flow. This equation is called
the energy equation and involves contributions from adiabatic (de)compression, heat dissipation due
to friction in the flow (viscous dissipation), heat conduction and advection, and heat production
(including phase changes).

The derivation of the energy equation starts with the first law of thermodynamics which equates
the change ∆E in total energy of a system to the work ∆W done by thermo-mechanical processes
and the heat input ∆Q to the system resulting from heat flow and heat production (we disregard
here the energy contribution from chemical and electro- magnetic processes):

∆E = ∆W +∆Q (11.66)

For processes developing continuously in time we can write (11.66) in terms of the power

DE

Dt
=
DW

Dt
+
DQ

Dt
(11.67)

To apply the first law of thermodynamics to the mechanical deformation of a continuum, consider
a material volume V with boundary S. The power6 developed by mechanical forces ρg⃗ and the
boundary tractions t⃗n is

DW

Dt
=

∫
V

ρgiνidV +

∫
S

νit
n
i dS

∣∣∣∣ DW

Dt
=

∫
V

ρg⃗ · ν⃗dV +

∫
S

ν⃗ · t⃗ndS (11.68)

By substituting the Cauchy relation (11.2) (i.e. tni = σijnj or t⃗n = σ · n⃗), with n⃗ the outward
pointing normal on S, and next applying the divergence theorem, the surface integral is transformed
to a volume integral:

DW

Dt
=

∫
V

ρν⃗ · g⃗dV +

∫
S

ν⃗ · (σ · n⃗)dS

=

∫
V

ρν⃗ · g⃗dV +

∫
S

(ν⃗ · σ) · n⃗dS

=

∫
V

ρν⃗ · g⃗dV +

∫
V

∇⃗ · (ν⃗ · σ)dV

=

∫
V

ν⃗ · (ρg⃗)dV +

∫
V

ν⃗ · ∇⃗ · σdV +

∫
V

∇⃗ν⃗ : σdV

After rearranging terms we get

DW

Dt
=

∫
V

[
νi

(
ρgi +

∂σij
∂xj

)
+ σij

∂νi
∂xj

]
dV

∣∣∣∣ DW

Dt
=

∫
V

[
ν⃗ · (ρg⃗ + ∇⃗ · σ) + σ : ∇⃗ν⃗

]
dV

(11.69)
The general equation of motion (11.14) is used in (11.69) to arrive at the second equality. Next, we

6https://en.wikipedia.org/wiki/Power_(physics)
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can apply (11.13) to the first term in the last equality which leads to

DW

Dt
=

∫
V

[
ν⃗ · (ρg⃗ + ∇⃗ · σ) + σ : ∇⃗ν⃗

]
dV

=

∫
V

[
ν⃗ ·
(
ρ
Dν⃗

Dt

)
+ σ : ∇⃗ν⃗

]
dV

=

∫
V

[
ρ
D(1

2
ν⃗ · ν⃗)
Dt

+ σ : ∇⃗ν⃗
]
dV

=
D

Dt

∫
V

ρ
1

2
ν⃗ · ν⃗ dV +

∫
V

σ : ∇⃗ν⃗ dV (11.70)

or,

DW

Dt
=

∫
V

[
νi

(
ρgi +

∂σij
∂xj

)
+ σij

∂νi
∂xj

]
dV

=

∫
V

(
ρνi

Dνi

Dt
+ σij

∂νi
∂xj

)
dV

=

∫
V

(
1

2
ρ
D(νiνi)

Dt
+ σij

∂νi
∂xj

)
dV

=
D

Dt

∫
V

1

2
ρνiνi dV +

∫
V

σij
∂νi
∂xj

dV (11.71)

The first term in (11.71) describes the power input from kinetic energy of the flow and the second,
the power input resulting from viscous dissipation.

The term DQ/Dt in (11.67) concerns the heat flow q⃗(r⃗, t) across the boundary S and the heat
production H(r⃗, t) within the volume V . The heat flow q⃗ has dimensions J s−1m−2 and caused by

thermal gradients in the medium as described by the Fourier law q⃗ = −k∇⃗T where k is the thermal
conductivity. The heat production H (or consumption as in an endothermic phase change) has units
J s−1 kg−1. The total rate of heat input is obtained by integration of the heat production over the
volume and by integration of the normal component of heat flow over the surface S

DQ

Dt
=

∫
V

ρHdV −
∫
S

q⃗ · n⃗ dS (11.72)

=

∫
V

ρHdV −
∫
V

∇⃗ · q⃗ dV (11.73)

=

∫
V

(
ρH + ∇⃗ · (k∇⃗T )

)
dV (11.74)

Outward directed heat flow causes a negative contribution to DQ/Dt as heat is flowing out of the
volume. Because the normal n⃗ is defined as outward pointing on S a minus sign is therefore required
in front of the heat flow integral in the first equality. In the second equality, the Fourier law for heat
conduction is substituted. Application of the divergence theorem leads to the last equality.

The total energy E in (11.67) is now separated into two contributions: the kinetic energy and
the internal energy7 e (J kg−1)8:

E =

∫
V

(
1

2
ρνiνi + ρe

)
dV

∣∣∣∣ E =

∫
V

(
1

2
ρν⃗ · ν⃗+ ρe

)
dV (11.75)

7https://en.wikipedia.org/wiki/Internal_energy
8[e] = L2T−2
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Taking the time derivative leads to

DE

Dt
=

D

Dt

(∫
V

1

2
ρν⃗ · ν⃗dV

)
+
D

Dt

(∫
V

ρedV

)
=

D

Dt

(∫
V

1

2
ρν⃗ · ν⃗dV

)
+

(∫
V

ρ
De

Dt
dV

)
(11.76)

where we applied equation (11.13) to rewrite the last integral.
We are now ready to create the energy balance of Eq. (11.67): Combining equations (11.76),

(11.71), and (11.74) results in an integral equation over the material volume V in which the kinetic
energy terms cancel. As V is chosen arbitrary we find the energy (or heat) equation

ρ
De

Dt
= σij

∂νi
∂xj

+
∂

∂xj

(
k
∂T

∂xj

)
+ ρH

∣∣∣∣ ρ
De

Dt
= σ : ∇⃗ν⃗+ ∇⃗ · (k∇⃗T ) + ρH (11.77)

which states that the rate of change of internal energy equals the sum of viscous heat dissipation,
thermal conduction, and heat production.

Remark. Looking at units: We have the internal energy e given in J/kg, i.e. [e] = ML2T−2/M =

L2T−2. Then [ρDe/Dt] = ML−3(L2T−2)T−1 = ML−1T−3, [σ : ∇⃗ν⃗] = ML−1T−2L−1LT−1 =

ML−1T−3, [∇⃗ · (k∇⃗T )] = L−1LMT−3θ−1L−1θ = ML−1T−3 and [ρH] = ML−1T−3 so that [H] =
L2T−3.

Taking the usual separation of the stress tensor in the thermodynamic stress and the mechanical
stress, i.e σ = −p1+ π, we get

ρ
De

Dt
+ p

∂νj
∂xj

= πij
∂νi
∂xj

+
∂

∂xj
(k
∂T

∂xj
) + ρH (11.78)

or

ρ
De

Dt
+ p∇⃗ · ν⃗ = π : ∇⃗ν⃗+ ∇⃗ · (k∇⃗T ) + ρH

Note that under the Stokes hypothesis (see before), we have

ρ
De

Dt
+ p∇⃗ · ν⃗ = τ : ∇⃗ν⃗+ ∇⃗ · (k∇⃗T ) + ρH

From thermodynamic considerations9 (not treated here) we have the relation de = TdS−pdv between
internal energy e, the entropy S, and the specific volume v = 1/ρ. This relation is used to transform
Eq. (11.78) into the entropy form of the energy equation:

De

Dt
= T

DS

Dt
− pD(1/ρ)

Dt
= T

DS

Dt
+

1

ρ2
p
Dρ

Dt
= T

DS

Dt
+

1

ρ2
p(−ρ∇⃗ · ν⃗) (11.79)

where we have used the continuity equation. We then obtain

ρ
De

Dt
= ρT

DS

Dt
− p∇⃗ · ν⃗

so that in the end

ρT
DS

Dt
= π : ∇⃗ν⃗+ ∇⃗ · (k∇⃗T ) + ρH (11.80)

An adiabatic state is a state of reversible processes with no heat exchange with surroundings
and is defined by S=constant in which case the lhs of (11.80) is 0. This state is not compatible with

9See for instance https://en.wikipedia.org/wiki/Maxwell_relations
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viscous heat dissipation, heat conduction, or internal heat production, as each of these processes
would lead to a non-zero contribution at the rhs of (11.80). A fluid particle flowing in an adiabatic
mantle assumes at any time the temperature and pressure of the ambient mantle. Therefore there is
no conductive heat exchange in the adiabatic state.

Another useful thermodynamic relation is10

DS

Dt
=

(
∂S

∂T

)
p

DT

Dt
+

(
∂S

∂p

)
T

Dp

Dt

For the first term we use the definition of the heat capacity (JK−1) at constant pressure

Cp = T

(
∂S

∂T

)
P

while for the second one we use(
∂S

∂p

)
T

= −
(
∂(1/ρ)

∂T

)
p

=
1

ρ2

(
∂ρ

∂T

)
p

and the definition of the thermal expansion coefficient (K−1)

α = −1

ρ

(
∂ρ

∂T

)
p

so that in the end we have the thermodynamical relationship

DS

Dt
=

Cp
T

DT

Dt
−
(
∂(1/ρ)

∂T

)
p

Dp

Dt

=
Cp
T

DT

Dt
+

1

ρ2

(
∂ρ

∂T

)
p

Dp

Dt

=
Cp
T

DT

Dt
− α

ρ

Dp

Dt

Remark. Let us look again at the dimensions of these quantities. The entropy S is in JK−1, or
[S] = ML2T−2θ−1, and we know that Cp has the same unit. We have [α] = θ−1, [ρ] = ML−3 and
[dp] =ML−1T−2 so we indeed recover [αdp/ρ] = θ−1ML−1T−2M−1L3 =. All in well.

We have
DS

Dt
=
Cp
T

DT

Dt
− α

ρ

Dp

Dt

Applying this relation to (11.80) leads to the temperature form of the heat equation

ρCp
DT

Dt
− αT Dp

Dt
= τ : ∇⃗ν⃗+ ∇⃗ · (k∇⃗T ) + ρH (11.81)

The lhs of this equation is zero for an adiabatic state. In this case we find that

dTa
dp

=
αTa
ρCp

(11.82)

which gives how temperature changes due to pure adiabatic (de)compression.
In the end we solve the energy equation in this form:

10https://en.wikipedia.org/wiki/Relations_between_heat_capacities
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ρCp
DT

Dt
− ∇⃗ · k∇⃗T = αT

Dp

Dt
+ Φ+ ρH (11.83)

where Φ is the shear heating. Note that it couples temperature, velocity (and its derivative the strain
rate) and pressure.

In many publications the shear hearing is denoted by Φ and is given by Φ = τij∂jνi = τ : ∇⃗ν⃗
where τ is the deviatoric stress tensor. In what follows I use the index notation as it makes for easier
derivations:

Φ = τij∂jνi

= 2ηε̇dij∂jνi

= 2η
1

2

(
ε̇dij∂jνi + ε̇dji∂iuj

)
= 2η

1

2

(
ε̇dij∂jνi + ε̇dij∂iuj

)
= 2ηε̇dij

1

2
(∂jνi + ∂iuj)

= 2ηε̇dij ε̇ij

= 2ηε̇d : ε̇

= 2ηε̇d :

(
ε̇d +

1

3
(∇⃗ · ν⃗)1

)
= 2ηε̇d : ε̇d + 2ηε̇d : 1(∇⃗ · ν⃗)
= 2ηε̇d : ε̇d (11.84)

Finally (in Cartesian coordinates)

Φ = τ : ∇⃗ν⃗ = 2ηε̇d : ε̇d = 2η
(
(ε̇dxx)

2 + (ε̇dyy)
2 + 2(ε̇dxy)

2
)

(11.85)

See Schubert & Yuen (1978) [1142] for an analysis of shear heating instability in the upper mantle.

Let us quickly look at the Dp/Dt = ∂tp + ν⃗ · ∇⃗p term. Often the term ∂p/∂t is neglected and

the pressure is assumed to be mostly hydrostatic in this term so that ∇⃗p = −ρg⃗ which yields a much
simpler formulation.

See discussions about shear heating (“viscous dissipation”) – meaning and application– in Froide-
vaux [420] (1973), Stein [1198] (1978), Bird and Yuen [90] (1979), Sleep, Stein, Geller, and Gordon
[1173] (1979), Winter [1365] (1987), Masek and Duncan [838] (1998).

A mantle in the adiabatic state satisfies the equilibrium equation ∇⃗p = ρg⃗. Assuming spherical
symmetry we have dp/dr = −ρg. Substitution in (11.82) gives

dTa
dr

= −αTag
Cp

, (11.86)

i.e. the adiabatic temperature gradient.
Along similar lines, for a mantle in motion we can approximate the second term on the lhs of

(11.81) (the adiabatic (de)compression term) as

αT
dp

dt
≃ −αT ρg⃗ · dr⃗

dt
= −αρT g⃗ · ν⃗ ≃ −αρTgrνr (11.87)

where gr and νr are the radial components of gravity and velocity, respectively.
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Exercise: 26. Determine the temperature as a function of depth for a particle that is being

transported through the center of a vertical mantle upwelling. Assume adiabatic conditions and a

constant vertical flow velocity.

Exercise: 27. Show that for a Newtonian fluid the dissipation term Φ = πij∂νi/∂xj can be

written as Φ = πij ε̇ij = 2ηε̇′ij ε̇
′
ij + ξ(ε̇kk)

2. What can one conclude for the two viscosities?

Exercise: 28. Demonstrate that for 2D laminar flow (as in exercise 19) the dissipation function

can be written as Φ = η(∂νx/∂z)
2. Use this to evaluate the dissipative heat production in the flow

of exercise 19a assuming zero horizontal pressure gradient (Couette flow). Calculate a numerical

value of this heat production using values of h = 200 km, η = 1021 Pa s, ν0 = 1 cmyr−1. Compare

this to estimates of radiogenic heat production in the upper mantle of 8.4 · 10−9J s−1m−3.

Exercise: 29. The Navier-Stokes equation for perturbations relative to a hydrostatic reference
state is in Cartesian coordinates

ρ0
Dνi

Dt
= − ∂p̃

∂xi
+
∂πij
∂xj

+ ρ̃g0i

(see equation 11.40). The density perturbation is driving the flow of a medium contained in the
material volume V . Assume that gravity is only working vertical g⃗ = (0, 0, g)T and that the
velocity field is ν⃗ = (u, v, w)T . Assume incompressible flow and that the inertial term can be
neglected.
a) Derive the following energy conservation law relating the dissipation of gravitational energy
into the energy released due to frictional flow:∫

V
ρ̃gw dV =

∫
V
πij

∂νi
∂xj

dV

Hint: Take the inner product of the equation of motion with the velocity field and integrate the

result over V . Assume an impermeable boundary S of V (i.e. ν⃗ · n⃗ = 0) and that the boundary is

shear stress free (free slip) or has no-slip (ν⃗ = 0⃗).

b) Show by substitution of the Newtonian rheology that the rhs of this equation is positive and show

that the lhs of the equation equals the created power due to the change in gravitational potential

energy as a result of ρ̃ w.r.t. ρ0.

Exercise: 30. a) Derive the heat equation for a static medium (ν⃗ = 0⃗) from the conservation

law of thermal energy. (Hint: Create the heat balance for a fixed control volume based on internal

energy, heat production and heat flow through the boundary of the volume).

b) Next, assume there is a flow field ν⃗ and extend the result under a) with a term involving the

flow density of thermal energy J⃗ = ρCpT ν⃗ (assume ρCp to be constant and ∇⃗ · ν⃗ = 0).

The result is the heat equation for an incompressible medium in which adiabatic compression and

viscous dissipation are neglected.
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11.8 The equation of state

An equation of state relates basic thermodynamic parameters such as density, temperature, pressure,
or entropy. For an isochemical fluid, we can choose two independent thermodynamic parameters on
which all other depend. Here we choose temperature and pressure as independent parameters, e.g.
ρ(T, p). Mantle convection is usually studied relative to some motionless hydrostatic reference state
either with a conductive or with an adiabatic geotherm. The perturbations with respect to this state
are related to the convective state of the mantle. Therefore, we write ρ(T, p) = ρ0(T0, p0) + ρ̃(T̃ , p̃)
with T = T0 + T̃ and p = p0 + p̃ where the 0-subscript denotes reference state quantities and the
’tilde’ variables the perturbations with respect to the reference state. The reference state quantities
do not depend on time but can depend on the spatial coordinates. The usual assumption is that
ρ̃(T̃ , p̃) depends linearly on the perturbations in temperature and pressure. In this case one can use
the thermodynamic relation

dρ =

(
∂ρ

∂T

)
P

dT +

(
∂ρ

∂p

)
T

dp = −αρdT +K−1
T ρdp

where α is the thermal expansion coefficient and KT the isothermal incompressibility, or isothermal
bulk modulus11 (units: Pa). Assuming linearity, this relation is up-scaled to the macroscopic mantle
to obtain the equation of state

ρ(r⃗, t) = ρ0(r⃗)(1− αT̃ +K−1
T p̃) (11.88)

hence
ρ̃ = −αρ0T̃ +K−1

T ρ0p̃

A simple extension to a 2-phase medium consisting of materials with reference densities ρ0 and ρ1 is
obtained by assuming that the dependence of density of T and p is the same for both phases. Then,
only an addition factor is needed to account for the density of a mixed composition

ρ(r⃗, t) = ρ0(r⃗)

(
1 + Γ(

ρ1 − ρ0
ρ0

)

)
(1− αT̃ +K−1

T p̃) (11.89)

Taking ρ1 > ρ0, the phase distribution Γ can assume values between 0 and 1.

Exercise: 31. Assume an isothermal (i.e. T̃ = 0) and incompressible fluid (K−1
T = 0) and de-

rive from the conservation law of mass, the conservation law DΓ/Dt = 0 for the phase distribution

function.

The reference quantities satisfy equations of a motionless reference state. The definition of the
reference state depends on the problem studied. Usually the reference temperature is chosen constant
or to follow a mantle adiabat or a conductive geotherm. For a simple reference state with constant
thermodynamic parameters the following equations suffice:

∇⃗p0 = −ρ0∇⃗U0 (11.90)

∇⃗2U0 = 4πGρ0 (11.91)

∇⃗ · (k∇⃗T0) = 0
DT0
Dt

= 0 (11.92)

More complex reference states involving depth variable thermodynamic parameters require internally
consistent relations between thermodynamic parameters such as α, KT , Cp k and temperature,
density, and pressure.

11The bulk modulus of a substance is a measure of the resistance of a substance to bulk compression. It is defined
as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume
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Exercise: 32. Show that an adiabatic geotherm approximately satisfies the heat equation for

the reference state.

11.8.1 The complete set of perturbation equations

The following equations (11.93),(11.94),(11.95),(11.96),(11.97) give the relevant equations in terms
of the perturbations w.r.t. the adiabatic reference state as defined with equations (11.90), (11.91)
and (11.92). Some terms then cancel in the general equations; no approximations have been made.

The equation of state is

ρ(r⃗, t) = ρ0(r⃗)
(
1− αT̃ +K−1

T p̃
)

(11.93)

The heat equation in terms of T̃

ρCp
DT̃

Dt
=

∂

∂xj

(
k
∂T̃

∂xj

)
+ ρH + πij

∂νi
∂xj

+ αT
Dp

Dt
(11.94)

The equation of motion is in terms of p̃, ρ̃, T̃ :

ρ
Dνi

Dt
= − ∂p̃

∂xi
+
∂πij
∂xj
− ρ0(αT̃ +K−1

T p̃)gi (11.95)

The Poisson equation in terms of Ũ and ρ̃:

∇⃗2Ũ = 4πGρ̃ (11.96)

and, finally, the continuity equation in terms of ρ̃ reads

∂ρ̃

∂t
+
∂(ρ0 + ρ̃)νj

∂xj
= 0 (11.97)

11.9 Scaling of equations

An important subject is the scaling of equations by means of scaling the relevant parameters with
appropriate estimates (expected values) for the convection problem at hand. Here, we discuss scaling
of parameters for the study of whole mantle convection, however, other studies such as boundary
layer modeling or subduction modeling may require different scaling parameters. The idea behind
scaling of equations is to find out the relative importance (contribution) of separate terms. Usual
scaling parameters for mantle convection are:

xi = x′ih t = t′
h2

κ
νi = ν′

i

κ

h
T̃ = T̃ ′∆Tm p̃ = p̃′

ηκ

h2
ρ = ρ′ρm

where h is the mantle thickness, κ = k/(ρCp) is the thermal diffusivity, ∆Tm is the temperature
difference between the Core-Mantle boundary and the surface, η is the dynamic viscosity12 and ρm
is a scaling density.

Note that on Earth, we have α ∼ 3·10−5 K−1,KT ∼ 3·1012 Pa, ∆Tm ∼ 103 K, Cp ∼ 103 J kg−1K−1,
k ∼ 4 Wm−1K−1, κ ∼ 1.2× 10−6 m2 s−1.

The primed quantities are dimensionless and are of the order 1 if the scaling is correct for the
problem at hand13. Application of scaling to the equation of state (11.93) leads to

ρ′ = ρ′0

(
1− α∆TmT̃ ′ +

K−1
T ηκ

h2
p̃′
)

(11.98)

12Note that the viscosity varies by many orders of magnitude, i.e. between ∼ 1017 and ∼ 1026 in the mantle and
lithosphere, so finding the appropriate scaling value is necessary.

13Except for the viscosity, obviously
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The coefficients of the primed-quantities determine the relative importance of the terms (with respect
to 1). We have α∆Tm ∼ 3 · 10−2 and K−1

T ηκ/h2 ∼ 2.5 · 10−10, which leads us to conclude that
thermal perturbations of density are much more important than pressure perturbations (assuming
the equation of state and scaling are correct for the convection problem). We note that the scaling
factor of pressure is about 100 Pa, i.e. perturbations of hydrostatic pressure are expected to be small
compared to the rheological stress (1-100 MPa).

The coefficient K−1
T ηκ/h2 can be written as ηCp/k · k2K−1

T /C2
p/ρmh

2 = Pr ·M2 where where Pr is
the Prandtl number14 and M the Mach number15. M gives the ratio between flow speed and sound
speed which is about 10−16 for mantle convection. The Prandtl number is about 1024 and will appear
in the coefficient of the inertial term of the dimensionless equation of motion.

Let us now turn to the scaling of the continuity equation (11.97) which leads to some basic insight
into the problem of (in-)compressibility. The dimensionless version is

∂ρ̃′

∂t′
+
∂(ρ′0 + ρ̃)ν′

j

∂x′j
= 0 ; ρ′0 =

ρ0(r⃗)

ρm
(11.99)

Exercise: 33. Derive Eq. (11.99).

Substitution of the equation of state (11.93) and taking the limit Pr ·M2 →∞ leads to

−ρ′0α∆Tm
∂T̃ ′

∂t′
+

∂

∂x′j

[
(ρ′0 − ρ′0α∆TmT̃ ′)ν′

j

]
= 0 (11.100)

which gives the conservation law based on thermal perturbations of density only. In the limit that
the perturbation terms are very small we arrive at

∂

∂x′j
(ρ′0ν

′
j) = 0 (11.101)

which is the equation of anelastic conservation of mass. Compared to (11.97) we effectively replaced
the density by the reference density. The time derivative of density has disappeared. This derivative
is primarily related to the propagation of seismic waves. This process occurs at totally different
time scales than mantle convection. The anelastic conservation of mass (11.101) is being used in
convection modeling of compressible fluids, see for instance the equations of the Aspect code16:

Taken from the Aspect website. Note that the equations are not dimensionless.

14https://en.wikipedia.org/wiki/Prandtl_number
15https://en.wikipedia.org/wiki/Mach_number
16https://aspect-documentation.readthedocs.io/en/latest/user/methods/basic-equations/index.html
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In Solheim and Peltier [1177] we read:

“The anelastic-liquid approximation [e.g., Jarvis and McKenzie [637] (1980)] is applied
to the system [mass, momentum, energy conservation equations]. This involves setting
∂ρ/∂t = 0 in the mass conservation equation, assuming g, Cp, α, k, KT and κ to be
known functions of radius and replacing ρ by ρr everywhere in [the equations] except
in the body force term of the momentum equation. Because the mantle has essentially
infinite Prandtl number, the inertial force term in the momentum conservation equation
may be neglected [986]. Furthermore, owing to the extremely small velocities associated
with the mantle convection process, the pressure distribution is very nearly that of a fluid
in hydrostatic equilibrium and we may then safely assume

αT
Dp

Dt
≃ −αTρgur

where ur is the radial component of the velocity. These approximations have been dis-
cussedin greater detail by Solheim and Peltier [1178] (1990). ”

11.10 The Boussinesq approximation

The Boussinesq17 approximation is ubiquitous in computational geodynamics [1186, 1387]. This
approximation leads to a set of simplified equations that are easier to solve for some analytical
problems and in numerical modeling of convective flow. The following approximations are being
made:

� Neglect the effect of density variations with respect to a reference state except in terms related
to the driving force of convection

� assume that the divergence of the velocity field is 0 (in this case π = τ ).

� Only concern temperature changes resulting from diffusion and advection (i.e. neglect terms
related to adiabatic compression, and heat dissipation)

This simplifies Eqs. (11.93),(11.94),(11.95),(11.96),(11.97) to

ρ(r⃗, t) = ρ0(1− αT̃ ) (11.102)

ρ0Cp
DT̃

Dt
=

∂

∂xj

(
k
∂T̃

∂xj

)
+ ρ0H (11.103)

ρ0
Dνi

Dt
= − ∂p̃

∂xi
+
∂τij
∂xj
− ρ0αT̃gi (11.104)

∇⃗2Ũ = −4πGρ0αT̃ (11.105)

∂νj
∂xj

= 0 (11.106)

11.10.1 The Rayleigh-Bénard convection

This is the classical example of a laterally unlimited fluid layer of thickness h in a gravity field.
We derive here the pertinent equations in the Boussinesq approximation. In the next section these
equations are being used to study the problem of onset of convection.

17https://en.wikipedia.org/wiki/Joseph_Valentin_Boussinesq
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Convection cells in a gravity field. Taken from https://en.wikipedia.org/wiki/Rayleigh_Benard_convection

Gravity is directed along the positive z-axis. The top and bottom of the layer are kept at a
constant temperature:

T (x, z = 0, t) = T0 and T (x, z = h, t) = T0 +∆T (∆T > 0) (11.107)

The mechanical boundary conditions on the top and bottom are impermeability and shear stress free
(also called free slip):

νz(x, z = 0, t) = 0 (11.108)

νz(x, z = h, t) = 0 (11.109)

τxz(x, z = 0, t) = 0 (11.110)

τxz(x, z = h, t) = 0 (11.111)

τyz(x, z = 0, t) = 0 (11.112)

τyz(x, z = h, t) = 0 (11.113)

Exercise: 34. Show for an incompressible Newtonian fluid that at z = 0 the traction t⃗n is given

by tnx = tny = 0 and tnz = −p + 2η∂νz/∂z. What can you tell about the horizontal components of

velocity?

The condition of zero vertical velocity is only approximately valid at the Earth’s surface. Vertical
motions can now be measured by geodetic techniques and are generally one order of magnitude
less than horizontal motions. Also from the geological past we know that horizontal motions have
had much larger amplitude than vertical motions. If the Earth would have a pure fluid behavior
(has it?) then mantle flow can induce dynamic surface topography. The vertical velocity νz
equals the local time derivative ∂d/∂t of the vertical surface deflection d(t). In numerical solutions
(with impermeable boundaries along which pressure variation can accumulate) the deflection is often
computed a posteriori by equating ρgd ∼ −p+ 2η∂νz/∂z.
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Left: A model of present-day mass change due to post-glacial rebound and the reloading of the ocean basins with seawater. Blue and purple areas indicate

rising due to the removal of the ice sheets. Yellow and red areas indicate falling as mantle material moved away from these areas in order to supply the rising

areas, and because of the collapse of the forebulges around the ice sheets. Taken from Wikipedia18, after Paulson, Zhong, and Wahr [983]; Right: The

absolute land uplift in Fennoscandia in mm/year. The Finnish Geodetic Institute, taken from Kakkuri [664].

In the following we assume an isoviscous Newtonian fluid with constant thermal conductivity,
constant heat capacity and no heat production and we adopt the Boussinesq approximation. Then
we have the following equations for Rayleigh-Benard convection:

ρ̃ = −ρ0αT̃ (11.114)

DT̃

Dt
= κ∇⃗2T̃ (11.115)

ρ0
Dνi

Dt
= − ∂p̃

∂xi
+ η∇⃗2νi − ρ0αT̃gi (11.116)

∇⃗2Ũ = −4πGρ0αT̃ (11.117)

∂νj
∂xj

= 0 (11.118)

The reference temperature is assumed to be constant or following an adiabat or is a time stationary
conductive geotherm. Reference pressure is computed from the hydrostatic equation ∇⃗p = ρ0g⃗.

We assume a 2-D situation in which the velocity vector is denoted by ν⃗ = (u, 0, w)T . The
mechanical boundary condition becomes τxz(x, z = 0) = τxz(x, z = h) = 0 and η∂u/∂z(x, z = 0) =
η∂u/∂z(x, z = h) = 0. The scaling of the equation of motion gives

1

Pr

Dν′
i

Dt′
= − ∂p̃

′

∂x′i
+ (∇′)2ν′

i − RaT̃ ′δzi (11.119)

where the Prandtl number is Pr = ηCp/k = η/ρ0κ and the Rayleigh number is Ra = ρ0αg∆Th
3/ηκ.

For the Earth’s mantle Pr ∼ 1024 and Ra ∼ 107 which leads to the conclusion that the inertial
term can be neglected. Please check Section 2.11.2 for the complete adimensionalisation of the
temperature-dependent Navier-Stokes equations. We arrive at the non-dimensional equation (drop-
ping the primes for convenience):

0 = −∇⃗p̃+ ∇⃗2ν⃗− RaT̃ e⃗z (11.120)

in which Ra is the only free parameter. Recall that p̃ is the pressure anomaly with regards to p0. The
Rayleigh number determines the magnitude of the force driving convection (see computer practical).

Because we considerer a 2-D situation of an incompressible fluid we can adopt the stream function
approach with u = ∂Ψ/∂z and w = −∂Ψ/∂x which leads to

∇⃗4Ψ = −Ra∂T̃
∂x

(11.121)

(to be compared with (11.48)) with boundary conditions Ψ(x, z = 0) = Ψ(x, 1) = 0 and ∂2Ψ/∂z2(x, y =
0) = ∂2Ψ/∂z2(x, y = 1) = 0.

The energy equation becomes after scaling

DT̃

Dt
= ∇⃗2T̃ (11.122)

18https://en.wikipedia.org/wiki/Post-glacial_rebound
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Equation (11.121) and (11.122) are coupled non-linear equations which usually need to be solved
numerically.

Recall that the temperature T̃ is the deviation from either a constant temperature of from adi-
abatic temperature T̃ = T − Ta. Advective transport of adiabatic temperature does not lead to
temperature changes with the surroundings and therefore T̃ is the temperature associated with
convective flow. In convective flow that assumes a (non-adiabatic) conductive geotherm in the back-
ground we can separate T̃ as T̃ = T̃0 + T̃1 where T̃0 , is the geotherm of the conductive reference
state and T̃1 is the perturbation of the temperature field.

Exercise: 35. Derive the stationary conductive reference temperature profile T̃ ′
0(z

′) = z′ using

the temperature boundary conditions given earlier (with Tsurface = 0).

11.10.2 Linear stability analysis (the onset of convection problem)

We are now ready to solve a linear stability problem which will provide fundamental insight in the
role of the Rayleigh number in convection.

The system is a layer of fluid between y = 0 and y = h, with boundary conditions T (x, y = 0) = Tb
and T (x, y = h) = 0, characterized by ρ0, Cp, k, η0 which are assumed to be constant (in space and
time).

The Stokes equation is ∇⃗ ·σ+ρg⃗ = 0⃗. The components of the this equation on the x- and y−axis
are:

(∇⃗ · σ)x = −ρg⃗ · e⃗x = 0

(∇⃗ · σ)y = −ρg⃗ · e⃗y = ρg0

since g⃗ and e⃗y are in opposite directions (g⃗ = −g0e⃗y, with g0 > 0).
Following Eq. (11.48), the stream function formulation of the incompressible isoviscous Stokes

equation is

η0∇4Ψ =
∂ρgy
∂x
− ∂ρgx

∂y
=
∂ρgy
∂x

= −g0
∂ρ

∂x

since gx = 0 and gy = g⃗ · e⃗y = −g0. Assuming a linearised density field with regards to temperature
ρ(T ) = ρ0(1− αT ) we have

∂ρ

∂x
= −ρ0α

∂T

∂x

and then

∇⃗4Ψ =
ρ0g0α

η0

∂T

∂x
(11.123)

For small perturbations of the conductive state19 Tc(y) = (1 − y/h)Tb we define the temperature
perturbation T̃ (x, y) such that

T (x, y, t) = Tc(y) + T̃ (x, y, t)

Note that the temperature perturbation T̃ must satisfy the homogeneous boundary conditions
T̃ (x, y = 0) = 0 and T̃ (x, y = h) = 0. We then have20:

∇⃗4Ψ =
ρ0g0α

η0

∂T̃

∂x
(11.124)

19The conductive state temperature is defined as the solution of the steady state diffusion equation ∆Tc = 0
subjected to the desired boundary conditions at the top and at the bottom.

20This is the same equation as in Turcotte & Schubert, eq 6.310.
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In the absence of heat production, the temperature equation (in the Boussinesq approx.) is

ρ0Cp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= k∆T ⇒ ρ0Cp

(
∂(Tc + T̃ )

∂t
+ ν⃗ · ∇⃗(Tc + T̃ )

)
= k∆(Tc + T̃ )(11.125)

First we start by acknowledging that Tc does not depend on time, so that ∂Tc/∂t = 0. Then, ∆Tc = 0

since Tc is a linear function of y. Finally, we assume the nonlinear term ν⃗ · ∇⃗T̃ to be second order
(temperature perturbations and coupled velocity changes are assumed to be small). In the end,
defining the heat diffusion coefficient κ as κ = k/ρ0Cp, the energy equation can be simplified further
as follows:

∂T̃

∂t
+ ν⃗ · ∇⃗Tc = κ∆T̃

Using the relationship between velocity and stream function ν⃗ = (u, v) = (∂yΨ,−∂xΨ) and since

∇⃗Tc = −(Tb/h)e⃗y then

ν⃗ · ∇⃗Tc =
(

∂yΨ
−∂xΨ

)
·
(

0
−Tb/h

)
=
Tb
h

∂Ψ

∂x

and finally21:

∂T̃

∂t
− κ∆T̃ = −Tb

h

∂Ψ

∂x
(11.126)

Looking at these equations, we immediately think about a separation of variables approach to
solve these equations. Both equations showcase the Laplace operator ∆, and the eigenfunctions of
the biharmonic operator and the Laplace operator are the same. We then pose that Ψ and T̃ can be
written22:

T̃ (x, y, t) = T̃0 exp(pt) [ak cos(kxx) + bk sin(kxx)] [ck cos(kyy) + dk sin(kyy)]

Ψ(x, y, t) = Ψ0 exp(pt) [αk cos(kxx) + βk sin(kxx)] [δk cos(kyy) + γk sin(kyy)]

where T̃0 and Ψ0, ak, bk, ck, dk and αk, βb, δk, γk are constants. We then of course have

∇⃗2T̃ =
∂2T̃

∂x2
+
∂2T̃

∂y2

= T̃0 exp(pt)
{[
−k2xak cos(kxx)− k2xbk sin(kxx)

]
[ck cos(kyy) + dk sin(kyy)]

}
+ T̃0 exp(pt)

{
[ak cos(kxx) + bk sin(kxx)]

[
−k2yck cos(kyy)− k2ydk sin(kyy)

]}
= −(k2x + k2y)T̃ (11.127)

and a similar expression for Ψ.
The boundary conditions on T̃ are T̃ (y = 0) = T̃ (y = h) = 0. From the first one it follows

immediately that ck = 0. From the second, we arrive at kyh = nπ, which yields sin(nπy/h) where n
is an integer. We then arrive at the following expression for the temperature T̃ :

T̃ (x, y, t) = T̃0 exp(pt) [ak cos(kxx) + bk sin(kxx)] sin
(
nπ

y

h

)
where n is an integer number.

At this stage we make an important assumption: at t = 0 we then only consider a single horizontal
periodic perturbance with wavelength λ as depicted below. In such a case we expect that it would
in fact lead to the formation of the following convection cells:

21This is the same equation as in Turcotte & Schubert, eq 6.309.
22T & S actually very much postulate the final form of these quantities without (enough?) justification. I would

like to revisit this in the future and better support this assertion.
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Note that the number of cells left and right of those shown is infinite. Source unknown. The coordinate x = 0 is set to the left vertical dashed line for

convenience.

The boundary conditions are free slip at the top and at the bottom, i.e. v(y = 0) = v(y = h) = 0.
Also, by symmetry of the perturbance we see that u = 0 at each ’side’ (i.e. on the vertical dashed
lines of the figure above), i.e. for x = 0 and x = λ.

Let us now turn to the vertical y component of the velocity:

v = −∂Ψ
∂x

= − ∂

∂x
{Ψ0 exp(pt) [αk cos(kxx) + βk sin(kxx)] [δk cos(kyy) + γk sin(kyy)]}

= −Ψ0 exp(pt) [−αkkx sin(kxx) + βkkx cos(kxx)] [δk cos(kyy) + γk sin(kyy)] (11.128)

The boundary condition at the bottom is v(y = 0) = 0, so that δk = 0 here again. The boundary
condition at the top is v(y = h) = 0, so that kyh = nπ = 0 as before. Then

Ψ(x, y, t) = Ψ0 exp(pt) [αk cos(kxx) + βk sin(kxx)] sin
(
nπ

y

h

)
Turning now to the horizontal component of the velocity:

u =
∂Ψ

∂y

=
∂

∂y

{
Ψ0 exp(pt) [αk cos(kxx) + βk sin(kxx)] sin

(
nπ

y

h

)}
= Ψ0 exp(pt) [αk cos(kxx) + βk sin(kxx)]

nπ

h
sin
(
nπ

y

h

)
(11.129)

Using now the ’side’ boundary conditions: u(x = 0) = 0 yields αk = 0 and u(x = λ) = 0 yields
kyλ = 2π so that in the end:

Ψ(x, y, t) = Ψ0 exp(pt) sin

(
2π

λ
x

)
sin
(nπ
h
y
)

(11.130)

Looking at the biharmonic equation (11.126), its rhs is ∼ ∂Ψ
∂x
. Then, the x dependency of this term

will be cos(2πx/λ). The lhs term of (11.126) is proportional to T̃ (see Eq. (11.127)), i.e. proportional
to ak cos(kxx) + bk sin(kxx). For these equations to be compatible, we must set bk = 0 and we then
obtain23

23Taking n = 1 and remembering that Turcotte & Schubert have the domain between y − h/2 and y = h/2, these
expressions are identical to Eqs. 6.311 and 6.312 of the book. Also one could have assigned ∂T/∂x on the sides for
symmetry reasons and have obtained the same expression.
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T̃ (x, y, t) = T̃0 exp(pt) cos

(
2π

λ
x

)
sin
(
nπ

y

h

)
(11.131)

where ak has been ’absorbed’ in T̃0.
Then the two framed PDEs above, Eq. (11.124) and Eq. (11.126), when coupled with Eq. (11.130)

and Eq. (11.131), become:

∇4Ψ =
ρ0g0α

η0

∂T̃

∂x

⇒ ∇2

[(
−4π2

λ2
− n2π2

h2

)
Ψ

]
=
ρ0g0α

η0

∂T̃

∂x

⇒
(
−4π2

λ2
− n2π2

h2

)2

Ψ =
ρ0g0α

η0

∂T̃

∂x

⇒
(
4π2

λ2
+
n2π2

h2

)2

Ψ0 exp(pt) sin

(
2π

λ
x

)
sin
(
nπ

y

h

)
=
ρ0g0α

η0
· −2π

λ
T̃0 exp(pt) sin

(
2π

λ
x

)
sin
(
nπ

y

h

)
⇒

(
4π2

λ2
+
n2π2

h2

)2

Ψ0 = −
ρ0g0α

η0

2π

λ
T̃0 (11.132)

∂T̃

∂t
− κ∆T̃ = −Tb

h

∂Ψ

∂x

⇒ pT̃ − κ
(
−4π2

λ2
− n2π2

h2

)
T̃ = −Tb

h
· 2π
λ
Ψ0 exp(pt) cos

(
2π

λ
x

)
sin
(
nπ

y

h

)
⇒

[
p+ κ

(
4π2

λ2
+
n2π2

h2

)]
T̃0 exp(pt) cos

(
2π

λ
x

)
sin
(
nπ

y

h

)
= −Tb

h

2π

λ
Ψ0 exp(pt) cos

(
2π

λ
x

)
sin
(
nπ

y

h

)
⇒

[
p+ κ

(
4π2

λ2
+
n2π2

h2

)]
T̃0 = −

Tb
h

2π

λ
Ψ0 (11.133)

We are then left with two equations:[
p+ κ

(
4π2

λ2
+
n2π2

h2

)]
T̃0 = −Tb

h

2π

λ
Ψ0(

4π2

λ2
+
n2π2

h2

)2

Ψ0 = −ρ0g0α
η0

2π

λ
T̃0

which we can cast as p+ κ
(

4π2

λ2
+ n2π2

h2

)
Tb
h

2π
λ

−ρ0g0α
η0

2π
λ

−
(

4π2

λ2
+ n2π2

h2

)2
 T̃0

Ψ0

 =

 0

0


The determinant of the matrix should be zero to have non-trivial solutions24 for the amplitude factors

24Let us consider the following matrix(
a b
c d

)
·
(
x
y

)
=

(
0
0

)
⇒

(
ac bc
0 ad− bc

)
·
(
x
y

)
=

(
0
0

)
where we have multiplied the first row by c and the second row by a and subtract row 1 from row 2. The lower right
term ad− bc is the determinant and we find that it must be equal to zero since y is not zero.
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(i.e. T̃0 = 0 and Ψ0 = 0 which is not helpful). This leads to the condition:

Det =

[
p+ κ

(
4π2

λ2
+
n2π2

h2

)]
· −
(
4π2

λ2
+
n2π2

h2

)2

+
ρ0g0α

η0

2π

λ
· Tb
h

2π

λ

= −
[
p+ κ

(
4π2

λ2
+
n2π2

h2

)](
4π2

λ2
+
n2π2

h2

)2

+
ρ0g0αTb
hη0

4π2

λ2

= −p
(
4π2

λ2
+
n2π2

h2

)2

− κ
(
4π2

λ2
+
n2π2

h2

)3

+
ρ0g0αTb
hη0

4π2

λ2

The determinant is zero for

p

(
4π2

λ2
+
n2π2

h2

)2

= −κ
(
4π2

λ2
+
n2π2

h2

)3

+
ρ0g0αTb
hη0

4π2

λ2

p =
−κ
(

4π2

λ2
+ n2π2

h2

)3
+ ρ0g0αTb

hη0
4π2

λ2(
4π2

λ2
+ n2π2

h2

)2
= κ

−
(

4π2

λ2
+ n2π2

h2

)3
+ ρ0g0αTb

hκη0
4π2

λ2(
4π2

λ2
+ n2π2

h2

)2
=

κ

h6

−h6
(

4π2

λ2
+ n2π2

h2

)3
+ ρ0g0αTbh

3

κη0
4π2h2

λ2(
4π2

λ2
+ n2π2

h2

)2
=

κ

h2

−h6
(

4π2

λ2
+ n2π2

h2

)3
+ Ra4π2h2

λ2

h4
(
4π2

λ2
+ n2π2

h2

)2
=

κ

h2

−
(

4π2h2

λ2
+ n2π2

)3
+ Ra4π2h2

λ2(
4π2h2

λ2
+ n2π2

)2 (11.134)

where we have used the Rayleigh number of the system defined as

Ra =
ρ0g0αTbh

3

η0κ

The coefficient p inside exp(pt) present in both temperature and stream function expressions
determines the stability of the system: if it is negative, the system is stable and both Ψ and T̃ will
decay to zero (return to conductive state). If p = 0, then the system is meta-stable, and if p > 0
then the system is unstable and the perturbations will grow.

In case of the stable regime an initial temperature perturbation will die out (e.g. because con-
duction wins from advection). In the case of the unstable regime convection will occur with an
exponential growth factor. The intermediate, marginally stable, regime is the transition between
convection and no convection for which our linearization applies.

The threshold is then p = 0 and the corresponding critical Rayleigh number Rac is
25:

Rac =

(
4π2h2

λ2
+ n2π2

)3
4π2h2

λ2

25this is eq 6.319 of T&S for n=1
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Let us denote h = 2πh/λ the dimensionless thickness of the layer. The critical Rayleigh number is
then a function of h:

Rac(h) =
(h2 + n2π2)3

h2

It is plotted on the following figure for n = 1:

 0

 1000

 2000
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 5000

 0  1  2  3  4  5  6  7

unstable

stable

R
a c

2 π h/λ

Critical Rayleigh number Rac for the onset of convection in a layer heated from below with stress-free boundaries as a function of dimensionless wavenumber

2πh/λ and for n = 1. For a system with Ra = 2000 then convection cannot occur for 2πh/λ < 0.8 and 2πh/λ > 5.4. The dashed lines indicate the minimum

critical Rayleigh number and its corresponding h value. Unstable means that perturbations will grow and yield convection, while stable means that

perturbations will diffuse away. Gnuplot script in images/chapter md.

The minimum critical Rayleigh number is given by

∂Rac
∂(2πh/λ)

∣∣∣∣
n=1

= 0

We find26 that the value of the wavelength corresponding to the smallest value of the critical Rayleigh
number is λ = 2

√
2h, or h = π/

√
2 ≃ 2.22 and substitution of this value for the wavelength gives

the critical Rayleigh number

Rac =
27

4
π4 ≃ 657.5

This solves the linearised onset of convection problem in the sense that an unstable layering (cold
above hot) only starts convecting after a critical Rayleigh number has been overcome, e.g., by an
increased ∆T

These numbers hold for a model with boundaries that are isothermal, impermeable, and free slip.
Adopting other boundary conditions leads to different critical numbers. For instance, in the extreme
of having fixed (no slip) boundaries one obtains Ra ≃ 1707.8 and λ ≃ 2.016h demonstrating that it
is more difficult to initiate convection compared to free slip boundaries.

When conducting a similar analysis in a spherical shell, minimum critical Rayleigh numbers prove
to be much larger. Free slip (rigid) conditions at the surface and bottom ’CMB’ boundary lead to
Rac,min ∼ 14, 000(35, 000) with a critical wave length of spherical harmonic degree L = 3(4). As the
main difference between a flat layer and a spherical shell is the geometry, apparently, convection in a
spherical shell experiences strong geometrical constraints (less “space” to flow near the bottom than
near the top of the layer and more cooling at the surface compared to less heat input at the bottom).

For realistic values of the physical parameters defining the Rayleigh number and a realistic layer
thickness, the only quantity that changes the Rayleigh number is the temperature difference ∆T

26eq 6.320 of T&S

789



between top and bottom. The critical minimum Rayleigh number thus determines the
critical ∆T below which no convection occurs and above which convection is enhanced.
The analysis above is only valid in the linear regime, i.e. near the critical Rayleigh number.

Estimates for the Rayleigh number of the Earth’s mantle vary between 5 · 105 (upper mantle)
to 6 · 107 for the whole mantle which is by many factors larger than the minimum critical Rayleigh
numbers that follow from experiments as described above. The mantle is in a state of vigorous
convection (on the geological time scale). Thermal expansion and thermal diffusivity are decreasing
with depth while viscosity is likely increasing with depth. The net effect may be that the Rayleigh
number for the lower mantle is less than ∼ 107.

The linear stability analysis for the onset of convection can also be carried out for a fluid layer
heated uniformly from within and cooled from above. The lower boundary is assumed to be insulat-
ing, i.e. no heat flows across the boundary. In this case the appropriate Rayleigh number for a fluid
layer heated from within is

RaH =
αρ20gHh

5

kηκ

where H is the rate of internal heat generation per unit mass. For no-slip velocity boundary condi-
tions, the minimum critical Rayleigh number is 2772, and the associated value of 2πh/λ is 2.63; for
free-slip conditions, the minimum Rac = 867.8, and the associated value of 2πh/λ is 1.79.

Additional resources:

� D.L. Turcotte and G. Schubert. Geodynamics, 3nd edition. Cambridge University Press, 2014.
isbn: 9780521186230, Section 6.19

� D. Bercovici and G. Schubert. Treatise on geophysics: Mantle dynamics. Vol. 7. Elsevier,
2007, Section 2.4.4

� G. Schubert, D.L. Turcotte, and P. Olson. Mantle Convection in the Earth and Planets. Cam-
bridge University Press, 2001. isbn: 0-521-70000-0. doi: 10.1017/CBO9780511612879, chap-
ter 7

� Pelletier book, chapter 7.2
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11.11 Video resources

� The bizarre patterns that emerge when you heat ANY fluid by Steve Mould

https://youtu.be/kuLX76g7Fec?si=1DSMkXICnr2_yMXv

� Geodynamics 1: Large-Scale Mantle Convection and Numerical Modeling of it by Allen McNa-
mara at CIDER 2014

https://www.youtube.com/watch?v=JyHdFKCIYDE

� Geodynamics/Subduction Lab by Tobias Hoeink

https://www.youtube.com/watch?v=8cpL5c6lrXA

� Subduction by Dave stegman

https://youtu.be/f2sJJo8bqqU?si=qBHUOMdVHo8_woNW
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11.12 Computer practicals

11.12.1 Introduction

In parameterized convection models for planetary thermal evolution the heat transport characteristics
of the convecting mantle are formulated in a pseudo steady state approximation. This is done
by parameterization of the surface heatflux as a function of convective vigor, through the non-
dimensional Nusselt number Nu. In the convective regime Nu is usually expressed in terms of the
Rayleigh number Ra as Nu ∼ C Raβ, where C is a constant depending on the domain geometry
(please read section 1 of Wolstencroft, Davies, and Davies [1368] (2009) for more information, check
also Plumley and Julien [1005] (2019) and references therein, also Korenaga [723] (2003)).

In this lab exercise you will investigate the characteristics of steady-state Rayleigh-Bénard convec-
tion and determine the relation between the Nusselt and Rayleigh number experimentally, by means
of numerical modelling. In particular you will measure the heatflow through the top surface of a
2D model of a convecting layer, as a function of the Rayleigh number, expressed in the temperature
contrast across the convecting layer. This is done by a series of modelling experiments where the
coupled equations for thermal convection are solved numerically using finite element methods.

The following sections contain descriptions of the numerical model and the experiments to be
done.

11.12.2 Reminder of the governing model equations

In this computerlab you will perform experiments with numerical solutions of the coupled equations
describing thermal convection in an incompressible viscous fluid with infinite Prandtl number27.

In what follows, the assumption is made that geological materials can be treated as fluids (with
special properties) within the realm of continuum fluid mechanics and under the Stokes hypothesis.
A Boussinesq approximation is applied, neglecting density variations in the equations except in the
buoyancy term of the momentum conservation equation. We consider two-dimensional problems.

∇⃗ · σ + ρ(T )g⃗ = 0⃗ (11.135)

∇⃗ · ν⃗ = 0 (11.136)

σ = −p1+ τ (11.137)

τ = 2ηε̇(ν⃗) (11.138)

ε̇(ν⃗) =
1

2

(
∇⃗ν⃗+ (∇⃗ν⃗)T

)
(11.139)

ρ0Cp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= ∇⃗ · (k∇⃗T ) (11.140)

ρ(T ) = ρ0(1− α(T − T0)) (11.141)

Equation (11.135) is the momentum conservation equation and Eq. (11.136) is the mass conser-
vation equation for incompressible fluids. One can resolve the stress tensor σ into its spherical part
−p1 and its stress deviation τ (see Eq. (11.137)), where the deviatoric stress tensor is proportional
to the strain rate tensor ε̇ (see Eq.(11.138)) through the dynamic viscosity η. Finally Eq. (11.139)
relates the strain rate tensor to the velocity field.

Equations (11.135), (11.136), (11.137), (11.138) and (11.139) all together lead to the following

27In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal
boundary layers. When Pr is small, it means that the heat diffuses quickly compared to the velocity (momentum).
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form of the Stokes equations:

∇⃗ · [η(∇⃗ν⃗+ ∇⃗ν⃗T )]− ∇⃗p+ ρg⃗ = 0⃗ (11.142)

∇⃗ · ν⃗ = 0 (11.143)

Equation (11.142) is an elliptic equation characterized by the fact that changes in buoyancy and
constitutive relationships anywhere in the domain have an immediate influence on the entire domain.

symbol meaning and dimension

g⃗ gravity acceleration vector (m s−2)
Lx, Ly domain size (m)
p pressure (Pa)
τ deviatoric stress vector (Pa)
ν⃗ = (u, v, w) velocity (m s−1)
ε̇(ν⃗) strain-rate tensor (s−1)
η viscosity (Pa s)
ρ, ρ0 mass density (kgm−3)
σ stress tensor (Pa)
k heat conductivity (Wm−1K−1)
Cp heat capacity (JK−1)
α thermal expansion (K−1)

11.12.3 Numerical solution of the equations

Introduced in the late 1950s, the finite element method (FEM) [604, 1430, 1431, 1432] has emerged
as one of the most powerful numerical methods so far devised.

A thorough mathematical treatment of the finite element formulation of the equations gouverning
the physics of the system is beyond the scope of this computer practical, and has been exposed in
Section 7 and in various textbooks such as [341] or [507].

We wish to study the system at steady state, which means that it no more changes in time. In
practice, only the heat transport equation contains a time (derivative) term so we actually wish to
solve these three (coupled) equations:

∇⃗ · [η(∇⃗ν⃗+ ∇⃗ν⃗T )]− ∇⃗p+ ρ(T )g⃗ = 0⃗ (11.144)

∇⃗ · ν⃗ = 0 (11.145)

ρ0Cpν⃗ · ∇⃗T = k∆T (11.146)

The main problem is clearly visible in the third one: with respect to the velocity and temperature
unknowns this is a nonlinear equation! We therefore have to design a strategy (an algorithm) which
will allow us to solve these equations.

One simple approach is as follows: the equations are not solved in a coupled manner. but rather
the obtention of a new set of variables (v, p, T ) is the product of a two-stage process:

1. assume temperature known, solve for velocity (and pressure) field (the first two equations)

2. assume velocity known, solve for temperature (the last equation).

These two steps need to be repeated as long as the system has not converged to a steady solution.
The code therefore implements iterations and these iterations stop when either the maximum number
of iterations nstep is reached or convergence has been reached (i.e. temperature and velocity do not
change substantially between two consecutive iterations). The structure of the code is then as follows:

793



(tikz md1416.tex)

Initial Temperature

Solve Stokes Eqs.

Solve energy Eq.

convergence?

Export data

Y

N

ν⃗, p

T

11.12.4 Two-dimensional convection in a unit box

This benchmark deals with the 2-D thermal convection of a fluid of infinite Prandtl number in a
rectangular closed cell. In what follows, we will focus on the case 1a, 1b, and 1c experiments as
shown in Blankenbach et al. [95] (1989): steady convection with constant viscosity in a square box.

The temperature is fixed to zero on top and to ∆T at the bottom, with reflecting symmetry at the
sidewalls (i.e. ∂xT = 0) and there are no internal heat sources. Free-slip conditions are implemented
on all boundaries.

The Rayleigh number is given by

Ra =
αgyρ0∆Th

3

κν
=
αgy∆Th

3ρ2Cp
kη

(11.147)

In what follows, I use the following parameter values: Lx = Ly = 1, ρ0 = CP = k = η = 1,
T0 = 0, α = 10−4, g = 104Ra.

The initial temperature field is given by

T (x, y) = (1− y)− 0.01 cos(πx/Lx) sin(πy/Ly) (11.148)

The perturbation in the initial temperature fields leads to a perturbation of the density field and
sets the fluid in motion. Depending on the initial Rayleigh number, the system ultimately reaches a
steady state after some time.

The root mean square of the velocity field in the whole domain is defined as follows:

νrms =

(
1

VΩ

∫
Ω

|ν⃗|2 dV
)1/2

=

(
1

LxLy

∫
Ω

(u2 + v2) dV

)1/2

(11.149)

The Nusselt number (i.e. the mean surface temperature gradient over mean bottom temperature)
is computed as follows [95]:

Nu = −Ly

∫ Lx
0

∂T
∂y
(y = Ly)dx∫ Lx

0
T (y = 0)dx

(11.150)
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Note that in our case the denominator is equal to Lx since the temperature at the bottom is prescribed
to be 1.

Finally, the steady state root mean square velocity νrms and Nusselt number measurements are
indicated in the following table alongside those of Blankenbach et al. [95] (1989) and Tackley [1227]
(1994). (Note that this benchmark was also carried out and its results published in many other
publications [1283, 5, 455, 309, 769] but since they did not provide a complete set of measurement
values, they are not included in the table.)

Blankenbach et al. [95] Tackley [1227]

Ra = 104 νrms 42.864947± 0.000020 42.775
Nu 4.884409± 0.000010 4.878

Ra = 105 νrms 193.21454± 0.00010 193.11
Nu 10.534095± 0.000010 10.531

Ra = 106 νrms 833.98977± 0.00020 833.55
Nu 21.972465± 0.000020 21.998

Steady state Nusselt number Nu and νrms measurements as reported in the literature.

11.12.5 Obtaining the python code

The code is to be downloaded as follows in a terminal:

wget https://raw.githubusercontent.com/cedrict/fieldstone/master/python_codes/md/stone_new.py

If you do not know what a terminal is or if you are using Windows, simply copy

https://raw.githubusercontent.com/cedrict/fieldstone/master/python_codes/md/stone_new.py

in the address bar of your web browser, select all, paste it in a file on your computer which you
save as stone.py in a dedicated folder.

You can run the code in a terminal, in Anaconda, Spyder, etc ...

11.12.6 Experiments

To conduct the exercise you can change the following parameters (and run the code until convergence):

� Lx: horizontal extent of the domain (do not change Ly)

� Ra nb: the Rayleigh number Ra

� tol ss: the steady state detection tolerance

� nelx,nely: the number of elements in x and y directions

� nstep: the maximum number of iterations to reach steady state

� top bc noslip: flag to switch no slip boundary conditions at top boundary (default is free
slip)

� bot bc noslip: flag to switch no slip boundary conditions at bottom boundary (default is free
slip)

Results are written out to .ascii files and to .vtu files. You can produce plots with python
(matplotlib), gnuplot or even excel, as long as these are not pixelated in your report, that they are
labeled, captioned, and their axes too. You will find in Appendix O.

Have a thorough look at the code, read all instructions, and carry out the following tasks:
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1. Determine analytically the expected value of the Nusselt number when there is no convection.

2. Determine the Nusselt number at steady state for a range of Rayleigh numbers, starting from
a subcritical value. Produce a plot of Nu against Ra using double logarithmic axes. Determine
the critical Rayleigh number.

3. The code produces data files containing ‘snapshots’ of the resulting numerical solution of the
temperature and velocity fields in a suitable format (.vtu) for visualization with graphics pro-
gram paraview. Produce colorplots with paraview of the temperature field, for three contrasting
Rayleigh number cases, and discuss them.

4. Determine the logarithmic slope or powerlaw index β defined in the introduction.

5. Produce such a Nu− Ra-plot for various grid resolutions. How can you explain the differences
in the results ? Produce a plot of Nu as a function of the grid spacing.

6. Look at how the νrms values at steady state depend on Ra.

7. For three contrasting Ra values, plot the temperature profiles (data to be found in T profile.ascii)
on a single plot and discuss the obtained figure.

8. Set the number of elements in the horizontal directions to 16. Choose Ra = 105 and progres-
sively increase the number of points in the vertical direction. Report on the variation of the
Nu number at steady state as a function of the vertical resolution.

9. Estimate the value of the critical Rayleigh number from your Nusselt number plot and inves-
tigate the difference with the value found in Rayleigh’s linear stability analysis for a layer of
depth h and infinite horizontal extent, RaC = (27/4)π4 (see Section 11.10.2).

10. Change the initial temperature profile to something more random, repeat some of these exper-
iments. What can you conclude ?

11. Change the top and bottom boundary conditions from free-slip to no-slip. How does this
influence Rac ?

12. When convection occurs and a steady state is reached the depth-averaged temperature curves
showcases two boundary layers. Measure their thickness as a function of Ra.

13. Bonus: Explore the effect of the aspect ratio of the domain on Rac and the slope β.

14. Bonus: change the viscosity function so that the viscosity is 1 in the lower half of the domain
and 10m in the upper half with m > 1. Explore & discuss ...

Relevant sources:

� Chapter 2 and the first part of this chapter present the physical equations in more detail.

� Stone 88 shows examples of mantle-scale convection.

� https://youtu.be/YIN9Dcq31x0

� https://youtu.be/5SPCU1sFGGc
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� https://youtu.be/ln7QBN0IRTs

� https://youtu.be/d4AS1FmdarU
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Chapter 12

Manufactured solutions & numerical
benchmarks

12.1 The method of manufactured solutions

mms.tex

The method of manufactured solutions is a relatively simple way of carrying out code verification.
In essence, one postulates a solution for the PDE at hand (as well as the proper boundary conditions),
inserts it in the PDE and computes the corresponding source term. The same source term and
boundary conditions will then be used in a numerical simulation so that the computed solution can
be compared with the (postulated) true analytical solution.

Examples of this approach are to be found in Donea and Huerta [341], Burstedde et al. [189],
Bochev, Dohrmann, and Gunzburger [101], Popov, Lobanov, Popov, Popov, and Gerya [1013], Popov,
Lobanov, Popov, and Gerya [1012], Lobanov, Popov, Popov, and Gerya [804], Blinova, Makeev, and
Popov [97], Thieulot and Bangerth [1260].

12.1.1 The repository

I have created in folder mms a template python script for incompressible isoviscous isothermal Stokes
flow. All one has to do is to provide the velocity and pressure, the strain rate tensor components
and its spatial derivatives.

de f u th (x , y ) :
r e turn 0

de f v th (x , y ) :
r e turn 0

de f p th (x , y ) :
r e turn 0

de f dpdx th (x , y ) :
r e turn 0

de f dpdy th (x , y ) :
r e turn 0

de f exx th (x , y ) :
r e turn 0

de f exy th (x , y ) :
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re turn 0

de f eyy th (x , y ) :
r e turn 0

de f dexxdx (x , y ) :
r e turn 0

de f dexydx (x , y ) :
r e turn 0

de f dexydy (x , y ) :
r e turn 0

de f deyydy (x , y ) :
r e turn 0

de f bx (x , y ) :
r e turn dpdx th (x , y )=2*dexxdx (x , y )=2*dexydy (x , y )

de f by (x , y ) :
r e turn dpdy th (x , y )=2*dexydx (x , y )=2*deyydy (x , y )

de f vrms th ( ) :
r e turn 0

de f eta (x , y ) :
r e turn 1

u(x, y) =

v(x, y) =

p(x, y) =

∂xu(x, y) =

∂yu(x, y) =

∂xv(x, y) =

∂yv(x, y) =

ε̇xx(x, y) =

ε̇yy(x, y) =

ε̇xy(x, y) =

∂p

∂x
(x, y) =

∂p

∂y
(x, y) =
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∂xε̇xx(x, y) =

∂xε̇xy(x, y) =

∂yε̇xy(x, y) =

∂yε̇yy(x, y) =

νrms =

√
1

LxLy

∫∫
(u2 + v2)dxdy =

12.1.2 Manufactured solution in Donea and Huerta [341] (book)

mms dohu03.tex

Taken from [341]. We consider a two-dimensional problem in the square domain Ω = [0, 1] ×
[0, 1], which possesses a closed-form analytical solution. The problem consists of determining the
incompressible flow velocity field ν⃗ = (u, v) and the pressure p such that

∇⃗ · (2ηε̇(ν⃗))− ∇⃗p+ b⃗ = 0⃗ in Ω (12.1)

∇⃗ · v⃗ = 0 in Ω (12.2)

v⃗ = 0⃗ on ΓD (12.3)

where the fluid viscosity is taken as η = 1. The components of the body force b⃗ are prescribed as

bx = (12− 24y)x4 + (−24 + 48y)x3 + (−48y + 72y2 − 48y3 + 12)x2

+(−2 + 24y − 72y2 + 48y3)x+ 1− 4y + 12y2 − 8y3

by = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2

+(4− 24y + 48y2 − 48y3 + 24y4)x− 12y2 + 24y3 − 12y4

With this prescribed body force, the exact solution is

u(x, y) = x2(1− x)2(2y − 6y2 + 4y3)

= x2(1− x)22y(1− 3y + 2y2)

= x2(1− x)22y(y − 1)(2y − 1)

v(x, y) = −y2(1− y)2(2x− 6x2 + 4x3)

= −y2(1− y)22x(1− 3x+ 2x2)

= −y2(1− y)22x(x− 1)(2x− 1)

p(x, y) = x(1− x)− 1/6

Note that the pressure obeys
∫
Ω
p dV = 0. One can turn to the spatial derivatives of the fields:

ε̇xx =
∂u

∂x
= (2x− 6x2 + 4x3)(2y − 6y2 + 4y3) (12.4)

ε̇yy =
∂v

∂y
= −(2x− 6x2 + 4x3)(2y − 6y2 + 4y3) (12.5)

ε̇xy =
1

2

(
∂u

∂y
+
∂v

∂x

)
= =

1

2

(
x2(1− x)2(2− 12y + 12y2)− y2(1− y)2(2− 12x+ 12x2)

)
(12.6)
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with of course ∇⃗ · ν⃗ = 0 and

∂p

∂x
= 1− 2x (12.7)

∂p

∂y
= 0 (12.8)

The velocity and pressure fields look like:

http://ww2.lacan.upc.edu/huerta/exercises/Incompressible/Incompressible Ex1.htm

Then the velocity magnitude is given by

|ν⃗|(x, y) =
√
u2 + v2 (12.9)

=
√

[x2(1− x)22y(1− 3y + 2y2)]2 + [−y2(1− y)22x(1− 3x+ 2x2)]2 (12.10)

=
√
x4(1− x)44y2(1− 3y + 2y2)2 + y4(1− y)44x2(1− 3x+ 2x2)2 (12.11)

=
√

4x2y2
√
x2(1− x)4(1− 3y + 2y2)2 + y2(1− y)4(1− 3x+ 2x2)2 (12.12)

= 2xy
√
x2(1− x)4(1− 3y + 2y2)2 + y2(1− y)4(1− 3x+ 2x2)2 (12.13)

This expression is unfortunately not very useful for later postprocessing...

As shown in [341], If the LBB condition is not satisfied, spurious oscillations spoil the pressure
approximation. Figures below show results obtained with a mesh of 20x20 Q1×P0 (left) and P1×P1

(right) elements:

]]
http://ww2.lacan.upc.edu/huerta/exercises/Incompressible/Incompressible Ex1.htm

Taking into account that the proposed problem has got analytical solution, it is easy to analyze
convergence of the different pairs of elements:
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One can also compute the stress components:

σxx = 2x2(2x− 2)(4y3 − 6y2 + 2y) + 4x(−x+ 1)2(4y3 − 6y2 + 2y)− x(−x+ 1) + 1/6

σxy = x2(−x+ 1)2(12y2 − 12y + 2)− y2(−y + 1)2(12x2 − 12x+ 2)

σyy = −x(−x+ 1)− 2y2(2y − 2)(4x3 − 6x2 + 2x)− 4y(−y + 1)2(4x3 − 6x2 + 2x) + 1/6

All the necessary functions to do this benchmark are in mms/dh.py:

# func t i on s f o r the Donea & Huerta benchmark ( dh )

de f u th (x , y ) :
r e turn x**2*(1.=x ) **2*(2*y=6*y**2+4*y**3)

de f v th (x , y ) :
r e turn =y**2*(1.=y ) **2*(2*x=6*x**2+4*x**3)

de f p th (x , y ) :
r e turn x*(1=x ) =1./6.

de f dpdx th (x , y ) :
r e turn 1.=2.*x

de f dpdy th (x , y ) :
r e turn 0 .

de f exx th (x , y ) :
r e turn x**2*(2*x=2)*(4*y**3=6*y**2+2*y )+2*x*(=x+1)**2*(4*y**3=6*y**2+2*y )

de f exy th (x , y ) :
r e turn (x**2*(=x+1)**2*(12*y**2=12*y+2)=y**2*(=y+1)**2*(12*x**2=12*x+2) ) /2

de f eyy th (x , y ) :
r e turn =exx th (x , y )

de f bx (x , y ) :
r e turn ((12 .=24.*y ) *x**4+(=24.+48.*y ) *x*x*x +

(=48.*y+72.*y*y=48.*y*y*y+12.)*x*x +
(=2.+24.*y=72.*y*y+48.*y*y*y ) *x +
1.=4.*y+12.*y*y=8.*y*y*y )

de f by (x , y ) :
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re turn ((8 . =48 .*y+48.*y*y ) *x*x*x+
(=12.+72.*y=72.*y*y ) *x*x+
(4.=24.*y+48.*y*y=48.*y*y*y+24.*y**4) *x =

12 .* y*y+24.*y*y*y=12.*y**4)

This benchmark is implemented in Aspect [44] and in stone 1 and many more.
We have ∫ 1

0

∫ 1

0

u2dxdy =

∫ 1

0

∫ 1

0

(x2(1− x)2(2y − 6y2 + 4y3))2dxdy =
1

33075∫ 1

0

∫ 1

0

v2dxdy =

∫ 1

0

∫ 1

0

(−y2(1− y)2(2x− 6x2 + 4x3))2dxdy =
1

33075

so the root mean square velocity is

vrms =

√
1

LxLy

∫ 1

0

∫ 1

0

(u2 + v2)dxdy ≃ 0.00777615791

We can also look at depth averages. The vertical depth average of the horizontal component of
the velocity is given by

⟨u⟩(y) =
1

Lx

∫ Lx

0

u(x, y) dx

=

∫ Lx

0

x2(1− x)22y(1− 3y + 2y2) dx

=

(∫ 1

0

x2(1− x)2 dx
)

2y(1− 3y + 2y2)

=
1

30
2y(1− 3y + 2y2) (12.14)

Likewise, the vertical depth average of the vertical component of the velocity is given by

⟨v⟩(y) =
1

Lx

∫ Lx

0

v(x, y) dx

= −
∫ 1

0

y2(1− y)22x(1− 3x+ 2x2) dx

= −y2(1− y)2
(∫ 1

0

2x(1− 3x+ 2x2) dx

)
= 0 (12.15)

Unfortunately we have seen in Eq.(12.13) that the velocity magnitude is a rather complex function
and we won’t be able to compute a depth average analytically.

12.1.3 Manufactured solution in Dohrmann and Bochev [336] (2004)

mms dobo.tex

Taken from Dohrmann & Bochev (2004,2006) [336, 101]. This benchmark is also used in Worthen
et al. [1369] and Lamichhane et al. [741]. It is for a unit square with ν = η/ρ = 1 and the smooth
exact solution is

u(x, y) = x+ x2 − 2xy + x3 − 3xy2 + x2y (12.16)

v(x, y) = −y − 2xy + y2 − 3x2y + y3 − xy2 (12.17)

p(x, y) = xy + x+ y + x3y2 − 4/3 (12.18)
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Note that the pressure field is such that
∫
Ω
p dV = 0. The gradient components of the velocity and

pressure fields are given by:

∂u

∂x
= 3x2 + 2x(y + 1)− 3y2 − 2y + 1

∂u

∂y
= x(x− 6y − 2)

∂v

∂x
= −y(6x+ y + 2)

∂v

∂y
= −3x2 − 2x(y + 1) + 3y2 + 2y − 1

∂p

∂x
= 3x2y2 + y + 1

∂p

∂y
= 2x3y + x+ 1

so that the strain rate tensor components are

ε̇xx = 3x2 + 2x(y + 1)− 3y2 − 2y + 1 (12.19)

ε̇yy = −3x2 − 2x(y + 1) + 3y2 + 2y − 1 (12.20)

ε̇xy =
1

2
[x(x− 6y − 2)− y(6x+ y + 2)] (12.21)

=
1

2
(x2 − y2 − 12xy − 2x− 2y) (12.22)

We have

∂ε̇xx
∂x

= 2(3x+ y + 1) (12.23)

∂ε̇xy
∂y

= −6x− y − 1 (12.24)

∂ε̇xy
∂x

= −6y + x− 1 (12.25)

∂ε̇yy
∂y

= 2(3y − x+ 1) (12.26)

so that the corresponding body force is given by:

bx =
∂p

∂x
− 2

∂ε̇xx
∂x
− 2

∂ε̇xy
∂y

= 3x2y2 + y + 1− 4(3x+ y + 1)− 2(−6x− y − 1)

= 3x2y2 − y − 1 (12.27)

by =
∂p

∂y
− 2

∂ε̇xy
∂x
− 2

∂ε̇yy
∂y

= 2x3y + x+ 1− 2(−6y + x− 1)− 4(3y − x+ 1)

= 2x3y + 3x− 1 (12.28)

Finally we have∫ 1

0

∫ 1

0

u2dxdy =

∫ 1

0

∫ 1

0

(x+ x2 − 2xy + x3 − 3xy2 + x2y)2dxdy =
401

504∫ 1

0

∫ 1

0

v2dxdy =

∫ 1

0

∫ 1

0

(−y − 2xy + y2 − 3x2y + y3 − xy2)2dxdy =
5911

2520
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so the root mean square velocity is

vrms =

√
1

LxLy

∫ 1

0

∫ 1

0

(u2 + v2)dxdy =

√
401 · 5 + 5911

2520
≃ 1.77236278...

12.1.4 Analytical benchmark III - ”DB3D”

This benchmark begins by postulating a polynomial solution to the 3D Stokes equation [336]:

ν⃗ =

 x+ x2 + xy + x3y
y + xy + y2 + x2y2

−2z − 3xz − 3yz − 5x2yz

 (12.29)

and
p = xyz + x3y3z − 5/32 (12.30)

While it is then trivial to verify that this velocity field is divergence-free (see here under), the
corresponding body force of the Stokes equation can be computed by inserting this solution into
the momentum equation with a given viscosity η(x, y, z) (constant or position/velocity/strain rate
dependent). The domain is a unit cube and velocity boundary conditions simply use Eq. (12.29).
Note that the pressure fulfils ∫

Ω

p(x, y, z)dV = 0.

Following [189], the viscosity is given by the smoothly varying function

η(x, y, z) = exp(1− β(x(1− x) + y(1− y) + z(1− z))) (12.31)

Choosing β = 0 yields a constant velocity η = e1 (and greatly simplifies the right-hand side). One
can easily show that the ratio of viscosities η⋆ in the system follows η⋆ = exp(−3β/4) so that choosing
β = 10 yields η⋆ ≃ 1808 and β = 20 yields η⋆ ≃ 3.269× 106.

The exact form of the rhs is carried out in Stone ??.
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Let us now compute the root mean square velocity:∫
Ω

u2dxdydz =

∫ +1

0

∫ +1

0

∫ +1

0

(x+ x2 + xy + x3y)2dxdydz = 2867/1260 (12.32)∫
Ω

v2dxdydz =

∫ +1

0

∫ +1

0

∫ +1

0

(y + xy + y2 + x2y2)2dxdydz = 3947/1800 (12.33)∫
Ω

w2dxdydz =

∫ +1

0

∫ +1

0

∫ +1

0

(−2z − 3xz − 3yz − 5x2yz)2dxdydz = 463/36 (12.34)

then
νrms =

√
2867/1260 + 3947/1800 + 463/36 ≃ 4.1628459

12.1.5 Analytical benchmark IV - ”Bercovier & Engelman”

From [79]. The two-dimensional domain is a unit square. The body forces are:

fx = 128[x2(x− 1)212(2y − 1) + 2(y − 1)(2y − 1)y(12x2 − 12x+ 2)]

fy = 128[y2(y − 1)212(2x− 1) + 2(x− 1)(2x− 1)y(12y2 − 12y + 2)]

(12.35)

The solution is

u = −256x2(x− 1)2y(y − 1)(2y − 1)

v = 256y2(y − 1)2x(x− 1)(2x− 1)

p = 0 (12.36)

du/dx = 512(1− 2x)(−1 + x)x(−1 + y)y(−1 + 2y) (12.37)

du/dy = −256(−1 + x)2x2(1− 6y + 6y2) (12.38)

dv/dx = 256y2(y − 1)2x(x− 1)(2x− 1) (12.39)

dv/dy = −512(−1 + x)x(1− 2x)(−1 + y)y(−1 + 2y) (12.40)

(12.41)

and we can easily verify that ∇⃗ · ν⃗ = du/dx+ dv/dy = 0.
CHECK RHS !
Another choice with a non-zero pressure:

fx = 128[x2(x− 1)212(2y − 1) + 2(y − 1)(2y − 1)y(12x2 − 12x+ 2)] + y − 1/2

fy = 128[y2(y − 1)212(2x− 1) + 2(x− 1)(2x− 1)y(12y2 − 12y + 2)] + x− 1/2

(12.42)

The solution is

u = −256x2(x− 1)2y(y − 1)(2y − 1)

v = 256y2(y − 1)2x(x− 1)(2x− 1)

p = (x− 1/2)(y − 1/2) (12.43)
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12.1.6 Analytical benchmark VI - ”Ilinca & Pelletier”

This is taken from [620].
Let us consider the Poiseuille flow of a Newtonian fluid. The channel has isothermal flat walls

located at y = ±h. The velocity distribution is parabolic:

u = u0

(
1− y2

h2

)
v = 0

where u0 is the maximum velocity. The (steady state) temperature field is the solution of the
advection-diffusion equation:

ρCpv⃗ · ∇⃗T = k∆T + Φ

where Φ is the dissipation function given by

Φ = η

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂v

∂x
+
∂u

∂y

)2
]
= η

(
∂u

∂y

)2

= 4η
u20y

2

h4

We logically assume that T = T (y) so that ∂T/∂x = 0 and v⃗ · ∇⃗T = 0. We then have to solve:

k
∂2T

∂y2
+ 4η

u20y
2

h4
= 0

We can integrate twice and use the boundary conditions T (y = ±h) = T0 to arrive at:

T (y) = T0 +
1

3

ηu20
k

[
1−

(y
h

)4]
with a maximum temperature

TM = T (y = 0) = T0 +
1

3

ηu20
k

12.1.7 Analytical benchmark VII - ”grooves”

mms grooves.tex

This benchmark was designed by Dave May. The velocity and pressure fields are given by

u(x, y) = x3y + x2 + xy + x

v(x, y) = −3

2
x2y2 − 2xy − 1

2
y2 − y

p(x, y) = x2y2 + xy + 5 + p0 (12.44)

where p0 is a constant to be determined based on the type of pressure normalisation. The viscosity
is chosen to be

η(x, y) = − sin(p) + 1 + ϵ = − sin(x2y2 + xy + 5) + 1 + ϵ (12.45)

where ϵ actually controls the viscosity contrast. Note that inserting the polynomial expression of the
pressure inside the viscosity expression makes the problem linear. We have

ε̇xx =
∂u

∂x
= 3x2y + 2x+ y + 1

ε̇yy =
∂v

∂y
= −3x2y − 2x− y − 1

ε̇xy =
1

2

(
∂u

∂y
+
∂v

∂x

)
=

1

2

(
x3 + x− 3xy2 − 2y

)
(12.46)
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and we can verify that the velocity field is incompressible since ∇⃗ · ν⃗ = ε̇xx + ε̇yy = 0. The pressure
gradient is given by

∂p

∂x
= 2xy2 + y

∂p

∂y
= 2x2y + x

The right hand side term of the Stokes equation is such that

−∂p
∂x

+
∂sxx
∂x

+
∂syx
∂y

+ fx = 0

−∂p
∂y

+
∂sxy
∂x

+
∂syy
∂y

+ fy = 0 (12.47)

with

∂sxx
∂x

=
∂(2ηε̇xx)

∂x
= 2η

∂ε̇xx
∂x

+ 2
∂η

∂x
ε̇xx

∂szx
∂z

=
∂(2ηε̇zx)

∂z
= 2η

∂ε̇zx
∂z

+ 2
∂η

∂z
ε̇zx

∂sxz
∂x

=
∂(2ηε̇xz)

∂x
= 2η

∂ε̇xz
∂x

+ 2
∂η

∂x
ε̇xz

∂szz
∂z

=
∂(2ηε̇zz)

∂z
= 2η

∂ε̇zz
∂z

+ 2
∂η

∂z
ε̇zz

∂η

∂x
= −z(2xz + 1) cos(x2z2 + xz + 5)

∂η

∂z
= −x(2xz + 1) cos(x2z2 + xz + 5)

∂ε̇xx
∂x

= 6xz + 2

∂ε̇zx
∂z

= −3xz − 1

∂ε̇xz
∂x

=
1

2
(3x2 + 1− 3z2)

∂ε̇zz
∂z

= −3x2 − 1

Velocity boundary conditions are prescribed on all four boundaries so that the pressure is known
up to a constant (the pressure solution has a nullspace), and the p0 constant can be determined by
requiring that∫ L

0

∫ L

0

p(x, y) dxdy =

∫ L

0

∫ L

0

(x2y2+xy+5)dxdy+

∫ L

0

∫ L

0

p0 dxdy =

∫ L

0

∫ L

0

(x2y2+xy+5)dxdy+p0L
2 = 0

where L is the size of the square domain. Then

p0 = −
1

L2

∫ L

0

∫ L

0

(x2y2 + xy + 5)dxdy = −L
4

9
− L2

4
− 5

As seen in the following figure, the value of ϵ controls the viscosity field amplitude. This is simply
explained by the fact that when the sin term of the viscosity takes value 1, the viscosity is then equal
to ϵ.
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Domain size 2x2 with ϵ = 0.1, 0.01, 0.001

Another interesting aspect of this benchmark is the fact that increasing the domain size adds
complexity to it as it increases the number of low viscosity zones and the spacing between them also
decreases:

Three different domain sizes (1x1, 2x2, 3x3) with ϵ = 0.001.

Finally, because the analytical expression for both components of the velocity is a polynomial,
we can also compute the root mean square velocity exactly. For instance, for a 2x2 domain:

and we end up with (for L = 2)

vrms =

√
1

L2

861752

1575
=

√
215438

1575
≃ 11.6955560683

I have added this benchmark to Aspect . The velocity and pressure errors (in the L2 norm)
are measured for L = 1, 2, 3, levels 3 to 9 (resolutions 8 × 8 to 512 × 512) and ϵ = 10−1, 10−2, 10−3.
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The figure below shows the velocity and pressure error convergence as a function of the mesh size
for ϵ = 0.1 (results are identical for the other two ϵ values). The expected convergence rates (cubic
convergence for velocity and quadratic for pressure) are recovered for the 1 × 1 domain at all reso-
lutions. These rates are recovered for the 2 × 2 domain for resolutions above level 6. We see that
the multitude of low viscosity bands in the upper right corner of the 3 × 3 domain will require a
refinement level superior to 9 to recover the optimal convergence rates.

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

 100

 0.01  0.1

|e
| 2

h

h3

h2

v, 1x1
p, 1x1
v, 2x2
p, 2x2
v, 3x3
p, 3x3

Velocity and pressure error convergence as a function of the mesh size h for 3 domain sizes with ϵ = 0.1.

This benchmark is implemented and used in stone 112.

12.1.8 Analytical benchmark VIII - ”Kovasznay”

This flow was published by L.I.G. Kovasznay in 1948 [726]. This paper presents an exact two-
dimensional solution of the Navier-Stokes equations with a periodicity in the vertical direction, gives
an analytical solution to the steady-state Navier-Stokes equations that is similar which is a flow-field
behind a periodic array of cylinders.

u(x, y) = 1− exp(λx) cos(2πy) (12.48)

v(x, y) =
λ

2π
exp(λx) sin(2πy) (12.49)

p(x, y) =
1

2
(1− exp(2λx)) (12.50)

λ =
Re

2
−
√
Re2

4
+ 4π2 (12.51)

Following step-55 of deal.II 1 we have to ’cheat’ here since we are not solving the non-linear Navier-
Stokes equations, but the linear Stokes system without convective term. Therefore, to recreate the
exact same solution we move the convective term into the right-hand side.

The analytical solution is prescribed left and right, while free/no (??) slip is prescribed at top
and bottom.

Velocity and pressure solution as implemented in step-55:

const double p i2 = pi * pi ;

u = =exp (x*(= s q r t ( 25 . 0 + 4* pi2 ) + 5 . 0 ) ) * cos (2*y* pi ) + 1

v = (1 . 0L/2 .0L)*(= s q r t ( 25 . 0 + 4* pi2 ) + 5 . 0 ) *
exp (x*(= s q r t ( 25 . 0 + 4* pi2 ) + 5 . 0 ) ) * s i n (2*y* pi ) / p i

p = =1.0L/2 .0L*exp (x*(=2* s q r t ( 25 . 0 + 4* pi2 ) + 10 . 0 ) ) = 2.0*(=6538034.74494422
+ 0.0134758939981709* exp (4* s q r t ( 25 . 0 + 4* pi2 ) ) ) /(=80.0* exp (3* s q r t ( 25 . 0 + 4* pi2 ) )

1https://www.dealii.org/current/doxygen/deal.II/step_55.html
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+ 16.0* s q r t ( 25 . 0 + 4* pi2 ) *exp (3* s q r t ( 25 . 0 + 4* pi2 ) ) )
= 1634508.68623606* exp (=3.0* s q r t ( 25 . 0 + 4* pi2 ) ) /(=10.0 + 2.0* s q r t ( 25 . 0 + 4* pi2 ) )
+ (=0.00673794699908547* exp ( sq r t ( 25 . 0 + 4* pi2 ) )
+ 3269017.37247211* exp(=3* s q r t ( 25 . 0 + 4* pi2 ) ) ) /(=8* s q r t ( 25 . 0 + 4* pi2 ) + 40 . 0 )
+ 0.00336897349954273* exp (1 . 0* s q r t ( 25 . 0 + 4* pi2 ) ) /(=10.0 + 2.0* s q r t ( 25 . 0 + 4* pi2 ) )

while the rhs of the PDE is given by

const double p i2 = pi * pi ;

va lue s [ 0 ] = =1.0L / 2 .0L * (=2 * s q r t ( 25 . 0 + 4 * pi2 ) + 10 . 0 ) *

exp (x*(=2* s q r t ( 25 . 0 + 4 * pi2 ) + 10 . 0 ) ) =

0 .4 * pi2 *exp (x * (= s q r t ( 25 . 0 + 4 * pi2 ) + 5 . 0 ) ) * cos (2 * y * pi ) +
0 .1 *pow(= s q r t ( 25 . 0 + 4 * pi2 ) + 5 . 0 , 2) *

exp (x*(= s q r t ( 25 . 0 + 4 * pi2 ) + 5 . 0 ) ) * cos (2 * y * pi )

va lue s [ 1 ] = 0 .2 * pi*(= s q r t ( 25 . 0 + 4 * pi2 ) + 5 . 0 ) *

exp (x*(= s q r t ( 25 . 0 + 4 * pi2 ) + 5 . 0 ) ) * s i n (2 * y * pi ) =

0 .05 *pow(= s q r t ( 25 . 0 + 4 * pi2 ) + 5 . 0 , 3) *

exp (x*(= s q r t ( 25 . 0 + 4 * pi2 ) + 5 . 0 ) ) * s i n (2 * y * pi ) / p i

va lue s [ 2 ] = 0 ;

Left: solution from Step-55. Right: Solution obtained with NekTar++2

This benchmark is carried out in many CFD papers: [269, 118, 936], see also Section 7.4.3 of
Hesthaven & Warburton [568].
Find analytical expression for pressure. Compute expression for rhs. Make stone

12.1.9 Analytical benchmark IX - ”VJ2”

It is presented in [655] and meant to be a peculiar case where the velocity solution is exactly zero. The
viscosity is 1, the domain is a unit square, no-slip boundary conditions are prescribed everywhere.
The buoyancy force is given by b⃗ = (0, Ra(1 − y + 3y2)) where Ra > 0 is a parameter. The flow is
incompressible and the analytical pressure solution is given by p = Ra(y3 − y2/2 + y − 7/12).

12.1.10 Manufactured solution in John, Linke, Merdon, Neilan, and
Rebholz [655]

mms jolm17.tex

This benchmark comes from John et al. [655]. The domain is once again the unit square. The
velocity field has the form of a large vortex. Note that velocity field is actually the same velocity
field as in the Donea & Huerta benchmark above (albeit multiplied by a factor 100).

2http://doc.nektar.info/userguide/4.3.4/user-guidese45.html
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u(x, y) = 200x2(1− x)2y(1− y)(1− 2y) (12.52)

v(x, y) = −200x(1− x)(1− 2x)y2(1− y)2 (12.53)

p(x, y) = 10
[
(x− 1/2)3y2 + (1− x)3(y − 1/2)3

]
(12.54)
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Taken from John, Linke, Merdon, Neilan, and Rebholz [655] (2017).

ε̇xx =
∂u

∂x
= −400(1− x)x(2x− 1)(y − 1)y(2y − 1) (12.55)

∂u

∂y
= 200(1− x)2x2(6y2 − 6y + 1) (12.56)

∂v

∂x
= −200(6x2 − 6x+ 1)(1− y)2y2 (12.57)

ε̇yy =
∂v

∂y
= 400(x− 1)x(2x− 1)(1− y)y(2y − 1) (12.58)

so that

ε̇xy =
1

2

[
200(1− x)2x2(6y2 − 6y + 1)− 200(6x2 − 6x+ 1)(1− y)2y2

]
= 100(1− x)2x2(6y2 − 6y + 1)− 100(6x2 − 6x+ 1)(1− y)2y2 (12.59)

Also

∂ε̇xx
∂x

= 400(6x2 − 6x+ 1)y(2y2 − 3y + 1)

∂ε̇xy
∂x

= 200(−2x2(1− x)(6y2 − 6y + 1) + 2x(1− x)2(6y2 − 6y + 1)− 6(2x− 1)(1− y)2y2)

= 100(−2x2(1− x)(6y2 − 6y + 1) + 2x(1− x)2(6y2 − 6y + 1)− 6(2x− 1)(1− y)2y2)
∂ε̇xy
∂y

= 400(6x2 − 6x+ 1)(1− y)y2 + 200(1− x)2x2(12y − 6)− 400(6x2 − 6x+ 1)(1− y)2y

∂ε̇yy
∂y

= −400x(2x2 − 3x+ 1)(6y2 − 6y + 1) (12.60)

∂p

∂x
= 30(x− 1/2)2y2 − 30(1− x)2(y − 1/2)3 (12.61)

∂p

∂y
= 20(x− 1/2)3y + 30(1− x)3(y − 1/2)2 (12.62)
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From ∇⃗ · σ + b⃗ = 0⃗ we can obtain the rhs as follows:

b⃗ = −∇⃗ · σ
= ∇⃗p− ∇⃗ · s
= ∇⃗p− ∇⃗ · (2ηε̇) (12.63)

Assuming η = 1 we arrive at:

bx =
∂p

∂x
− 2

∂ε̇xx
∂x
− 2

∂ε̇xy
∂y

(12.64)

by =
∂p

∂y
− 2

∂ε̇xy
∂x
− 2

∂ε̇yy
∂y

(12.65)

All the necessary functions to do this benchmark are in mms/jolm17.py:

# func t i on s f o r the John e t a l (2017) manufactured s o l u t i o n

de f u th (x , y ) :
r e turn 200*x**2*(1=x ) **2*y*(1=y ) *(1=2*y )

de f v th (x , y ) :
r e turn =200*x*(1=x ) *(1=2*x ) *y**2*(1=y ) **2

de f p th (x , y ) :
r e turn 10*( (x=1 ./2 . ) **3*y**2+(1=x ) **3*(y=1 ./2 . ) **3 )

de f dpdx th (x , y ) :
r e turn 30*(x=1 ./2 . ) **2*y**2=30*(1=x ) **2*(y=1 ./2 . ) **3

de f dpdy th (x , y ) :
r e turn 20*(x=1 ./2 . ) **3*y + 30*(1=x ) **3*(y=1 ./2 . ) **2

de f exx th (x , y ) :
r e turn =400*(1=x ) *x*(2*x=1)*(y=1)*y*(2*y=1)

de f exy th (x , y ) :
r e turn 100*(1=x ) **2*x**2*(6*y**2=6*y+1)=100*(6*x**2=6*x+1)*(1=y ) **2*y**2

de f eyy th (x , y ) :
r e turn 400*(x=1)*x*(2*x=1)*(1=y ) *y*(2*y=1)

de f dexxdx (x , y ) :
r e turn 400*(6*x**2=6*x+1)*y*(2*y**2=3*y+1)

de f dexydx (x , y ) :
r e turn 100*(=2*x**2*(1=x ) *(6*y**2=6*y+1) + 2*x*(1=x ) **2*(6*y**2=6*y+1) =6*(2*x=1)
*(1=y ) **2*y**2)

de f dexydy (x , y ) :
r e turn 200*(6*x**2=6*x+1)*(1=y ) *y**2 + 100*(1=x ) **2*x**2*(12*y=6) =200*(6*x**2=6*
x+1)*(1=y ) **2*y

de f deyydy (x , y ) :
r e turn =400*x*(2*x**2=3*x+1)*(6*y**2=6*y+1)

de f bx (x , y ) :
r e turn dpdx th (x , y )=2*dexxdx (x , y )=2*dexydy (x , y )

de f by (x , y ) :
r e turn dpdy th (x , y )=2*dexydx (x , y )=2*deyydy (x , y )

813



12.1.11 Manufactured solution in Lamichhane [741] (2017)

Taken from Lamichhane (2017) [741].

u(x, y) = −2x2y(2y − 1)(x− 1)2(y − 1) = a(x)b(y) (12.66)

v(x, y) = 2xy2(2x− 1)(x− 1)(y − 1)2 = c(x)d(y) (12.67)

p(x, y) = x(1− x)(1− 2y) (12.68)

with

a(x) = −2x2(x− 1)2 (12.69)

b(y) = y(2y − 1)(y − 1) (12.70)

c(x) = x(2x− 1)(x− 1) (12.71)

d(y) = 2y2(y − 1)2 (12.72)

and

a′(x) = −4x(2x2 − 3x+ 1) (12.73)

a′′(x) = −4(6x2 − 6x+ 1) (12.74)

b′(y) = 6y2 − 6y + 1 (12.75)

b′′(y) = 12y − 6 (12.76)

c′(x) = 6x2 − 6x+ 1 (12.77)

c′′(x) = 12x− 6 (12.78)

d′(y) = 4y(2y2 − 3y + 1) (12.79)

d′′(y) = 4(6y2 − 6y + 1) (12.80)

It then follows:

Lxx =
∂u

∂x
= a′(x)b(y) (12.81)

Lxy =
∂v

∂x
= c′(x)d(y) (12.82)

Lyx =
∂u

∂y
= a(x)b′(y) (12.83)

Lyy =
∂v

∂y
= c(x)d′(y) (12.84)
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and

ε̇xx = Lxx = a′(x)b(y) (12.85)

ε̇yy = Lyy = c(x)d′(y) (12.86)

ε̇xy =
1

2
(Lxy + Lyx) (12.87)

=
1

2
(a(x)b′(y) + c′(x)d(y)) (12.88)

We easily verify that ε̇xx + ε̇yy = 0.

∂p

∂x
= (1− 2x)(1− 2y) (12.89)

∂p

∂y
= −2x(1− x) (12.90)

We will also need:

∂ε̇xx
∂x

= a′′(x)b(y) (12.91)

∂ε̇xy
∂y

=
1

2
(a(x)b′′(y) + c′(x)d′(y)) (12.92)

∂ε̇xy
∂x

=
1

2
(a′(x)b′(y) + c′′(x)d(y)) (12.93)

∂ε̇yy
∂x

= c(x)d′′(y) (12.94)

Assuming η = 1 we arrive at:

bx =
∂p

∂x
− 2

∂ε̇xx
∂x
− 2

∂ε̇xy
∂y

(12.95)

= (1− 2x)(1− 2y)− 2a′′(x)b(y)− (a(x)b′′(y) + c′(x)d′(y)) (12.96)

by =
∂p

∂y
− 2

∂ε̇xy
∂x
− 2

∂ε̇yy
∂y

(12.97)

= −2x(1− x)− (a′(x)b′(y) + c′′(x)d(y))− 2c(x)d′′(y) (12.98)

We have (thank you WolframAlpha3):∫ 1

0

∫ 1

0

u2dxdy =

∫ 1

0

∫ 1

0

(−2x2y(2y − 1)(x− 1)2(y − 1))2dxdy =
1

33075∫ 1

0

∫ 1

0

v2dxdy =

∫ 1

0

∫ 1

0

(2xy2(2x− 1)(x− 1)(y − 1)2)2dxdy =
1

33075

so that

vrms =

√
1

LxLy

2

33075
≃ 0.00777615791

Finally we can verify that the pressure has zero average:∫ 1

0

∫ 1

0

p(x, y)dxdy =

∫ 1

0

∫ 1

0

x(1− x)(1− 2y)dxdy =

∫ 1

0

x(1− x)dx
∫ 1

0

(1− 2y)dy = 0

3https://www.wolframalpha.com/
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12.1.12 Manufactured solution in Mu and Ye [911]

We first consider the Stokes equations with homogeneous boundary condition defined on the unit
square. The exact solutions are given by

u(x, y) = 2π sin2(πx) cos(πy) sin(πy)

v(x, y) = −2π sin(πx) cos(πx) sin2(πy)

p(x, y) = cos(πx) cos(πy) (12.99)

Then, since cos′ = − sin:

∂xp = −π sin(πx) cos(πy)
∂yp = −π cos(πx) sin(πy)

and

∂xu = 4π2 sin(πx) cos(πx) cos(πy) sin(πy)

∂yu = 2π2 sin2(πx)[cos2(πy)− sin2(πy)]

∂xv = −2π2[cos2(πx)− sin2(πx)] sin2(πy)

∂yv = −4π2 sin(πx) cos(πx) sin(πy) cos(πy)

with as expected

∂xu+ ∂yv = 4π2 sin(πx) cos(πx) cos(πy) sin(πy)− 4π2 sin(πx) cos(πx) sin(πy) cos(πy) = 0

The strain rate components are then

ε̇xx = ∂xu

ε̇yy = ∂yv

ε̇xy =
1

2
(∂xv + ∂yu)

=
1

2

(
−2π2[cos2(πx)− sin2(πx)] sin2(πy) + 2π2 sin2(πx)[cos2(πy)− sin2(πy)]

)
= π2[sin2(πx)− cos2(πx)] sin2(πy) + π2 sin2(πx)[cos2(πy)− sin2(πy)]

= π2
(
sin2(πx) cos2(πy)− cos2(πx) sin2(πy)

)
We will also need

∂xε̇xx = 4π3[cos2(πx)− sin2(πx)] cos(πy) sin(πy)

∂xε̇xy = π3
(
2 cos(πx) sin(πx) cos2(πy) + 2 sin(πx) cos(πx) sin2(πy)

)
= 2π3 sin(πx) cos(πx)

∂yε̇xy = π3
(
−2 sin2(πx) sin(πy) cos(πy)− 2 cos2(πx) sin(πy) cos(πy)

)
= −2π3 sin(πy) cos(πy)

∂yε̇yy = −4π3 sin(πx) cos(πx)[cos2(πy)− sin2(πy)]

Finally we need to compute the root mean square velocity (integrals were obtained with Wolframal-
pha): ∫∫

u2dxdy = 4π2

∫ 1

0

sin4(πx)dx︸ ︷︷ ︸
3/8

·
∫ 1

0

cos2(πy) sin2(πy)dy︸ ︷︷ ︸
1/8
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∫∫
v2dxdy = 4π2

∫ 1

0

sin2(πx) cos2(πx)dx︸ ︷︷ ︸
1/8

·
∫ 1

0

sin4(πy)dy︸ ︷︷ ︸
3/8

so that

νrms =

√
1

LxLy

∫∫
(u2 + v2)dxdy =

√
3

8

1

8
+

1

8

3

8
=

√
3

32
≃ 0.05412658773

Python script:

12.1.13 Manufactured solution in Boffi, Cavallini, Gardini, and Gastaldi
[110] (2012)

This manufactured solution originates in Boffi, Cavallini, Gardini, and Gastaldi [110] (2012). The
velocity field turns out to be identical to the Donea and Huerta [341] manufactured solution. It is
based on the stream function

Ψ(x, y) = x2(x− 1)2y2(y − 1)2 = f(x)g(y)

defined on the unit square. We have

f ′(x) = 2x(x− 1)2 + 2x2(x− 1)

= 2(x− 1)[x(x− 1) + x2]

= 2(x− 1)(2x2 − x)
= 2x(x− 1)(2x− 1)

f ′′(x) = 2[(x− 1)(2x− 1) + x(2x− 1) + 2x(x− 1)]

= 2(2x2 − x− 2x+ 1 + 2x2 − x+ 2x2 − 2x)

= 2(6x2 − 6x+ 1)

g′(y) = 2y(y − 1)2 + 2y2(y − 1)

= 2(y − 1)[y(y − 1) + y2]

= 2(y − 1)(2y2 − y)
= 2y(y − 1)(2y − 1)

g′′(y) = 2[(y − 1)(2y − 1) + y(2y − 1) + 2y(y − 1)]

= 2[2y2 − 3y + 1 + 2y2 − y + 2y2 − 2y]

= 2(6y2 − 6y + 1) (12.100)

The manufactured ’smooth pressure’ solution is then

u(x, y) = ∂yψ = f(x)g′(y) = x2(x− 1)22y(y − 1)(2y − 1)

v(x, y) = −∂xψ = −f ′(x)g(y) = −2x(x− 1)(2x− 1)y2(y − 1)2

p(x, y) =
1

2
x2 − 1

6

∂xu(x, y) = f ′(x)g′(y)

∂yu(x, y) = f(x)g′′(y)

∂xv(x, y) = −f ′′(x)g(y)

∂yv(x, y) = −f ′(x)g′(y)
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ε̇xx(x, y) = f ′(x)g′(y)

ε̇yy(x, y) = −f ′(x)g′(y)

ε̇xy(x, y) =
1

2
(f(x)g′′(y)− f ′′(x)g(y))

∂p

∂x
(x, y) = x

∂p

∂y
(x, y) = 0

∂xε̇xx(x, y) = f ′′(x)g′(y)

∂xε̇xy(x, y) =
1

2
(f ′(x)g′′(y)− f ′′′(x)g(y))

∂yε̇xy(x, y) =
1

2
(f(x)g′′′(y)− f ′′(x)g′(y))

∂yε̇yy(x, y) = −f ′(x)g′′(y)

νrms =

√
1

LxLy

∫∫
(u2 + v2)dxdy

=

√
1

LxLy

∫∫
(f 2g′2 + f ′2g2)dxdy

=

√√√√√√√√

∫ 1

0

f 2dx︸ ︷︷ ︸
1/630

∫ 1

0

g′2dy︸ ︷︷ ︸
2/105

+

∫ 1

0

f ′2dx︸ ︷︷ ︸
2/105

∫ 1

0

g2dy︸ ︷︷ ︸
1/630

 dxdy

1/33075 ∗ 2 =
1

105

√
2

3
≃ 0.007776157913597390787927885951... (12.101)

The authors also define a non-smooth pressure case:

p(x, y) =

{
y(1− y) exp(x− 1/2)2 + 1/2 for x ≥ 1/2
y(1− y) exp(x− 1/2)2 − 1/2 for x < 1/2

with

∂p

∂x
(x, y) = 2(x− 1/2)y(1− y) exp(x− 1/2)2

∂p

∂y
(x, y) = (1− 2y) exp(x− 1/2)2

However it is not clear to me how to implement this since only the gradient of the pressure appears
in the equations.
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12.1.14 Manufactured solution in John [650] (book)

This manufactured solution originates in appendix D.1 of John [650] (book).

Taken from [650].

The stream function is given by

Φ(x, y) = 1000x2(1− x)4y3(1− y)2 = 1000f(x)g(y)
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with

f(x) = x2(1− x)4

f ′(x) = 2x(1− x)4 − 4x2(1− x)3

= [2x(1− x)− 4x2](1− x)3

= (2x− 6x2)(1− x)3

= 2x(1− 3x)(1− x)3

f ′′(x) = 2(1− 3x)(1− x)3 − 6x(1− x)3 − 6x(1− 3x)(1− x)2

= 2[(1− 3x)(1− x)− 3x(1− x)− 3x(1− 3x)](1− x)2

= 2[1− 4x+ 3x2 − 3x+ 3x2 − 3x+ 9x2](1− x)2

= 2(1− 10x+ 15x2)(1− x)2

f ′′′(x) = 2[(−10 + 30x)(1− x)2 − 2(1− 10x+ 15x2)(1− x)]
= 2[−10 + 40x− 30x2 − 2 + 20x− 30x2](1− x)
= 2(−12 + 60x− 60x2)(1− x)
= 24(−1 + 5x− 5x2)(1− x)
= 24(−1 + 5x− 5x2 + x− 5x2 + 5x3)

= 24(−1 + 6x− 10x2 + 5x3)

g(y) = y3(1− y)2

g′(y) = 3y2(1− y)2 − 2y3(1− y)
= [3y2(1− y)− 2y3](1− y)
= y2(3− 3y − 2y)(1− y)
= y2(3− 5y)(1− y)

g′′(y) = 2y(3− 5y)(1− y)− 5y2(1− y)− y2(3− 5y)

= 2y(3− 8y + 5y2)− 5y2 + 5y3 − 3y2 + 5y3

= 6y − 16y2 + 10y3 − 8y2 + 10y3

= 2y(3− 12y + 10y2)

g′′′(y) = 6− 48y + 60y2

u(x, y) = ∂yΦ = 1000f(x)g′(y) = 1000x2(1− x)4y2(3− 5y)(1− y) (12.102)

v(x, y) = −∂xΦ = −1000f ′(x)g(y) = −10002x(1− 3x)(1− x)3y3(1− y)2 (12.103)

p(x, y) = π2[xy3 cos(2πx2y)− x2y sin(2πxy)] + 1/8 (12.104)
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∂xu(x, y) = 1000f ′(x)g′(x)

∂yu(x, y) = 1000f(x)g′′(y)

∂xv(x, y) = −1000f ′′(x)g(y)

∂yv(x, y) = −1000f ′(x)g′(y)

ε̇xx(x, y) = 1000f ′g′

ε̇yy(x, y) = −1000f ′g′

ε̇xy(x, y) = 500(fg′′ − f ′′g)

∂xε̇xx(x, y) = 1000f ′′g′

∂xε̇xy(x, y) = 500(f ′g′′ − f ′′′g)

∂yε̇xy(x, y) = 500(fg′′′ − f ′′g′)

∂yε̇yy(x, y) = −1000f ′g′′

Of course we have ε̇xx + ε̇yy = 0.

∂p

∂x
(x, y) = π2[y3 cos(2πx2y)− 4πx2y4 sin(2πx2y)− 2xy sin(2πxy)− 2πx2y2 cos(2πxy)]

∂p

∂y
(x, y) = π2[3xy2 cos(2πx2y)− 2πx3y3 sin(2πx2y)− x2 sin(2πxy)− 2πx3y cos(2πxy)]

νrms =

√
1

LxLy

∫∫
(u2 + v2)dxdy

=

√∫ 1

0

∫ 1

0

u2 dxdy +

∫ 1

0

∫ 1

0

v2 dxdy

= 1000

√∫ 1

0

∫ 1

0

(fg′)2 dxdy +

∫ 1

0

∫ 1

0

(−f ′g)2 dxdy

= 1000

√√√√√√
∫ 1

0

f 2dx︸ ︷︷ ︸
1

6435

∫ 1

0

g′2dy︸ ︷︷ ︸
2

315

+

∫ 1

0

f ′2dx︸ ︷︷ ︸
2

693

∫ 1

0

g2dy︸ ︷︷ ︸
1

2310

= 1000

√
1

5 · 9 · 13 · 11
2

5 · 9 · 7
+

1

9 · 11 · 7
1

5 · 11 · 3 · 7
≃ 1.4953325891041323968540981 (12.105)
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12.1.15 Manufactured solution in John, Kaiser, and Novo [652]

This benchmark is identical to the one presented in Section 12.1.14 but it is not isoviscous. There
are three different viscosity fields:

η1(x, y) = ηmin + (ηmax − ηmin)x2(1− x)y2(1− y)
721

16
(12.106)

η2(x, y) = ηmin + (ηmax − ηmin) exp[−1013(x− 0.5)10 + (y − 0.5)10] (12.107)

η3(x, y) = ηmin + (ηmax − ηmin)
[
1− exp[−1013(x− 0.5)10 + (y − 0.5)10]

]
(12.108)

Taken from John, Kaiser, and Novo [652] (2016).

We have

bx =
∂p

∂x
− 2η

∂ε̇xx
∂x
− 2η

∂ε̇xy
∂y
− 2

∂η

∂x
ε̇xx − 2

∂η

∂y
ε̇xy (12.109)

by =
∂p

∂y
− 2η

∂ε̇xy
∂x
− 2η

∂ε̇yy
∂y
− 2

∂η

∂x
ε̇xy − 2

∂η

∂y
ε̇yy (12.110)

The three first terms on each line have already been obtained so we must focus on the last two:

1

(ηmax − ηmin)
∂η1
∂x

=
721

16
[2x(1− x)− x2]y2(1− y) (12.111)

1

(ηmax − ηmin)
∂η1
∂y

=
721

16
x2(1− x)[2y(1− y)− y2] (12.112)

1

(ηmax − ηmin)
∂η2
∂x

= −1014(x− 0.5)9 exp[−1013(x− 0.5)10 + (y − 0.5)10] (12.113)

1

(ηmax − ηmin)
∂η2
∂y

= −1014(y − 0.5)9 exp[−1013(x− 0.5)10 + (y − 0.5)10] (12.114)

1

(ηmax − ηmin)
∂η3
∂x

= 1014(x− 0.5)9 exp[−1013(x− 0.5)10 + (y − 0.5)10] (12.115)

1

(ηmax − ηmin)
∂η3
∂y

= 1014(y − 0.5)9 exp[−1013(x− 0.5)10 + (y − 0.5)10] (12.116)

with

u(x, y) = 1000x2(1− x)4y2(3− 5y)(1− y) (12.117)

v(x, y) = −10002x(1− 3x)(1− x)3y3(1− y)2 (12.118)

p(x, y) = π2[xy3 cos(2πx2y)− x2y sin(2πxy)] + 1/8 (12.119)

Note that between John’s book and the papers [652] and [653] there seems to be a small difference:
xy2 vs. xy3. Also the papers have -1/8 while it should be +1/8 (thank you Wolfram Alpha).
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12.1.16 Manufactured solution in John [649] (1998) on a disc

Let Ω be the disc with the center (0,0( and the radius 1 which has a crack along the x−axis between
the points (0,0) and (1,0).

ν⃗(x, y) =
3

2

√
r

(
cos

θ

2
− cos

3θ

2
, 3 sin

θ

2
− sin

3θ

2

)

p(x, y) = − 6√
r
cos

θ

2

Viscosity is 1. Note that the solution has a singularity in the origin.

Taken from John [649] (1998).

12.1.17 Annulus with kinematical b.c. - pure rotation

mms annulus.tex

The domain is a hollow cylinder or inner radius Ri and outside radius Ro = 1. Boundary
conditions are prescribed both on the inside and the outside with ν⃗ = (u, v) = (−y, x), or in polar
coordinates ν⃗ = re⃗θ.

The gravity is radial and is set to

gx = −x/r gz = −y/r

where r =
√
x2 + z2, which in polar coordinates is g⃗ = −e⃗r. The viscosity is also set to 1, and the

density is given by
ρ(r) = rn

where n is a positive or nul integer. The pressure is set to zero at the outer boundary.
The gradient operator in polar coordinates writes:

∇⃗ =
∂

∂r
e⃗r +

1

r

∂

∂θ
e⃗θ

and the Laplacian operator:

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
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Note that in our case we need to take the Laplacian of a vector, and unfortunately the Laplacian
of a vector is not the Laplacian of the vector’s coordinates in polar coordinates (unlike cartesian
coordinates). The Laplacian of a vector is given by4

∇2A⃗ = ∇(∇ · A⃗)−∇× (∇× A⃗) =

 ∂2Ar
∂r2

+ 1
r
∂Ar
∂r
− 1

r2
Ar +

1
r2
∂2Ar
∂θ2
− 2

r2
∂Aθ
∂θ

∂2Aθ
∂r2

+ 1
r
∂Aθ
∂r
− 1

r2
Aθ +

1
r2
∂2Aθ
∂θ2

+ 2
r2
∂Ar
∂θ

 =

 ∆Ar

∆Aθ


The Stokes equation writes:

−∇⃗p+ η∆ν⃗+ ρg⃗ = 0⃗

The velocity solution is expected to be ν⃗ = re⃗θ. The Stokes equation in polar coordinates then
writes:

−∂p
∂r

+∆vr + ρ(r)(−1) = 0

−1

r

∂p

∂θ
+∆vθ = 0

Since ∆vθ = 0, then ∂p
∂θ

= 0 and then the pressure is independent of θ, which is what we expect since
the density distribution is radial. We then focus on the first equation, and since vr = 0, we then
obtain:

∂p

∂r
= −ρ(r)

� If ρ(r) = 1, then
∂p

∂r
= −1

yields p(r) = −r + C where C is a constant determined by means of b.c. (p(r = 1) = 0) so
finally

p(r) = 1− r

� If ρ(r) = r, then
∂p

∂r
= −r

so that p(r) = −1
2
r2 + C and likewise

p(r) =
1

2
(1− r2)

In general, by taking ρ(r) = rn with n = 0, 1, ... one arrives to a pressure field given by

p(r) =
1

n+ 1
(1− rn+1)

4https://en.wikipedia.org/wiki/Vector_Laplacian
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This benchmark is of course very simple and the fact that the solution is independent of θ renders
it not so useful. It has succesfully been implemented in Elefant .

12.1.18 Viscous beam under extension

The domain is a Cartesian box of size Lx × Ly. Velocity −u0 is applied on the left boundary and
velocity +u0 is applied on the right boundary. Bottom and top boundaries are left free. If no vertical
velocity is prescribed anywhere there is an obvious nullspace in the solution which is problematic
(numerically of course, but also because the solution is then not unique). One might want to set
v = 0 at y = Ly/2 on each side for example. The solution to this problem (incompressible Stokes
equations) is given by

u(x, y) = 2u0(x/Lx − 1/2) (12.120)

v(x, y) = −2u0Ly/Lx(y/Ly − 1/2) (12.121)

in the absence of gravity. The strain rate tensor is then:

ε̇ =

(
ε̇xx ε̇xy
ε̇xx ε̇yy

)
=

(
2u0/Lx 0

0 −2u0/Lx

)
and we see that the flow is indeed incompressible as the trace of the strain rate tensor is zero.

The momentum equation is
−∇⃗p+ ∇⃗ · (2ηε̇) = ρg⃗

where the viscosity η is constant in space. If gravity is set to zero, we obtain:

−∂p
∂x

= 0 (12.122)

−∂p
∂y

= 0 (12.123)

since the strain rate is constant in space and the divergence operator applied to it returns the zero
tensor. We there fore can conclude that pressure should be constant.

Since the top and bottom boundaries are free, we have σ · n⃗ = 0⃗ on these. The stress tensor is
given by σ = −1 + 2ηε̇ and the normal on the top is n⃗ = (0,+1) so that on the top boundary we
have

−p+ 2ηϵ̇yy = 0

or,
p = 2ηϵ̇yy

Note that using the bottom boundary with n⃗ = (0,−1) yields the same result.
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12.1.19 Channel flow with Herschel-Bulkley rheology

We start from the following formulation for the Herschel-Bulkley rheology:

ηHB =

{
η0 ε̇e ≤ ε̇0
Kε̇n−1

e + τ0
ε̇e

ε̇e ≥ ε̇0

and the limiting viscosity η0 is such that

η0 = Kε̇n−1
0 +

τ0
ε̇0

We consider a two-dimensional channel in the x, y plane. The walls are at y = 0 and y = H with
no-slip boundary conditions. In the absence of gravity, the Stokes equation simplify to

−∂p
∂x

+
∂

∂y
(2ηHB ε̇xy) = 0 and ε̇xy =

1

2

∂u

∂y
(12.124)

where we assume the velocity ν⃗ = (u(y), 0). It then follows that

ε̇e =
√
I2(ε̇) =

√
1

2
ε̇ : ε̇ =

√
1

2
[(ε̇xx)2 + (ε̇yy)2 + (ε̇zz)2] + (ε̇xy)2 + (ε̇xz)2 + (ε̇yz)2 =

√
ε̇2xy =

∣∣∣∣12 ∂u∂y
∣∣∣∣

In the case of a Newtonian fluid, the analytical solution is known and the velocity profile is a parabola
with zero velocity on the walls and maximum velocity in the middle. Although the rheology of the
fluid is non-linear we assume that a similar velocity profile is expected (although not described by a
parabola). We then expect three zones (and we assume that the fluid flows from left to right):

� In the middle, where it is expected that ∂u
∂y

= 0 (at least in one point) because of symmetry.
We also therefore expect ε̇e ≤ ε̇0 in this region so that ηHB = η0. How thick this region is will
be determined later.

Eq. (12.124) must then be solved

∂p

∂x
=

∂

∂y

(
2ηHB

1

2

∂u

∂y

)
= η0

∂2u

∂y2
(12.125)

Let us call Π = ∂p
∂x
< 0, then we must solve:

∂2u

∂y2
=

Π

η0

The solution is then of the form

u(y)|mid =
1

2

Π

η0
y2 + 2ay + b

and

ε̇xy|mid =
1

2

Π

η0
y + a

We will determine a and b later.
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� Near the bottom wall, with ∂u
∂y
> 0 so that ε̇e = +1

2

(
∂u
∂y

)
and ε̇e ≥ ε̇0. We solve Eq. (12.124)

again, this time with the non-linear formulation of the viscosity:

∂p

∂x
=

∂

∂y

(
2ηHB

1

2

∂u

∂y

)
= 2

∂

∂y

[(
Kε̇n−1

e +
τ0
ε̇e

)
1

2

∂u

∂y

]
= 2

∂

∂y

[(
K

∣∣∣∣12 ∂u∂y
∣∣∣∣n−1

+ τ0

∣∣∣∣12 ∂u∂y
∣∣∣∣−1
)

1

2

∂u

∂y

]

= 2
∂

∂y

[
K

(
1

2

∂u

∂y

)n
+ τ0

]
(12.126)

We then must solve:
∂

∂y

[
K

(
1

2

∂u

∂y

)n
+ τ0

]
=

Π

2

K

(
1

2

∂u

∂y

)n
+ τ0 =

Π

2
y + c(

1

2

∂u

∂y

)n
=

1

K
(
Π

2
y + c− τ0)

or,

ε̇xy|bot =
1

2

∂u

∂y
=

(
1

K
(Π2y + c− τ0)

)1/n

so

u(y)|bot = 2
n

n+ 1

K

Π2

(
1

K
(Π2y + c− τ0)

)1+1/n

+ d

where Π2 = Π/2

� Near the top wall, with ∂u
∂y

< 0 so that ε̇e = −1
2

(
∂u
∂y

)
and ε̇e ≥ ε̇0. We solve yet again

Eq. (12.124):

∂p

∂x
=

∂

∂y

(
2ηHB

1

2

∂u

∂y

)
= 2

∂

∂y

[(
Kε̇n−1

e +
τ0
ε̇e

)
1

2

∂u

∂y

]
= 2

∂

∂y

[(
K

∣∣∣∣12 ∂u∂y
∣∣∣∣n−1

+ τ0

∣∣∣∣12 ∂u∂y
∣∣∣∣−1
)

1

2

∂u

∂y

]

= −2 ∂
∂y

[(
K

(
−1

2

∂u

∂y

)n−1

+ τ0

(
−1

2

∂u

∂y

)−1
)(
−1

2

∂u

∂y

)]

= −2 ∂
∂y

[
K

(
−1

2

∂u

∂y

)n
+ τ0

]
(12.127)

We then must solve:

− ∂

∂y

[
K

(
−1

2

∂u

∂y

)n
+ τ0

]
=

Π

2

K

(
−1

2

∂u

∂y

)n
+ τ0 = −

Π

2
y + e
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(
−1

2

∂u

∂y

)n
=

1

K
(−Π

2
y + e− τ0)

which yields

ε̇xy|top = −
(

1

K
(−Π2y + e− τ0)

)1/n

u(y)|top = 2
n

n+ 1

K

Π2

(
1

K
(−Π2y + e− τ0)

)1+1/n

+ f
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We have 6 integration constants a, b, c, d, e, f and 6 additional constraints from continuity or
boundary conditions:

(1) u(0) = 0 boundary condition (12.128)

(2) u(H) = 0 boundary condition (12.129)

(3) u(y1) must be continuous (12.130)

(4) u(y2) must be continuous (12.131)

(5) ε̇xy(y1) must be continuous (12.132)

(6) ε̇xy(y2) must be continuous (12.133)

Using symmetry to compute a Because of symmetry, we expect y1 = H/2−δ and y2 = H/2+δ
with δ ̸= 0 (i.e. y1 ̸= y2) and we expect u(y1) = u(y2) so that

u(y1)|mid =
1

2

Π

η0
y21 + 2ay1 + b =

1

2

Π

η0
y22 + 2ay2 + b = u(y2)|mid

or,
1

2

Π

η0
(y21 − y22) + 2a(y1 − y2) = 0

1

2

Π

η0
(y1 − y2)(y1 + y2) + 2a(y1 − y2) = 0

1

2

Π

η0
(y1 + y2) + 2a = 0

1

2

Π

η0
H + 2a = 0

and finally we obtain a:

a = −1

4

Π

η0
H

Note that we could have obtained the same thing by enforcing that the strain rate at y1 and y2 are
the opposite of one another. It then follows:

u(y)|mid =
1

2

Π

η0
y2 − 2

1

4

Π

η0
Hy + b =

1

2

Π

η0
(y2 − yH) + b =

Π2

η0
(y2 − yH) + b

and

ε̇xy|mid =
1

2

Π

η0
y − 1

4

Π

η0
H =

1

2

Π

η0
(y − H

2
) =

Π2

η0
(y − H

2
)

Because of the parabola-like flow profile, we expect the strain rate to be zero in the middle y = H/2,
and positive for z1 < y < H/2 and negative for H/2 < y < z2, which is indeed what we recover
(Π < 0).

Using bottom boundary condition to obtain d

u(y = 0)|bot = 2
n

n+ 1

K

Π2

(
1

K
(c− τ0)

)1+1/n

+ d = 0

so

d = −2 n

n+ 1

K

Π2

(
1

K
(c− τ0)

)1+1/n

and then

u(y)|bot = 2
n

n+ 1

K

Π2

[(
1

K
(Πy + c− τ0)

)1+1/n

−
(

1

K
(c− τ0)

)1+1/n
]
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Using top boundary condition to obtain f

u(y = H)|top = 2
n

n+ 1

K

Π2

(
1

K
(−Π2H + e− τ0)

)1+1/n

+ f = 0

so

f = −2 n

n+ 1

K

Π2

(
1

K
(−Π2H + e− τ0)

)1+1/n

and then

u(y)|top = 2
n

n+ 1

K

Π2

[(
1

K
(−Π2y + e− τ0)

)1+1/n

−
(

1

K
(−Π2H + e− τ0)

)1+1/n
]

computing δ The coordinates of the transitions y1 and y2 are the location where the strain rate
ε̇e reaches ε̇0. In other words:

ε̇e|mid(y = y1) = ε̇xy|mid(y = y1) =
1

2

Π

η0

(
y1 −

H

2

)
=

1

2

Π

η0

(
H

2
− δ − H

2

)
= −1

2

Π

η0
δ = ε̇0

or,

δ = −2ε̇0η0
Π

Since Π < 0 it adds up and δ > 0. We can also write

δ =
2ε̇0η0
|Π|

and we will use throughout what follows:

ε̇0 = −
1

2

Π

η0
δ

Using strain rate continuity at y1 to compute c(
1

K
(Π2y1 + c− τ0)

)1/n

=
1

2

Π

η0

(
y1 −

H

2

)
= −1

2

Π

η0
δ

Π2y1 + c− τ0 = K

(
−1

2

Π

η0
δ

)n
c = K

(
−1

2

Π

η0
δ

)n
+ τ0 − Π2y1

c = Kε̇n0 + τ0 − Π2y1
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u(y)|bot = 2
n

n+ 1

K

Π2

[(
1

K
(Π2y + c− τ0)

)1/n+1

−
(

1

K
(c− τ0)

)1/n+1
]

= 2
n

n+ 1

K

Π2

[(
1

K
(Π2(y − y1) +Kε̇n0 )

)1/n+1

−
(

1

K
(Kε̇n0 − Π2y1)

)1/n+1
]

= 2
n

n+ 1

K

Π2

[(
Π2

K
(y − y1) + ε̇n0

)1/n+1

−
(
ε̇n0 −

Π2

K
y1

)1/n+1
]

ε̇xy|bot =

(
1

K
(Π2y + c− τ0)

)1/n

=

(
Π2

K
(y − y1) + ε̇n0

)1/n

Using strain rate continuity at y2 to compute e

−
(

1

K
(−Π2y2 + e− τ0)

)1/n

=
1

2

Π

η0

(
y2 −

H

2

)
=

1

2

Π

η0
δ

−Π2y2 + e− τ0 = K

(
−1

2

Π

η0
δ

)n
e = K

(
−1

2

Π

η0
δ

)n
+ τ0 +Π2y2

e = Kε̇n0 + τ0 +Π2y2

u(y)|top = 2
n

n+ 1

K

Π2

[(
1

K
(−Π2y + e− τ0)

)1/n+1

−
(

1

K
(−Π2H + e− τ0)

)1/n+1
]

= 2
n

n+ 1

K

Π2

[(
−Π2

K
(y − y2) + ε̇n0

)1/n+1

−
(
−Π2

K
(H − y2) + ε̇n0

)1/n+1
]

ε̇xy|top = −
(

1

K
(−Π2y + e− τ0)

)1/n

= −
(
−Π2

K
(y − y2) + ε̇n0

)1/n

Using velocity continuity to compute b We use u(y1)|bot = u(y1)|mid:

2
n

n+ 1

K

Π2

[(
Π2

K
(y1 − y1) + ε̇n0

)1/n+1

−
(
ε̇n0 −

Π2

K
y1

)1/n+1
]
=

Π2

η0
(y21 − y1H) + b

2
n

n+ 1

K

Π2

[
ε̇n+1
0 −

(
ε̇n0 −

Π2

K
y1

)1/n+1
]
=

Π2

η0
y1(y1 −H) + b

so

b = 2
n

n+ 1

K

Π2

[
ε̇n+1
0 −

(
ε̇n0 −

Π2

K
y1

)1/n+1
]
− Π2

η0
y1(y1 −H)
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Using velocity continuity to compute b (again?) This time we use u(y2)|top = u(y2)|mid:

2
n

n+ 1

K

Π2

[(
−Π2

K
(y2 − y2) + ε̇n0

)1/n+1

−
(
−Π2

K
(H − y2) + ε̇n0

)1/n+1
]
=

Π2

η0
(y22 − y2H) + b

2
n

n+ 1

K

Π2

[
ε̇n+1
0 −

(
−Π2

K
(H − y2) + ε̇n0

)1/n+1
]
=

Π2

η0
(y22 − y2H) + b

and since H − y2 = H −H/2− δ = H/2− δ = y1 and

y22 − y2H = y2(y2 −H) = (H/2 + δ)(−y1) = (−H/2− δ)y1 = (−H +H/2− δ)y1 = (−H + y1)y1

so that we indeed recover the same b value as above.
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To summarize:

u(y)|bot = 2
n

n+ 1

K

Π2

[(
Π2

K
(y − y1) + ε̇n0

)1/n+1

−
(
ε̇n0 −

Π2

K
y1

)1/n+1
]

u(y)|mid =
Π2

η0
(y2 − y) + 2

n

n+ 1

K

Π2

[
+ε̇n+1

0 −
(
ε̇n0 −

Π2

K
y1

)1/n+1
]
− Π2

η0
y1(y1 −H)

u(y)|top = 2
n

n+ 1

K

Π2

[(
−Π2

K
(y + y2) + ε̇n0

) 1
n
+1

−
(
−Π2

K
(H + y2) + ε̇n0

) 1
n
+1
]

ε̇xy|bot =

(
Π2

K
(y − y1) + ε̇n0

)1/n

ε̇xy|mid =
Π2

η0
(y − H

2
)

ε̇xy|top = −
(
−Π2

K
(y − y2) + ε̇n0

)1/n

Rather interestingly we find that τ0 does not directly enter the equations above. This can be
explained as follows: since we have the relationship

η0 = Kε̇n−1
0 +

τ0
ε̇0

the parameters η0, ε̇0, τ0 and K cannot be all chosen freely. The viscosity η0 is reached when the
strain rate becomes smaller than ε̇0, so these two parameters have a physical meaning. We set
η0 = 1025 and ε̇0 = 10−17. When/if K is zero, then τ0 can be interpreted as a yield value for a rigid
plastic material so we arbitrarily set it to τ0 = 107. Having fixed these parameters we can compute

K =
η0ε̇0 − τ0

ε̇n0

The data used to produce all the following plots is generated by the python program and a gnuplot
script to be found in images/mms/channel hb/.

Let’s start simple: n = 1 In this case the viscosity is given by

ηHB =

{
η0 ε̇e ≤ ε̇0
K + τ0

ε̇e
ε̇e ≥ ε̇0

Since ε̇e =
∣∣∣12 ∂u∂y ∣∣∣ then

ηHB =

{
η0 ε̇e ≤ ε̇0
K + 2τ0

| ∂u∂y |
ε̇e ≥ ε̇0
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Obtained for n = 1 and τ0 = 9e7. The black lines are the resulting velocity and strain rate profiles obtained by joining the bottom, middle and top functions.
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In the following I explore the effect of the τ0 value (K is calculated correspondingly as we have
seen before).
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12.1.20 Flow in a square using Stream Functions

I wish to arrive at an analytical formulation for a 2D incompressible flow in the square domain
[−1 : 1] × [−1 : 1] The fluid has constant viscosity η = 1 and is subject to free slip boundary
conditions on all sides. For reasons that will become clear in what follows I postulate the following
stream function:

Ψ(x, y) = sin(mπx) sin(nπy) (12.134)

We have the velocity being defined as:

ν⃗ = (u, v) =

(
∂Ψ

∂y
,−∂Ψ

∂x

)
= (nπ sin(mπx) cos(nπy),−mπ cos(mπx) sin(nπy)) (12.135)

Velocity field for (m,n) = (2, 1)

The strain rate components are then:

ε̇xx =
∂u

∂x
= mnπ2 cos(mπx) cos(nπy) (12.136)

ε̇yy =
∂v

∂y
= −mnπ2 cos(mπx) cos(nπy) (12.137)

2ε̇xy =
∂u

∂y
+
∂v

∂x
(12.138)

=
∂2Ψ

∂y2
− ∂2Ψ

∂x2
(12.139)

= −n2π2Ψ+m2π2Ψ (12.140)

= (m2 − n2)π2 sin(mπx) sin(nπy) (12.141)

Note that if m = n the last term is identically zero, which is not desirable (flow is too ’simple’) so in
what follows we will prefer m ̸= n.

It is also easy to verify that u = 0 on the sides and v = 0 at the top and bottom and that the
term ε̇xy is nul on all four sides, thereby garanteeing free slip.

Our choice of stream function yields:

∇4Ψ =
∂4Ψ

∂x4
+
∂4Ψ

∂y4
+ 2

∂2Ψ

∂x2y2
= π4(m4Ψ+ n4Ψ+ 2m2n2Ψ) = (m4 + n4 + 2m2n2)π4Ψ

Let us recall Eq. (??):

∇⃗4Ψ = −∂ρgy
∂x

+
∂ρgx
∂y

(12.142)
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We assume gx = 0 and gy = −1 so that we simply have

∂ρ

∂x
= (m4 + n4 + 2m2n2)π4Ψ = (m4 + n4 + 2m2n2)π4 sin(mπx) sin(nπy) (12.143)

so that (assuming the integration constant to be zero):

ρ(x, y) = −m
4 + n4 + 2m2n2

m
π3 cos(mπx) sin(nπy)

The x-component of the momentum equation is (since gx = 0):

−∂p
∂x

+
∂2u

∂x2
+
∂2u

∂y2
= −∂p

∂x
−m2nπ3 sin(mπx) cos(nπy)− n3π3 sin(mπx) cos(nπy) = 0

so
∂p

∂x
= −(m2n+ n3)π3 sin(mπx) cos(nπy)

and the pressure field is then (once again neglecting the integration constant):

p(x, y) =
m2n+ n3

m
π2 cos(πx) cos(πy)

Note that we then have the interesting property that the pressure average over the domain is zero,
i.e.

∫
pdV = 0.

12.1.21 One-dimensional advection-diffusion equation

Let us start with the 1D steady advection-diffusion equation:

ρCpu
dT

dx
− kd

2T

dx2
= f in [0, Lx] (12.144)

with the boundary conditions T (x = 0) = 0 and T (x = Lx) = 0.
The solution to this problem is:

T (x) =
f

u

(
x−

1− exp ux
κ

1− exp u
κ

)
or

T (x) =
f

u

(
x−

1− exp 2Pex
h

1− exp 2Pe
h

)
where

Pe =
uh

2κ
=
uhρCp
2k

12.1.22 Annulus with kinematical b.c. - shear flow

Let us consider an annulus domain of inner radius R1 and outer radius R2. Boundary conditions are
ν⃗(r = R1) = ν1e⃗θ and ν⃗(r = R2) = ν2e⃗θ. Density is assumed to be zero in the domain.

As seen in Section 12.1.17, the Laplacian of a vector A⃗ is given by5

∇2A⃗ = ∇(∇ · A⃗)−∇× (∇× A⃗) =

 ∂2Ar
∂r2

+ 1
r
∂Ar
∂r
− 1

r2
Ar +

1
r2
∂2Ar
∂θ2
− 2

r2
∂Aθ
∂θ

∂2Aθ
∂r2

+ 1
r
∂Aθ
∂r
− 1

r2
Aθ +

1
r2
∂2Aθ
∂θ2

+ 2
r2
∂Ar
∂θ


5https://en.wikipedia.org/wiki/Vector_Laplacian
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Given the symmetry of the problem and the boundary conditions we know that the solution is as
follows:

ν⃗(r, θ) = νθ(r)e⃗θ

Using this velocity field, we can now obtain the pressure field by solving the Stokes equation

−∇⃗p+ η∇⃗2ν⃗ = 0⃗

since density is zero. Because of symmetry we also expect the pressure to be a function of r only,
i.e. p(r). The Stokes equation in polar coordinates then writes:

−∂p
∂r

= 0 (12.145)

−1

r

∂p

∂θ︸︷︷︸
=0

+
∂2νθ
∂r2

+
1

r

∂νθ
∂r
− 1

r2
νθ = 0 (12.146)

so that the pressure is a constant which we arbitrarily set to zero. We assume νθ(r) = rα, and the
second equation above becomes:

α(α− 1)rα−2 + αrα−2 − rα−2 = 0

reducing to α2 − 1 = 0, i.e. α = ±1, since the above equation must be valid for any value of r. The
generic solution then can be written as

νθ(r) = Ar +
B

r

Using the b.c. :

νθ(R1) = AR1 +
B

R1

= ν1

νθ(R2) = AR2 +
B

R2

= ν2

or,

A+
B

R2
1

=
ν1

R1

A+
B

R2
2

=
ν2

R2

so

B =
ν1

R1
− ν2

R2

1
R2

1
− 1

R2
2

= R1R2
ν1R2 − ν2R1

R2
2 −R2

1

and

A =
ν2R2 − ν1R1

R2
2 −R2

1

νθ(r) =
ν2R2 − ν1R1

R2
2 −R2

1

r +
R1R2

r

ν1R2 − ν2R1

R2
2 −R2

1

We can verify that the flow is indeed incompressible:

∇⃗ · ν⃗ =
1

r

∂(rνr)

∂r
+

1

r

∂νθ
∂θ

= 0

since νr = 0 and νθ does not depend on θ.
Note that we could have used a non-zero density: as long as it does not depend on θ and the gravity

points towards the center, it allows for a decoupling of the equations, thereby only contributing to a
lithostatic pressure field.
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12.1.23 Generic framework for 3D solution in Cartesian coordinates

mms generic3D.tex

We postulate

u(x, y, z) = f(x)g′(y)h′(z) (12.147)

v(x, y, z) = f ′(x)g(y)h′(z) (12.148)

w(x, y, z) = −2f ′(x)g′(y)h(z) (12.149)

so that the flow is indeed incompressible:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= f ′(x)g′(y)h′(z) + f ′(x)g′(y)h′(z)− 2f ′(x)g′(y)h′(z) = 0

The velocity gradient L(ν⃗) is then given by

L(ν⃗) =


f ′g′h′ f ′′gh′ −2f ′′g′h

fg′′h′ f ′g′h′ −2f ′g′′h

fg′h′′ f ′gh′′ −2f ′g′h′


and the strain rate tensor by:

ε̇(ν⃗) =
1

2
(L(ν⃗) +L(ν⃗)T ) =

1

2


2f ′g′h′ (f ′′g + fg′′)h′ fg′h′′ − 2f ′′g′h

(f ′′g + fg′′)h′ 2f ′g′h′ f ′gh′′ − 2f ′g′′h

fg′h′′ − 2f ′′g′h f ′gh′′ − 2f ′g′′h −4f ′g′h′


We assume for simplicity that η = 1 so

∇⃗ · 2ηε̇(ν⃗) = ∇⃗ ·


2f ′g′h′ (f ′′g + fg′′)h′ fg′h′′ − 2f ′′g′h

(f ′′g + fg′′)h′ 2f ′g′h′ f ′gh′′ − 2f ′g′′h

fg′h′′ − 2f ′′g′h f ′gh′′ − 2f ′g′′h −4f ′g′h′



=


2f ′′g′h′ + (f ′′g′ + fg′′′)h′ + fg′h′′′ − 2f ′′g′h′

(f ′′′g + f ′g′′)h′ + 2f ′g′′h′ + f ′gh′′′ − 2f ′g′′h′

f ′g′h′′ − 2f ′′′g′h+ f ′g′h′′ − 2f ′g′′′h− 4f ′g′h′′



=


f ′′g′h′ + fg′′′h′ + fg′h′′′

f ′′′gh′ + f ′g′′h′ + f ′gh′′′

−2f ′′′g′h− 2f ′g′′′h− 2f ′g′h′′

 (12.150)

The Stokes equation then writes
−∂xp

−∂yp

−∂zp

+


f ′′g′h′ + fg′′′h′ + fg′h′′′

f ′′′gh′ + f ′g′′h′ + f ′gh′′′

−2f ′′′g′h− 2f ′g′′′h− 2f ′g′h′′

+


bx

by

bz

 = 0⃗
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or, 
bx

by

bz

 =


∂xp

∂yp

∂zp

−


f ′′g′h′ + fg′′′h′ + fg′h′′′

f ′′′gh′ + f ′g′′h′ + f ′gh′′′

−2f ′′′g′h− 2f ′g′′′h− 2f ′g′h′′


First application Let us assume

f(x) = x(1− x) g(y) = y(1− y) h(z) = z(1− z)

then
f ′(x) = 1− 2x g′(y) = 1− 2y h′(z) = 1− 2z

f ′′(x) = −2 g′′(y) = −2 h′′(z) = −2

f ′′′(x) = 0 g′′′(y) = 0 h′′′(z) = 0

Which ensures that there is no flow through the boundaries of the unit cube. Then
bx

by

bz

 =


∂xp

∂yp

∂zp

−


f ′′g′h′

f ′g′′h′

−2f ′g′h′′


with

u(x, y, z) = x(1− x)(1− 2y)(1− 2z) (12.151)

v(x, y, z) = (1− 2x)y(1− y)(1− 2z) (12.152)

w(x, y, z) = −2(1− 2x)(1− 2y)z(1− z) (12.153)

Finally we postulate

p(x, y, z) = −f ′g′h′ = (2x− 1)(2y − 1)(2z − 1)

with
∫
Ω
p(x, y, z)dxdydz = 0, so

∂xp

∂yp

∂zp

 =


−f ′′g′h′

−f ′g′′h′

−f ′g′h′′

 =


2(2y − 1)(2z − 1)

2(2x− 1)(2z − 1)

2(2x− 1)(2y − 1)


Then we find that

b⃗ =


−f ′′g′h′

−f ′g′′h′

−f ′g′h′′

−


f ′′g′h′

f ′g′′h′

−2f ′g′h′′

 =


−2f ′′g′h′

−2f ′g′′h′

f ′g′h′′

 =


4(2y − 1)(2z − 1)

4(2x− 1)(2z − 1)

−2(2x− 1)(2y − 1)
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The root mean square velocity is given by∫
Ω

u2dV = 1/270 (12.154)∫
Ω

v2dV = 1/270 (12.155)∫
Ω

w2dV = 2/135 (12.156)

and then

νvrms =

√
6

270
≃ 0.1490712

This benchmark is implemented in stone 10 (Q1 × P0), stone 75 (MINI-1 bubble) and
stone 82 (MINI-2 bubbles). The code is available in /mms/mms3D.py.
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Second application Once again, no flow through the boundaries of the unit cube:

f(x) = x2(1− x)2 g(y) = y2(1− y)2 h(z) = z2(1− z)2

then

f ′(x) = 2x(2x2 − 3x+ 1) g′(y) = 2y(2y2 − 3y + 1) h′(z) = 2z(2z2 − 3z + 1)

f ′′(x) = 2(6x2 − 6x+ 1) g′′(y) = 2(6y2 − 6y + 1) h′′(z) = 2(6z2 − 6z + 1)

f ′′′(x) = 24x− 12 g′′′(y) = 24y − 12 h′′′(z) = 24z − 12

The velocity field is then given by

u(x, y, z) = f(x)g′(y)h′(z) = 4x2(1− x)2y(2y2 − 3y + 1)z(2z2 − 3z + 1)

v(x, y, z) = f ′(x)g(y)h′(z) = 4x(2x2 − 3x+ 1)y2(1− y)2z(2z2 − 3z + 1)

w(x, y, z) = −2f ′(x)g′(y)h(z) = −8x(2x2 − 3x+ 1)y(2y2 − 3y + 1)z2(1− z)2 (12.157)

We choose

p(x, y, z) = −f ′g′h′ = − 2x(2x2 − 3x+ 1) 2y(2y2 − 3y + 1) 2z(2z2 − 3z + 1)

The rhs vector is then
bx

by

bz

 =


∂xp

∂yp

∂zp

−


f ′′g′h′ + fg′′′h′ + fg′h′′′

f ′′′gh′ + f ′g′′h′ + f ′gh′′′

−2f ′′′g′h− 2f ′g′′′h− 2f ′g′h′′



= −


f ′′g′h′

f ′g′′h′

f ′g′h′′

−


f ′′g′h′ + fg′′′h′ + fg′h′′′

f ′′′gh′ + f ′g′′h′ + f ′gh′′′

−2f ′′′g′h− 2f ′g′′′h− 2f ′g′h′′



= −


2f ′′g′h′ + fg′′′h′ + fg′h′′′

f ′′′gh′ + 2f ′g′′h′ + f ′gh′′′

−2f ′′′g′h− 2f ′g′′′h− f ′g′h′′

 (12.158)

Let us look at the root mean square velocity:

ν2
rms =

∫∫∫
(u2 + v2 + w2)dxdydz

=

∫∫∫
u2dxdydz +

∫∫∫
v2dxdydz +

∫∫∫
w2dxdydz

=

∫∫∫
(f(x)g′(y)h′(z))2dxdydz +

∫∫∫
(f ′(x)g(y)h′(z))2dxdydz +

∫∫∫
(−2f ′(x)g′(y)h(z))2dxdydz

=

(∫ 1

0

f(x)2dx

)(∫ 1

0

g′(y)2dy

)(∫ 1

0

h′(z)2dz

)
+

(∫ 1

0

f ′(x)2dx

)(∫ 1

0

g(y)2dy

)(∫ 1

0

h′(z)2dz

)
+ 4

(∫ 1

0

f ′(x)2dx

)(∫ 1

0

g′(y)2dy

)(∫ 1

0

h(z)2dz

)
(12.159)

841



Since ∫ 1

0

f(x)2dx =

∫ 1

0

g(y)2dy =

∫ 1

0

h(z)2dz

and ∫ 1

0

g′(y)2dy =

∫ 1

0

f ′(x)2dx =

∫ 1

0

h′(z)2dz

we only have 2 integrals to compute and using WolframAlpha we find:(∫ 1

0

f(x)2dx

)
=

1

630(∫ 1

0

f ′(x)2dx

)
=

2

105

so that

ν2
rms =

1

630

2

105

2

105
+

2

105

1

630

2

105
+ 4

1

630

2

105

1

630

= 6
1

630

2

105

2

105

=
1

105

2

105

2

105
(12.160)

In the end:
νrms ≃ 0.00185885728

This benchmark is carried out in Stone 10.
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12.1.24 2D Analytical benchmark XII

This is presented in Soulaimani et al. (1987) [1181]. The velocity field is given by

ν⃗(x, y) = (x3,−3x2y)
and the pressure is

p(x, y) = x3 + y3 − 1/2

so that, assuming that the viscosity is 1, the body force is:

b⃗ = (−6x+ 3x2, 6y + 3y2)

Note that I have added the −1/2 term to the pressure so that
∫ ∫

pdxdy = 0. The root mean square
velocity over a unit square is

νrms =

√∫ 1

0

∫ 1

0

(u2 + v2)dxdy =

√∫ 1

0

∫ 1

0

(x6 + 9x4y2)dxdy =

√
1

7
+ 9

1

5

1

3
=

√
26

35
≃ 0.861892

The strain rate tensor terms are

ε̇xx = 3x2

ε̇yy = −3x2

ε̇xy = −3xy
Another one mentioned in the paper:

ν⃗(x, y) = (x2,−2xy) p(x, y) = 0 b⃗ = (−2, 0)

12.1.25 2D analytical benchmark from Burman & Hansbo (2006)

This is presented in Burman and Hansbo [181] (2006) and Burman and Hansbo [182] (2007) and
apparently originates in Norburn and Silvester [945] (1998).

The velocity and pressure fields are given in the unit square by

u(x, y) = 20xy3

v(x, y) = 5x4 − 5y4

p(x, y) = 60x2y − 20y3 − 5 (12.161)

with
∂u

∂x
= 20y3

∂u

∂y
= 60xy2

∂v

∂x
= 20x3

∂v

∂y
= −20y3 (12.162)

Taken from Burman and Hansbo [181]. Left is velocity, right is pressure.
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The flow is incompressible:

div(ν⃗) =
∂u

∂x
+
∂v

∂y
= 0

Then the strain rate tensor is given by

ε̇(ν⃗) =

(
20y3 30xy2 + 10x3

30xy2 + 10x3 −20y3
)

Assuming the viscosity η = 1, then the full stress tensor is given by

σ = −p1+ 2ηε̇(ν⃗)

=

(
−60x2y + 20y3 + 5 + 40y3 60xy2 + 20x3

60xy2 + 20x3 −60x2y + 20y3 + 5− 40y3

)
=

(
−60x2y + 60y3 + 5 60xy2 + 20x3

60xy2 + 20x3 −60x2y − 20y3 + 5

)
(12.163)

finally

b⃗ = −∇⃗ · σ =

(
−120xy + 120xy

60y2 + 60x2 − 60x2 − 60y2

)
=

(
0
0

)
This is particularly convenient...

It is implemented in stone 14, 18 and 115.

12.1.26 2D analytical benchmark from Cioncolini & Boffi (2019)

This is Test #1 presented in Cioncolini and Boffi [258] (2019). The domain is a unit square and the
solution is given by

u(x, y) = x2(1− x)22y(1− y)(2y − 1)

v(x, y) = y2(1− y)22x(1− x)(1− 2x)

p(x, y) = x(1− x)(1− y)− 1/12

bx = −η
{
4y(1− y)(2y − 1)[(1− 2x)2 − 2x(1− x)] + 12x2(1− x)2(1− 2y)

}
+ (1− 2x)(1− y)(12.164)

by = (12.165)

with no-slip boundary conditions on all sides. Note that the veloity solution is close to the mms of
Section ??

12.1.27 3D Analytical benchmark XIII

This is presented in Soulaimani et al. (1987) [1181].

b⃗ = (1, 1, 1) ν⃗(x, y, z) = (y, z, x) p(x, y, z) = x+ y + z − 1/2

12.1.28 2D Analytical benchmark XIV

It originates in Section 6 of John et al. (2017) [655]. The velocity is given by

νx = 200x2(1− x)2y(1− y)(1− 2y) = 100a(x)a′(y)

νy = −200x(1− x)(1− 2x)y2(1− y)2 = −100a′(x)a(y)
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with

a(x) = x2(1− x)2

a′(x) = 2x(1− x)2 − 2x2(1− x) = 2x(1− x)(1− 2x)

a′′(x) = 2(1− 6x+ 6x2)

a′′′(x) = 24x− 12

We can now compute the components of the strain rate tensor:

ε̇xx =
∂νx
∂x

=
∂(100a(x)a′(y))

∂x
= 100a′(x)a′(y)

ε̇yy =
∂νy
∂y

=
∂(−100a′(x)a(y))

∂y
= −100a′(x)a′(y)

ε̇xy = ε̇yx =
1

2

(
∂νx
∂y

+
∂νy
∂x

)
=

1

2
(100a(x)a′′(y)− 100a′′(x)a(y)) = 50 (a(x)a′′(y)− a′′(x)a(y))

The momentum conservation equation is given by

−∂xp+ ∂x(2ηε̇xx) + ∂y(2ηε̇xy) + bx = 0

−∂yp+ ∂x(2ηε̇xy) + ∂y(2ηε̇yy) + by = 0

Then

bx = ∂xp− ∂x(2ηε̇xx)− ∂y(2ηε̇xy)
= ∂xp− ∂x[2η100a′(x)a′(y)]− ∂y[2η50 (a(x)a′′(y)− a′′(x)a(y))]
= ∂xp− 200ηa′′(x)a′(y)− 100η[a(x)a′′′(y)− a′′(x)a′(y)]
= ∂xp− 100ηa′′(x)a′(y)− 100ηa(x)a′′′(y)

= ∂xp− 100η[a′′(x)a′(y) + a(x)a′′′(y)]

by = ∂yp− ∂x(2ηε̇xy)− ∂y(2ηε̇yy)
= ∂yp− ∂x[2η50 (a(x)a′′(y)− a′′(x)a(y))] + ∂y2η100a

′(x)a′(y)

= ∂yp− 100η(a′(x)a′′(y)− a′′′(x)a(y)) + 200ηa′(x)a′′(y)

= ∂yp+ 100ηa′(x)a′′(y) + 100ηa′′′(x)a(y)

= ∂yp+ 100η[a′(x)a′′(y) + a′′′(x)a(y)]

with

p(x, y) = 10

[(
x− 1

2

)3

y2 + (1− x)3
(
y − 1

2

)3
]

∂p

∂x
= 10

[
3

(
x− 1

2

)2

y2 − 3(1− x)2
(
y − 1

2

)3
]

∂p

∂y
= 10

[(
x− 1

2

)3

2y + (1− x)33
(
y − 1

2

)2
]

See stone 104.
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12.1.29 Poisson equation on 3D shell

This benchmark is presented in Phillips et al. [996]. Inner radius is 1, outer radius is 3. The right
hand side term of the Poisson equation is given by:

f(r, θ, ϕ) =
sin2 θ

R2

[
(cosϕ− sinϕ)(20 sin2 θ − 15)− sin 2ϕ(10 sin2 θ − 6)

]
×

[(
r

Rinner

)2

− 1

][(
r

Router

)2

− 1

]

+ sin4 θ

[
cosϕ− sinϕ− 1

2
sin 2ϕ

] [
20r2

R2
innerR

2
outer

− 6

(
1

R2
inner

+
1

R2
outer

)]
(12.166)

Note: what is R here??
The solution is then

T (r, θ, ϕ) = sin4 θ

[
cosϕ− sinϕ− 1

2
sin 2ϕ

][(
r

Rinner

)2

− 1

][(
r

Router

)2

− 1

]
This expression is used to generate the Dirichlet boundary conditions on the inner and outer surfaces.

12.1.30 SolCx

The SolCx benchmark is intended to test the accuracy of the solution to a problem that has a large
jump in the viscosity along a line through the domain. Such situations are common in geophysics:
for example, the viscosity in a cold, subducting slab is much larger than in the surrounding, relatively
hot mantle material.

The SolCx benchmark computes the Stokes flow field of a fluid driven by spatial density variations,
subject to a spatially variable viscosity. Specifically, the domain is Ω = [0, 1]2, gravity is g⃗ = (0,−1)T
and the density is given by

ρ(x, y) = sin(πy) cos(πx) (12.167)

Boundary conditions are free slip on all of the sides of the domain and the temperature plays no role
in this benchmark. The viscosity is prescribed as follows:

η(x, y) =

{
1 for x < 0.5
106 for x > 0.5

(12.168)

Note the strongly discontinuous viscosity field yields a stagnant flow in the right half of the domain
and thereby yields a pressure discontinuity along the interface.

The SolCx benchmark was previously showcased in Duretz et al. (2011) [352] and its analytic
solution is given in Zhong (1996) [1416]. It has been carried out in Kronbichler et al. (2012) [732]
and Gerya et al. (2013) [452], and is also found in the Aspect manual [44].

Note that the source code which evaluates the velocity and pressure fields for both SolCx and
SolKz is distributed as part of the open source package Underworld (Moresi et al. , 2007 [901],
http://underworldproject.org). I have translated this code to python.

a) b)
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c)
a,b) obtained with Aspect . c) taken from Duretz et al. (2011) [352].

Taken from Kronbichler et al. (2012) [732]. Velocity and pressure errors eu, ep and convergence rates for different choices of the Stokes finite element spaces,

using globally refined meshes. For ‘odd’ meshes, the numbers shown are the average errors from nearby meshes (e.g. for h = 1/64, the average of the errors on

63x63 and 65x65 meshes).

Relevant Literature:

� D.A. May and L. Moresi. “Preconditioned iterative methods for Stokes flow problems arising
in computational geodynamics”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 33–47. doi:
10.1016/j.pepi.2008.07.036

� M Velić, L. Moresi, D. May, and M. Knepley. “A Family of Numerically Stable Analytic
Solutions for Geodynamic Code Verification”. In: ()

� Albert de Montserrat, Jason P Morgan, and Jörg Hasenclever. “LaCoDe: a Lagrangian two-
dimensional thermo-mechanical code for large-strain compressible visco-elastic geodynamical
modeling”. In: Tectonophysics 767 (2019), p. 228173. doi: 10.1016/j.tecto.2019.228173

� Y.A. Mishin, O.V. Vasilyev, and T.V. Gerya. “A Wavelet-Based Adaptive Finite Element
Method for the Stokes Problems”. In: Fluids 7 (2022), p. 221. doi: 10.3390/fluids7070221

� Ruben Sevilla and Thibault Duretz. “A face-centered finite volume method for high-contrast
Stokes interface problems”. In: International Journal for Numerical Methods in Engineering
124 (2023), pp. 3709–3732. doi: 10.1002/nme.7294

stone 5, 77

12.1.31 SolKz

The SolKz benchmark is similar to the SolCx benchmark: the viscosity is a function of the space
coordinates too and is given by

η(y) = exp(2By) with B = 13.8155

847

https://doi.org/10.1016/j.pepi.2008.07.036
https://doi.org/10.1016/j.tecto.2019.228173
https://doi.org/10.3390/fluids7070221
https://doi.org/10.1002/nme.7294


It is not a discontinuous function but grows exponentially with the vertical coordinate so that its
overall variation is again 106. The forcing is again chosen by imposing a spatially variable density
variation as follows:

ρ(x, y) = sin(2y) cos(3πx)

Free slip boundary conditions are imposed on all sides of the domain. This benchmark too is presented
in [1416] and is studied in [352] and [452].

Taken from Aspect manual [44].

Taken from Duretz et al. (2011) [352].

Relevant Literature: [902], [846], [1316], [322], [1062] stone 06

12.1.32 SolVi

SolVi is another very common benchmark carried out in the computational geodynamics literature.
This inclusion benchmark solves a problem with a discontinuous viscosity, which is chosen in such

a way that the discontinuity is a circle. Given the regular nature of the used by a majority of codes,
this ensures that the discontinuity in the viscosity never aligns to cell boundaries. This in turns leads
to almost discontinuous pressures along the interface which are difficult to represent accurately.

Schmid & Podlachikov (2003) [1128]. derived a simple analytic solution for the pressure and
velocity fields for such a circular inclusion under simple shear.

A characteristic of the analytical solution is that the pressure is zero inside the inclusion, while
outside it follows the relation

pm = 4ϵ̇
ηm(ηi − ηm)
ηi + ηm

r2i
r2

cos(2θ)

where ηi is the viscosity of the inclusion (often taken to be 1000) and ηm1 is the viscosity of the
background media (often taken to be 1).

One important observation with this benchmark is the fact that the velocity is not zero even far
away from the inclusion, so that the analytical solution must be imposed on the sides. Also, because
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of symmetry, it is often run on the top quadrant x > 0, y > 0 with free slip imposed on the left and
bottom boundaries.

Left: taken from Duretz et al. (2011) [352].

Relevant Literature: Kaus and Podlachikov [682], Maierová [825], Deubelbeiss and Kaus [330],
Beuchert and Podladchikov [86], Suckale, Nave, and Hager [1218], von Tscharner and Schmalholz
[1328], de Montserrat, Morgan, and Hasenclever [322], Bangerth et al. [44], Liu and Tu [799] (2002);
Kronbichler, Heister, and Bangerth [732] (2012); Gerya, May, and Duretz [452] (2013); Sevilla and
Duretz [1150] (2023). stone 07,

12.1.33 Simple shear heating

The domain is a Lx × Ly Cartesian box. The velocity field ν⃗ = (Ly − y)ye⃗x is prescribed on all
boundaries, or simply prescribed everywhere in the domain. Temperature is set to T = 0 everywhere
in the domain at t = 0.

As we have seen in Section 2.6, the shear heating, Φ is expressed as:

Φ = 2ηε̇d(ν⃗) : ε̇d(ν⃗) (12.169)

We have

ε̇xx(ν⃗) = ∂xu = 0

ε̇yy(ν⃗) = ∂yv = 0

ε̇xy(ν⃗) =
1

2
(∂xv + ∂yu) =

1

2
(Ly − 2y) (12.170)

We see that the flow is incompressible (ε̇xx + ε̇yy = 0) so that ε̇d(ν⃗) = ε̇(ν⃗) and

Φ(x, y) = 2η[ε̇xx(ν⃗)
2 + ε̇yy(ν⃗)

2 + 2ε̇xy(ν⃗)
2] = 2η2

1

4
(Ly − 2y)2 = η(Ly − 2y)2

We set η = 1 and Ly = 1 (Lx is actually irrelevant) so that Φ(x, y) = (1− 2y)2.
The energy equation is given by

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= k∆T + Φ, (12.171)
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assuming that there is no conduction (i.e. k = 0) and since ∇⃗T ∝ e⃗y while ν⃗ ∝ e⃗x then it simplifies
to

∂T

∂t
= Φ

where we have taken ρ = 1 and Cp = 1 for convenience. Since T (t = 0) = 0, we then have

T (t) = Φ t

12.1.34 2D solution with nontrivial interface jump

benchmark jump2D.tex

This benchmark is featured in Sevilla and Duretz [1150] (2023) but orginates in Wang and Khoo
[1336] (2013). The domain is Ω = [0, 2] × [−0.5, 1.5] and the viscosity is given by η(x, y) = η1 if
y ≤ 0.5 and η(x, y) = η2 if y > 0.5. The analytical solution is given by

ν⃗ = (1− exp(λ) sin(2πy), 0) p =
1

2
exp(2λx) with λ =

1

2η
−
√

1

4η2
+ 4π2 (12.172)

The pressure and the gradient tensor exhibit a discontinuity across the interface Dirichlet boundary
conditions are imposed in the whole boundary.

Taken from [1150]. From left to right: u, v, |ν⃗|, p, for η1 = 1 and η = 10−4.

12.1.35 3D solution with nontrivial interface jump

This benchmark is taken from Sevilla and Duretz [1150] but is taken from Kirchhart, Gross, and
Reusken [709] (2016). It is a three dimensional problem in [−1, 1]3 and the viscosity is given by
η(x, y) = η1 if r ≤ rI and η(x, y) = η2 if r > rI where r = |ν⃗|2 and rI = 2/3. The analytical solution
is given by

ν⃗ = α(r) exp(−r2)(−y, x, 0) p = x3 + λ(r) (12.173)

where

α(r) = 1/η1 if r ≤ rI (12.174)

= 1/η2 + (1/η1 − 1/η2) exp(r
2 − r2I ) if r > rI (12.175)

and

λ(r) = 10 if r ≤ rI (12.176)

= 0 if r > rI (12.177)

Dirichlet boundary conditions, corresponding to the analytical solution, are imposed in whole bound-
ary of Ω.

850



Taken from [1150]. From left to right: u, v, w, |ν⃗|, p, for η1 = 1 and η = 102.

12.2 Geodynamical benchmarks

geodynamics benchmarks.tex

Some published numerical experiments have over time become benchmarks for other codes, while
some others showcased comparisons between codes. Here is a short list of ’famous’ benchmarks’ in
the computational geodynamics community.

� the ’plastic brick’ (See section 12.2.3):
Lemiale, Mühlhaus, Moresi, and Stafford [764], Kaus [679], Quinteros, Ramos, and Jacovkis
[1029], Mishin [878], Mühlhaus, Shi, Olsen-Kettle, and Moresi [917], Maierová [825], Spiegel-
man, May, and Wilson [1187] (2016), Kaus et al. [683] (2016), Glerum, Thieulot, Fraters, Blom,
and Spakman [467] (2018), Fraters, Bangerth, Thieulot, Glerum, and Spakman [415] (2019),
Mishin, Vasilyev, and Gerya [879] (2022).

� indentor, punch problem (see Section 12.2.8):
Vilotte et al. [1322, 1323, 1324], Hubert-Ferrari et al. (2003) [602], Fournier et al. (2004) [407],
Thieulot et al. (2008) [1261], Gerbault (2012) [447], Glerum et al. (2018) [467], Stone 8.

� 2D Rayleigh-Benard convection (see Section 12.2.26).

� 2D Rayleigh-Benard convection, lateral heating, 30+ codes: Vahl Davis and Jones [1300] (1983).

� 2D Rayleigh-Benard convection with nonlinear rheology: Tosi et al. [1276] (2015),Aspect man-
ual [44], Trim, Butler, and Spiteri [1282] (2021), stone 28, Davies, Kramer, Ghelichkhan, and
Gibson [306] (2022), Sime and Wilson [1169] (2020), Candioti, Schmalholz, and Duretz [205]
(2020).
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� 2D Rayleigh-Benard laminar plumes, comparison of laboratory and numerical modeling : Vat-
teville et al. (2009) [1314]

� 2D Cartesian flow with extremely temperature-dependent viscosity: Moresi & Solomatov (1995)
[903], Trim et al. (2021) [1282]

� 2D Rayleigh-Taylor convection/instability:
Prosperetti (1981) [1019], Travis et al. (1990) [1278], Weinberg & Schmeling (1992) [1346],
Poliakov & Podlachikov (1992) [1008], Ogawa (1993) [953], Conrad & Molnar (1997) [277], van
Keken et al. (1997) [1309], de Smet et al. (2000) [323], Soboutia et al. (2001) [1176], Babeyko
et al. (2002) [35], Tackley & King (2003) [1229], Bourgouin et al. (2006) [124], Davies, Davies,
Hassan, Morgan, and Nithiarasu [307] (2007), Battaglia, Storti, and D’Elia [55] (2008), Deubel-
beiss and Kaus [330] (2008), Quinteros et al. (2009) [1029], Samuel & Evonuk (2010) [1103],
Suckale et al. (2010) [1218], Leng & Zhong (2011) [769], Mishin (2011) [878], Logg et al. (2012)
[806], Maierova (2012) [825], Vynnytska et al. (2913) [1333], Choi et al. (2013) [238], Robey
& Puckett (2019) [1079], Robey (2019) [1078], Fuchs & Schmeling [421], de Montserrat, Mor-
gan, and Hasenclever [322] (2019), Louis–Napoléon, Gerbault, Bonometti, Thieulot, Martin,
and Vanderhaeghe [811] (2020), Schuh-Senlis, Thieulot, Cupillard, and Caumon [1144] (2020),
Mishin, Vasilyev, and Gerya [879] (2022), Burcet, Oliveira, Afonso, and Zlotnik [175] (2024),
Aspect manual [44].

� 3D Rayleigh-Taylor instability: Furuichi et al. (2008) [429], von Tscharner & Schmalholtz
(2015) [1328]

� subduction problems: Spiegelman and Katz [1188], Schmeling et al. [1124], van Keken et al.
[1311], Cerpa, Hassani, Gerbault, and Prévost [216], Glerum, Thieulot, Fraters, Blom, and
Spakman [467], OzBench et al. [968], Sime and Wilson [1169].

� Benchmark of 3D numerical models of subduction against a laboratory experiment: Meriaux
et al. (2018) [864]

� numerical sandbox [161, 161, 825, 164, 467]

� the Stokes sphere: Gale manual [744], Aspect manual [44], in visco-plastic fluid: Liu et
al. [794], Deglo de Besses et al. [85]. Finite deformation in and around a fluid sphere [1127,
291].

� the sinking block (sinker) Thieulot [1258] (2011), Cerpa, Hassani, Gerbault, and Prévost [216]
(2014), Gerya [455] (2010), Gerya and Yuen [453] (2003), May and Moresi [846] (2008), Mishin
[878] (2011), Furuichi, May, and Tackley [431] (2011), Maierová [825] (2012), Schuh-Senlis,
Thieulot, Cupillard, and Caumon [1144] (2020), Mishin, Vasilyev, and Gerya [879] (2022). (see
Section 12.2.6)

� multiple sinkers [848, 845, 261]

� Thin layer entrainment (see Section 12.2.28)

� 1D compression [899]

� 2D compressible Stokes flow problem [627, 1234, 770, 700, 802]

� 3D convection at infinite Prandtl number with modest viscosity variation: Busse et al. [193]
(1994), Trompert and Hansen [1283] (1998), Kameyama, Kageyama, and Sato [668] (2005),
O’Neill, Moresi, Müller, Albert, and Dufour [949] (2006), Kronbichler, Heister, and Bangerth
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[732] (2012), Trim, Butler, and Spiteri [1282] (2021), Davies, Kramer, Ghelichkhan, and Gibson
[306] (2022).

Left: Taken from Kameyama et al. (2005). a) Isothermal surfaces obtained for the benchmark calculations of stationary convections in Busse et al. .

(1993). (a) Case 1a is for constant viscosity, while (b) Case 2 is for modestly temperature-dependent viscosity whose viscosity contrast is 20. The

calculations were carried out with (a) 64x32x64 and (b) 64x64x64 mesh divisions. Right: Taken from Kronbichler et al. (2012).

� Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-
dependent viscosity: Ogawa et al. [954, 668]

� Free surface evolution: Crameri et al. (2012) [285], Aspect manual [44], Schuh-Senlis et
al. (2020) [1144]

� Love’s problem: Becker & Bevis (2004) [64]

� Poiseuille flow: [400, 423, 1231] (see Section 12.2.1)

� Couette flow with temperature dependent viscosity [367, 322]

� Couette flow with shear heating [367]

� Poiseuille-Couette flow [421]

� Lid driven cavity [684, 239, 1130, 405, 459, 724, 116, 1375, 157, 381]

� Lid driven cavity with analytical solution (see Section 12.2.9)

� Lid driven cavity with nonlinear rheology [80, 1221]

� Wannier flow [1342, 1384, 216]

� bending of elastic plate/beam [216, 114, 1328, 367, 322, 899, 799]

� flexure of finite length elastic plate [238]

� thermal diffusion of half-cooling space (see Section 12.2.12)

� thermal diffusion of Gaussian distribution (see compgeo notes, elefant manual)

� stress build-up in Maxwell visco-elastic material [450, 238, 367, 322]

� plastic oedometer test [238]

� channel flow (nonlinear) [453, 825, 415, 455, 367]

� relaxation of sinusoidal interface [285, 1085]

� single layer visco-elastic folding [1117, 1328]
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� Three-dimensional folding of an embedded viscous layer in pure shear [398]

� dam-break problem [888, 42, 788, 757, 584, 17, 494, 574, 55]

� hot blob problem [188, 431] (see Section 12.2.7)

� viscous(-elastic) flow around a cylinder in a channel (see Section 12.2.10)

� Sinking cylinder (2D Stokes sphere): appendix A of [114], [1340].

� Infinite plate with a circular hole [1386, 1032]

� Semi-infinite elastic half plane with a circular hole [1320]

� Slope stability for elasto-plastic materials [1032]

� Time-dependent flow in an annulus [440] (see Section 12.2.4)

� Convection in 2D-box [440] (see Section 12.2.5)

� Onset of convection [44]

� Polydiapirism [1346, 44]

� Slab detachment benchmark (see Section 12.2.14)

� 3D Hollow sphere Stokes flow benchmark:
Thieulot (2017) [1256], Horbach et al. (2020) [591], Kramer et al. [730]

� Axisymmetric hollow sphere compressible Stokes flow benchmark:
Machetel & yuen (1989) [819]

� Annulus benchmark [44], [1002]

� Viscosity grooves benchmark [44]

� Latent heat benchmark [44]

� Layered flow with viscosity contrast [44] (see Section 12.2.15)

� Brittle thrust wedges benchmark [164, 44]

� mantle convection in 3D spherical shell: Ratcliff, Schubert, and Zebib [1046] (1996), Iwase
(1996) [628], Zhong et al. (2000) [1414], Yoshida & Kageyama [1387], Stemmer et al. (2006)
[1205], Choblet et al. (2007) [236], Zhong et al. (2008) [1412], Kameyama et al. (2008) [665],
Wright et al. (2010) [1370], Davies et al. (2013) [308], Burstedde et al. (2013) [189], Arrial et
al. (2014) [29], Liu & King (2019) [801], Trim et al. (2021) [1282]

� Heat flow around a cylinder (see Section 12.2.11)

� Laplace equation on a semi infinite plate (see Section 12.2.13)

� 2D Stokes flow over cavity: Popov & Makeev (2014) [1014].

� fractal networks of shear bands: Poliakov & Herrmann (1994) [1009]

� Square plate with a crack subjected to a horizontal tensile traction [799]

� Analytical solution for solitary porosity waves: Connolly & Podlachikov (2015) [276]
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� Analytical solution for solitary wave of magma: Dannberg & Heister (2016) [302] and refs
therein

� Stokes flow caused by the motion of a rigid sphere close to a viscous interface: Danov et
al. (1998) [304]

� Deformation caused by a closed vertical volcanic pipe [113]

� Mantle convection with reversing mobile plates [718]

� A comparison of mantle convection models featuring plates [1197]

� Uniform strip load on elastic material (see Section ??)

� Linear Stability Analysis for Thermal Convections in Spherical Shells [1392]

� Channel flow: Mancktelow (2008) [832]

� Viscous half-space loading [551]

� Nakiboglu and Lambeck (1982) has cylindrical load on variety of rheologies [925]

� Jull and McKenzie (1996) [659] parabolic load on viscoelastic half-space (and melt fractions)

� Squeezing flow between moving parallel plates [512]

� generalized half-plane and half-space Cerruti [947, 1417]

� Analytical Solutions of Displacements Produced by spherically-shaped Internal Overpressure
[448]

� Sagging viscous bridge [1216]

� Deformation around a terminating fault in a viscous medium [47]

� Stress distribution in elastic sphere under equal and opposite loads [1210]

� Flow of a Power Law Fluid Through a Tube - page 87 of Macosko [821]

12.2.1 Poiseuille flow

We consider a two-dimensional channel in the x, y plane. The walls are at y = 0 and y = H with
no-slip boundary conditions. In the absence of gravity, the Stokes equation simplify to

−∂p
∂x

+
∂

∂y
(2η0ε̇xy) = 0 and ε̇xy =

1

2

∂u

∂y
(12.178)

where we assume the velocity ν⃗ = (u(y), 0). In the case of a Newtonian fluid, the analytical solution
is known and the velocity profile is a parabola with zero velocity on the walls and maximum velocity
in the middle.

Eq. (12.178) must then be solved

∂p

∂x
=

∂

∂y

(
2η0

1

2

∂u

∂y

)
= η0

∂2u

∂y2
(12.179)
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We pose Π = ∂p
∂x

< 0, i.e. there is more pressure applied to the left than to the right of the
channel. We then must solve:

∂2u

∂y2
=

Π

η0

The solution is then of the form

u(y) =
1

2

Π

η0
y2 + 2ay + b

and

ε̇xy =
1

2

Π

η0
y + a

We will now determine a and b.
The velocity must be zero at y = 0 and y = H so

u(y = 0) = b = 0

and

u(y = H) =
1

2

Π

η0
H2 + 2aH = 0

or,

2a = −1

2

Π

η0
H

so

u(y) =
1

2

Π

η0
(y2 − yH) (12.180)

and

ε̇xy =
1

2

Π

η0

(
y − H

2

)
(12.181)

12.2.2 Relaxation of sinusoidal topography

Following Kramer et al. [731, Section 3.1.1] and [1085] the benchmark consists of the relaxation of
surface topography in a two-dimensional Cartesian box with an isoviscous fluid. Free slip boundary
conditions are imposed on the sides and bottom of the domain. The setup is as follows:

Taken from [1085]. Setup for the free surface relaxation benchmark.

For the tests ρ = η = g = L = D = 1 and ξ0 = 0.005.

Taken from [731]. D = 3 · 106,η = 1021, ρ = 4500, g = 10, ξ0 = 103m,

and L = D/4, D/2, D, 2D, 4D.
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and the infinitesimal sinusoidal perturbations to the free surface is given by

ξ(x, t = 0) = ξ0 cos

(
2πnx

L

)
where n is a wavenumber which is an integer multiple of 1/2 (taken to be 1/2 exactly in both cases).

12.2.3 the plastic brick

Relevant LiteratureHansen [530], Moresi, Mühlhaus, Lemiale, and May [896], Lemiale, Mühlhaus,
Moresi, and Stafford [764], [679, 367, 1029, 878, 825, 1187, 467, 415, 44] Davies, Kramer, Ghelichkhan,
and Gibson [306] (2022), Mishin, Vasilyev, and Gerya [879] (2022).

Pretty much all of the brick-type (elasto-)visco-plastic experiments in the literature introduce a
weak seed at the bottom of the domain to seed deformation (the shear bands will ultimately stem
from it). Dimensioned and dimensionless experiments have been carried out, with or without elastic
behaviour, with or without adaptive mesh refinement, with first order and second order quadrilateral
elements or Taylor-Hood triangles, with or without Newton algorithm, in extension and compression,
with or without time-stepping, with or without viscous lower layer.

Moresi & Mülhaus, 2006 [895]

Moresi et al. , 2007 [896] Popov et al. , 2008 [1011]

Lemiale et al. , 2008 [764]
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Quinteros et al. , 2009 [1029]

Kaus, 2010 [679]

Mishin, phd thesis, 2011 [878]

Mühlhaus et al. , 2011 [917].

Lemiale et al. , 2011 [765].
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Maierova, phd thesis, 2012 [825]

Mohajeri et al. , 2013 [887].

Thieulot, 2014 [1257].

Spiegelman et al. , 2016 [1187]
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Glerum et al. , 2018 [467]

Fraters et al. , 2019 [415] Aspect manual [44]

12.2.4 Time-dependent benchmark in an annulus

This benchmark is presented in Gassmöller et al. [440]. The domain is a 2D annulus with inner
and outer radii R1 = 1 and R2 = 2, respectively. In this situation, the incompressible isothermal
Stokes equations and their solution can be expressed in a cylindrical coordinate system in terms of
the radius r and the azimuthal angle θ. The viscosity is set to eta = 1, and the density is given by

ρ(r, θ) = 48r5 (12.182)

The gravity vector is set to

g⃗(r, θ) =
r3

384
e⃗r + e⃗θ (12.183)

Note that this gravity vector is not the gradient of a gravity potential and consequently not physical.
The Stokes system can then be solved using a separation of variables approach and yields

ν⃗ = −r7e⃗θ p(r, θ) =
r9

72
− 512

72
(12.184)
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Taken from [440]

Rather importantly, this benchmark was arrived at by means of a stream function (see Section ??)
ψ(r, θ) = F (r)G(θ) with F (r) = r8/8 and G(θ) = 1.

12.2.5 Convection in 2D-box

We start from the following stream function (see Section ??):

ψ(x, y) =
1

π
sin πx sin πy (12.185)

which yields:

u(x, y) =
∂ψ

∂y
= sinπx cosπy

v(x, y) = −∂ψ
∂x

= − cosπx sin πy (12.186)

The pressure field is
p(x, y) = 2π cos(πx) cos(πy) (12.187)

with

ρ(x, y) = sin(πx) sin(πy) gy = −4π2 cos(πx)

sin(πx)
(12.188)

Taken from [440]
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νrms =

√
1

LxLy

∫ 1

0

∫ 1

0

(u2 + v2)dxdy

=

√∫ 1

0

∫ 1

0

(sin2(πx) cos2(πy) + cos2(πx) sin2(πy))dxdy

=

√∫ 1

0

sin2(πx)dx ·
∫ 1

0

cos2(πy)dy +

∫ 1

0

cos2(πx)dx ·
∫

sin2(πy)dy

=

√
1

2

1

2
+

1

2

1

2

=

√
2

2
≃ 0.70711... (12.189)

12.2.6 The sinker problem

This experiment is not a benchmark stricto sensu since there is no analytical solution. However, it is
widely used in the technical literature because of its simple setup and since it allows to test solving
strategies. Also, it can conveniently be carried out in both two and three dimensions.

In two dimensions The time dependent version of the experiment is for instance to be found in
Gerya [455] and the same is repeated in Thieulot [1258].

This simple benchmark provides challenging numerical experiments dealing with large viscosity
variations within the simulation domain. It consists of a bulk of fluid 1 (η1, ρ1) in which a block of
fluid 2 (η2, ρ2) falls under its own weight. The domain is a square of size Lx = Ly = 500km and the
block is initially centred at point (x = 250km, y = 400km) with size 100×100km. Free slip boundary
conditions are imposed on all sides of the domain. In [1258] five experiments have been conducted:
η1 = 1020Pa s, ρ2 = 3220kgm−3 ; η1 = 1021Pa s, ρ2 = 3300kgm−3 ; η1 = 1022Pa s, ρ2 = 6600kgm−3

; η1 = 1023Pa s, ρ2 = 3300kgm−3 ; η1 = 1024Pa s, ρ2 = 9900kgm−3 ; while in all experiments the
density of the surrounding fluid is ρ1 = 3200kgm−3 and the viscosity of the block is varied between
1019 and 5 · 1027Pa s.
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Left: η1 = 1021Pa s, ρ2 = 3300kgm−3. (a) Initial setup; (b) η1 = 1021Pa s at time t = 10 Myrs; (c) η1 = 1022Pa s at time t = 20 Myrs; (d) η1 = 1023Pa s at

time t = 20 Myrs; (e) η1 = 1025Pa s at time t = 20 Myrs; (f) η1 = 1027Pa s at time t = 20 Myrs. Right: Velocity measurements as a function of the viscosity

contrast between surrounding medium and block for all experiments. Taken from [1258]

In three dimensions Let us look at the sinker experiment from Furuichi et al. [431]: The domain
is the unit box the origin at the center of the box. A cube with a viscosity η1 = ∆η and density
ρ1 = 1 was placed at the middle of the domain defined by −0.15 ≤ x, y, z ≤ 0.15. The material
surrounding the cube has the properties η0 = 1 and ρ0 = 0. The body force of the momentum
equation was taken as (0, 0,−ρg) with g = 1. Along all walls on the domain, free-slip boundary
conditions were employed.

Left: Simulation setup for the 3D falling block (SINKER) problem. The vectors represent computed flow. Taken from Furuichi, May, and Tackley [431]

(2011). Right: same experiment in Sanan, May, Mills, et al. [1107] (2022).

Sinking block results for multiple elements The setup is slightly altered: the domain is
512x512km. The block has size Lb × Lb = 128× 128km, and is centered on (Lx/2, 3Ly/4). Free slip
on all sides. Pressure is volume normalised. |gy| = 10. This benchmark is part of Aspect , and
can therefore be run with Q2 × Q1, Q2 × P−1 and Q1 × P0 elements (although the solver does not
converge for the latter at high resolutions). Velocity and pressure are measured in the middle of the
block (in the case of the Q+

1 × P0 element the projected pressure q on the Q1 is used).
As above, the quantity |v|η1/δρvelocity is considered, but this time plotted as a function of the

resolution for a fixed η2 and for various element types. The quantity p/δρ/Lb is also plotted:
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Results for ρ1 = 0, ρ2 = δρ = 8, η1 = 1021 and η2 = 1018
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Results for ρ1 = 0, ρ2 = δρ = 8, η1 = 1021 and η2 = 1022

Results obtained with Aspect with ρ1 = 3200 and ρ2 = ρ1 + δρ are shown here:
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12.2.7 The hot blob problem

This is a very similar setup as the 3D sinker from the same authors with higher but more diffusive
variation of viscosity. The body force is given by (0, 0, βT ) and where the temperature field T is
defined by T = exp(−γ(x2 + y2 + (z − 0.3)2)) with the constant parameters β = 106 and γ = 200.
The temperature-dependent viscosity η = exp(−αT ) is employed with the parameter for viscosity
contrast α.

Simulation setting of BLOB problem. Isosurface and vectors represent temperature field

and computed flow respectively. Taken from [431]
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12.2.8 The punch/indentor problem in 2D

The punch benchmark is one of the few boundary value problems involving plastic solids for which
there exists an exact solution. Such solutions are usually either for highly simplified geometries
(spherical or axial symmetry, for instance) or simplified material models (such as rigid plastic solids)
[661].

In this experiment, a rigid punch indents a rigid plastic half space; the slip line field theory gives
exact solutions as shown hereunder:

Two-dimensional rigid punch indenting a rigid plastic half space. (a) Prandtl’s rigid plastic solution; (b) Hill’s solution. Taken from [1261]

The plane strain formulation of the equations and the detailed solution to the problem were
derived in the Appendix of [1261] and are also presented in [449] and in [125, Chapt.6]. The two
dimensional punch problem has been extensively studied numerically for the past 40 years [1427,
1015, 1426, 1429, 253, 252, 611, 1393, 160, 1031, 467] and has been used to draw a parallel with
the tectonics of eastern China in the context of the India-Eurasia collision [1238, 890, 374] or the
European Alps [1054]. It is also worth noting that it has been carried out in one form or another in
series of analogue modelling articles concerning the same region, with a rigid indenter colliding with
a rheologically stratified lithosphere [1237, 990, 320, 656].

a) b) c)

d) e) f)
b,c) Model by Tapponnier et al. (1982) [1237] or Peltzer & Tapponnier (1988) [990]. Not sure about source for other figures.
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Numerically, the one-time step punch experiment is performed on a two-dimensional domain of
purely plastic von Mises material. Given that the von Mises rheology yield criterion does not depend
on pressure, the density of the material and/or the gravity vector is set to zero. Sides are set to free
slip boundary conditions, the bottom to no slip, while a vertical velocity (0,−vp) is prescribed at the
top boundary for nodes whose x coordinate is within [Lx/2− δ/2, Lx/2 + δ/2].

The analytical solution predicts that the angle of the shear bands stemming from the sides of the
punch is π/4, that the pressure right under the punch is 1 + π, and that the velocity of the rigid
blocks on each side of the punch is vp/

√
2 (this is simply explained by invoking conservation of mass).

The punch benchmark results after 500 nonlinear iterations for a rough punch (left column) and a smooth punch (right column). (a,f) Viscosity field with

analytical slip lines. (b,g) Strain rate norm ε̇e with measured shear band angles. (c,h) Velocity magnitude with velocity vectors along the surface of the

domain. (d,i) Pressure field. (e,j) Pressure along the surface of the domain (colored line) and analytical solution values π + 1 and 1 (grey lines). Taken from

[467]

Remark. This benchmark is often mentioned or used in the context of bearing capacity, footings,
limit state design/analysis [870, 1418, 477, 478, 758, 1161].

12.2.9 Driven cavity with analytical solution

This comes from Elman et al. [371](section 3.1.4)6. The velocity is prescribed to be

v⃗ = (2y(1− x2);−2x(1− y2))

on the domain Ω = [−1 : 1]× [−1 : 1]. The strainrate tensor is given by:

ε̇ =

(
−4xy −x2 + y2

−x2 + y2 4xy

)
The Stokes equation is then:

−∂p
∂x

+ 2η(−4y + 2y) = ρgx (12.190)

−∂p
∂y

+ 2η(−2x+ 4x) = ρgy (12.191)

6actually, not?
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where we assume the viscosity η = 1 to be constant in space. Assuming gx = 0, the first equation is

∂p

∂x
= −4y

i.e.
p(x, y) = −4yx+ f(y)

Inserting this in the second equation:

4x− f ′(y) + 4x = ρgy

or,
−f ′(y) + 8x = ρgy

Assuming gy = −1, we get ρ = −8x and then f ′(y) = 0 so f(y) = C where C is a constant. Finally
the pressure is given by:

p(x, y) = −4yx+ C

We add the following requirement:
∫
Ω
p(x, y)dΩ = 0 so that C = 0.

ν2
rms =

1

Ω

∫
Ω

(u2 + v2)dΩ

=
1

4

∫ +1

−1

∫ +1

−1

(u2 + v2)dxdy

=
1

4

∫ +1

−1

∫ +1

−1

[4y2(1− x2)2 + 4x2(1− y2)2]dxdy

=

∫ +1

−1

∫ +1

−1

[y2(1− x2)2 + x2(1− y2)2]dxdy

=

∫ +1

−1

∫ +1

−1

[y2(1− 2x+ x2) + x2(1− 2y + y2)]dxdy

=

∫ +1

−1

∫ +1

−1

y2dxdy +

∫ +1

−1

∫ +1

−1

2x2y2dxdy +

∫ +1

−1

∫ +1

−1

x2dxdy

= 2
2

3
+ 2

2

3

2

3
+ 2

2

3

=
32

9
= 3.5555 (12.192)

We can reformulate the benchmark in the unit square Ω = [0 : 1]× [0 : 1].
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u(x, y) = (2y − 1)x(1− x)
v(x, y) = −(2x− 1)y(1− y)

Then

ε̇xx(x, y) = (2y − 1)(1− 2x)

ε̇xy(x, y) = x(1− x)− y(1− y)
ε̇yy(x, y) = −(2x− 1)(1− 2y)

We of course recover
ε̇xx(x, y) + ε̇yy(x, y) = 0

The Stokes equation is then:

−∂p
∂x

+ 2η(−2(2y − 1)− (1− 2y)) = ρgx

−∂p
∂y

+ 2η((1− 2x) + 2(2x− 1)) = ρgy

or

−∂p
∂x

+ 2η(1− 2y) = ρgx

−∂p
∂y
− 2η(1− 2x) = ρgy

where we assume the viscosity η = 1 to be constant in space. Assuming gx = 0, the first equation is

∂p

∂x
= 2(1− 2y)

i.e.
p(x, y) = 2x(1− 2y) + f(y)

Inserting this in the second equation:

4x− f ′(y)− 2(1− 2x) = ρgy

Assuming gy = −1, then
8x− 2− f ′(y) = ρ

we set ρ(x, y) = 8x− 2 and then f ′(y) = 0 so f(y) = C where C is a constant. Finally the pressure
is given by:

p(x, y) = 2x(1− 2y) + C

We add the following requirement:
∫
Ω
p(x, y)dΩ = 0∫ 1

0

∫ 1

0

p(x, y) = 0⇒
∫ 1

0

∫ 1

0

[2x(1− 2y) + C] = 0

so that C = 0.
We also find νrms =

1√
45
≃ 0.1490711985
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12.2.10 Viscous flow around a cylinder in 2D and 3D

There are many variants of this problem: 2D in Turek [1292], 3D in John [651]. Many studies focus
on Navier-Stokes flow since the cylinder generates vortices at high Reynolds numbers. Steady state
solutions at low Re are shown here7. Note the interesting benchmark for 2D visco-elastic flow in
Beuchert & Podlachikov [86].

Left: taken from Turek [1292]; Right: taken from John [651]

Relevant Literature: Tachibana & Iemoto (1987) [1226] Schäfer & Turek (1996) [1115]

12.2.11 Heat flow around a cylinder

The domain is a 2D Cartesian box of size 8x4. The Stokes equations are not solved and the following
velocity is prescribed:

u(x, y) = U∞

(
1− x2 − y2

(x2 + y2)2

)
(12.193)

v(x, y) = −2U∞
xy

(x2 + y2)2
(12.194)

Boundary conditions are as follows: T = 0 is imposed at the top and bottom of the domain. T = 1
is imposed inside a disc centered at (2,2) with radius 1. Further: k = 0.01, Cp = 1, ρ = 1, CFL
number is 0.1.

7upofthetestanddatameasurement
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Time evolution of the temperature field. Results obtained with Elefant (unpublished)

This is carried out in stone 65.

12.2.12 Thermal diffusion of half-cooling space

This is a simple 1D experiment which solution is (for instance) available in Turcotte & Schubert
[1288] and is also presented in Choi et al. [238].

The domain is 100km deep. T0 =0◦C is prescribed a the surface and Tm =1300◦C is prescribed
at the bottom. The initial temperature is T (y) = 1300◦C. The material is characterised by ρ =
1000kg/m3, Cp = 1000J/kg/K, k = 1J/m/K. The time-dependent solution is given by:

T (y, t) = T0 + (T0 − Tm)erf

(
y

2
√
kt/ρCp

)
(12.195)

Thermal diffusion of half space cooling plate. The temperature profiles in the analytical solution at 1, 5, and 15 Myrs are plotted in solid lines. The results

from DynEarthSol2D are plotted in circles. Taken from [238]

12.2.13 Laplace equation on a semi infinite plate

benchmark laplace plate.tex

This experiment is based on a 2nd year mathematics lecture I give at Utrecht University. One
wishes to solve the Laplace equation for temperature on the following plate subject to the indicated
boundary conditions:
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The temperature satisfies the 2D Laplace equation inside the plate:

∂2T

∂x2
+
∂2T

∂y2
= 0 (12.196)

We could try to solve the equation by using a tentative solution of the form:

T (x, y) = θ(x)Φ(y) (12.197)

We do not know the solution is of this form.
We substitute (2) into (1) and obtain:

Φ
∂2θ

∂x2
+ θ

∂2Φ

∂y2
= 0

Dividing by θΦ gives:
1

θ

∂2θ

∂x2
+

1

Φ

∂2Φ

∂y2
= 0

Separation of variables: we say that each term is a constant because the first term is a function
of x only and the second a function of y only. We then write

1

θ

∂2θ

∂x2
= − 1

Φ

∂2Φ

∂y2
= −k2

where k is called the separation constant. This leads to

∂2θ

∂x2
+ k2θ = 0

∂2Φ

∂y2
− k2Φ = 0

� The solution to the first one is θ(x) = sin kx or θ(x) = cos kx

� The solution to the second one is Φ(x) = ekx or Φ(x) = e−kx
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The general solution writes:

T (x, y) = θ(x)Φ(y) =

{
sin kx
cos kx

}{
eky

e−ky

}
We can now use the b.c. to find the solution to the Laplace equation.

� Since T → 0 when y →∞ then eky unacceptable.

� Since T = 0 when x = 0 then cos kx unacceptable.

so
T (x, y) = sin(kx) e−kx

We finally use T = 0 at x = 10 which leads to 10k = nπ, i.e.:

T (x, y) = sin(
nπx

10
) e−nπy/10

Problem: the solution does not satisfy T (x, 0) = 100. However, a linear combination of
solutions is still a solution ! Let’s find such a combination which satisfies the b.c. at y = 0 :

T (x, y) =
∞∑
n=1

bn sin(
nπx

10
) e−nπy/10

We impose then T (x, 0) = 100:

100 =
∞∑
n=1

bn sin(
nπx

10
)

This is the Fourier sine series of f(x) = 100 with l = 10 (chapter 7.9 of Boas).
The coefficient bn is then given by

bn =
2

l

∫ l

0

f(x) sin
nπx

l
dx =

2

10

∫ l

0

100 sin
nπx

10
dx =

{
400/nπ odd n
0 even n

Finally (!):

T (x, y) =
400

π

(
e−πy/10 sin(

πx

10
) +

1

3
sin(

3πx

10
) e−3πy/10 + . . .

)
The simulation has been run with a 10x50 domain. All coefficients of the temperature equation

are set to 1, and the Stokes equation is not solved. The timestep is fixed to dt = 0.1. Resolution is
32x160.

a) b)
a) time evolution of the temperature field; b) analytical steady state solution
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12.2.14 Slab detachment benchmark

Relevant Literature: Schmeling (2011) [1116], Aspect manual [44], Glerum et al. [467], stone 26.

The detachment benchmark model setup of Schmalholz [1116]: a symmetric system of nonlinear viscous lithosphere with a vertical slab extending into a linear

viscous mantle. The top and bottom boundaries are free slip, while the vertical boundaries are no slip. Taken from [467].

12.2.15 Layered flow with viscosity contrast

The idea behind this benchmark is to construct an analytical solution to the incompressible Stokes
equation in the case where the viscosity field showcases a viscosity contrast at location y = y0 whose
amplitude and width can be controlled. The viscosity is defined as

η(y) =
1

1
π
tan−1(y−y0

β
) + 1/2 + ϵ

where β and ϵ are parameters.
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Viscosity profiles for different values of β and ϵ for y0 = 1/3. When β is very large, the viscosity essentially converges to ∼ (1/2 + ϵ)−1. β controls the width

of the transition while ϵ controls the amplitude of the viscosity variation.

The flow is assumed to take place in an infinitely long pipe (in the horizontal direction) and bound
by y = −1 and y + 1. At the bottom we impose vx(y = −1) = 0 while we impose vx(y = +1) = 1 at
the top. The density is set to 1 while the gravity is set to zero. Under these assumptions, the flow
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velocity and pressure fields are given by:

vx(x, y) =
1

2π

(
−βC1 log[β

2 + (z − y0)2] + 2(z − y0)C1 tan
−1 z − y0

β
+ π(1 + 2ϵ)zC1 + C2

)
vy(x, y) = 0

p(x, y) = 0 (12.198)

where C1 and C2 are integration constants:

C1 = 2π

[
β log[β2 + (1 + y0)

2]− 2(1 + y0) tan
−1 1 + y0

β
− β log[β2 + (1− y0)2] + 2(1− y0) tan−1 1− y0

β
+ 2π(1 + 2ϵ)

]−1

C2 =

[
β log[β2 + (1 + y0)

2]− 2(1 + y0) tan
−1 1 + y0

β
+ π(1 + 2ϵ)

]
C1, (12.199)

Velocity and viscosity fields

Analytical derivations The flow takes place in the horizontal direction and is infinite in the this
direction too so that:

ν⃗ = (u(y), 0)

The strain rate tensor is then given by:

ε̇ =
1

2

(
0 du/dy

du/dy 0

)
The momentum equation then becomes:

∇⃗ · (2ηε̇)− ∇⃗p = ∇⃗ ·
[
η(y)

(
0 du/dy

du/dy 0

)]
− ∇⃗p = ρg⃗

On the vertical axis, when the gravity is zero, the equation is automatically verified when the pressure
is zero. On the horizontal axis:

d

dy

(
η(y)

du

dy

)
= 0

Then

η(y)
du

dy
= C1

or,
du

dy
=

C1

η(y)
= C1

(
1

π
tan−1 y − y0

β
+ 1/2 + ϵ

)
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so that the velocity is given by:

u(y) =
1

π
(y tan−1((y− y0)/β)− y0 tan−1((y− y0)/β)− 0.5 ∗ β log(β2 + y2− 2yy0 + y20) + πy(ϵ+ 0.5))

u(z) =
1

2π

(
−βC1 log[β

2 + (z − y0)2] + 2(z − y0)C1 tan
−1 z − y0

β
+ π(1 + 2ϵ)zC1 + C2

)
where C1 and C2 are integration constants. I wish to impose u(z = −1) = 0 and u(z = +1) = 1:

1

2π

(
−βC1 log[β

2 + (−1− y0)2] + 2(−1− y0)C1 tan
−1 −1− y0

β
− π(1 + 2ϵ)C1 + C2

)
= 0

1

2π

(
−βC1 log[β

2 + (1− y0)2] + 2(1− y0)C1 tan
−1 1− y0

β
+ π(1 + 2ϵ)C1 + C2

)
= 1

or,

−βC1 log[β
2 + (−1− y0)2] + 2(−1− y0)C1 tan

−1 −1− y0
β

− π(1 + 2ϵ)C1 + C2 = 0

−βC1 log[β
2 + (1− y0)2] + 2(1− y0)C1 tan

−1 1− y0
β

+ π(1 + 2ϵ)C1 + C2 = 2π

or,

−βC1 log[β
2 + (−1− y0)2] + 2(1 + y0)C1 tan

−1 1 + y0
β
− π(1 + 2ϵ)C1 + C2 = 0

−βC1 log[β
2 + (1− y0)2] + 2(1− y0)C1 tan

−1 1− y0
β

+ π(1 + 2ϵ)C1 + C2 = 2π

or,
−βC1 log(β

2 + (1 + y0)
2) + 2(1 + y0)C1 tan

−1((1 + y0)/β)− π(1 + 2ϵ)C1 + C2 = 0

−βC1 log(β
2 + (1− y0)2) + 2(1− y0)C1 tan

−1((1− y0)/β) + π(1 + 2ϵ)C1 + C2 = 2π

I can now substract the first line from the second line:

βC1 log(β
2+(1+y0)

2)−2(1+y0)C1 tan
−1((1+y0)/β)−βC1 log(β

2+(1−y0)2)+2(1−y0)C1 tan
−1((1−y0)/β)+2π(1+2ϵ)C1 = 2π

i.e.,

C1 = 2π

[
β log[β2 + (1 + y0)

2]− 2(1 + y0) tan
−1[

1 + y0
β

]− β log[β2 + (1− y0)2] + 2(1− y0) tan−1[
1− y0
β

] + 2π(1 + 2ϵ)

]−1

and then

C2 = βC1 log(β
2 + (1 + y0)

2)− 2(1 + y0)C1 tan
−1((1 + y0)/β) + π(1 + 2ϵ)C1
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12.2.16 The annulus convection benchmark # 1

benchmark annulus converction benchmark1.tex

We wish to solve the Stokes equation in an annulus of inner radius R1 and outer radius R2 with
the following boundary conditions:

� Inner boundary: νr(R1, θ) = 0

� Outer boundary: νr(R2, θ) = 0

We then postulate
νθ(r, θ) = f(r) cos(kθ)

Note that in the case k = 0, we recover a constant velocity on the inner and outer boundaries.
The divergence of an incompressible vector field in polar coordinates is

1

r

∂(rνr)

∂r
+

1

r

∂νθ
∂θ

= 0

or,
∂(rνr)

∂r
+
∂νθ
∂θ

= 0

i.e.,
∂(rνr)

∂r
= −∂νθ

∂θ
= kf(r) sin(kθ)

so

rνr(r, θ) = k

[∫
f(r)dr

]
sin(kθ)

and finally
νr(r, θ) = kg(r) sin(kθ)

with

g(r) =
1

r

∫
f(r)dr (12.200)

g′(r) = − 1

r2

∫
f(r)dr +

1

r
f = −1

r
g +

1

r
f =

1

r
(f − g) (12.201)

The boundary conditions lead to

νr(r = R1, θ) = k(
A

2
R1 +

B

R1

lnR1 +
C

R1

) sin(kθ) = 0

νr(r = R2, θ) = k(
A

2
R2 +

B

R2

lnR2 +
C

R2

) sin(kθ) = 0

This has to be valid ∀θ, so

A

2
R2

1 +B lnR1 = −C and
A

2
R2

2 +B lnR2 = −C

leading to
A

2
+
B

R2
1

lnR1 = −
C

R2
1

and
A

2
+
B

R2
2

lnR2 = −
C

R2
2

and finally

B = −C R2
2 −R2

1

R2
2 lnR1 −R2

1 lnR2
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Likewise
A

2
R2

1 +B lnR1 = −C and
A

2
R2

2 +B lnR2 = −C

yields
A

2 lnR1

R2
1 +B = − C

lnR1

and
A

2 lnR2

R2
2 +B = − C

lnR2

or,
A

2 lnR1

R2
1 −

A

2 lnR2

R2
2 = −C(

1

lnR1

− 1

lnR2

)

A(
R2

1

2 lnR1

− R2
2

2 lnR2

) = −C( 1

lnR1

− 1

lnR2

)

A(
R2

1 lnR2

2
− R2

2 lnR1

2
) = −C(lnR2 − lnR1)

finally

A = −C 2(lnR2 − lnR1)

R2
1 lnR2 −R2

2 lnR1

= −C 2(lnR1 − lnR2)

R2
2 lnR1 −R2

1 lnR2

We set g⃗ = −gre⃗r. Stokes equation in Polar coordinates (p284 of Schubert, Turcotte and Olson
book):

� r-component:

η

[
∇2νr −

νr

r2
− 2

r2
∂νθ
∂θ

]
+
η

3

∂

∂r

[
1

r

∂(rνr)

∂r
+

1

r

∂νθ
∂θ

]
− ∂p

∂r
− ρgr = 0

The second term between brackets in the divergence of the velocity field so it is equal to zero
in our case. We end up with

η

[
∇2νr −

νr

r2
− 2

r2
∂uθ
∂θ

]
− ∂p

∂r
− ρgr = 0

� θ-component:

η

[
∇2νθ +

2

r2
∂νr
∂θ
− νθ

r2

]
+
η

3

1

r

∂

∂θ

[
1

r

∂(rνr)

∂r
+

1

r

∂νθ
∂θ

]
− 1

r

∂p

∂θ
= 0

The second term between brackets in the divergence of the velocity field so it is equal to zero
in our case. We end up with

η

[
∇2νθ +

2

r2
∂νr
∂θ
− νθ

r2

]
− 1

r

∂p

∂θ
= 0

In both equations, ∇2 represents the Laplacian of a scalar quantity:

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

We can then write the two momentum equations for an incompressible Stokes flow in polar coordi-
nates:

η

[
∂2νr
∂r2

+
1

r

∂νr
∂r

+
1

r2
∂2νr
∂θ2

− νr

r2
− 2

r2
∂νθ
∂θ

]
− ∂p

∂r
− ρgr = 0

η

[
∂2νθ
∂r2

+
1

r

∂νθ
∂r

+
1

r2
∂2νθ
∂θ2

+
2

r2
∂νr
∂θ
− νθ

r2

]
− 1

r

∂p

∂θ
= 0
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We can further choose η = 1, so that

∂2νr
∂r2

+
1

r

∂νr
∂r

+
1

r2
∂2νr
∂θ2

− νr

r2
− 2

r2
∂νθ
∂θ
− ∂p

∂r
− ρgr = 0 (12.202)

∂2νθ
∂r2

+
1

r

∂νθ
∂r

+
1

r2
∂2νθ
∂θ2

+
2

r2
∂νr
∂θ
− νθ

r2
− 1

r

∂p

∂θ
= 0 (12.203)

Let us define f(r) = Ar +B/r. We then have

∂2f

∂r2
+

1

r

∂f

∂r
− f

r2
= A

(
∂2r

∂r2
+

1

r

∂r

∂r
− 1

r

)
+B

(
∂2r−1

∂r2
+

1

r

∂r−1

∂r
− 1

r3

)
= 0 (12.204)

Eq. (12.203) simplifies to:
1

r2
∂2νθ
∂θ2

+
2

r2
∂νr
∂θ
− 1

r

∂p

∂θ
= 0

We have
1

r2
∂2νθ
∂θ2

= −k2f(r)
r2

cos(kθ) and
2

r2
∂νr
∂θ

=
2k2

r2
g(r) cos(kθ)

so
1

r

∂p

∂θ
= −k

2

r2
f(r) cos(kθ) +

2k2

r2
g(r) cos(kθ) = k2

(
2g(r)− f(r)

r2

)
cos(kθ)

and then
∂p

∂θ
= k2

(
2g(r)− f(r)

r

)
cos(kθ)

This can be integrated with respect to θ:

p(r, θ) = k

(
2g(r)− f(r)

r

)
sin(kθ) + l(r) = kh(r) sin(kθ) + l(r)

where h(r) = 1
r
(2g(r)− f(r)). We can turn to Eq.(12.202).

ρgr =
∂2νr
∂r2

+
1

r

∂νr
∂r

+
1

r2
∂2νr
∂θ2

− νr

r2
− 2

r2
∂νθ
∂θ
− ∂p

∂r

= +kg′′(r) sin(kθ) + k
g′(r)

r
sin(kθ)− k3 g(r)

r2
sin(kθ)− kg(r)

r2
sin(kθ) + k

2f(r)

r2
sin(kθ)− kh′(r) sin(kθ)− l′(r)

= k sin(kθ)

[
g′′ +

g′

r
− k2g

r2
− g

r2
+

2f

r2
− h′

]
− l′(r)

= k sin(kθ)

[
g′′ +

g′

r
− k2g

r2
− g

r2
+

2f

r2
+

1

r2
(2g − f)− 1

r
(2g′ − f ′)

]
− l′(r)

= k sin(kθ)

[
g′′ +

g′

r
(1− 2)− g

r2
(k2 + 1− 2) +

f

r2
(2− 1) +

f ′

r

]
− l′(r)

= k sin(kθ)

[
g′′ − g′

r
− g

r2
(k2 − 1) +

f

r2
+
f ′

r

]
− l′(r) (12.205)

We can further choose gr = 1. Note that when k = 0, we have ρ = −l′(r). We then choose
l′(r) = −ρ0 so that the k-dependent term can be seen as a density perturbation:

ρ = k sin(kθ)ℵ(r) + ρ0

with

ℵ(r) = g′′ +
g′

r
(1− 2

r
)− g

r2
(k2 + 1− 4

r
) +

2f

r2
(1− 1

r
) +

f ′

r2
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and

f(r) = Ar +
B

r
(12.206)

f ′(r) = A− B

r2
(12.207)

g(r) =
A

2
r +

B

r
ln r − 1

r
(12.208)

g′(r) =
A

2
+
B

r2
(1− ln r) +

1

r2
(12.209)

g′′(r) = −2B

r3
(1− ln r)−B 1

r3
− 2

r3
= −B

r3
(3− 2 ln r) (12.210)

Finally, the pressure is then given by

p(r, θ) = k

(
2g − f
r2

)
sin(kθ) + l(r) = kh(r) sin(kθ) + ρ0grr + Constant

We enforce p(r = R2, θ) = 0 so that

p(r, θ) = k

(
2g − f
r2

)
sin(kθ) + l(r) = kh(r) sin(kθ) + ρ0gr(r −R2)

Summary of the previous pages :

νθ(r, θ) = f(r) cos(kθ) (12.211)

νr(r, θ) = g(r)k sin(kθ) (12.212)

p(r, θ) = kh(r) sin(kθ) + ρ0gr(r −R2) (12.213)

ρ(r, θ) = k sin(kθ)ℵ(r) + ρ0 (12.214)

A =
2(lnR1 − lnR2)

R2
2 lnR1 −R2

1 lnR2

(12.215)

B =
R2

2 −R2
1

R2
2 lnR1 −R2

1 lnR2

(12.216)

f(r) = Ar +
B

r
(12.217)

f ′(r) = A− B

r2
(12.218)

g(r) =
A

2
r +

B

r
ln r − 1

r
(12.219)

g′(r) =
A

2
+
B

r2
(1− ln r) +

1

r2
(12.220)

g′′(r) = −B
r3
(3− 2 ln r) (12.221)

h(r) =
1

r2
(2g − f) (12.222)

ℵ(r) = −g′′ − g′

r
(1− 2

r
) +

g

r2
(k2 + 1− 4

r
)− 2f

r2
(1− 1

r
)− f ′

r2
(12.223)

Averagings of fields :

� Average νr velocity

< νr(r) >=
1

2π

∫ 2π

0

νr(r, θ)dθ =
1

2π

∫ 2π

0

g(r)k sin(kθ)dθ =
1

2π
g(r)k

∫ 2π

0

sin(kθ)dθ = 0
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since k = 0, 2, 4, ...

� Average νθ velocity

< νθ(r) >=
1

2π

∫ 2π

0

νθ(r, θ)dθ =
1

2π

∫ 2π

0

f(r) cos(kθ)dθ =
1

2π
f(r)

∫ 2π

0

cos(kθ)dθ = 0

since k = 0, 2, 4, ...

� Root mean square verage νr velocity

< νr >rms (r) =

√
1

2π

∫ 2π

0

ν2
rdθ

=

√
1

2π
g(r)2k2

∫ 2π

0

sin2(kθ)dθ

=

√
1

2π
g(r)2k2

∫ 2π

0

1

2
(1− cos(2kθ))dθ

=

√
1

2π
g(r)2k2

(
π − 1

2

∫ 2π

0

cos(2kθ)dθ

)

=

√√√√√√√ 1

2π
g(r)2k2

π − 1

4k

∫ 2kπ

0

cosαdα︸ ︷︷ ︸
=0


=

k|g(r)|√
2

(12.224)

� Root mean square verage νθ velocity

< νθ >rms (r) =

√
1

2π

∫ 2π

0

ν2
θdθ

=

√
1

2π
f(r)2

∫ 2π

0

cos2(kθ)dθ

=

√
1

2π
f(r)2

∫ 2π

0

1

2
(1 + cos(2kθ))dθ

=

√
1

2π
f(r)2

(
π +

1

2

∫ 2π

0

cos(2kθ)dθ

)

=

√√√√√√√ 1

2π
f(r)2

π +
1

4k

∫ 4kπ

0

cosαdα︸ ︷︷ ︸
0


=
|f(r)|√

2
(12.225)
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� Root mean square velocity νrms

νrms =

√
1

V

∫
V

(ν2
r + ν2

θ)dV (12.226)

The volume of the domain is given by

V = π(R2
2 −R2

1)

and the sum

(ν2
r + ν2

θ)dV = [(g(r)k sin(kθ))2 + (f(r) cos(kθ))2]rdrdθ

= [g(r)2rdr][k2 sin2(kθ)dθ] + [f(r)2rdr][cos2(kθ)dθ]

If k = 0, we have νθ = f(r) and νr = 0 so that

νrms =

√
1

V

∫ 2π

0

dθ

∫ R2

R1

f(r)2rdr

=

√
2π

π(R2
2 −R2

1)

∫ R2

R1

f(r)2rdr

=

√
2

(R2
2 −R2

1)

∫ R2

R1

(
Ar +

B

r

)2

rdr

=

√
2

(R2
2 −R2

1)

∫ R2

R1

(
A2r3 + 2ABr +

B2

r

)
dr

=

√
2

(R2
2 −R2

1)

[
A2
r4

4
+ ABr2 +B2 ln(r)

]R2

R1

=

√
2

(R2
2 −R2

1)
[
A2

4
(R4

2 −R4
1) + AB(R2

2 −R2
1) +B2(lnR2 − lnR1)] (12.227)

If k ̸= 0 we have ∫ 2π

0

k2 sin2(kθ)dθ =
1

2
k2
∫ 2π

0

(1− cos(kθ))dθ = πk2∫ 2π

0

cos2(kθ)dθ =
1

2

∫ 2π

0

(1 + cos(kθ))dθ = π

so that

V =

∫ 2π

0

∫ R2

R1

(ν2
r + ν2

θ)rdrdθ = πk2
∫ R2

R1

g(r)2rdr + π

∫ R2

R1

f(r)2rdr
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∫ R2

R1

f(r)2rdr =

∫ R2

R1

(
Ar +

B

r

)2

rdr

=

∫ R2

R1

(
A2r3 + 2ABr +

B2

r

)
dr

=

[
A2 r

4

4
+ ABr2 +B2 ln(r)

]R2

R1

=
A2

4
(R4

2 −R4
1) + AB(R2

2 −R2
1) +B2(lnR2 − lnR1)

∫ R2

R1

g(r)2rdr =

∫ R2

R1

(
A

2
r +

B

r
ln r +

C

r

)2

rdr

=

∫ R2

R1

(
A2

4
r2 + AB ln r + AC +

2BC

r2
ln r +

B2

r2
(ln r)2 +

C2

r2

)
rdr

=

∫ R2

R1

(
A2

4
r3 + ABr ln r + ACr +

2BC

r
ln r +

B2

r
(ln r)2 +

C2

r

)
dr

=

∫ R2

R1

(
A2

4
r3 + ACr +

C2

r

)
dr + E + F +G

=

[
A2

16
r4 +

1

2
ACr2 + C2 ln r

]R2

R1

+ E + F +G

=
A2

16
(R4

2 −R4
1) +

AC

2
(R2

2 −R2
1) + C2(lnR2 − lnR1) + E + F +G

(12.228)
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E = 2BC

∫ R2

R1

1

r
ln r dr

= BC

∫ lnR2

lnR1

2XdX X = ln r, dX = dr/r

= BC[X2]lnR2
lnR1

= BC[(lnR2)
2 − (lnR1)

2]

F = B2

∫ R2

R1

1

r
(ln r)2dr

= B2

∫ lnR2

lnR1

X2dX X = ln r, dX = dr/r

=
B2

3
[X3]lnR2

lnR1

=
B2

3
[(lnR2)

3 − (lnR1)
3]

G = AB

∫ R2

R1

r ln rdr

= AB[
1

2
r2 ln r]R2

R1
− AB

∫ R2

R1

1

2
r2
1

r
dr

=
AB

2
[R2

2 lnR2 −R2
1 lnR1]−

AB

2

∫ R2

R1

rdr

=
AB

2
[R2

2 lnR2 −R2
1 lnR1]−

AB

4
[r2]R2

R1

=
AB

2
[R2

2 lnR2 −R2
1 lnR1]−

AB

4
(R2

2 −R2
1)

V/π =
A2

4
(R4

2 −R4
1) + AB(R2

2 −R2
1) +B2(lnR2 − lnR1)

+
A2k2

16
(R4

2 −R4
1) +

ACk2

2
(R2

2 −R2
1) + C2k2(lnR2 − lnR1)

+ BCk2[(lnR2)
2 − (lnR1)

2]

+
B2k2

3
[(lnR2)

3 − (lnR1)
3]

+
ABk2

2
[R2

2 lnR2 −R2
1 lnR1]−

ABk2

4
(R2

2 −R2
1)

=
A2

16
(4 + k2)(R4

2 −R4
1) + (

AB

4
(4− k2) + ACk2

2
)(R2

2 −R2
1)

+ (B2 + C2k2)(lnR2 − lnR1)

+ BCk2[(lnR2)
2 − (lnR1)

2]

+
B2k2

3
[(lnR2)

3 − (lnR1)
3]

+
ABk2

2
[R2

2 lnR2 −R2
1 lnR1] (12.229)
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νrms =

√
1

V
V =

√
1

2(R2
2 −R2

1)

V
π

Computing the strain rate and stress tensors :
Since we know the viscosity, the velocity field and the pressure field, we can also compute the full

stress tensor σ = −p1+ 2ηε̇ In this benchmark we have set η = 1 so: σ = −p1+ 2ε̇ We start with
the velocity gradient:

∇⃗ν⃗ =

 ∂νr
∂r

1
r
∂νr
∂θ
− νθ

r

∂νθ
∂r

1
r
∂νθ
∂θ

+ νr
r


=

 g′k sin(kθ) 1
r
gk2 cos(kθ)− 1

r
f cos(kθ)

f ′ cos(kθ) −1
r
fk sin(kθ) + 1

r
gk sin(kθ)


=

 g′k sin(kθ) 1
r
(gk2 − f) cos(kθ)

f ′ cos(kθ) 1
r
(g − f)k sin(kθ)

 (12.230)

The strain rate is then given by:

ε̇ =
1

2
(∇v +∇vT ) =

 g′k sin(kθ) 1
2r
(rf ′ + gk2 − f) cos(kθ)

1
2r
(rf ′ + gk2 − f) cos(kθ) 1

r
(g − f)k sin(kθ)

 (12.231)

Let us verify once again that the flow is incompressible:

∇⃗ · ν⃗ = g′(r)k sin(kθ) +
1

r
(g(r)− f(r))k sin(kθ) = 1

r
(rg′(r) + g(r)− f(r))k sin(kθ) = 0

since g′(r) = 1
r
(f(r)− g(r)).

I can now write the full stress tensor:

σ = −p1+ 2ε̇ =

 −p+ 2g′k sin(kθ) 1
r
(rf ′ + gk2 − f) cos(kθ)

1
r
(rf ′ + gk2 − f) cos(kθ) −p+ 2

r
(g − f)k sin(kθ)

 (12.232)

On the boundaries, i.e. r = R1 or r = R2, the function g is exactly zero, so that the stress σb on
the boundaries is given by

σb =

 −p+ 2g′k sin(kθ) 1
r
(rf ′ − f) cos(kθ)

1
r
(rf ′ − f) cos(kθ) −p− 2

r
fk sin(kθ)

 (12.233)

Furthermore I can use the identity g′ = (f − g)/r which simplifies to g′ = f/r on the boundaries:

σb =

 −p+ 2f
r
k sin(kθ) 1

r
(rf ′ − f) cos(kθ)

1
r
(rf ′ − f) cos(kθ) −p− 2

r
fk sin(kθ)

 (12.234)

Also, h(r) = 1
r
(2g − f) simplifies to h(r) = −f/r so

p = kh(r) sin(kθ) + ρ0gr(r −R2) = −k
f

r
sin(kθ) + ρ0gr(r −R2)
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Finally

σb =

 k f
r
sin(kθ)− ρ0gr(r −R2) + 2f

r
k sin(kθ) 1

r
(rf ′ − f) cos(kθ)

1
r
(rf ′ − f) cos(kθ) k f

r
sin(kθ)− ρ0gr(r −R2)− 2

r
fk sin(kθ)


=

 k 3f
r
sin(kθ)− ρ0gr(r −R2)

1
r
(rf ′ − f) cos(kθ)

1
r
(rf ′ − f) cos(kθ) −k f

r
sin(kθ)− ρ0gr(r −R2)


The traction along the normal is given by

σn = σb · n⃗ = −σb · e⃗r = −

 k 3f
r
sin(kθ)− ρ0gr(r −R2)

1
r
(rf ′ − f) cos(kθ)


Strain rate tensor in Cartesian coordinates The analytical expressions for the strain rate
components in polar coordinates are:

ε̇rr = g′(r)k sin kθ (12.235)

ε̇rθ = ε̇θr =
1

2

(
1

r
g(r)k2 cos kθ + f ′(r) cos kθ − f(r)

r
cos kθ

)
(12.236)

=
1

2

(
1

r
g(r)k2 + f ′(r)− f(r)

r

)
cos kθ (12.237)

ε̇θθ = −1

r
kf(r) sin kθ +

g(r)

r
k sin kθ (12.238)

=
g(r)− f(r)

r
k sin kθ (12.239)

Their counterparts in Cartesian coordinates are obtained with Eqs. (2.154).

Could we find a steady state temperature field that goes along? We can start from the
pure advection equation:

ρCp

(
∂T

∂t
+ ν⃗ · ∇⃗T

)
= 0

At steady state we are left with
ν⃗ · ∇⃗T = 0

I postulate then
T (r, θ) = l(r)(α cos kθ + β sin kθ)

Inserting this into the equation above I arrive at the conclusion that β ̸= 0 is a dead end. It then
simply follows that

T (r, θ) = l(r) cos kθ

which yields T (r, θ) = rg(r) cos(kθ). and

∇⃗T = (f(r) cos kθ;−g(r)k sin kθ)

I can then plot the temperature gradient (in black) next to the velocity field in red (right figure) and
show that these are indeed always perpendicular:
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However, what is deeply puzzling is the fact that the temperature is exactly zero on both bound-
aries (beacuse g(r) is by construction) and yet the temperature field is not zero in the middle, in the
absence of heat source ... ?
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12.2.17 The annulus convection benchmark #2 - no slip bc

We seek an exact solution to the incompressible Stokes equations for an isoviscous, isothermal fluid
in an annulus. Given the geometry of the problem, we work in polar coordinates. We denote the
orthonormal basis vectors by e⃗r and e⃗θ, the inner radius of the annulus by R1 and the outer radius
by R2. Further, we assume that the viscosity η is constant, which we set to η = 1, we set the gravity
vector to g⃗ = −gr e⃗r with gr = 1.

Given these assumptions, the incompressible Stokes equations in the annulus are (see Schubert,
Turcotte & Olson [1140]):

Ar =
∂2νr
∂r2

+
1

r

∂νr
∂r

+
1

r2
∂2νr
∂θ2

− νr

r2
− 2

r2
∂νθ
∂θ
− ∂p

∂r
= ρgr (12.240)

Aθ =
∂2νθ
∂r2

+
1

r

∂νθ
∂r

+
1

r2
∂2νθ
∂θ2

+
2

r2
∂νr
∂θ
− νθ

r2
− 1

r

∂p

∂θ
= 0 (12.241)

1

r

∂(rνr)

∂r
+

1

r

∂νθ
∂θ

= 0 (12.242)

Equations (12.240) and (12.241) are the momentum equations in polar coordinates while Equation
(12.242) is the mass conservation equation (also called continuity equation). The components of the
velocity are obtained from the stream function Ψ as follows:

νr =
1

r

∂Ψ

∂θ
νθ = −

∂Ψ

∂r

where νr is the radial component and νθ is the tangential component of the velocity vector.
The stream function is defined for incompressible (divergence-free) flows in 2D (as well as in

3D with axisymmetry). The stream function can be used to plot streamlines, which represent the
trajectories of particles in a steady flow. From calculus it is known that the gradient vector ∇Ψ is
normal to the curve Ψ = C. It can be shown that everywhere ν⃗ · ∇Ψ = 0 using the formula for u⃗ in
terms of Ψ which proves that level curves of Ψ are streamlines:

ν⃗ · ∇Ψ = νr
∂Ψ

∂r
+ νθ

1

r

∂Ψ

∂θ
=

1

r

∂Ψ

∂θ

∂Ψ

∂r
− ∂Ψ

∂r

1

r

∂Ψ

∂θ
= 0

In polar coordinates the curl of a vector A⃗ is 8:

∇⃗ × A⃗ =
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
e⃗z

Taking the curl of vector A⃗ (see Eqs. (12.240) and (12.241)) yields:

1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
=

1

r

(
−∂(ρgr)

∂θ

)
Multiplying on each side by r

∂(rAθ)

∂r
− ∂Ar

∂θ
= −∂ρgr

∂θ
If we now replace Ar and Aθ by their expressions as a function of velocity and pressure, we will
see that the pressure terms cancel out (which is one of the advantages of working with stream line
formulations).

Let us assume the following separation of variables Ψ(r, θ) = ϕ(r)ξ(θ) . Then

νr =
1

r

∂Ψ

∂θ
=
ϕξ′

r
νθ = −

∂Ψ

∂r
= −ϕ′ξ

8https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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Let us first express Ar and Aθ as functions of ϕ and ξ:

Ar =
∂2νr
∂r2

+
1

r

∂νr
∂r

+
1

r2
∂2νr
∂θ2

− νr

r2
− 2

r2
∂νθ
∂θ
− ∂p

∂r

=
∂2

∂r2

(
ϕξ′

r

)
+

1

r

∂

∂r

(
ϕξ′

r

)
+

1

r2
∂2

∂θ2

(
ϕξ′

r

)
− 1

r2

(
ϕξ′

r

)
− 2

r2
∂

∂θ
(−ϕ′ξ)− ∂p

∂r

=

(
ϕ′′

r
− 2

ϕ′

r2
+ 2

ϕ

r3

)
ξ′ +

(
ϕ′

r2
− ϕ

r3

)
ξ′ +

ϕ

r3
ξ′′′ − ϕξ′

r3
+

2

r2
ϕ′ξ′ − ∂p

∂r

=
ϕ′′ξ′

r
+
ϕ′ξ′

r2
+
ϕξ′′′

r3
− ∂p

∂r
∂Ar
∂θ

=
ϕ′′ξ′′

r
+
ϕ′ξ′′

r2
+
ϕξ′′′′

r3
− ∂2p

∂r∂θ
(12.243)

Aθ =
∂2νθ
∂r2

+
1

r

∂νθ
∂r

+
1

r2
∂2νθ
∂θ2

+
2

r2
∂νr
∂θ
− νθ

r2
− 1

r

∂p

∂θ

=
∂2

∂r2
(−ϕ′ξ) +

1

r

∂

∂r
(−ϕ′ξ) +

1

r2
∂2

∂θ2
(−ϕ′ξ) +

2

r2
∂

∂θ

(
ϕξ′

r

)
− 1

r2
(−ϕ′ξ)− 1

r

∂p

∂θ

= −ϕ′′′ξ − ϕ′′ξ

r
+
ϕ′(ξ − ξ′′)

r2
+

2ϕξ′′

r3
− 1

r

∂p

∂θ

rAθ = −ϕ′′′ξr − ϕ′′ξ +
ϕ′(ξ − ξ′′)

r
+

2ϕξ′′

r2
− ∂p

∂θ
∂(rAθ)

∂r
= − (ϕ′′′ξ + ϕ′′′′ξr)− ϕ′′′ξ + (ξ − ξ′′)

(
ϕ′′

r
− ϕ′

r2

)
+

(
2ϕ′ξ′′

r2
− 2

2ϕξ′′

r3

)
− ∂2p

∂θ∂r

= −2ϕ′′′ξ − ϕ′′′′ξr +
1

r
ϕ′′(ξ − ξ′′) + 1

r2
(−ϕ′(ξ − ξ′′) + 2ϕ′ξ′′) +

1

r3
(−4ϕξ′′)− ∂2p

∂θ∂r

= −2ϕ′′′ξ − ϕ′′′′ξr +
ϕ′′

r
(ξ − ξ′′) + ϕ′

r2
(−ξ + 3ξ′′) +

ϕ

r3
(−4ξ′′)− ∂2p

∂θ∂r
(12.244)

No slip boundary conditions

No-slip boundary conditions inside and outside impose that all components of the velocity must be
zero on both boundaries, i.e.

ν⃗(r = R1, θ) = ν⃗(r = R2, θ) = 0⃗

Due to the separation of variables, and choosing ξ(θ) = cos(kθ) we have

νr(r, θ) =
1

r

∂Ψ

∂θ
=
ϕξ′

r
= −1

r
ϕ(r)k sin(kθ) (12.245)

νθ(r, θ) = −∂Ψ
∂r

= −ϕ′(r)ξ(θ) = −ϕ′(r) cos(kθ) (12.246)

The velocity divergence is given by

∇⃗ · ν⃗ =
1

r

∂(rνr)

∂r
+

1

r

∂νθ
∂θ

=
1

r
(−ϕ′(r)k sin(kθ) + ϕ′(r)k sin(kθ)) = 0

so the flow is indeed incompressible.
Since ξ is a function of θ it is obvious that the only way to insure no-slip boundary conditions

for any θ value is to have all the following four conditions satisfied

ϕ(R1) = ϕ′(R1) = 0 (12.247)

ϕ(R2) = ϕ′(R2) = 0 (12.248)
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We could then choose

ϕ(r) = (r −R1)
2(r −R2)

2F(r) (12.249)

ϕ′(r) = 2(r −R1)(r −R2)
2F(r) + 2(r −R1)

2(r −R2)F(r) + (r −R1)
2(r −R2)

2F ′(r)(12.250)

which are indeed identically zero on both boundaries. Here F(r) is any (smooth enough) function of
r. A generic form for Ψ could then be

Ψ(r, θ) = (r −R1)
2(r −R2)

2F(r) cos(kθ)

In what follows I take F(r) = 1 for simplicity. Then

ϕ(r) = (r −R1)
2(r −R2)

2

= (r2 − 2rR1 +R2
1)(r

2 − 2rR2 +R2
2)

= 1︸︷︷︸
a

r4 + (−2R1 − 2R2)︸ ︷︷ ︸
b

r3 + (R2
1 +R2

2 + 4R1R2)︸ ︷︷ ︸
c

r2 + (−2R1R
2
2 − 2R2

1R2)︸ ︷︷ ︸
d

r +R2
1R

2
2︸ ︷︷ ︸

e

= ar4 + br3 + cr2 + dr + e (12.251)

and then

ϕ′(r) = 2(r −R1)(r −R2)
2 + 2(r −R1)

2(r −R2) (12.252)

= 2(r −R1)(r −R2)(r −R2 + r −R1) (12.253)

= 4(r −R1)(r −R2)

(
r − R1 +R2

2

)
(12.254)

ϕ′′(r) = 8

(
r − R1 +R2

2

)2

+ 4(r −R1)(r −R2) (12.255)

ϕ′′′(r) = 24

(
r − R1 +R2

2

)
(12.256)

ϕ′′′′(r) = 24 (12.257)

νr(r, θ) = −1

r
(r −R1)

2(r −R2)
2 k sin(kθ) (12.258)

νθ(r, θ) = −4(r −R1)(r −R2)

(
r − R1 +R2

2

)
cos(kθ) (12.259)

In the end the functions ϕ and ξ are of the form:

ξ(θ) = cos(kθ) (12.260)

ϕ(r) = ar4 + br3 + cr2 + dr + e (12.261)

with

ξ′(θ) = −k sin(kθ)
ξ′′(θ) = −k2 cos(kθ) = −k2ξ(θ)
ξ′′′(θ) = k3 sin(kθ)

ξ′′′′(θ) = k4 cos(kθ) = k4ξ(θ)

ϕ′(r) = 4ar3 + 3br2 + 2cr + d

ϕ′′(r) = 12ar2 + 6br + 2c

ϕ′′′(r) = 24ar + 6b

ϕ′′′′(r) = 24a
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Finding the pressure and density fields

We start from the relationship

Aθ =
∂2νθ
∂r2

+
1

r

∂νθ
∂r

+
1

r2
∂2νθ
∂θ2

+
2

r2
∂νr
∂θ
− νθ

r2
− 1

r

∂p

∂θ
= −ϕ′′′ξ − ϕ′′ξ

r
+
ϕ′(ξ − ξ′′)

r2
+

2ϕξ′′

r3
− 1

r

∂p

∂θ
= 0

Then, after multiplying all by r3 we have

r2
∂p

∂θ
(12.262)

= −r3ϕ′′′ξ − r2ϕ′′ξ + rϕ′(ξ − ξ′′) + 2ϕξ′′ (12.263)

= cos(kθ)
[
−r3(24ar + 6b)− r2(12ar2 + 6br + 2c) + r(4ar3 + 3br2 + 2cr + d)(1 + k2) + 2(ar4 + br3 + cr2 + dr + e)(−k2)

]
(12.264)

= cos(kθ)
[
−24ar4 − 6br3 − 12ar4 − 6br3 − 2cr2 + (4ar4 + 3br3 + 2cr2 + dr)(1 + k2)− 2k2(ar4 + br3 + cr2 + dr + e)

]
= cos(kθ)

[
(−24− 12 + 4 + 4k2 − 2k2)ar4 + (−6− 6 + 3 + 3k2 − 2k2)br3 + (−2 + 2 + 2k2 − 2k2)cr2 + (1 + k2 − 2k2)dr + (−2k2)e

]
= cos(kθ)

[
2(k2 − 16)ar4 + (k2 − 9)br3 + (1− k2)dr − 2k2e

]
(12.265)

or,
∂p

∂θ
= cos(kθ)

[
2(k2 − 16)ar2 + (k2 − 9)br + (1− k2)d

r
− 2k2

e

r2

]
i.e. after integration with respect to θ:

p(r, θ) =
1

k
sin(kθ)

[
2(k2 − 16)ar2 + (k2 − 9)br + (1− k2)d

r
− 2k2

e

r2

]
+ f(r)

For simplicity we set f(r) = 0 and then

∂p

∂r
=

1

k
sin(kθ)

[
4(k2 − 16)ar + (k2 − 9)b− (1− k2) d

r2
+ 4k2

e

r3

]
and since we will need it later:

r3
∂p

∂r
=

1

k
sin(kθ)

[
4(k2 − 16)ar4 + (k2 − 9)br3 − (1− k2)dr + 4k2e

]
We now turn to

Ar =
ϕ′′ξ′

r
+
ϕ′ξ′

r2
+
ϕξ′′′

r3
− ∂p

∂r
= ρgr

or, after multiplying both sides by r3:

r2ϕ′′ξ′ + rϕ′ξ′ + ϕξ′′′ − r3∂p
∂r

= r3ρgr

r2(12ar2 + 6br + 2c)(−k sin(kθ)) + r(4ar3 + 3br2 + 2cr + d)(−k sin(kθ)) + (ar4 + br3 + cr2 + dr + e)k3 sin(kθ)

−1

k
sin(kθ)

[
4(k2 − 16)ar4 + (k2 − 9)br3 − (1− k2)dr + 4k2e

]
= r3ρgr

sin(kθ)
[
−k2(12ar4 + 6br3 + 2cr2)− k2(4ar4 + 3br3 + 2cr2 + dr) + k4(ar4 + br3 + cr2 + dr + e)

]
− sin(kθ)

[
4(k2 − 16)ar4 + (k2 − 9)br3 − (1− k2)dr + 4k2e

]
= kr3ρgr

sin(kθ)
[
(−12k2 − 4k2 + k4 − 4(k2 − 16))ar4 + (−6k2 − 3k2 + k4 − (k2 − 9))br3

(−2k2 − 2k2 + k4)cr2 + (−k2 + k4 + (1− k2))dr + (k4 − 4k2e)
]

= kr3ρgr

sin(kθ)
[
(k4 − 20k2 + 64)ar4 + (k4 − 10k2 + 9)br3 + (k4 − 4k2)cr2 + (k4 − 2k2 + 1)dr + k2(k2 − 4)e

]
= kr3ρgr

So, assuming gr = 1,

ρ(r, θ) =
sin(kθ)

k

Aar4 +Bbr3 + Ccr2 +Ddr + Ee

r3
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with

A = (k2 − 4)(k2 − 16)

B = k4 − 10k2 + 9

C = k2(k2 − 4)

D = (k2 − 1)(k2 − 1)

E = k2(k2 − 4) (12.266)

In the end:

νr(r, θ) = −1

r
(ar4 + br3 + cr2 + dr + e)k sin(kθ) (12.267)

νθ(r, θ) = −(4ar3 + 3br2 + 2cr + d) cos(kθ) (12.268)

p(r, θ) =
1

k
sin(kθ)

[
2(k2 − 16)ar2 + (k2 − 9)br + (1− k2)d

r
− 2k2

e

r2

]
(12.269)

ρ(r, θ) =
sin(kθ)

k

Aar4 +Bbr3 + Ccr2 +Ddr + Ee

r3
(12.270)

Finding the density field - alternate & easier take

We start this time from
∂(rAθ)

∂r
− ∂Ar

∂θ
= −∂ρgr

∂θ

or, with gr = 1,

−2ϕ′′′ξ − ϕ′′′′ξr +
ϕ′′

r
(ξ − ξ′′) + ϕ′

r2
(−ξ + 3ξ′′) +

ϕ

r3
(−4ξ′′)− ∂2p

∂θ∂r
− ϕ′′ξ′′

r
− ϕ′ξ′′

r2
− ϕξ′′′′

r3
+

∂2p

∂r∂θ
= −∂ρ

∂θ

−2ϕ′′′ξ − ϕ′′′′ξr +
ϕ′′

r
(ξ − ξ′′) + ϕ′

r2
(−ξ + 3ξ′′) +

ϕ

r3
(−4ξ′′)− ϕ′′ξ′′

r
− ϕ′ξ′′

r2
− ϕξ′′′′

r3
= −∂ρ

∂θ

Then we note that ξ′′ = −k2ξ and ξ′′′′ = k4ξ so that

−2ϕ′′′ξ − ϕ′′′′ξr +
ϕ′′

r
(ξ + k2ξ) +

ϕ′

r2
(−ξ − 3k2ξ) +

ϕ

r3
(4k2ξ)− −k

2ϕ′′ξ

r
− −k

2ϕ′ξ

r2
− k4ϕξ

r3
= −∂ρ

∂θ

ξ

[
−2ϕ′′′ − ϕ′′′′r +

ϕ′′

r
(1 + k2) +

ϕ′

r2
(−1− 3k2) +

ϕ

r3
(4k2)− −k

2ϕ′′

r
− −k

2ϕ′

r2
− k4ϕ

r3

]
= −∂ρ

∂θ

ξ(θ)

[
−2ϕ′′′ − ϕ′′′′r +

ϕ′′

r
(1 + 2k2) +

ϕ′

r2
(−1− 2k2) +

ϕ

r3
(4k2 − k4)

]
= −∂ρ

∂θ

i.e.

ρ(r, θ) = −1

k
sin(kθ)

G(r)
r3

with

G(r) = −ϕ′′′′r4 − 2ϕ′′′r3 + ϕ′′r2(1 + 2k2) + ϕ′r(−1− 2k2) + ϕ(4k2 − k4)
= −24ar4 − 2(24ar + 6b)r3 + (12ar2 + 6br + 2c)r2(1 + 2k2)

+(4ar3 + 3br2 + 2cr + d)r(−1− 2k2) + (ar4 + br3 + cr2 + dr + e)(4k2 − k4)
= −24ar4 − 2(24ar4 + 6br3) + (12ar4 + 6br3 + 2cr2)(1 + 2k2)

+(4ar4 + 3br3 + 2cr2 + dr)(−1− 2k2) + (ar4 + br3 + cr2 + dr + e)(4k2 − k4)
= −Aar4 −Bbr3 − Ccr2 −Ddr − Ee
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with

−A = −24− 48 + 12(1 + 2k2) + 4(−1− 2k2) + (4k2 − k4)
= −24− 48 + 12 + 24k2 − 4− 8k2 + 4k2 − k4

= −64 + 20k2 − k4

= −(k2 − 4)(k2 − 16)

−B = −12 + 6(1 + 2k2) + 3(−1− 2k2) + (4k2 − k4)
= −12 + 6 + 12k2 − 3− 6k2 + 4k2 − k4

= −(k4 − 10k2 + 9)

−C = 2(1 + 2k2) + 2(−1− 2k2) + (4k2 − k4)
= 2 + 4k2 − 2− 4k2 + 4k2 − k4

= 4k2 − k4

= −k2(k2 − 4)

−D = (−1− 2k2) + (4k2 − k4)
= −1− 2k2 + 4k2 − k4

= −1 + 2k2 − k4

= −(k2 − 1)(k2 − 1)

−E = 4k2 − k4

= −k2(k2 − 4)

so in the end we recover

ρ(r, θ) =
1

k
sin(kθ)

Aar4 +Bbr3 + Ccr2 +Ddr + Ee

r3

A = (k2 − 4)(k2 − 16)

B = k4 − 10k2 + 9

C = k2(k2 − 4)

D = (k2 − 1)(k2 − 1)

E = k2(k2 − 4)

The pressure is obtained as presented before.

Root mean square velocity

ν2
rms =

∫∫
(ν2

r + ν2
θ)rdrdθ

=

∫∫ [
(
ϕξ′

r
)2 + (−ϕ′ξ)2

]
rdrdθ

=

∫∫
(
ϕξ′

r
)2rdrdθ +

∫∫
(−ϕ′ξ)2rdrdθ

=

∫ R2

R1

(
ϕ

r
)2rdr︸ ︷︷ ︸

I1

∫ 2π

0

(ξ′)2dθ︸ ︷︷ ︸
I2

+

∫ R2

R1

(ϕ′)2rdr︸ ︷︷ ︸
I3

∫ 2π

0

ξ2dθ︸ ︷︷ ︸
I4
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I1 =

I2 =

I3 =

I4 =

Unfinished! Also compute strain rate tensor, stress, total mass, etc ...

Free slip boundary conditions

what follows needs to be checked!!!

Before postulating the form of ϕ(r), let us now turn to the boundary conditions that the flow
must fulfill, i.e. free-slip on both boundaries. Two conditions must be met:

� v · n = 0 (no flow through the boundaries) which yields u(r = R1) = 0 and u(r = R2) = 0, :

1

r

∂Ψ

∂θ
(r = R1, R2) = 0 ∀θ

which gives us the first constraint since Ψ(r, θ) = ϕ(r)ξ(θ):

ϕ(r = R1) = ϕ(r = R2) = 0

� (σ · n)× n = 0 (the tangential stress at the boundary is zero) which imposes: σθr = 0, with

σθr = 2η · 1
2

(
∂v

∂r
− v

r
+

1

r

∂u

∂θ

)
= η

(
∂

∂r
(−∂Ψ

∂r
)− 1

r
(−∂Ψ

∂r
) +

1

r

∂

∂θ
(
1

r

∂Ψ

∂θ
)

)
Finally Ψ must fulfill (on the boundaries!):

−∂
2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2
∂2Ψ

∂θ2
= 0

−ϕ′′ξ +
1

r
ϕ′ξ +

1

r2
ϕξ′′ = 0

or,

−ϕ′′ +
1

r
ϕ′ − k2 1

r2
ϕ = 0

Note that this equation is a so-called Euler Differential Equation9. Since we are looking for a
solution ϕ such that ϕ(R1) = ϕ(R2) = 0 then the 3rd term of the equation above is by definition
zero on the boundaries. We have to ensure the following equality on the boundary:

−ϕ′′ +
1

r
ϕ′ = 0 for r = R1, R2

The solution of this ODE is of the form ϕ(r) = ar2 + b and it becomes evident that it cannot
satisfy ϕ(r = R1) = ϕ(r = R2) = 0.

Separation of variables leads to solutions which cannot fulfill the free slip boundary conditions

9http://mathworld.wolfram.com/EulerDifferentialEquation.html
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12.2.18 Rayleigh-Bénard convection for silicon oil

This originates in Jenkins et al. (2014) [643].
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12.2.19 Rayleigh-Taylor experiment of van Keken et al. (1997)

benchmark vaks97.tex

Data pertaining to this section are to be found at:
https://github.com/cedrict/fieldstone/tree/master/images/benchmark_vaks97

This numerical experiment was first presented in van Keken, King, Schmeling, Christensen,
Neumeister, and Doin [1309] (1997). It consists of an isothermal Rayleigh-Taylor instability in a
two-dimensional box of size Lx = 0.9142 and Ly = 1.

Two Newtonian fluids are present in the system: the buoyant layer is placed at the bottom of the
box and the interface between both fluids is given by

y(x) = 0.2 + 0.02 cos

(
πx

Lx

)
(12.271)

The bottom fluid is parametrised by its density ρ1 = 1000 and its viscosity η1, while the layer above
is parametrised by ρ2 = 1010 and η2 = 100. This experiment is to be carried out for various viscosity
constrasts between the two layers, i.e. η1 = {1, 10, 100}.

No-slip boundary conditions are applied at the bottom and at the top of the box while free-slip
boundary conditions are applied on the sides. Gravity is pointing downwards with |⃗g| = 10.

Example of time evolution obtained with the Elefant code for a 256x256 grid with the particle-in-cell method.

in images/benchmark vaks97/

One can measure the following quantities:

� the root mean square velocity νrms in the domain as a function of time:

νrms =

√
1

LxLy

∫ ∫
|ν⃗|2dxdy (12.272)

� the maximum (or local maxima) of the νrms and its (their) corresponding time(s)

� the growth rate of the instability at t = 0. From linear stability analysis, the analytical
growth rate can be calculated [1038, 1037]: γth = 0.01094019, which is valid for an infinitesimal
perturbation. For each model run, the growth rate γ is measured by fitting the νrms and/or
(?) the maximum vertical velocity measurements for a short time t.
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� the total mass of the system M(t) as a function of time. Since there is no chemical diffusion
in the system (pure advection equation) the amount of material in the system is to remain
constant, and therefore its mass too.

M(t) =

∫ ∫
ρ(x, y, t)dxdy (12.273)

Given the layout described in the previous paragraph, the exact analytical initial mass M0 of
the system is given by

M0 = 0.9142× (0.2× 1000 + 0.8× 1010) = 921.5136

The average density is then

< ρ >0=
M0

LxLy
= 1008

We will then measure the relative mass error as a function of time

δM(t) =
M(t)−M0

M0

which is equal to

< δρ > (t) =
< ρ > (t)− < ρ >0

< ρ >0

� the length of the interface between the fluids. At startup it is given by

L(0) =
∫ L

0

√
1 + (dy/dx)2dx

with y(x) = 0.2 + 0.02 cos(πx/L). Using WolframAlpha, we find

L(0) = L

π

∫ π

0

√
1 +

(
0.02

π

L
sin(πx/L)

)2
dx ≃ 0.9152786349

Instantaneous results . Results obtained with stone ?? (Q2 × Q1 element) and stone ??
(P+

2 × P−1 element), both with mesh fitted so as to follow the interface between both fluids.
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η1 = 100 η1 = 10 η1 = 1

min(u) Stone 25 -4563.5
Stone 93 (P+

2 × P−1)
Aspect

max(u) Stone 25 1054.03
Stone 93 (P+

2 × P−1)
Aspect

min(v) Stone 25
Stone 93 (P+

2 × P−1)
Aspect

max(v) Stone 25 2070.9
Stone 93 (P+

2 × P−1)
Aspect

max(|v|) Stone 25 422.125 4563.67
Stone 93 (P+

2 × P−1)
Aspect

vrms Stone 25 185.2947 1441.87
Stone 93 (P+

2 × P−1)
Aspect

min(p) Stone 25 -5048.16 -5048.7345
Stone 93 (P+

2 × P−1)
Aspect

max(p) Stone 25 5033.6947 5032.329
Stone 93 (P+

2 × P−1)
Aspect
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Code Grid Method Growth Rate γ t (max vrms) max (vrms) publication

HS 41x41 extrapolated 0.010996 211.1 0.0030958 [1309]
61x64 extrapolated 0.011109 209.17 0.0031022
81x81 extrapolated 0.011177 208.99 0.0030916

CND 32x32 0.01106 208.4 0.003092 [1309]
48x48 0.01106 208.5 0.0030943

SK 80x80 0.01130 215.67 0.00299279 [1309]
120x120 0.01127 206.38 0.0028922
160x160 0.01179 207.84 0.0028970

PvK 30x30 splines 0.01185 213.38 0.00300 [1309]
50x50 splines 0.01198 211.81 0.003016
80x80 splines 0.01207 210.75 0.003050
100x100 splines 0.01211
30x30 C1 element 0.01253 210.59 0.003100
80x80 C1 element 0.01225 207.05 0.003091

ISMM 160x160 0.00991 230.1 0.003093 [1176]
ISMM 120x120 0.00998 226.1 0.003133
MSOU 160x160 0.00993 231.4 0.003085
MSOU 120x120 0.01020 227.6 0.003134
FSOU 160x160 0.01111 217.3 0.003118
FSOU 120x120 0.01159 213.1 0.003151

64x64 5 0.01112 206.5 0.003041 [1229]
15 0.01117 208.8 0.003098
40 0.01115 209.9 0.003110

128x128 5 0.01113 208.1 0.003079
15 0.01110 208.9 0.003097
40 0.01109 209.2 0.003102

120x132 Level sets 0.01252 211.2 0.00301 [1218]
67m res. 215.3 0.003106 [238]
100m res. 215.28 0.003101

LaCoDe 1808 elts (10754 dofs) 0.01221 215 0.003110 [322]
7093 elts (2592 dofs) 0.01222 212 0.003080
17960 elts (107468 dofs) 0.01222 211 0.003075

Selected Quantities for the Isoviscous Rayleigh-Taylor problem. HS: FDM, stream function formulation, particles. PvK: FEM, stream function, marker-chain.

SK: FEM, ConMan code, compositional field. CND: spline method, stream function formulation, particles.

List of literature showcasing results of the van Keken et al. (1997) [1309] setup:

� de Smet et al. (2000) [323]. No table of results, only figures:
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� Soboutia et al. (2001) [1176]. Results reported in table above.

� Babeyko et al. (2002) [35]. No table of results, only one figure:

� Tackley & King (2003) [1229]. Performed with grid resolutions of 64x64 or 128x128 and with
either 5, 15, or 40 tracers per cell (on average). Results reported in table above.

There are also results for non-isoviscous cases.

� Bourgouin et al. (2006) [124]. No table of results, only figures. Additional results for non-
isoviscous in the paper.
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� Quinteros et al. (2009) [1029].

”Different snapshots from the domain evolution that are shown in Fig. 10 were compared with
the ones published by van Keken et al. (1997). The evolution shown in this chapter and in the
van Keken paper are identical for all the compared time steps.”

� Samuel & Evonuk (2010) [1103].

� Suckale et al. (2010) [1218].
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The Rayleigh-Taylor instability at t = 1500 computed by (left) the level set method on a 300x330 grid, compared to the best results

of (right) the four codes compared by van Keken et al.

b) c) d)
b) Detailed comparison of the level set (thin black line) and the marker chain approach (thick grey line) for the isothermal and isoviscous

Rayleigh-Taylor instability at nondimensional time t = 1500. The plotted interfaces represent a zoom onto the instability descending from the top

downwards in the middle of the box. The two methods yield an almost identical interface. c) Evolution of the entrainment of the buoyant fluid over

time as computed by the five different codes. The level set computation was done on a 160×176 grid. d) Evolution of the root mean square velocity

of the interface over time as computed by the five different codes. The level set computation was done on a 160×176 grid.

a) b)
Taken from the supplementary material: a) Convergence test for the isothermal and isoviscous Rayleigh-Taylor instability, benchmark problem 3. A
lack of convergence is easiest to identify during the phases of rapid rise of an instability. We illustrate this for the rise of the secondary instability on

the right side of the box at time t=1000 and four different grid sizes: 60x66, 80x88, 100x110, and 120x132. We observe convergence for grid sizes
above 100x110.

b) Convergence test for the isothermal and isoviscous Rayleigh-Taylor instability, benchmark problem 3. We illustrate this convergence test for the

rise of the secondary instability at time t = 1000. The four interfaces were computed based on the time steps: ∆t = 180∆x, ∆t = 90∆x, ∆t = 45∆x,

and ∆t = 25∆x. We observe convergence for time steps ∆t ≤ 25∆x.
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a) b)
a) The isothermal Rayleigh-Taylor instability with viscosity contrast 10 at non-dimensional time t=500. The computation was done with a grid

resolution of 250×275. b) The Rayleigh-Taylor instability as computed by the HS-tracer method at time t=1500. The equations of motion for this

simulation were solved on an 81×81 grid. The right panel is a zoom onto the peak located left of the descending instability. Each blue dot represents

one particle and the grid represents a rough estimate of the scale at which the flow field is approximated correctly.

� Leng & Zhong (2011) [769].

Left: The mesh distribution and chemical composition for case RT1 at two different times: (a and c) t = 0 and (b and d) t = 1500. Right: a) The

root mean square velocity νrms and (b) the relative entrainment of the buoyant material, with time for case RT1. The corresponding benchmark

results from van Keken et al. [1997] are also plotted.

� Vynnytska et al. (2013) [1333]. Results only for 100 viscosity contrast

� Choi et al. (2013) [238].
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Left: Rayleigh-Taylor instability. (a) Model setup. Snapshots of the density at dimensionless time of (b) 500, (c) 1000, and (d) 1500. (e) Plot of

νrms versus dimensionless time, t. The resolution is about 0.6km. Right: σxx and density fields before and after the first remeshing with about 1km

resolution. The white lines in the “After” images denote the original phase boundary before remeshing. The thick-lined box in the inset shows the

location of the zoomed-in part of the domain.

� Fuchs & Schmeling (2013) [421].

Finite deformation field for different stages of the diapirism with three different viscosity ratios and an initial non-dimensional thickness of the

buoyant layer h2 = 0.2. Left column: viscosity ratio m = 0.1. Middle column: m = 1. Right column: m = 10. Top row: pillow stage. Middle row:

rising stage. Lower row: final stage.

� de Montserrat et al. (2019) [322].

a-e) Temporal evolution of the Rayleigh-Taylor instability. f) Evolution of νrms. Remeshing of the domain is necessary when the mesh becomes

highly distorted. Note that the red lines overlap with the blue line. g) Second invariant of the accumulated strain in a mesh with heavily distorted

elements, and h) interpolated into a new high-quality mesh. i) Histogram showing the logarithm of the error between the accumulated square root of

second invariant of the strain rate, pre- and post-remeshing.

� Robey & Puckett (2019) [1079], Robey (2019) [1078] (PhD thesis).
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Computed solution of the van Keken isoviscous Rayleigh-Taylor problem at time t = 2000 on a uniform grid of 128x128 cells.

� Louis-Napoleon et al. (2020) [811].

Raw data available in ./images/benchmark vaks97/louis napoleon etal.
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� Maierova (2012) [825] (phd thesis)
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Time 500,1000, 2000.

� Schuh-Senlis et al. (2020) [1144]. The setup in the paper is inspired by [1309] but results are
therefore not consistent with those of [1309].
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� MVEP2 code, curtesy of Marcel Thielmann
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� Burcet, Oliveira, Afonso, and Zlotnik [175] (2024).

� Logg et al. (2012) [806]: only Entrainment of a Dense Layer by Thermal convection.
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� Aspect manual [44].

—————————————

Time evolution of the system, smooth compositional field, CFL=0.25, mesh refinement level 8. Top block is with 256 colors, bottom block is the same

data but only using two colors. From t=0 until t=2000, every 100s.

When compositional fields are used the solution has been shown (see Aspect manual) to be
very sensitive to the resolution. In an attempt to remedy this issue, an approach was devised,
which consists in replacing the original discontinuous initial condition with a smoothed out
version. The function in the input file

s e t Function expr e s s i on = i f ( ( z>0.2+0.02* cos ( p i *x /0 .9142) ) , 0 , 1 )

is then replaced by

s e t Function expr e s s i on = 0.5*(1+ tanh ((0 .2+0.02* cos ( p i *x /0 .9142)=z ) /0 . 02 ) )
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The last number on the line is a parameter which controls the ’thickness’ of the interface. When
it becomes small we recover a discontinuous implementation (this very much depends on the
mesh size).

Taken from the Aspect manual. Root mean square measurements with discontinuous (left) and smoothed, continuous (middle) initial conditions for

the compositional field: 5 global refinements correspond to a 32× 32 mesh, 9 refinements to a 512× 512 mesh. Right: influence of smoothing

parameter (level 7).
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Results obtained for both approaches and vof, on various meshes and for various smoothing parameters. The dashed lines indicate the stone 95

results.
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Results for smoothed approach. Left to right: level 6,7,8. Top to bottom: smoothing parameter 0.0025, 0.005, 0.01, 0.02. We see that level6 results in

combination with a small smoothing parameter yield a very different outcome.

0.5 compositional field C1 isocontours for all 12 simulations.

0.5 compositional field C1 isocontours for levels 7 and 8 (left), and level 8 (right)
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The code can also rely on the VOF method to solve the advection equation for the computa-
tional fields:

Left: Evolution of the root mean square velocity as a function of time for computations of the van Keken problem made with the VOF interface

tracking algorithm with five different global mesh refinements (from a 32× 32 mesh to a 1024× 1024 mesh. Right: The results of two computations

of the van Keken problem made with the VOF interface tracking algorithm overlaid upon each other at tend = 2000. This visualization shows the

reconstructed boundary between the two materials at the final time tend as computed on a uniform grid with 7 and 8 levels of refinement. The

boundaries between the materials are displayed as contours of the fields ψ̃7(tend) (black) and ψ̃8 (tend) (bright green), which are generated by the

visualization postprocessor. The contours for the reconstructed material boundaries are superimposed on a color gradient visualization of the

material composition for the computation with 8 levels of refinement in order to make the regions with each fluid type more evident.

� Mulyokova phd thesis [919]
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Publication η⋆ Stokes Transport vrms png max peak 1 peak 1 peak 2 peak 2 growth rate observation
method method time time vrms time vrms rate

van Keken et al. [1309] 1
√ √

2000 211.1 0.0030958 0.010996 HS 41x41
1 209.17 0.0031022 0.011109 HS 61x61
1 208.99 0.0030916 0.011177 HS 81x81
1 208.4 0.003092 0.01106 CND 32x32
1 208.5 0.0030943 0.01106 CND 48x48
1 215.67 0.00299279 0.01130 SK 80x80
1 206.38 0.0028922 0.01127 SK 120x120
1 207.84 0.0028970 0.01179 SK 160x160
1 0.01220 SK 160x160
1 213.38 0.00300 0.01185 PvK 30x30 splines
1 211.81 0.003016 0.01198 PvK 50x50 splines
1 210.75 0.003050 0.01207 PvK 80x80 splines
1 0.01211 PvK 100x100 splines
1 210.59 0.003100 0.01253 PvK 30x30 C1
1 207.05 0.003091 0.01225 PvK 80x80 C1

de Smet et al. [323]

Sobouti et al. [1176]

Babeyko et al. [35]

Tackley & King [1229]

Bourgouin et al. [124]

Quinteros et al. [1029]

Samuel & Evonuk [1103]

Suckale et al. [1218] 1 FDM level set
√ √

1500 211.2 0.00301 ? ? 0.01252 120x132
Suckale et al. [1218] 10 FDM level set

√ √
500 ? ? ? ? 0.04809 250x275

Leng & Zhong [769] 1 FEM tracers
√ √

1500 ? ? ? ? ? AMR(6+3)
Maierova PhD thesis [825] 1 Y Y 2000 211 0.003107

0.1 Y N 2000 73 0.009411
100 Y N 2000 51 0.013938

Vynnytska et al. [1333]

Choi et al. [238]

Fuchs & Schmeling [421]

Mulyukova PhD thesis[919]

de Montserrat et al. [322]

Robey & Puckett [1079]

Robey PhD thesis [1078]

Trim et al. (2021) [1282]

Louis-Napoleon et al. [811] 1 FEM VOF & CF JADIM, OpenFOAM & Aspect

Aspect manual [44] 1 FEM CF, PIC
√ √
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12.2.20 (Instantaneous) Sinking block (2D)

benchmark sinking block.tex

Data pertaining to this section are to be found at:
https://github.com/cedrict/fieldstone/tree/master/images/sinking_block

The domain is a unit square. Fluids are such that ρ1 = 1, η1 = 1 and ρ2 = 1.01, η2 = 1000.
Boundary conditions are either free slip or no slip on all sides. Pressure is normalised so that the
volume average is zero. Gravity points downwards with |⃗g| = 1. Profile measurements are carried
out on the dashed line.

g⃗

ρ1, η1

ρ2, η2

x

y

When using Aspect , it is good to remember that a compositional field is used, which ’lives’ on
the nodes of the FE grid. Partof the input file is shown here:

subsection Compositional fields

set Number of fields = 1

end

subsection Initial composition model

set Model name = function

subsection Function

set Variable names = x,y

set Function constants = p=0.5

set Function expression = if(abs(x-p)<0.0625 && abs(y-p)<0.0625 , 1, 0)

end

end

subsection Material model

subsection Simple model

set Density differential for compositional field 1 = 0.01

set Composition viscosity prefactor = 1000

end

end

The value of the composition (and therefore the density and viscosity values) on a quadrature
point is obtained via interpolation and averaging, which is different than the Stone codes where the
density and viscosity are elemental quantities.
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Free-slip boundary conditions .

Results obtained with Stone 93.
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Aspect results with various global mesh refinement. No averaging
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Stone 93 (P+

2 × P−1)
Stone 76 (Q2 × P−1)
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Using error extrapolation (see Section 9.12), one can compute an estimate of the resolution
independent value of the vrms of maximum velocity for example:
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We find that the rates are near unity.
TODO: write material model in ASPECT to bypass compositions!
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No-slip boundary conditions .
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TODO: finish analysis
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12.2.21 (Instantaneous) Stokes sphere (3D)

benchmark stokes sphere 3D.tex

Data pertaining to this section are to be found at:
https://github.com/cedrict/fieldstone/tree/master/images/stokes_sphere3D

This is a simple experiment without an analytical solution. The idea here is simple: to design
a small number of Stokes sphere-related experiments and provide for them (very) high-resolution
results obtained with various codes so as to turn these into benchmarks. The domain is chosen to
be a unit cube. Gravity is such that g⃗ = (0, 0,−g) with g = 1. The sphere is in the middle of the
domain and has a radius R = 0.123456798. The fluid has a density ρf = 1 and viscosity ηf = 1. The
sphere has a density ρs = ρf + δρ and a viscosity ηs = 10mηf . Default values for δρ and m are set to
0.01 and 3 respectively.

Concerning boundary conditions, we distinguish three cases:

� FS: free slip boundary conditions are imposed on all 6 sides;

� NS: no slip boundary conditions are imposed on all 6 sides;

� OT: free slip boundary conditions are prescribed on the sides and bottom, but the top surface
is open.

� BO: both top and bottom are open (still with u = 0) and no-slip is prescribed on the sides.

In the FS and NS case the null space of the pressure will need to be addressed and we require
that the average pressure over the domain is zero, i.e.∫∫∫

Ω

p(x, y, z)dxdydx = 0

The following quantities are reported:

� the root mean square velocity νrms over the whole domain;

� the minimum and maximum velocity and pressure in the domain (i.e. umin,max, vmin,max,
wmin,max and pmin,max;

� the velocity in the center of the sphere (maybe).

The factors which are expected to influence these measurements are:

� the resolution, especially if hexahedral elements are used;

� the quadrature rule, especially if the material properties are directly prescribed on these;

� the type of numerical method and their order (think Q1×P0 vs Q2×Q1 vs Q2×P−1 vs ... for
finite elements)

� whether full or reduced densities are used (except for OT case);

� the parameter m which controls the rigidity of the sphere with regards to the surrounding fluid;
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� the relative density difference between the fluid and the sphere.

Stokes’ law was derived by George Gabriel Stokes in 1851. It describes the frictional force a sphere
with a density different than the surrounding fluid experiences in a laminar flowing viscous medium
around it. By equating the frictional force term 6πηfRνs with the buoyancy force 4/3πR3δρg, we
arrive at the following settling velocity:

νs =
2

9

δρR2g

ηf

All the measurements above will then be adimensionalised by dividing all velocities by νs and pres-
sures by pref = ρfgLz = 1. Note that Stokes law is derived in an infinite fluid so that the recovered
sphere velocity measurements are not expected to match this analytical value exactly. In our case
we have

νs =
2

9

0.01 · 0.1234567892 · 1
1

≃ 0.00003387017 = 3.387017 · 10−5

Note that as noted in the Gale manual10 a correction can be made to this velocity when the sphere
is itself viscous, see problem 2 p65-66 of second English edition of ’Fluid Mechanics’ by Landau &
Lifshitz, volume 6 of Theoretical Physics.

10https://geodynamics.org/cig/software/gale/
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Octree-based Aspect meshes. The background mesh is 163 and refinement is allowed to take place 4 times. Note that a special output is automatically

generated in the code which subdivides all elements in 8 for visualisation purposes only.
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FS results
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High-resolution solution cross section at x = 0.5
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NS results
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Measurements obtained with Aspect and stone 10 for various averaging schemes.

4+4 mesh
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OT results
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Measurements obtained with Aspect and stone 10 for various averaging schemes.

4+4 mesh
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CYL results .
note that sphere and walls are only 1000 times more viscous than fluid
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I have proven in stone 92 that the sphere should probably be 106 times more viscous than the
fluid and the box should be 1.5 in height to recover the Habermann/Faxen velocities.
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12.2.22 (Instantaneous) Stokes sphere (2D)

benchmark stokes sphere 2D.tex

Data pertaining to this section are to be found at:
https://github.com/cedrict/fieldstone/tree/master/images/stokes_sphere2D

This is the same experiment as in the 3D case but in 2D. When using Aspect , we simply start
with regular meshes ranging from 82 to 5122 elements and we use the default Q2×Q1 element. This
corresponds to

subsection Mesh refinement

set Initial adaptive refinement = 0

set Initial global refinement = 3->9

set Refinement fraction = 0.9

set Coarsening fraction = 0

set Strategy = composition

end
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analytical mass

Left: total number of dofs in the Stokes problem; Right: mass of composition 1 as measured in Aspect .

The total mass of the system is

M = (LxLy − πR2)ρfluid + πR2ρsphere (12.274)

= (LxLy − πR2)ρfluid + πR2(ρfluid + δρ) (12.275)

= LxLyρfluid + πR2δρ (12.276)

= 1 + π · 0.1234567892 · 0.01 (12.277)

≃ 1.00047882831 (12.278)
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The Stokes velocity can be obtained as follows: on p61 of Landau & Lifschitz, it is reported that
the drag force on a disk moving in its plane is F = 32ηfRνs/3. The buoyancy force is F = πR2δρg,
so the velocity is then

νs =
3π

32

δρ

ηf
Rg ≃ 0.00036361025

Given the dimensions, this is obviously given per meter of the infinite cylinder. This is substantially
smaller than what we recover, so I keep the 3D velocity as reference for now.

In a second time, we make use of the mesh refinement capabilities of the code, as shown here:

Octree-based Aspect meshes. The background mesh is 163 and refinement is allowed to take place 4 times. Note that a special output is automatically

generated in the code which subdivides all elements in 8 for visualisation purposes only. Initial refinements 0,1,2,3,4.

This corresponds to

subsection Mesh refinement

set Initial adaptive refinement = 0 -> 9

set Initial global refinement = 4

set Refinement fraction = 0.9

set Coarsening fraction = 0

set Strategy = composition

end
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FS results
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Measurements obtained with Aspect for various averaging schemes and with different stones.
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Measurements obtained with Aspect for various averaging schemes and with different stones.

I have also retrieved the pressure at 16 equidistant locations on the x = 0.5 line for all five
averagings. Because the signal is dominated by the lithostatic pressure I have subtracted it from the
data, so that I hereunder plot the dynamic pressure as a function of the y coordinate:
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Measurements obtained with Aspect for various averaging schemes and with different stones.
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12.2.23 Stokes sphere (2D) in fluid with deformable free surface

benchmark stokes sphere fs 2D.tex

Data pertaining to this section are to be found at:
https://github.com/cedrict/fieldstone/tree/master/images/stokes_sphere_fs2D/

The domain is a 1 × 0.75 box. If sticky air is used, then its thickness should be 0.25 so that
the domain is a unit square. The fluid is characterised by ρf = 1 and ηf = 1. The sphere is
characterised by ρs = 2 and ηs = 103. The air is characterised by ρa = 0 and ηa = 10−3. Gravity
is vertical with g⃗ = −e⃗y. The sphere has a radius RS = 0.123456789 and its center is at position
r⃗c = (0.5, 0.6). Boundary conditions are free slip on all sides (unless a true free surface is used).
Pressure is normalised so that its average is zero on the top (if no free surface is used). The model
is run for 200s. The CFL number is set to 0.25 with a maximum time step of 0.5.

We wish to keep track of the following quantities as a function of time:

� the position and velocity of the sphere center,

� the minimum and maximum topography,

� the volume of fluid Vf (t), sphere Vs(t) and air Va(t)

� root mean square velocity νvrms for the whole domain, as well as for the air, fluid and sphere
separately, and for the fluid+sphere,

� the maximum velocity and pressure in the domain,

� the time step value δt,

� the average density11 and viscosity in the domain:

⟨ρ⟩(t) =
1

LxLy

∫∫
ρ(x, y, t)dxdy =

1

LxLy
(Va(t)ρa + Vf (t)ρf + Vs(t)ρs)

⟨η⟩(t) =
1

LxLy

∫∫
η(x, y, t)dxdy

1

LxLy
(Va(t)ηa + Vf (t)ηf + Vs(t)ηs) (12.279)

Initial values are

⟨ρ⟩(0) = 1

LxLy
(Va(0)ρa+Vf (0)ρf+Vs(0)ρs) = 0.25∗0+(0.75−πR2

s)∗1+πR2
s∗2 = 0.75+πR2

s ≃ 0.79788283183

⟨η⟩(0) = 1

LxLy
(Va(0)ηa+Vf (0)ηf+Vs(0)ηs) = 0.25∗10−3+(0.75−πR2

s)∗1+πR2
s∗103 ≃ 48.5851989989

� the min/max of the compositional fields when these are used;

� the velocity, pressure and material at position (0.5,0.6);

� the pressure at position (0.5,0).

11Because LxLy = 1, also equal to the total mass of the system
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Participating codes:

� Aspect uses Q2 ×Q1 elements by default. Q2 × P−1 elements can be used by setting

subs e c t i on D i s c r e t i z a t i o n
s e t Use l o c a l l y con s e rva t i v e d i s c r e t i z a t i o n = true

end

The default stabilisation method when compositional fields are used is the entropy viscosity
method, but SUPG has also been implemented and can be triggered with

subs e c t i on D i s c r e t i z a t i o n
subse c t i on S t a b i l i z a t i o n parameters

s e t S t a b i l i z a t i o n method = SUPG
end

end

The default mesh settings are as follows:

subs e c t i on Mesh re f inement
s e t I n i t i a l adapt ive re f inement = 1
s e t I n i t i a l g l oba l re f inement = 6
s e t Refinement f r a c t i o n = 0 .9
s e t Strategy = compos it ion
s e t Coarsening f r a c t i o n = 0 .1

end

In the results hereafter when the combination 6-0 or 7-0 are mentioned, this means that the
coarsening fraction has been set to zero and these correspond then to regular meshes with
64x64 and 128x128 elements respectively.

Active particles can also replace the compositional fields and this is how it is triggered from
the input file:

subs e c t i on Composit ional f i e l d s
s e t Number o f f i e l d s = 2
s e t Names o f f i e l d s = sphere , a i r
s e t Composit ional f i e l d methods = pa r t i c l e s , p a r t i c l e s
s e t Mapped p a r t i c l e p r op e r t i e s = sphere : i n i t i a l sphere , a i r : i n i t i a l a i r

end

subse c t i on Postproces s
s e t L i s t o f po s tp r o c e s s o r s = v i s u a l i z a t i o n , . . . , p a r t i c l e s
subs e c t i on V i s u a l i z a t i o n

s e t L i s t o f output v a r i a b l e s = dens i ty , v i s c o s i t y , s t r a i n ra t e
s e t Time between g raph i c a l output = 1

end
subse c t i on Pa r t i c l e s

s e t Number o f p a r t i c l e s = 100000
s e t Time between data output = 0
s e t Data output format = vtu
s e t L i s t o f p a r t i c l e p r op e r t i e s = ve l o c i t y , i n i t i a l composit ion , i n i t i a l
p o s i t i o n #, in t e g r a t e d s t r a i n
s e t I n t e r p o l a t i o n scheme = c e l l average
s e t Update ghost p a r t i c l e s = true
s e t Pa r t i c l e generator name = random uniform

end
end
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� Stone 93. Code based on unstructured mesh of Crouzeix-Raviart triangular elements. The
resolution is controlled by the minimum area of the triangles as passed as argument to the
triangle mesher, and the parameter np which controls the number of points on the hull (np on
each side), the surface (5 ∗ np) and the sphere (5 ∗ np);

� Alessandro Regorda’s code: The number of markers is fixed per element with random distri-
bution. At the beginning of the simulation there are: 562500 for 150x150 grid with 25 markers
per element, 600,000 for 200x200 grid with 15 markers per element, 655,360 for 256x256 grid
with 10 markers per element, 2,621,440 for 512x512 grid with 10 markers per element.

The advection is RK4. The code maintains the number of markers per element between half of
the initial number and the initial number plus half (e.g. in 512x512 markers are between 5 and
15). When in an element there are less markers than the minimum it adds random markers
to reach the minimum, while if the number is higher than the maximum some of them are
deleted. In this way elements are never empty. When new markers are added they assume the
type of the nearest marker. Averaging only applies to viscosity, density is always arithmetically
averaged.

In what follows 6-0 and 7-0 correspond to regular grids (no coarsening, no refinement)
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Stone 93 results seem to be most influenced by the resolution on the sphere and surface than
the resolution in the fluid. Some conclusions: arithmetic yields very high inner iteration counts.
Discontinuous pressure also better on that topic. Geometric averaging yields very good agreement for
vrms. Funny enough, geometric does not correspond to a physical arrangement of viscous dampers...
Arithm and harm do ultimately converge towards geom but at very high resolution. Using no amr
does not change things that much.
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Aspect results: fields and passive markers time evolution. Last row is the particle id, between 0 and 50000. System at times 0,50,100,150,200. Harmonic

averaging.
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Obtained with Aspect. From left to right: Arithmetic, geometric, harmonic, maximum composition, all at t = 200.
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This is the Aspect input file for this benchmark:

s e t Dimension = 2
s e t Star t time = 0
s e t End time = 200
s e t Use years in output in s t ead o f seconds = f a l s e
s e t CFL number = 0.25
s e t Output d i r e c t o r y = output=s toke s
s e t Maximum time step = 0 .5
s e t Pressure normal i za t ion = su r f a c e

subsec t i on So lve r parameters
subsec t i on Stokes s o l v e r parameters

s e t Number o f cheap Stokes s o l v e r s t ep s = 0
end

end

subsec t i on Geometry model
s e t Model name = box
subsec t i on Box

s e t X extent = 1
s e t Y extent = 1

end
end

subsec t i on Boundary v e l o c i t y model
s e t Tangent ia l v e l o c i t y boundary i nd i c a t o r s = l e f t , r i ght , bottom , top

end

subsec t i on Mater ia l model
s e t Model name = multicomponent
subsec t i on Multicomponent

s e t Den s i t i e s = 1 , 2 , 0
s e t V i s c o s i t i e s = 1 , 1000 , 0 .001
#s e t V i s c o s i t y a v e r a g in g scheme = maximum compos i t i on
#s e t V i s c o s i t y a v e r a g in g scheme = a r i t hme t i c
#s e t V i s c o s i t y a v e r a g in g scheme = geome t r i c
s e t V i s c o s i t y averag ing scheme = harmonic
s e t Thermal e x p an s i v i t i e s = 0

end
end

subsec t i on Gravity model
s e t Model name = v e r t i c a l
subsec t i on Ve r t i c a l

s e t Magnitude = 1
end

end

subsec t i on Boundary temperature model
s e t Fixed temperature boundary i nd i c a t o r s = bottom , top
s e t L i s t o f model names = box

end

subsec t i on I n i t i a l temperature model
s e t Model name = func t i on

subsec t i on Function
s e t Function expre s s i on = 0

end
end

subsec t i on Composit ional f i e l d s
s e t Number o f f i e l d s = 2

end

subsec t i on I n i t i a l composit ion model
s e t Model name = func t i on

subsec t i on Function
s e t Var iab le names = x , y
s e t Function constants = r =0.123456789 , xc=0.5 , yc=0.6
s e t Function expre s s i on = i f ( sq r t ( ( x=xc ) *(x=xc )+(y=yc ) *(y=yc ) ) < r , 1 , 0) ; i f (y>0.75 ,1 ,0)

end
end

subsec t i on Mesh re f inement
s e t I n i t i a l adapt ive re f inement = 1
s e t I n i t i a l g l oba l re f inement = 6
s e t Refinement f r a c t i o n = 0 .9
s e t Strategy = composit ion
s e t Coarsening f r a c t i o n = 0.1

end

subsec t i on Postproces s
s e t L i s t o f po s tp r o c e s s o r s = v i s u a l i z a t i o n , v e l o c i t y s t a t i s t i c s , composit ion s t a t i s t i c s , p r e s su r e s t a t i s t i c s ,

mate r i a l s t a t i s t i c s , g l oba l s t a t i s t i c s , po int values , p a r t i c l e s

subsec t i on Point va lues
s e t Evaluat ion po int s = 0 . 5 , 0 . 6

end

subsec t i on Pa r t i c l e s
s e t Number o f p a r t i c l e s = 50000
s e t Time between data output = 1
s e t Data output format = vtu
s e t L i s t o f p a r t i c l e p r op e r t i e s = i n i t i a l composit ion , i n i t i a l p o s i t i o n

end

subsec t i on V i s ua l i z a t i o n
s e t L i s t o f output v a r i a b l e s = dens ity , v i s c o s i t y , s t r a i n ra t e
s e t Time between g raph i ca l output = 1

end

943



end

12.2.24 Relaxation of topography (Crameri et al. , 2012)

benchmark crsg12.tex

This benchmark was first presented in Crameri et al. (2012) [285] and is also presented in Hille-
brand et al. (2014) [571]. It is designed to test the accuracy of the free surface representation in
geodynamics code.

The model box spans 2800km by 700−1100km (greater model height is necessary when employing
sticky air on top). The initial condition is specified by a mantle of 600km thickness, overlain by a
cosine shaped, 93− 107km-thick lithosphere:

The sticky air layer has a thickness varying between 10 and 400km. The lithosphere is a highly
viscous, dense medium (ρL = 3300kgm−3, µL = 1023Pa s). The underlying ambient mantle has a
density ρM = 3300kgm−3 and a viscosity µM = 1021Pa s.

Results at t = 0 obtained wirh Aspect by running the included cookbook.

The sticky air layer on the top has a density ρair = 0kgm−3 and a viscosity µair = 1018−1020Pa s
and is bordered by a free-slip top boundary condition. Free slip is also imposed at the sides while
the bottom boundary is set to no slip condition.

The setup for the real free-surface model is identical to the setup described above, but the weak
surface layer is removed and replaced by zero normal stress boundary conditions.

An analytical solution is presented by [1035]: the maximum topography at time t can be derived
analytically using the relaxation rate γ and from the initial maximum topography hinit:

hanalytic = hinit exp(γt) (12.280)
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where t = 14.825kyr is the characteristic relaxation time and γ = −0.2139× 10−11s−1 is the charac-
teristic relaxation rate of the three-layer case at a given wavelength of 2800km. It should be noted
that these values are valid for infinitesimal amplitudes, whereas deviations are to be expected for
small but finite amplitudes. In particular, keeping the interface between the middle and lower layer
flat and assuming a finite amplitude of the interface between the upper and middle layer implies
that the thickness of the highly viscous middle layer varies laterally by ±7% (in the case of an initial
maximum topography of 7km). This variation increases the effective viscous flexural rigidity and
leads to a slightly longer relaxation time. The system is let to relax over time (typically 200kyrs)
and the position of the free surface at x = 0 is recorded over time.
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Data from the original paper. Aspect data are obtained by running the available example in the code.

12.2.25 3D spherical shell convection benchmark

benchmark sscb3D.tex

The governing equations are those of an incompressible fluid with constant viscosity whose density
depends on temperature. The fluid convects in a three-dimensional hollow sphere. The inner radius is
11/9 while the outer radius is 20/9, so that the depth of the mantle is exactly 1. Boundary conditions
are free-slip at the top and bottom boundaries and isothermal with nondi- mensional temperatures
of 0 and 1 at the top and bottom boundaries, respectively.

The dynamics of the system are gouverned by the Rayleigh number:

Ra =
ρ0αg ∆T ∆R3

κη

Initial conditions for temperature are given as a function of coordinates with perturbations at some
given spherical harmonics superimposed on a conductive temperature profile:

T (r, θ, ϕ) =
Ri(r −Ro)

r(Ri −Ro)
+
∑
m

[ϵc,m cosmϕ+ ϵs,m sinmϕ] plm(θ) sin

(
π
r −Ri

Ro −Ri

)
The first term represents a purely conductive temperature profile, while the second term is a per-
turbation to this profile, determining the final patterns of polyhedral symmetry. l and m are the
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spherical harmonic degree and order, respectively. ϵc,m and ϵs,m are the magnitudes of the individual
spherical harmonic constituents. plm is a normalized associated Legendre polynomial that is related
to the associated Legendre polynomial Plm as12:

plm(θ) =

√
(2l + 1)(l −m)!

2π(1 + δm0)(l +m)!
Pm
l (θ)

where Pm
l are the (unnormalized) associated Legendre functions and δm0 is the Kronecker delta.

Note that there are somewhat subtle notation differences between the papers reporting on this
benchmark with regards to the spherical harmonic parts and the normalisation term. Also note that
the (1+ δm0) term is often omitted from spherical harmonics libraries (see Aspect documentation).

In each case, we compute, as a function of time, Nusselt numbers for both the top and bottom
boundaries, Nut and Nub, averaged temperature for the whole mantle, < T > and averaged RMS
velocity vrms for the whole mantle with

Nut =
Ro(Ro −Ri)

Ri

Qt Nub =
Ri(Ro −Ri)

Ro

Qb

where Qt and Qb are the surface and bottom heat fluxes.

Taken from Zhong et al. (2008) [1412]. Representative steady state residual temperature δT = T (r, θ, ϕ)− ⟨T (r)⟩ for cases a, b, c.

Relevant Literature: Zhong et al. [1412] (CitcomS ), Arrial et al. [29] (CitcomS vs. radial
basis function), Shahnas et al. [1151] (own code), Liu & King [801] (Aspect ).

12.2.26 2D convection benchmark (’Blankenbach et al. benchmark’)

benchmark blbc89.tex

The abstract of the original publication by Blankenbach et al. (1989) [95] reads:

We have carried out a comparison study for a set of benchmark problems which are relevant for
convection in the Earth’s mantle. The cases comprise steady isoviscous convection, variable

viscosity convection and time-dependent convection with internal heating. We compare Nusselt
numbers, velocity, temperature, heat-flow , topography and geoid data. Among the applied codes are
finite-difference, finite-element and spectral methods. In a synthesis we give best estimates of the

‘true’ solutions and ranges of uncertainty. We recommend these data for the validation of
convection codes in the future.

The temperature is fixed to zero on top and to ∆T at the bottom, with reflecting symmetry at the
sidewalls (i.e. ∂xT = 0) and there are no internal heat sources. Free-slip conditions are implemented
on all boundaries.

12There is a typo in [1151]
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The Rayleigh number is given by

Ra =
αgy∆Th

3

κν
=
αgy∆Th

3ρ2cp
kµ

The initial temperature field is given by

T (x, y) = (1− y)− 0.01 cos(πx) sin(πx)

The perturbation in the initial temperature fields leads to a perturbation of the density field and
sets the fluid in motion.

Depending on the initial Rayleigh number, the system ultimately reaches a steady state after
some time.

a) b) c)
Temperature fields at steady-state for Ra = 104 (a), Ra = 105 (b), Ra = 106 (c). Obtained with Elefant code [1257].

a)

b)
a) Results for the 2-D benchmark problem with uniform mesh refinement. # DoFs indicates the number of degrees of freedom. Reference results from

Blankenbach et al. (1989). b) Results with adaptive mesh refinement. The number of degrees of freedom (# DoFs) for each finest mesh size h varies between

time steps; the indicated numbers provide a typical range.
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νrms Nu
Blankenbach et al. (1989) [95] Ra = 104 42.864947± 0.000020 4.884409± 0.000010

Ra = 105 193.21454± 0.00010 10.534095± 0.000010
Ra = 106 833.98977± 0.00020 21.972465± 0.000020

Tackley (1994) [1227] Ra = 104 42.775 4.878
Ra = 105 193.11 10.531
Ra = 106 833.55 21.998

King (2009) [701] Ra = 104 42.867 4.885
Ra = 105 193.248 10.536
Ra = 106 834.353 21.981

Thieulot (2014) [1257] Ra = 104 42.867 4.882
Ra = 105 193.255 10.507
Ra = 106 834.712 21.695

Aspect [44] Ra = 104

Ra = 105

Ra = 106
Steady state Nusselt number and Vrms measurements as reported in the literature and obtained with Elefant on a 200× 200 grid. King (2009) results on

200x200 grid with ConMan.

Relevant Literature: Travis et al. [1278] (1990), Ogawa [953] (1993), Trompert and Hansen [1283]
(1998), Auth and Harder [33] (1999), Christon, Gresho, and Sutton [256] (2002), Chiu-Webster,
Hinch, and Lister [234] (2008), Kameyama, Kageyama, and Sato [668] (2005), King [701] (2009),
Beuchert and Podladchikov [86] (2010), Leng and Zhong [769] (2011), Davies, Wilson, and Kramer
[309] (2011), Vynnytska, Rognes, and Clark [1333] (2013), Trim, Butler, and Spiteri [1282] (2021),
Davies, Kramer, Ghelichkhan, and Gibson [306] (2002), Sime and Wilson [1169] (2020), stone 3.

12.2.27 Subduction ’benchmark’ of Schmeling et al. (2008)

benchmark scbe08.tex

Data pertaining to this section are to be found at:
https://github.com/cedrict/fieldstone/tree/master/images/benchmark_scbe08

The setup is as follows :

Taken from Schmeling et al. (2008) [1124].

Materials are linear viscous, initial geometry is simple, boundary conditions are simple. On paper
it sounds like a good idea. See stone 67 for a discussion on why this setup was doomed from the
beginning as a benchmark.

Experiments have been conducted by a handful of codes, investigating the effect of averaging and
mesh resolution:
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Taken from Schmeling et al. (2008) [1124]. Left: case 1 model (here FDCON-4 is shown). Streamlines are also shown. Middle: Shapes of different case 1

models at similar stages: FDCON: 40 Myears, I2ELVIS: 34.7 Myears, CITCOM: 38.1 Myears. Viscosity averaging: geometric mean in all cases. Right:

Comparison of the shapes of the slabs for different viscosity averaging meth- ods using I2VIS. Note that the snapshots are taken at different times (59.6, 24.4,

37.8 Myears from top to bottom), so that the slab tips have reached comparable levels.

Temporal behaviour of case 1 modelled by different codes with highest resolutions each. Each curve shows the position of the deepest part of the slab (slab tip)

as a function of time below the initial surface of the lithosphere. Left: taken from Schmeling et al. (2008) [1124]; Right:taken from Glerum et al. (2018) [467].
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Data curtesy of Prof. H. Schmeling.

12.2.28 Thin layer entrainment

benchmark thin layer entrainment.tex

Data pertaining to this section are to be found at:
https://github.com/cedrict/fieldstone/tree/master/images/benchmark_thinlayer
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The problem is a simulation to study the amount of entrainment by thermal convection of a dense,
thin layer at the bottom of the model [1309]. To the author’s knowledge only two other publications
(Tackley & King (2003) [1229], van Thienen (2007) [1255]) have presented results pertaining to this
benchmark. The results shown here after are obtained with my Elefant code using the particle-
in-cell technique and originate in the Elefant paper [1257].

The box is 2× 1, and contains two fluids:

Fluid 1 has a density ρ1 = 1 and a viscosity η = 1. Fluid 2 is heavier (ρ2 = ρ1+∆ρ) but has the same
viscosity. Both fluids have a thermal expansion coefficient α = 10−10, a thermal conductivity k = 1,
and a heat capacity coefficient cp = 1. Fluid 2 is placed at the bottom of the box (0 ≤ y ≤ 0.025).

This experiment is parameterised by the thermal Rayleigh number Ra = 300, 000 and and the
compositional Rayleigh number Rac = 450, 000 which are defined as follows:

RaT =
αρg∆TL3

y

κη
=
αρ2g∆TL3

ycp

kη
= αg (12.281)

Rac =
∆ρgL3

y

κη
=
ρ∆ρgL3

ycp

kη
= ∆ρg (12.282)

where I have used the relationship κ = k/ρcp. B is defined as B = RaT/Rac so The gravity accelera-
tion is therefore set to g = Ra/α and this yields ∆ρ = Rac/g = BRaT/g = B × α.

Free-slip boundary conditions are imposed on all sides of the domain. Temperature boundary
conditions are T (x, y = 0) = 1 and T (x, y = 1) = 0. The analytical initial temperature field is given
by

T (x, y) = Tu(x, y) + Tl(x, y) + Tr(x, y) + Ts(x, y)−
3

2
(12.283)

where

Tu(x, y) =
1

2
erf

(
1− y
2

√
u0
x

)
Tl(x, y) = 1− 1

2
erf

(
y

2

√
u0

Lx − x

)
Tr(x, y) =

1

2
+

Q

2
√
π

√
u0
y + 1

exp

(
− x2u0
4y + 4

)
Ts(x, y) =

1

2
− Q

2
√
π

√
u0

2− y
exp

(
−(Lx − x)2u0

8− 4y

)
(12.284)

with

u0 =
L
7/3
x

(1 + L4
x)

2/3

(
Ra

2
√
π

)2/3

Q = 2

√
Lx
πu0

(12.285)
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Using Lx = 2, Ra = 3× 105, one gets u0 ≃ 1469.315 and Q ≃ 0.0416305.
Given the small thickness of the bottom layer, it seems quite legitimate to investigate the influence

of grid resolution on the simulation. I have therefore looked at the initial root mean square velocity
measurement as a function of the element diagonal value (a proxy for the average resolution in the
case where elements are not square).

Results are confirm that the element size plays a non negligible role at startup on the dynamics of
the system. Superimposed on the figure are the measurements provided by Prof. van Keken (black
squares in the gray box). They agree well with my measurements but also indicate that none of the
authors in the original study ran the experiment at a high-enough resolution to start with (their
results were therefore most likely resolution dependent).

We see that the number of markers per element at startup is critical at (very) low resolution but
that it does not lead to significant velocity variations at high resolution.
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Thin layer entrainment experiment: root mean square velocity measurements at t = 0 as a function of the element diagonal size. The red square points

correspond to resolutions where the number of elements in each direction is a multiple of 40 (i.e. Ly/d), so that no element would contain a mix of fluids 1

and 2. Pink points correspond to cases wherethe number of markers within each element was varied between 4 and 500 (random spatial distribution). Taken

from Elefant paper [1257]

Looking at the root mean square velocity measurements, we see that the measurements done
with Elefant agree nicely with those presented in van Keken et al. [1309]. Past t ∼ 0.015, the
curves diverge clearly across all codes and authors, so I only need to focus the comparison for times
t < 0.015. For the three tested resolutions,measurements agree well and fall within the grey curves
representing all results of van Keken et al. . Additional tests have been carried out concerning the
value of the Courant number (0.1 to 0.25) and the initial number of markers per element (100 or
200) and these parameters led to extremely similar results.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

v r
m

s

time

van Keken et al, 1997
ELEFANT, 125x40
ELEFANT, 200x48

ELEFANT, 512x256
ASPECT, 512x256

Regorda, 125x40
Regorda, 200x80

951



Thin layer entrainment experiment. Root mean square velocity as a function of time. All results presented in van Keken et al. (1997) are collapsed in black

dashed lines. All simulations were run with an initial marker density of 100 markers per element and with a Courant numberof 0.25. Taken from

Elefant paper [1257].

As observed in van Keken et al. , the dense layer is first swept into the lower left corner. Thermal
instabilities then further develop in an asymmetrical way and entrain the dense material. Past
t ≃ 0.015 the system becomes more and more chaotic with markers being randomly mixed in the
system in a non-orderly fashion.

Marker distribution as obtained with Elefant for grid 240x120, init marker density=7,

random distribution, CFL=0.25, rkmethod=2, m to q=2. (unpublished).

Relevant Literature: Trim et al. (2020) [1281].
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Chapter 13

Vorticity-stream function approach

chapter streamfunction.tex

The Stream function (commonly denoted by Ψ) approach is a useful approach in fluid dynamics
as it can provide relatively quick solutions to 2D incompressible flow problems. Using a stream
function formulation is numerically convenient because velocity information is contained in a single
scalar equation and pressure vanishes from the solution process.

The stream function is a function of coordinates and time of an inviscid liquid. It allows to
determine the components of velocity by differentiating the stream function with respect to the
space coordinates. A family of curves Ψ = constant represent streamlines, i.e. the stream function
remains constant along a streamline. Although also valid in 3D, this approach is mostly used in 2D
because of its relative simplicity.

Glaisner and Tezduyar [464] state:

“The main advantages of the vorticity stream-function formulation are the simple form
of the equations in two-dimensions and the in-built satisfaction of the incompressibility
constraint.
In two dimensions, the vorticity transport equation and the Poisson equation for the
stream function are scalar and there are only two degree of freedom in the problem.
Moreover, the vorticity stream-function form of the Navier-Stokes equations allows equal
order of interpolation for the vorticity and the stream function. In fact the bilinear
interpolations which have been used here for both the unknowns are sufficient which is
an asset from the point of view of implementation.
On the other hand, a flow field obtained by the solution of the vorticity stream-function
equations is by definition divergence-free and the initial condition of the problem do not
need to satisfy the Incompressibility constraint. This allows the use of an initial flow field
noncontinuous at the boundary of the domain. ”

Stream function ↔ Stroomfunctie
Vorticity ↔ vorticiteit

13.1 Vorticity-stream function formulation of the isoviscous

Navier-Stokes equation

What follows is adapted from Glaisner and Tezduyar [464] (1987). The vorticity transport equation
can be obtained by taking the curl of the (isoviscous) incompressible momentum equation,

∇⃗ ×
[
∂ν⃗

∂t
+ (ν⃗ · ∇⃗)ν⃗

]
= ∇⃗ ×

[
−1

ρ
∇⃗p+ ν∇⃗2ν⃗+ g⃗

]
(13.1)
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with ν = η/ρ. i need to propagate gravity in what follows Computing term-by-term, we have

∇⃗ × ∂ν⃗

∂t
=

∂

∂t
(∇⃗ × ν⃗) =

∂ω⃗

∂t

where the vorticity vector ω⃗ is defined as

ω⃗ = ∇⃗ × ν⃗ =

∣∣∣∣∣∣
∂x u
∂y v
∂z w

∣∣∣∣∣∣ (13.2)

Because the curl of a gradient is zero (assuming rho constant?!),

∇⃗ ×
(
−1

ρ
∇⃗p
)

= 0

Also, (assuming nu constant?!)

∇⃗ × (ν∇⃗|ν⃗|2) = ν∇⃗2(∇⃗ × ν⃗) = ν∇⃗2ω⃗

Now, we use the vector identity

(ν⃗ · ∇⃗)ν⃗ =
1

2
∇⃗|ν⃗|2 − ν⃗× (∇⃗ × ν⃗) =

1

2
∇⃗|ν⃗|2 − ν⃗× ω⃗ (13.3)

Taking the curl of both sides and making use of the curl of a gradient equals zero and ω⃗ = ∇⃗ × ν⃗,
results in

∇⃗ × [(ν⃗ · ∇⃗)ν⃗] = −∇⃗ × (ν⃗× ω⃗) = ∇⃗ × (ω⃗ × ν⃗)

Combining all the above terms, we have thus obtained the vorticity equation

∂ω⃗

∂t
+ ∇⃗ × (ω⃗ × ν⃗) = ν∇⃗2ω⃗ (13.4)

Also, we have the identity
∇⃗ × (ω⃗ × ν⃗) = (ν⃗ · ∇⃗)ω⃗ − (ω⃗ · ∇⃗)ν⃗

so that in the end:
∂ω⃗

∂t
+ (ν⃗ · ∇⃗)ω⃗ = (ω⃗ · ∇⃗)ν⃗+ ν∇⃗2ω⃗ (13.5)

In the case of a two-dimensional flow, Eq. (13.5) simplifies to1

∂ω⃗

∂t
+ ν⃗ · ∇⃗ω⃗ = ν∇⃗2ω⃗

The velocity ν⃗ being solenoidal, there exists a vector field Ψ⃗ = (0, 0,Ψ) such that

ν⃗ = ∇⃗ × Ψ⃗

The nonzero component of Ψ is called the stream function. A relation between the vorticity and the
stream function is obtained as

ω⃗ = ∇⃗ × ∇⃗ × Ψ⃗ = −∇⃗2Ψ⃗

1In the case of a two-dimensional flow, the vorticity-stretching term (ν⃗ · ∇⃗)ν⃗ is zero and the vorticity transport
equation contains only one nonlinear term. This, together with the scalar nature of the equations, is the reason why
the vorticity stream-function formulation is very convenient in two dimensions.
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verify rot rot = - laplace
For 2D flows in the x− y plane, since w = 0 and ∂z = 0 then it has only one non-zero component

ω⃗ = ωe⃗z with

ω =
∂v

∂x
− ∂u

∂y
=

∂

∂x
(−∂Ψ

∂x
)− ∂

∂y
(
∂Ψ

∂y
) = − ∂Ψ

∂x2
− ∂Ψ

∂y2
= −∇⃗2Ψ

The vorticity stream-function form of the Navier-Stokes equations for two- dimensional flows is the
set of coupled scalar equations given below :

∂ω

∂t
+ ν⃗ · ∇⃗ω = ν∇⃗2ω on Ω× [0, T ] (13.6)

∇⃗2Ψ⃗ = −ω on Ω× [0, T ] (13.7)

where Ω is a domain of R2, ν⃗(x⃗, t) is the velocity, ω(x⃗, t) is the vorticity, Ψ(x⃗, t) is the stream function,
and ν is the kinematic viscosity. The vorticity and the stream function are related to the velocity
field through

ω =
∂v

∂x
− ∂u

∂y
(13.8)

u =
∂Ψ

∂y
(13.9)

v = −∂Ψ
∂x

(13.10)

For flow domains having solid boundaries ( e.g., walls or obstacles ) the no-slip and no-penetration
conditions yield constraints on the derivatives of Ψ , i.e,

n⃗ · ∇⃗Ψ = νt (13.11)

t⃗ · ∇⃗Ψ = 0 (13.12)

where t⃗ and n⃗ are the tangential and normal unit vectors at the surface whereas νt is the tangential
component of the velocity at the wall. Moreover, the stream function assumes constant values along
solid boundaries. However, it is difficult to derive any boundary condition for vorticity at solid
surfaces. The boundary values of the vorticity at solid surfaces are related to the local boundary-
layer profiles and are thus time dependent. On the other hand, they do not arise naturally from the
no-slip and no-penetration conditions.

13.2 Vorticity-stream function formulation of the isoviscous

Stokes equation in 2d

In two dimensions the velocity is obtained as follows:

ν⃗ = (u, v) =

(
∂Ψ

∂y
,−∂Ψ

∂x

)
(13.13)

Provided the function Ψ is a smooth enough function, this automatically insures that the flow is
incompressible:

∇⃗ · ν⃗ =
∂u

∂x
+
∂v

∂y
=
∂2Ψ

∂xy
− ∂2Ψ

∂xy
= 0 (13.14)

Also, we have

ν⃗ · ∇⃗Ψ = ν⃗ ·
(
∂Ψ

∂x
,
∂Ψ

∂y

)
= (u, v) · (−v, u) = 0
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Assuming constant viscosity, the Stokes equation writes:

−∇⃗p+ η0∆ν⃗+ ρg⃗ = 0⃗ (13.15)

or, in each dimension:

0 = −∂p
∂x

+ η0

(
∂2u

∂x2
+
∂2u

∂xy

)
+ ρgx (13.16)

0 = −∂p
∂y

+ η0

(
∂2v

∂x2
+
∂2v

∂y2

)
+ ρgy (13.17)

Using Eq. (13.13), we can write

0 = −∂p
∂x

+ η0

(
∂3Ψ

∂y3
+

∂3Ψ

∂x2∂y

)
+ ρgx

0 = −∂p
∂y
− η0

(
∂3Ψ

∂x3
+

∂3Ψ

∂y2∂x

)
+ ρgy (13.18)

The pressure terms in both equations can be removed by first differentiating the first line with
regards to y and the second line with regards to x,

0 = − ∂2p

∂x∂y
+ η0

(
∂4Ψ

∂y4
+

∂4Ψ

∂x2∂y2

)
+
∂(ρgx)

∂y

0 = − ∂2p

∂y∂x
− η0

(
∂4Ψ

∂x4
+

∂4Ψ

∂y2∂x2

)
+
∂(ρgy)

∂x
(13.19)

and next by subtracting the resulting equations, leading to:

0 = η0

(
∂4Ψ

∂x4
+ 2

∂4Ψ

∂x2∂y2
+
∂4Ψ

∂y4

)
+
∂(ρgx)

∂y
− ∂(ρgy)

∂x
(13.20)

or

∇⃗4Ψ =
1

η0

(
−∂(ρgx)

∂y
+
∂(ρgy)

∂x

)
(13.21)

where

∇⃗4 =

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
which we find for example in According to Gerya’s book2, page 70.

Note that ∇⃗2∇⃗2 = ∇⃗4 is known as the Biharmonic operator. These equations are also to be found
in the geodynamics literature, see Ismail-Zadeh and Tackley [626, eq. 1.43] or Gerya [455, p 70-71].

From ∇⃗2Ψ = −ω, we can also write

∇⃗2ω = − 1

η0

(
−∂(ρgx)

∂y
+
∂(ρgy)

∂x

)
(13.22)

13.3 Vorticity-stream function formulation of the non-isoviscous

Stokes equation in 2d

In this case, we can no longer write the Stokes equation as follows

−∇⃗p+ η0∆ν⃗+ ρg⃗ = 0⃗ (13.23)
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Indeed, it should be
−∇⃗p+ ∇⃗ · (2ηε̇) + ρg⃗ = 0⃗ (13.24)

We have

2ηε̇ = 2η

( ∂u
∂x

1
2
(∂u
∂y

+ ∂v
∂x
)

1
2
(∂u
∂y

+ ∂v
∂x
) ∂v

∂y

)
so that

Wx = −∂p
∂x

+
∂

∂x

(
2η
∂u

∂x

)
+
∂

∂y

(
η(
∂u

∂y
+
∂v

∂x
)

)
+ ρgx (13.25)

Wy = −∂p
∂y

+
∂

∂x

(
η(
∂u

∂y
+
∂v

∂x
)

)
+
∂

∂y

(
2η
∂v

∂y

)
+ ρgy (13.26)

Using Eq. (13.13) again, we can write

Wx = −∂p
∂x

+
∂

∂x

(
2η

∂2Ψ

∂x∂y

)
+

∂

∂y

(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
+ ρgx = 0 (13.27)

Wy = −∂p
∂y

+
∂

∂x

(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
− ∂

∂y

(
2η

∂2Ψ

∂y∂x

)
+ ρgy = 0 (13.28)

The pressure terms in both equations can be removed by first differentiating the first line with regards
to y and the second line with regards to x,

∂Wx

∂y
= − ∂2p

∂x∂y
+

∂2

∂x∂y

(
2η

∂2Ψ

∂x∂y

)
+

∂2

∂y2

(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
+
∂ρgx
∂y

(13.29)

∂Wy

∂x
= − ∂2p

∂y∂x
+

∂2

∂x2

(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
− ∂2

∂x∂y

(
2η

∂2Ψ

∂y∂x

)
+
∂ρgy
∂x

(13.30)

and next by subtracting the resulting equations, leading to:

0 =
∂2

∂x∂y

(
2η

∂2Ψ

∂x∂y

)
+

∂2

∂y2

(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
− ∂2

∂x2

(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
+

∂2

∂x∂y

(
2η

∂2Ψ

∂y∂x

)
+
∂ρgx
∂y
− ∂ρgy

∂x

0 =
∂2

∂x∂y

(
2η(

∂2Ψ

∂x∂y
+

∂2Ψ

∂y∂x
)

)
+

(
∂2

∂y2
− ∂2

∂x2

)(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
+
∂ρgx
∂y
− ∂ρgy

∂x

0 = 4
∂2

∂x∂y

(
η
∂2Ψ

∂x∂y

)
+

(
∂2

∂y2
− ∂2

∂x2

)(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
+
∂ρgx
∂y
− ∂ρgy

∂x
(13.31)

i.e.

4
∂2

∂x∂y

[
η
∂2Ψ

∂x∂y

]
+

(
∂2

∂y2
− ∂2

∂x2

)[
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

]
= −∂ρgx

∂y
+
∂ρgy
∂x

This is eq 5.36c of Gerya. This expression (esp. the lhs) is to be found in its dimensionless form in
Christensen and Yuen [245] (1984) or in Schmeling and Jacoby [1123] (1981) for example:

4
∂2

∂x∂y

(
η
∂2Ψ

∂x∂y

)
+

(
∂2

∂y2
− ∂2

∂x2

)(
η(
∂2Ψ

∂y2
− ∂2Ψ

∂x2
)

)
+
∂ρgx
∂y
− ∂ρgy

∂x
= Ra

∂T

∂x
−Rb∂Γ

∂x

In the presence of temperature variations and multiple compositions, Trim, Lowman, and Butler
[1281] (2020) use the following identical nondimensional equation:(

∂2

∂x2
− ∂2

∂y2

)[
η

(
∂2Ψ

∂x2
− ∂2Ψ

∂y2

)]
+ 4

∂2

∂xy

[
η
∂2Ψ

∂xy

]
= RaT

∂T

∂x
−RaC

∂C

∂x

PB: what if C is a discontinuous field? then I guess C needs to be carried on the nodes.
Introducing the vorticity again, we can rewrite the above equation as follows: ??? can it ???
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13.4 Boundary conditions

When we use a velocity-pressure formulation in a 2D Cartesian domain Dirichlet boundary conditions
translate into zeroing either u, v, or both, or assigning u and/or v a value on (part of) the boundary.
In this case our unknowns are the Ψ function and the vorticity ω so we need to think about boundary
conditions a bit more.

The solution of vorticity transport equation and stream function equation requires that appropri-
ate vorticity and stream function boundary conditions are specified at the boundaries. The specifi-
cation of these boundary conditions is extremely important since it directly affects the stability and
accuracy of the solution. However, neither vorticity nor its derivatives at the boundary are usually
known in advance. Therefore a set of boundary conditions must be constructed.

For example, since the flow is parallel to a solid boundary, solid boundaries and symmetry planes
are surfaces of constant stream function. In other words, since flow is parallel to the walls of the
cavity, walls may be treated as streamline. Thus, the stream function value on the wall streamline
is set as a constant (often taken to be zero for simplicity). Since the stream function is a constant
along a wall, all the derivatives of stream function along the wall also vanish.

In the end we have to account for three physical types of boundary conditions: free slip, no slip,
and prescribed velocity (yes, technically the last one encompasses the second one).

Check Napolitano, Pascazio, and Quartapelle [929] (1999) for a A review of vorticity conditions
in the numerical solution of the vorticity-stream function equations.

13.4.1 Free slip, ’stress free’ boundary conditions

The free slip boundary condition states that at the interface between a moving fluid and a stationary
wall, 1) the normal component of the fluid velocity field is equal to zero, but the tangential component
is unrestricted. 2) the tangential stress is set to zero (which is why it is often called ’stress free’ b.c.).

Free slip at the top and bottom then implies:

1. v = 0 which translates into ∂Ψ
∂x

= 0. Actually stating that ∂Ψ
∂x

= 0 along an horizontal edge
means that Ψ is then constant along that edge.

2. τxy = 2ηε̇xy = η(∂yu + ∂xv) = 0 on the boundary. Since v = 0, then it does not change in the
x direction on the boundary, i.e. ∂xv = 0, leaving the condition ∂yu = 0 which translates into
∂2Ψ
∂y2

= 0. Since Ψ is constant on that edge (see point above) then we also have ∂2Ψ
∂x2

= 0 so that

we can write that ω = −∇⃗2Ψ = 0 on that boundary.

The same reasoning on the sides means: u = 0 and ∂xv = 0 which translates into ∂Ψ
∂y

= 0 and
∂2Ψ
∂x2

= 0. In general the Poisson equation ∇⃗2Ψ = −ω becomes on a wall:

∂2Ψ

∂n2

∣∣∣∣
wall

= −ωwall

where n is the normal direction. Indeed, in Hsui [597] (1978) we read:

“Besides the initial condition, boundary conditions are also required in order to form a
well-posed system. Equation 13 [ i.e omega = curl Psi] requires the specification of stream
function at all boundaries. Since only the derivatives of stream functions which determine
the velocities are important to the problem, stream function can thus be specified to
within a constant. Consequently, they are chosen, for convenience, to be zero at all
boundaries.”

This is also coherent with for example:
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(“ free stress b.c.”) Richter and McKenzie [1073] Matsumoto and Tomoda [841]
(1983)

Hansen and Ebel [533] Hansen and Ebel [540]

Larsen, Yuen, Moser, and Fornberg [751]

13.4.2 No slip

Rather counter intuitively no-slip boundary conditions prove to be substantially more difficult to
implement than free-slip boundary conditions. For example we find in DeMarco, DeAndrade, and
Zaparoli [327] (2003):

“According to Layton [755] (1999), there are at least three natural ways of imposing
zero tangential velocities value along the boundary: (i) Lagrange multiplier of tangential
velocity component equal to zero as a constraint; (ii) Penalty term imposing tangential
velocity component equal to zero approximately; (iii) Replacing no-slip with slip with
friction. ”

DeMarco, DeAndrade, and Zaparoli [327] (2023) present “an analysis of penalty method application
to imposing no-slip boundary condition. The approach used herein consists to express the vorticity
boundary condition through the natural boundary condition depending on the solid wall tangential
velocity component.”

Let us consider the bottom boundary. No-slip means u = v = 0, i.e. ∂Ψ
∂y

= ∂Ψ
∂x

= 0. We have

seen previously that v = 0 yields Ψ =constant on the boundary, leaving ∂Ψ
∂y

= 0. This is problematic
because if one solves the biharmonic equation as two Poisson equations for ω and Ψ it does not
translate to a boundary condition for ω!

In general zeroing the tangential component of the velocity on a boundary will write ∂Ψ/∂n = 0
where n is the normal to the boundary.
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Christensen [243] (1984) Woidt [1366] (1978)

Here u is prescribed at the top, but not zero:

Gurnis and Davies [514]

In Lux, Davies, and Thomas [817] (1979) we find this great summary of the problem and the
sketch of its solution:

“The numerical methods we have used are well established and easy to apply. If we
introduce the vorticity ω, then the fourth-order stream function equation can be separated
into a pair of second-order Poisson equations,

ω = −∇⃗2Ψ ∇⃗2ω = −∂T
∂x

,

for which efficient matrix reduction methods are available. For prescribed stress boundary
conditions, the Poisson equations can simply be solved successively as done by McKenzie,
Roberts, and Weiss [857] (1974). A complication arises for a prescribed boundary velocity
because the boundary conditions on vorticity are then not explicit, see Richter [1071]
(1973). On the boundary the vorticity is proportional to the shear stress and, since the
shear stress is not known until the flow field is found, we lack a boundary condition on ω.
The Poisson equation for the stream function has an over-prescribed boundary condition,
since both Ψ, and ∂Ψ/∂y are given. This dilemma is resolved by using the condition on Ψ
for the stream function equation and the condition on ∂Ψ/∂y in a Taylor series expansion
for ω at the boundary for the vorticity equation. To ensure numerical stability with this
boundary condition, it is necessary to iterate between the equations; an efficient way of
optimizing this iteration has been given by Ehrlich and Gupta [363] (1975). The iteration
technique for the coupled Poisson equations was tested against analytical solutions of the
biharmonic equation given by Davies [314] (1977) and shown to be very accurate. The
solution of the convection problem described here evolves with time, so the boundary
condition on ω must be found at each time step by the iteration method. This procedure
is time consuming, so to increase the rate of convergence of this iteration a boundary
condition on ω accurate to first order (Taylor series) is used.”

In Comini, Manzan, and Nonino [275] (1994) we read:
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In the analysis of two-dimensional incompressible flows the streamfunction-vorticity formula-
tion of the Navier-Stokes equations allows the elimination of pressure from the problem
and automatically satisfies the continuity constraint. On the other hand, the value of the
vorticity at no-slip boundaries is difficult to specify and a poor evaluation of this boundary
condition leads, almost invariably, to serious difficulties in obtaining a converged solu-
tion. [...] A guideline for a correct specification of boundary conditions at no-slip walls
has been given by Roache.’ His numerical recipe can be summarized as follows: at no-slip
wallsjirst specify the streamfunction and then, in the procurement of the wall vorticity,
utilize the additional information on the normal component of the streamfunction. In
this way the boundary conditions for the streamfunction are not overspecified and the
wall vorticity is correctly related to the tangential component of the velocity. Obviously,
at stationary walls the tangential component of the velocity is zero, but at moving walls
serious errors may result if the gradient of the streamfunction is not properly taken into
account.

13.4.3 Stress b.c.

To Do

13.4.4 Line of symmetry

When the flow is truly symmetrical, the axis of symmetry can be considered a streamline. Therefore
the value of streamfunction along this boundary can be specified. Obviously, the velocity compo-
nent normal to the the symmetry boundary would be zero, whereas the streamwise component is
extrapolated from the interior solution.

13.5 Pressure Poisson Equation for the isoviscous N-S equa-

tion

This section is inspired by Salih [1098].
The PPE can be derived by taking the divergence of vector form of momentum equation

∇⃗ ·
[
∂ν⃗

∂t
+ (ν⃗ · ∇⃗)ν⃗

]
= ∇⃗ ·

[
−1

ρ
∇⃗p+ ν∇⃗2ν⃗

]
(13.32)

or,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(13.33)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(13.34)

Differentiating these equations with respect to x and y respectively, and assuming ρ constant in space
yields

∂2u

∂x∂t
+
∂u

∂x

∂u

∂x
+ u

∂2u

∂x2
+
∂v

∂x

∂u

∂y
+ v

∂2u

∂x∂y
= −1

ρ

∂2p

∂x2
+ ν

∂

∂x

(
∂2u

∂x2
+
∂2u

∂y2

)
(13.35)

∂2v

∂y∂t
+
∂u

∂y

∂v

∂x
+ u

∂2v

∂y∂x
+
∂v

∂y

∂v

∂y
+ v

∂2v

∂y2
= −1

ρ

∂2p

∂y2
+ ν

∂

∂y

(
∂2v

∂x2
+
∂2v

∂y2

)
(13.36)
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Adding both equations together, i.e. taking the divergence of the first equation, yields

∂2u

∂x∂t
+
∂u

∂x

∂u

∂x
+ u

∂2u

∂x2
+
∂v

∂x

∂u

∂y
+ v

∂2u

∂x∂y

∂2v

∂y∂t
+
∂u

∂y

∂v

∂x
+ u

∂2v

∂y∂x
+
∂v

∂y

∂v

∂y
+ v

∂2v

∂y2

= −1

ρ

∂2p

∂x2
+ ν

∂

∂x

(
∂2u

∂x2
+
∂2u

∂y2

)
− 1

ρ

∂2p

∂y2
+ ν

∂

∂y

(
∂2v

∂x2
+
∂2v

∂y2

)
(13.37)

∂t(
∂u

∂x
+
∂v

∂y︸ ︷︷ ︸
=0

) +
∂u

∂x

∂u

∂x
+
∂u

∂y

∂v

∂x
+
∂v

∂x

∂u

∂y
+
∂v

∂y

∂v

∂y
+ u(

∂2u

∂x2
+

∂2v

∂y∂x︸ ︷︷ ︸
A

) + v(
∂2v

∂y2
+

∂2u

∂x∂y︸ ︷︷ ︸
B

)

= −1

ρ
(
∂2p

∂x2
+
∂2p

∂y2
) + ν

∂

∂x

(
∂2u

∂x2
+
∂2u

∂y2

)
+ ν

∂

∂y

(
∂2v

∂x2
+
∂2v

∂y2

)
(13.38)

We have

A =
∂2u

∂x2
+

∂2v

∂y∂x
=
∂u

∂x
(
∂u

∂x
+
∂v

∂y
) = 0

B =
∂2v

∂y2
+

∂2u

∂x∂y
=
∂v

∂y
(
∂u

∂x
+
∂v

∂y
) = 0

so that

(
∂u

∂x
)2 + 2

∂u

∂y

∂v

∂x
+ (

∂v

∂y
)2 = −1

ρ
(
∂2p

∂x2
+
∂2p

∂y2
) + ν

∂

∂x

(
∂2u

∂x2
+
∂2u

∂y2

)
+ ν

∂

∂y

(
∂2v

∂x2
+
∂2v

∂y2

)
(13.39)

The viscosity terms in the rhs can be rearranged as

∂

∂x

(
∂2u

∂x2
+
∂2u

∂y2

)
+

∂

∂y

(
∂2v

∂x2
+
∂2v

∂y2

)
=

∂2

∂x2
(
∂u

∂x
+
∂v

∂y
) +

∂2

∂y2
(
∂u

∂x
+
∂v

∂y
) = 0

We are left with

(
∂u

∂x
)2 + 2

∂u

∂y

∂v

∂x
+ (

∂v

∂y
)2 = −1

ρ
(
∂2p

∂x2
+
∂2p

∂y2
) (13.40)

Now, the left-hand side can be further reduced as follows

(
∂u

∂x
)2 + 2

∂u

∂y

∂v

∂x
+ (

∂v

∂y
)2 = (

∂u

∂x
+
∂v

∂y︸ ︷︷ ︸
=0

)2 − 2
∂u

∂x

∂v

∂y
+ 2

∂u

∂y

∂v

∂x

In the end

∇⃗2p = 2ρ

(
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y

)
The PPE can also be written in terns of stream function:

∇⃗2p = 2ρ

[
∂2Ψ

∂x2
∂2Ψ

∂y2
−
(
∂2Ψ

∂x∂y

)2
]

The Poisson equation for pressure is an elliptic equation, showing the elliptic nature of pressure in
incompressible flows. For a steady flow problem, the PPE is solved only once, i.e., after the steady
state values of ω and Ψ have been computed.

Having established the PDE we must now turn to the boundary conditions. On a solid boundary,
boundary values of pressure are obtained using the tangential momentum equation of the fluid
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adjacent to the wall surface. For a wall located at y = 0 in Cartesian coordinate system (i.e. the
bottom boundary), the tangential momentum equation, that is the x-momentum equation, reduces
to

∂p

∂x

∣∣∣∣
wall

= η
∂2u

∂y2

∣∣∣∣
wall

= −η ∂ω
∂y

∣∣∣∣
wall

since v = ∂xv = 0 on that boundary.

In Reddy and Gartling [1051] we find at page 163: The pressure, if required, may be computed
from a Poisson equation of the form:

∆P = ∇⃗ · (f⃗ − ν∆ν⃗− (ν⃗ · ∇⃗)ν⃗)

Check Gunzburger and Peterson [508] (1988) which “describe an alternate method of recovering
the pressure which does not encounter any of the above difficulties; in particular, absolutely no
boundary conditions on the pressure are needed at solid walls.”

13.6 Vorticity-stream function formulation in 3D

The vorticity-streamfunction approach has seen considerable use for two-dimensional incompressible
flows. It has become less popular in recent years because its extension to three-dimensional flows is
difficult. Both the vorticity and streamfunction become three-component vectors in three dimensions
so one has a system of six partial differential equations in place of the four that are necessary in a
velocity-pressure formulation. It also inherits the difficulties in dealing with variable fluid properties,
compressibility, and boundary conditions that were described above for two dimensional flows.

In Reddy and Gartling [1051] we find at page 163:

“ A 3D version of the vorticiy transport equation is possible, although it has seen relatively
little use in computation due to the complexity of the vorticity boundary conditions. ”

Glaisner and Tezduyar [464] (1987) state: “

The extension of the codes to three dimensions is not easy for the vorticity stream-function
formulation. In three dimensions, the vorticity- stretching term does not vanish and the
equation system has two nonlinear terms. ”

In Zhong, Yuen, Moresi, and Knepley [1415] (2012) we read:

“For 3-D mantle convection, we can likewise employ the poloidal potential Φ and a
vorticity-like scalar function Ω (Busse, 1989; Chandrasekhar, 1961; Travis et al., 1990).
It is to be noted that this potential Φ is not the same as the stream function Ψ in 2-D
(see Chapter 7.04). From the general representation of an arbitrary solenoidal vector field
(Busse, 1989), we can write a 3-D velocity vector as

ν⃗ = ∇⃗ × ∇⃗ × (Φe⃗z) + ∇⃗ × (Θe⃗z)

where e⃗z is the unit vector in the vertical, z-direction, pointing upward. Θ is the toroidal
potential and is present in problems with lateral variations of viscosity (Christensen and
Harder, 1991; Gable et al., 1991; Zhang and Christensen, 1993). Thus, for constant
viscosity, Θ is zero unless driven by a boundary condition (e.g., Gable et al., 1991), and
the velocity vector ν⃗ = (u, v, w) involves higher-order derivatives of Φ in this formulation:

u =
∂2Φ

∂y∂z
v =

∂2Φ

∂x∂z
w = −(∂

2Φ

∂x2
+
∂2Φ

∂y2
)
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The 3-D momentum equation for constant properties can be written as a system of
coupled Poisson equations in 3-D:

∇⃗2Φ = Ω (13.41)

∇⃗2Ω = RaT (13.42)

where all differential operators are 3-D in character and Ω is a scalar function playing a
role analogous to the vorticity in the 2-D formulation.

We note that FD and FV methods using the primitive variables of velocity and pressure
are currently predominant in models of 3-D mantle convection with variable viscosity. ”

ToDo:

1. scan 3D literature

2. find all formulations cartesian or not

3. document num methods used

13.6.1 Cartesian domain (1)

Sotin and Labrosse [1180] (1999) write:

“ The conservation equations for momentum and mass are transformed into four Poisson
equations by introducing a vector potential stream function Ψ and vorticity ω [1280]:

∆Ψx + ωx = 0 (13.43)

∆ωx − RaT
∂T

∂y
= 0 (13.44)

∆Ψy + ωy = 0 (13.45)

∆ωy + RaT
∂T

∂x
= 0 (13.46)

Since the buoyancy force acts only in the z-direction, Ψz and ωz vanish identically. Shear-
stress free boundaries on top and bottom yields the following boundary conditions:

ωx = ωy = Ψx = Ψy = 0

at the top and bottom. Periodicity is assumed on all vertical boundaries.

The four Poisson equations are solved using a multigrid iterative method described by
Parmentier, Sotin, and Travis [976] (1994) and Sotin et al. 1995. ”

13.6.2 Cartesian domain (2)

Let us now turn to Larsen, Yuen, Malevsky, and Smedsmo [750] (1996):

“For the spatial discretization fourth-order correct bi-cubic splines are employed [826]. [...]
The mesh is uniform in the horizontal direction, and non-uniform in the vertical direction
with mesh-refinement near the boundary layers. [...] The mechanical boundary conditions
are stress-free and impermeable at the top and bottom boundaries, and reflecting along
the sides. The dimensionless temperature T is zero at the top and unity at the bottom
(z = 1), and there is zero heat flux along the sides.”
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In Larsen, Yuen, Moser, and Fornberg [751] (1997) the authors start with a 2D formulation:

“Instead of the biharmonic equation for Ψ, (e.g., Christensen [243], 1984), the conserva-
tion equations for the mass and momentum are given by two second-order partial differ-
ential equations (1) and (2). The horizontal and vertical coordinates are, respectively, x
and z with z pointing upwards. Time, t, has been non-dimensionalized by the thermal
diffusion time across the depth of the layer. A more detailed description of the scheme
for non-dimensionalization is given in Weinstein, Olson, and Yuen [1347] (1989). The
boundary conditions are stress-free and impermeable at the top and bottom boundaries,
and reflecting along the sides. The dimension- less temperature, T, is 0 at the top and 1
at the bottom. The boundary conditions are: Ψ = ω = 0 on all sides.”

They go further and explain the 3D approach:

“ We employ the poloidal potential, Ψ, and a vorticity-like scalar function Ω for solving
the momentum equation with constant properties (Busse [194], 1989; Travis, Olson, and
Schubert [1280], 1990b). We note that the potential Ψ is not the same as the stream-
function in two dimensions. From the general representation of an arbitrary solenoidal
vector field (Busse [194], 1989), we can write a three-dimensional velocity vector,

ν⃗ = ∇⃗ × (∇⃗ × e⃗zΨ)

with the e⃗z axis pointing upwards. Thus the velocity vector involves higher-order deriva-
tives of in this formulation:

u =
∂2Ψ

∂x∂z
v =

∂2Ψ

∂y∂z
ω = −

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
with ν⃗ = (u, v, w). The three-dimensional momentum equation can be written as a
system of coupled Poisson equations:

∇⃗2Ψ = Ω ∇⃗2Ω = RaT

Here Ω is a scalar function playing an analogous role to the vorticity in the two-dimensional
formulation.

The numerical method employed in this paper is based on a recursive algorithm for
generating the weights in the finite-difference approximation.”

13.6.3 Cartesian domain (3)

See for example Houseman [593] (1990) and refs therein:

“As the flow is incompressible, velocity may be expressed as the curl of a solenoidal vector
potential Ψ⃗ [e.g. Richardson & Cornish (1977)]:

ν⃗ = ∇⃗ × Ψ⃗

For 2-D flow, 3 is a vector everywhere normal to the plane of the flow. It may then be
treated as a scalar, and is given the name streamfunction.

The momentum equation may be restated as a biharmonic equation:

∇⃗4Ψ⃗ = f⃗
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where f⃗ is minus the curl of the buoyancy force divided by viscosity, and is hereafter
treated as a known quantity. It is also useful to define the vorticity, which is simply
related to the potential function

ω⃗ = ∇⃗ × ν⃗ = −∇⃗2Ψ

We now consider a finite difference technique for solving equation (3) in a region spanned
by a regular isotropic array of nodes.”

Boundary conditions of all kinds are extensively discussed!

13.6.4 Spherical shell

Zebib, Schubert, and Straus [1402] (1980) present axisymmetric steady convective solutions
Likewise Solheim and Peltier [1178] and Solheim and Peltier [1177]: “The model is spherical but

restricted in generality to the analysis of axisymmetric solutions.”

13.7 Vorticity-stream function formulation in polar/cylin-

drical coordinates

https://en.wikipedia.org/wiki/Stokes_stream_function uses very different definitions! sort it
out! actually it is for three-dimensional incompressible flow with axisymmetry!

νr =
1

r

∂Ψ

∂θ

νθ = −
∂Ψ

∂r

ω⃗ =

(
1

r

∂νz
∂θ
− ∂νθ

∂z

)
e⃗r +

(
∂νr
∂z
− ∂νz

∂r

)
e⃗θ +

(
1

r

∂(rνθ)

∂r
− 1

r

∂νr
∂θ

)
e⃗z

∇⃗4Ψ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2
∂2Ψ

∂θ2

)
or

∇⃗4Ψ = Ψ,rrrr +
2

r
Ψ,rrr −

1

r2
(Ψ,rr − 2Ψ,rrθθ) +

1

r3
(Ψ,r − 2Ψ,rθθ) +

1

r4
(4Ψ,θθ + 2Ψ,θθθθ)

See Hsui [597]. [1277] [1279]

13.8 Vorticity-stream function formulation in spherical co-

ordinates for three-dimensional incompressible flow with

axisymmetry

What follows comes from https://en.wikipedia.org/wiki/Stokes_stream_function.
The flow velocity components νr and νθ are related to the Stokes stream function Ψ through:

νr =
1

r2 sin θ

∂Ψ

∂θ
νθ = −

1

r sin θ

∂Ψ

∂r

The azimuthal velocity component νϕ is not a function of the Stokes stream function Ψ.
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The vorticity is defined as:

ω⃗ = ∇⃗ × ν⃗ = ∇⃗ × ∇⃗ ×Ψ with Ψ = − Ψ

r sin θ
e⃗ϕ

From the definition of the curl in spherical coordinates2:

ωr =
1

r sin θ

(
∂

∂θ
(νϕ sin θ)−

∂νθ
∂ϕ

)
e⃗r (13.47)

ωθ =
1

r

(
1

sin θ

∂νr
∂ϕ
− ∂

∂r
(rνϕ)

)
e⃗θ (13.48)

ωϕ =
1

r

(
∂

∂r
(rνθ)−

∂νr
∂θ

)
e⃗ϕ (13.49)

First notice that the r and θ components are equal to 0. prove! Secondly substitute νr and νθ into
ωϕ. The result is:

ωr = 0 (13.50)

ωθ = 0 (13.51)

ωϕ =
1

r

[
∂

∂r

(
r

(
− 1

r sin θ

∂Ψ

∂r

))
− ∂

∂θ

(
1

r2 sin θ

∂Ψ

∂θ

)]
(13.52)

After some algebra we arrive at

ω⃗ =

 0
0

− 1
r sin θ

(
∂2Ψ
∂r2

+ sin θ
r2

∂
∂θ

(
1

sin θ
∂Ψ
∂θ

))


Proof that velocity is perpendicular to gradient of stream function:

∇⃗Ψ · ν⃗ =
∂Ψ

∂r
· 1

r2 sin θ

∂Ψ

∂θ
+

1

r

∂Ψ

∂θ
·
(
− 1

r sin θ

∂Ψ

∂r

)
= 0

13.9 Numerical approach

When it comes to solving the biharmonic equation, there are essentially two options: solving/dis-
cretising the biharmonic operator involving 4th order derivatives, or introducing the vorticity and
solving coupled PDEs in vorticity-stream function.

Malevsky and Yuen [828] state:

“ The fourth-order elliptic equation does not contain time explicitly. One can obtain
the stream-function for a given temperature field by solving this nonlinear equation at
each instant. Equation (12) is a nonlinear time-dependent advection- diffusion equation,
where the Ψ(T ) dependence is given by the biharmonic eq. Numerical solution of the

2https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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advection-diffusion equation with advection dominating over diffusion is fraught with
numerical difficulties. It is known that high-order finite-element and finite- difference
schemes deteriorate from errors located near steep gradients of the advected field. Various
upwinding schemes, designed to overcome this difficulty, introduce artificial smoothing
(Cuvelier et al., 1988). A finite-element scheme based on the Lagrangian formulation
of the total time derivative in the advection-diffusion equation [826] proves to be very
efficient for the high Rayleigh number Newtonian convection. In stress-softening fluid,
thermal advection can be very strong locally due to the decrease of the effective viscosity
with growing stress. Therefore, we have chosen the Lagrangian scheme to solve the
energy equation for the non-Newtonian case. A second-order predictor-corrector scheme
with Lagrangian formulation was applied for time-stepping in the energy equation. The
Lagrangian scheme requires interpolation to compute values of Ψ and T between nodal
points. This scheme is very sensitive to the quality of spatial approximation. We used
bicubic splines (Ahlberg et al., 1967) for spatial discretization of both the temperature
and stream-function. ”

Rather interestingly Poliakov and Podlachikov [1008] (1992) state:

“ There is a class of methods based on the introduction of a stream function which satisfies
this condition automatically and gives good results. However, the stress-free boundary
condition causes significant difficulties because it requires the calculation of third-order
derivatives of the stream function. These algorithms are also not applicable for irregular
meshes. Thus, it is difficult to solve problems in regions with complicated geometry,
and to refine the mesh in areas of special interest. A further disadvantage is that the
approximation functions are not expressed explicitly in terms of the nodal variables and
an additional system of linear equations must be solved. ”

At the moment (and before a thorough literature review) here is how I see things when it comes
to numerical methods:

Biharmonic equation

|

--------------------------------------

| |

-------------- -------------

split into solve as is

2 Poisson eqs -------------

-------------- | |

| | FE FD

FE FD |---------| |

B-splines regular

13.9.1 Finite differences

In Valera, Negredo, and Villaseñor [1302] we find

“To solve the equation of motion we have applied a second-order, central finite- difference
scheme. We considered free slip (zero shear stress) boundary conditions at all boundaries.
The solution of the equation on each node was then computed in terms of the 12 nearest
nodes. The system matrix was square, symmetric and diagonally dominant, with only 12
non-null diagonals. This system could be solved by a very robust method based on a LU
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triangular factorization by Gaussian elimination with partial pivoting, which is already
implemented in the standard MATLAB code.”

In Zhong, Yuen, Moresi, and Knepley [1415] (2012) we read:

“We note that solving the biharmonic equation by FDs takes more time than solving two
coupled Laplacian equations.”

ToDo:

1. scan literature. e.g. McKenzie, Roberts, and Weiss [857] (1974) explain their stencils

2. establish stencil(s) for equations

3. how to deal with boundaries

4. In gerya’s book it is solved with FD. see page 72, and example Streamfunction2D.m - translate
to python?

13.9.2 Finite elements

We start from ∇⃗2∇⃗2Ψ = f , which we rewrite as follows:

∇⃗2Ψ = −ω (13.53)

∇⃗2ω = f (13.54)

After establishing the weak form and discretising it, this will yield the following linear system:(
K M
0 K

)
·
(

Ψ⃗
ω⃗

)
=

(
0⃗

f⃗

)
where K =

∫
BTBdV . This is an ideal situation: one can first solve the second line, obtain ω⃗ and

then solve the first line as K · Ψ⃗ = −M · ω⃗ Also it is the same matrix K, only different rhs!
Can i do this with Q1 elements only?!
Remarks:

� See Gresho and Sani [488] p523-525 for important remarks about establishing the weak forms
of the vorticity-stream function equations. They refer to [1212].

� In Step 47 of deal.II3 it is explained

“The fundamental issue with the equation is that [the biharmonic equation] takes
four derivatives of the solution. In the case of the Laplace equation [...], and several
other tutorial programs, one multiplies by a test function, integrates, integrates by
parts, and ends up with only one derivative on both the test function and trial
function - something one can do with functions that are continuous globally, but
may have kinks at the interfaces between cells: The derivative may not be defined
at the interfaces, but that is on a lower-dimensional manifold (and so doesn’t show
up in the integrated value).
But for the biharmonic equation, if one followed the same procedure using integrals

3https://www.dealii.org/current/doxygen/deal.II/step_47.html
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over the entire domain (i.e., the union of all cells), one would end up with two
derivatives on the test functions and trial functions each. If one were to use the usual
piecewise polynomial functions with their kinks on cell interfaces, the first derivative
would yield a discontinuous gradient, and the second derivative with delta functions
on the interfaces - but because both the second derivatives of the test functions and
of the trial functions yield a delta function, we would try to integrate the product of
two delta functions.”

Logically the biharmonic equation is then split into two Poisson equations.

� In van Keken’s phd thesis we read:

“The equation of motion is a 4th-order PDE and, for a FE approximation to be con-
form, the basis functions should be twice continuously differentiable in each element
and least continuously differentiable throughout the computational domain Ω. ”

van Keken then proceeds to use 2 different methods: a non-conforming type of element Hansen
and Ebel [533] (1984), and a bicubic spline FE method Woidt [1366] (1978), Kopitzke et al.
[722] (1979).

� check Comini, Manzan, and Nonino [275] (1994) for N-S implementation.

� check Gunzburger and Peterson [508] (1988) for 2D, 3D implementation

the Spline FE method

Christensen [243] (1984) writes:

“The numerical grid consists of rectangular elements of variable size. All spatially varying
quantities - i.e. Ψ, T and η are represented by polynomial splines. These are polynomials
of a certain degree n within each individual element which are continuous at the joints
up to the kth derivative ( k < n). In a spline space at a rather compact base can
be constructed, which means that each base function (B spline) is zero outside a small
region consisting of few elements; this is an advantage over a polynomial or Fourier space.
The shape of each B spline depends on the local grid structure. With the restriction
that the size of the elements varies in both dimensions only by one of the factors 1/α,
1 or α compared to the neighbouring elements (with α fixed) a restricted number of
types of B splines are necessary which reduces the computational costs. Splines which
are non-zero at the boundary of the mathematical domain are modified in such a way
that the boundary conditions to [the biharmonic equation] are fulfilled for any function
that can be constructed in the spline space. Compared to the normal finite element
method with Lagrangian shape functions, higher requirements on the continuity can be
easily fulfilled. On the other hand one is restricted to semi-regular grids with all element
boundaries parallel or perpendicular to each other. [...] The integral contains fourth-order
derivatives, however, by partial integration it can be transformed into one containing only
second derivatives. The matrix built is band structured and a stable solution is obtained
by a Cholesky transformation.”

Christensen and Yuen [246] (1989) states:

“The spline finite element method used to solve the set of equations (7) and (9) is de-
scribed by Christensen [1984]. Bicubic splines are taken for Ψ,and biquadratic splines for
T . The grid is nonuniform and allows higher resolution in the boundary layers”
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In Malevsky and Yuen [828] we find:

“We can use the Galerkin method to approximate the solution. In this case a matrix A
is obtained as

aij =

∫∫
η

[(
∂2Bi

∂y2
− ∂2Bi

∂x2

)(
∂2Bj

∂y2
− ∂2Bj

∂x2

)
+ 4

∂Bi

∂y∂x

∂Bj

∂y∂x

]
dxdy

where B is a basic bicubic spline. The derivatives of a basic spline (a piecewise cubic
polynomial) can be calculated analytically.”

ToDo:

� derive B spline equation, implement, python fct? check for example [722]

� derive equation above

� work out the 2 formulations of vKK phd thesis

� check book by Gunzburger & Peterson for splines + FEM

13.10 Algorithm for stream function-vorticity formulation

A solution algorithm for computing evolution of incompressible, two-dimensional flow using stream
function-vorticity formulation is given as follows:

1. Initialize the velocity field and compute the associated vorticity field and streamfunction field
using equations ωz = ∂xv − ∂yu and ∆Ψ = −ω.

2. Compute the boundary conditions for vorticity.

3. Solve the vorticity transport equation (13.6) to compute the vorticity at new time step; any
standard time marching scheme may be used for this purpose.

4. Solve the Poisson equation for streamfunction ∆Ψ = −ω to compute the streamfunction field
at new time step; any iterative scheme for elliptic equations may be used.

5. Compute the velocity field at new time step using the relations u = ∂yΨ and v = −∂xΨ.

6. Return to step 2 and repeat the computation for another time step.

13.11 The nondimensional equations

13.11.1 Isoviscous case

We start from the equations (2.81),(2.82),(2.83):

−∇⃗p+ ∇⃗ · 2ε̇+ RaT e⃗y = 0⃗ (13.55)

∇⃗ · ν⃗ = 0 (13.56)

∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T (13.57)
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If the viscosity is constant then η = η0 = ηref so η = 1 we can also write these as

−∇⃗p+ ∇⃗2ν⃗+ RaT e⃗y = 0⃗ (13.58)

∇⃗ · ν⃗ = 0 (13.59)

∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T (13.60)

Following the approach in Section 13.2, and omitting the colors to indicate dimensionless values:
or, in each dimension:

0 = −∂p
∂x

+

(
∂2u

∂x2
+
∂2u

∂xy

)
(13.61)

0 = −∂p
∂y

+

(
∂2v

∂x2
+
∂2v

∂y2

)
+ RaT (13.62)

Using Eq. (13.13), we can write

0 = −∂p
∂x

+

(
∂3Ψ

∂y3
+

∂3Ψ

∂x2∂y

)
0 = −∂p

∂y
−
(
∂3Ψ

∂x3
+

∂3Ψ

∂y2∂x

)
+ RaT (13.63)

The pressure terms in both equations can be removed by first differentiating the first line with
regards to y and the second line with regards to x,

0 = − ∂2p

∂x∂y
+

(
∂4Ψ

∂y4
+

∂4Ψ

∂x2∂y2

)
0 = − ∂2p

∂y∂x
−
(
∂4Ψ

∂x4
+

∂4Ψ

∂y2∂x2

)
+
∂(RaT )

∂x
(13.64)

and next by subtracting the resulting equations, leading to:

0 =

(
∂4Ψ

∂x4
+ 2

∂4Ψ

∂x2∂y2
+
∂4Ψ

∂y4

)
− Ra

∂T

∂x
(13.65)

or

∇⃗4Ψ = Ra
∂T

∂x
(13.66)

Introducing again the vorticity ω = −∇⃗2Ψ, then we must solve

∇⃗2ω = −Ra∂T
∂x

and ∇⃗2Ψ = −ω

—————————————————
check further
The vorticity equation is

∂ω

∂t
+ ν⃗ · ∇⃗ω = Re−1∇⃗2ω

ToDo:

� re-derive these equations , see for example Solheim and Peltier [1177] (1994) eq 8, or Kopitzke
et al. [722] eq 1,2
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13.12 Incorporation of phase changes

ToDo:

� scan literature for Γ fct

� isolate example

13.13 The energy equation

The (simple) energy equation
∂T

∂t
+ ν⃗ · ∇⃗T = κ∆T

becomes in 2D:
∂T

∂t
+
∂Ψ

∂y

∂T

∂x
− ∂Ψ

∂x

∂T

∂y
= κ∆T

rewrite with all coeffs

13.14 Remark, misc

Arie van den Berg (prov. comm.) writes:

“The stream function formulation is useful to obtain a conceptually simpler implemen-
tation with finite differences if you rewrite the 4th order biharmonic equation for the
streamfunction in two coupled Poisson equations for streamfunction and vorticity respec-
tively. That is for an isoviscous fluid. For variable viscosity it becomes more ugly.

It disappeared probably due its limitations for variable viscosity fluids and once the more
power full but complex formulation alternatives became more well known. ”

In Gresho and Sani [488] (p. 941), the authors present an algorithm to compute Ψ from a velocity
field obtained via the FEM.
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Chapter 14

Heat Transfer & convection in a porous
medium

I am by no means an expert when it comes to porous media. I hope to revisit the topic regularly in
the coming years and improve this section. Any help or comment welcome.

QUESTOIN: What is head?

14.0.1 Darcy’s law for groundwater movement

[Taken from MODFLOW manual] The three-dimensional movement of groundwater of constant
density through porous earth material is described by Darcy’s Law:

q⃗ = −K · ∇⃗h

where q⃗ is a vector of specific discharge (L/T), or fluid-flux vector, K is the hydraulic-conductivity
tensor (L/T), h is the potentiometric head (L).

When combined with a water balance on a small control volume, Darcy’s Law leads to a partial-
differential equation that describes the distribution of hydraulic head:

SS
∂h

∂t
= −∇⃗ · q⃗ +Q′

s = ∇⃗ · (K · ∇⃗h) +Q′
s (14.1)

where Q′
s is a volumetric flux per unit volume representing sources and sinks of water, with Q′

s being
negative for flow out of the groundwater system, and Q′

s being positive for flow into the system
(T−1). SS is the specific storage of the porous material (L−1); and t is time (T ).

Eq. (14.1) describes transient groundwater flow in a heterogeneous and anisotropic medium. This
equation, together with specification of flow and head conditions at the boundaries of an aquifer
system and specification of initial-head conditions, constitutes a mathematical representation of a
groundwater flow system.

QUESTION: why no gravity in there ?
At this stage we have to acknowledge similarities with the heat equation with the heat flux q⃗

being given by
q⃗ = −k∇⃗T

where k is the heat conductivity (which can also be a tensor if the medium is anisotropic) and

ρCp
∂h

∂t
= −∇⃗ · q⃗ +H = ∇⃗ · (k∇⃗T ) +H

This means that in the absence of other physics in the system, we know how to solve the groundwater
equation, as explained in Chapter 6.
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14.0.2 The equations of non-isothermal fluid flow in a porous medium

A porous medium is a material containing pores. These pores can be filled with a gas or a fluid.
Often the pore space forms a network which allows fluids to pass through.

The equations under consideration are the following:

� Darcy’s law is an equation that describes the flow of a fluid through a porous medium. The law
was formulated by Henry Darcy1 based on results of experiments on the flow of water through
beds of sand:

ν⃗ = −K

η
(∇⃗p+ ρf g⃗) (14.2)

� mass conservation (incompressibility condition):

∇⃗ · ν⃗ = 0 (14.3)

� heat transport: Usually it is a good approximation to assume that the solid and fluid phases are
in local thermal equilibrium (LTE) but there are situations, such as highly transient problems
and some steady-state problems, where this is not so. Now this is commonly referred to as
local thermal nonequilibrium (LTNE). If one wishes to allow for heat transfer between solid
and fluid (that is, one no longer has local thermal equilibrium), then the equations are

(1− ϕ)(ρCp)s
∂Ts
∂t

= (1− ϕ)∇⃗ · (ks∇⃗Ts) + (1− ϕ)qs + h(Tf − Ts) (14.4)

ϕ(ρCp)f
∂Tf
∂t

+ (ρCp)f ν⃗ · ∇⃗Tf = ϕ∇⃗ · (kf∇⃗Tf ) + ϕqf + h(Ts − Tf ) (14.5)

When it is assumed that there is local thermal equilibrium then Tf = Ts = T (Section 2.1 of
Nield & Bejan’s book). Then one can add the equations together and obtain

(ρCp)m
∂T

∂t
+ (ρCp)f ν⃗ · ∇⃗T = ∇⃗ · (km∇⃗T ) + qm

with

(ρCp)m = (1− ϕ)(ρCp)s + ϕ(ρCp)f (14.6)

km = (1− ϕ)ks + ϕkf (14.7)

qm = (1− ϕ)qs + ϕqf (14.8)

� linearised equation of state in the form of the Oberbeck-Boussinesq approximation (Section 2.3
of Nield & Bejan’s book):

ρ = ρ0(1− α(Tf − T0))

In the equations above the subscript f stands for “fluid”, and the subscript s for “solid”. ν⃗ is the
velocity (m s−1), p is the pressure (Pa), g⃗ is the gravitational acceleration (m s−2), ϕ is the porosity, K
the permeability tensor (m2), ρ the mass density (kgm−3), T the temperature (K), h the coefficient
of heat transfer between solid and fluid (unit?), α the coefficient of thermal expansion, k the heat
conductivity, Cp the heat capacity, and η the dynamic viscosity (Pa s).

1https://en.wikipedia.org/wiki/Henry_Darcy
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For the case of an isotropic medium the permeability is a scalar, i.e. K = K1 so that

ν⃗ = −K
η
(∇⃗p+ ρf g⃗) (14.9)

Values of K for natural materials vary widely. Typical values for soils, in terms of the unit
m2, are: clean gravel 10−7 − 10−9, clean sand 10−9 − 10−12 , peat 10−11 − 10−13, stratified clay
10−13 − 10−16, and unweathered clay 10−16 − 10−20. Workers concerned with geophysics often use as
a unit of permeability the Darcy, which equals 0.987 · 10−12m2.

14.0.3 Weak form and discretisation

We wish to solve the equations of the previous section with the Finite Element method. There are
four unknown fields: ν⃗ = (u, v), Ts, Tf , p which we conveniently downsize to three assuming local
thermal equilibrium (LTE), i.e. T = Tf = Ts.

The Cartesian domain is partitioned in non-overlapping elements. In each element the fields can
be expressed as follows:

νx(x, y) =
mν∑
i=1

N ν
i (x, y) νx,i = N⃗ ν · V⃗x (14.10)

νy(x, y) =
mν∑
i=1

N ν
i (x, y) νy,i = N⃗ ν · V⃗y (14.11)

p(x, y) =

mp∑
i=1

N p
i (x, y) pi = N⃗ p · P⃗ (14.12)

T (x, y) =

mT∑
i=1

N θ
i (x, y) Ti = N⃗ θ · T⃗ (14.13)

with

N⃗ ν = (N ν
1 ,N ν

2 , . . .N ν
mν

) (14.14)

N⃗ p = (N p
1 ,N

p
2 , . . .N p

mp) (14.15)

N⃗ T = (N T
1 ,N T

2 , . . .N T
mT

). (14.16)

The heat transport poses no real problem and the topic has been treated in Section 6.3 so we will
not repeat it here. When solving this equation we assume that the velocity of the advection term is
known.

There are actually two approaches to solve the mass and momentum conservation equations. We
wish to find the velocity and pressure fields assuming the temperature known.

Mixed variable approach

We have two coupled equations (14.2) and (14.3):

−ηK−1 · ν⃗− ∇⃗p = ρg⃗ (14.17)

−∇⃗ · ν⃗ = 0 (14.18)

or, defining L = ηK−1, these become in 2D Cartesian coordinates:

−Lxxνx − Lxyνy − ∂xp = ρgx (14.19)

−Lyxνx − Lyyνy − ∂yp = ρgy (14.20)

−∂xνx − ∂yνy = 0 (14.21)
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Let us go through each line separately and establish its weak form:

−
∫
N⃗ νLxxνx dV −

∫
N⃗ νLxyνy dV −

∫
N⃗ ν∂xp dV =

∫
N⃗ νρgx(

−
∫
N⃗ νLxxN⃗ νdV

)
︸ ︷︷ ︸

Nxx

·V⃗x +
(
−
∫
N⃗ νLxyN⃗ νdV

)
︸ ︷︷ ︸

Nxy

·V⃗y +
(
−
∫
N⃗ ν∂xN⃗ pdV

)
︸ ︷︷ ︸

Gx

·P⃗ =

∫
N⃗ νρgx︸ ︷︷ ︸
f⃗x

The second line yields(
−
∫
N⃗ νLyxN⃗ νdV

)
︸ ︷︷ ︸

Nyx

·V⃗x +
(
−
∫
N⃗ νLyyN⃗ νdV

)
︸ ︷︷ ︸

Nyy

·V⃗y +
(
−
∫
N⃗ ν∂yN⃗ pdV

)
︸ ︷︷ ︸

Gy

·P⃗ =

∫
N⃗ νρgy︸ ︷︷ ︸
f⃗y

The third line yields

−
∫
N⃗ p(∂xνx + ∂yνy) dV = 0⃗(

−
∫
N⃗ p∂xN⃗ νdV

)
︸ ︷︷ ︸

Hx

·V⃗x
(
−
∫
N⃗ p∂yN⃗ νdV

)
︸ ︷︷ ︸

Hy

·V⃗y = 0⃗ (14.22)

In the end:  Nxx Nxy Gx

Nyx Nyy Gy

Hx Hy 0

 ·
 V⃗xV⃗y
P⃗

 =

 f⃗x
f⃗y
h⃗


In the case of an isotropic material and an isoviscous fluid, we have

Nxx = Nyy = −
η

K

∫
N⃗ νN⃗ νdV = − η

K
Mν

where Mν is the velocity mass matrix, while Nxy = Nyx = 0 so that we then solve − η
K
Mν 0 Gx

0 − η
K
Mν Gy

Hx Hy 0

 ·
 V⃗xV⃗y
P⃗

 =

 f⃗x
f⃗y
h⃗


About the G blocks What is above has one major disadvantage: the G blocks contain the
biquadratic basis velocity and the derivatives of the bilinear pressure basis functions. We could be
tempted to integrate

∫
N⃗ ν∂xpdV by parts in order to bring the space derivative on the velocity basis

functions and thereby recover the H blocks. However there is a surface term [N⃗ νp]Γ which I am not
too sure what to do about... I have implemented this in the code (while disregarding the surface
term) and found that the convergence was much much worse.

Block scaling As explained in Section 7.5.4, we need to scale the blocks so as to insure an accurate
solution. Eq. (14.17) can be written

−ηL2K−1 · ν⃗
L2
− ∇⃗p = ρg⃗

where L is a characteristic length. The term ν⃗/L2 has the same dimensions as the Laplacian of the
velocity in the Stokes equations and we obviously find that the dimension of the η′ = ηL2K−1 term
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is one of viscosity. Following the reasoning in Section 7.5.4 the scaling coefficient for the G and H
blocks is

η′

L
=
ηL2

K̃L
=
ηL

K̃

where K̃ is a representative quantity of the K tensor. In our case, we find that taking L = hx yields
blocks which coefficient magnitudes are very well matched. After each elemental G or H block is
built it is multiplied by the factor above and assembled. After the solve, the obtained pressure must
then be multiplied by this factor to recover the proper magnitude.

Second approach

Inserting Eq. (14.2) in Eq. (14.3) we obtain

∇⃗ ·
(
−K

η
(∇⃗p+ ρg⃗)

)
= 0 (14.23)

If we assume that the permeability tensor, the viscosity and the gravity are constant, then

K

η

(
∆p+ ∇⃗ρ · g⃗)

)
= 0

or simply
∆p+ ∇⃗ρ · g⃗ = 0.

and we end up with a simple Poisson equation.
Let us now establish the weak form of Eq. (14.23) (without the above assumption):∫

N p
i ∇⃗ ·

(
K

η
(∇⃗p+ ρg⃗)

)
+

∫
N p
i ∇⃗ · (ρg⃗) = 0

After integration by parts + neglecting surface term (for now) we obtain

−
(∫

(∇⃗N⃗ p)T · K
η
· ∇⃗N⃗dV

)
· P⃗ +

∫
N⃗ p(∇⃗ρ · g⃗)dV = 0⃗

We denote here B = ∇⃗N⃗ p so(∫
BT · K

η
·BdV

)
· P⃗ =

∫
N⃗ p(∇⃗ρ · g⃗)dV

Using the equation of state, we find that

∇⃗ρ = −αρ0∇⃗T = −αρ0∇⃗(N⃗θ · T⃗ )

Note that the discarded surface term are not trivial to formulate and that this approach does not
easily allow to prescribe velocities anywhere in the domain since the velocity field is not solved for.
In fact prescribing flow in the boundary is akin to pressure Neumann boundary conditions.

14.0.4 The equations in dimensionless form

This follows Palm et al. (1972) [971]. The field variables may conveniently made dimensionless by
choosing

h, ∆T,
ηκ

K
,

κ

h

as units of length, temperature, pressure, and velocity respectively.
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Let us start with Eq. (14.9). Dividing each side by the reference velocity κ/h yields:

ν⃗′ =
ν⃗

κ/h
= −Kh

ηκ
(∇⃗p+ ρg⃗) (14.24)

Defining the dynamic pressure p̃ as

p̃ = p− phydr = p− ρ0g(Ly − y)

then ∇⃗p = ∇⃗p̃ − ρ0ge⃗y and introducing the temperature-dependence of the density in the equation
yields

ν⃗′ = −Kh
ηκ

(∇⃗p̃− ρ0ge⃗y + ρ0(1− α(T − T0)ge⃗y) (14.25)

= −Kh
ηκ

(∇⃗p̃− ρ0α(T − T0)ge⃗y) (14.26)

We now define the dimensionless temperature T ′ as

T ′ =
T − T0
∆T

then

ν⃗′ = −Kh
ηκ

(∇⃗p̃− ρ0αT ′∆Tge⃗y) (14.27)

= −∇⃗′p̃′ +
αρ0gK∆Th

κη
T ′e⃗y (14.28)

= −∇⃗′p̃′ + RaT ′e⃗y (14.29)

The other two equations (mass and energy conservation) are trivial, so dropping the primes, the
(steady state form of the) equations takes the form

−∇⃗p+ RaT e⃗z − ν⃗ = 0⃗ (14.30)

∇⃗ · ν⃗ = 0 (14.31)

ν⃗ · ∇⃗T = ∇⃗2T (14.32)

where Ra is a Rayleigh number defined by

Ra =
Kρ0gα∆Th

κη

Following Palm et al. (1972) [971] and Kuo (1961) [735], we introduce T = T0 − z + θ where T0
is a dimensionless temperature, eliminating the pressure by applying the curl operator and applying
the equation of continuity.

It is know that the curl of a gradient is zero, so ∇⃗ × ∇⃗p = 0. We then have

∇⃗ × [RaT e⃗z − ν⃗] = 0⃗

or,

−Ra∂T
∂x
−
(
∂νx
∂z
− ∂νz

∂x

)
= 0
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We take the partial derivative with respect to x of the above equation to obtain

−Ra∂
2T

∂x2
−
(
∂2νx
∂xz

− ∂νz
∂x2

)
= 0

using the incompressibility condition we have ∂xνx = −∂zνz so

−Ra∂
2T

∂x2
−
(
−∂

2νz

∂z2
− ∂2νz

∂x2

)
= 0

−Ra∂
2T

∂x2
+∆νz = 0

We take the Laplacian of this equation:

−Ra∂
2∆T

∂x2
+∆2νz = 0

Since ∆T = ν⃗ · ∇⃗T then

−Ra∂
2(ν⃗ · ∇⃗T )
∂x2

+∆2νz = 0

We have ∇⃗T = −e⃗z + ∇⃗θ so ν⃗ · ∇⃗T = −νz + ν⃗ · ∇⃗θ and finally

−Ra∂
2(−νz + ν⃗ · ∇⃗θ)

∂x2
+∆2νz = 0

or,

∇⃗4νz + Ra
∂2νz
∂x2

=
∂2(ν⃗ · ∇⃗θ)

∂x2

Finally we recover Eqs. (2.11-13) of Palm et al. (1972) [971]:

∇⃗4νy + Ra
∂2νz
∂x2

=
∂2(ν⃗ · ∇⃗θ)

∂x2
(14.33)

∇⃗2θ+ νz = ν⃗ · ∇⃗θ (14.34)

∇⃗ · ν⃗ = 0 (14.35)

The boundary conditions are then νy = θ = 0 for y = 0, 1.
This formulation of the equation forms the basis of the convection benchmark in the coming

section.
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Chapter 15

Adjoint methods

w.i.p.
adjoint methods in geodynamics [188, 458, 590, 625, 780, 1341, 1338, 1369]. Also see johnson Notes

on Adjoint Methods.pdf and bradley-PDE-constrained optimization and the adjoint method.pdf

Advection-diffusion: https://en.wikipedia.org/wiki/Adjoint_equation
Derivation of the adjoint poisson equation: https://math.stackexchange.com/questions/

2269111/derivation-of-the-adjoint-poisson-equation

Inverting PDEs with adjoints (esp Poisson) https://joelcfd.com/inverting-pdes-with-adjoints/
Video: Introduction to the adjoint method https://youtu.be/EybH_Q-QTZ8

Video: adjoint-based optimization https://youtu.be/Yiz92Ekn7vU
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Chapter 16

Elasticity: physics, formulations and
FEM

chapter17.tex

Let us start by clarifying notations:

variable name symbol unit

full stress tensor σ Pa
deviatoric stress tensor τ Pa
strain tensor ε -
elastic strain tensor εe -
visco-plastic strain tensor εvp -
total strain tensor εT -
strain rate tensor ε̇ s−1

Lamé parameter λ Pa
Shear modulus µ Pa
Bulk modulus K Pa
Poisson ratio ν -
Young’s modulus E Pa
viscosity η Pa s
displacement υ⃗ m
velocity ν⃗ ms−1

What follows is a compilation of various sources, such as the Becker & Kaus lecture notes [66],
the excellent paper by Beuchert and Podladchikov [86] (2010), the syllabus of R. Hassani [XX] and
various books such as Sadd [1094].

One will find in the literature either ’elasto-viscosity’ or ’visco-elasticity’. In what follows I have
adopted the former notation with the acronym EV.

Once the equations have been laid out, one must then make a fundamental choice with regards
to the type of code/calculations in the case of elasto-viscous rheologies: will the primary variable be
displacement υ⃗ or velocity ν⃗? The latter is the common approach in the geodynamics community.
The vast majority of codes are fluid flow solvers, formulated in velocity and pressure. Elasticity is
usually added to such codes way after they were first used/written (eg ELEFANT, ASPECT, ...). For
a purely elastic code displacement is the meaningful primary variable since the stress is formulated
as a function of strain (not strain rate).
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16.1 Basic equations

The strong form of the PDE that governs force balance in a medium is given by

∇⃗ · σ + f⃗ = 0⃗

where σ is the full stress tensor and f⃗ is a body force (typically ρg⃗).
The stress tensor is related to the strain tensor through the generalised Hooke’s law1:

σij =
∑
kl

Cijklεkl or σ = C : ε (16.1)

where C is the fourth-order elastic tensor (which contains 34 = 81 coefficients). The strain tensor is
related to the displacement υ⃗ as follows:

ε(υ⃗) =
1

2
(∇⃗υ⃗+ (∇⃗υ⃗)T ) (16.2)

Due to the inherent symmetries of σ, ε, and C, only 21 elastic coefficients of the latter are indepen-
dent. For isotropic linear media (which have the same physical properties in any direction), C can
be reduced to only two independent numbers (for example the bulk modulus K and the shear mod-
ulus2 µ that quantify the material’s resistance to changes in volume and to shearing deformations,
respectively). We find that

Cijkl = λδijδkl + µ(δikδjl + δilδjk)

so that Eq. (16.1) becomes:
σij = λεkkδij + 2µεij

or

σ = λTr[ε(υ⃗)]1+ 2µε(υ⃗)

= λ(∇⃗ · υ⃗)1+ 2µε(υ⃗) (16.3)

where λ is the Lamé parameter and µ is the shear modulus. The term ∇⃗·υ⃗ = Tr[ε(υ⃗)] is the isotropic
dilation.

Very explicitly, and since the stress and strain tensors are symmetric, we have

σxx = (λ+ 2µ)εxx + λεyy + λεzz

σyy = λεxx + (λ+ 2µ)εyy + λεzz

σzz = λεxx + λεyy + (λ+ 2µ)εzz

σxy = 2µεxy

σxz = 2µεxz

σyz = 2µεyz (16.4)

This can be re-written in the 6-dimensional stress/strain space as
σxx
σyy
σzz
σxy
σxz
σyz


︸ ︷︷ ︸

σ⃗

=


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


︸ ︷︷ ︸

D

·


εxx
εyy
εzz
2εxy
2εxz
2εyz


︸ ︷︷ ︸

ε⃗

(16.5)

1https://en.wikipedia.org/wiki/Hooke’s_law
2It is also sometimes written G
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Let us define the matrices

Λ =


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 Ξ =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


so that

D = λΞ+ µΛ

If we define the Young’s modulus E and the Poisson’s ratio as

E =
µ(3λ+ 2µ)

λ+ µ
or ν =

λ

2(λ+ µ)
(16.6)

Then

1− ν = 1− λ

2(λ+ µ)
=

2(λ+ µ)

2(λ+ µ)
− λ

2(λ+ µ)
=

λ+ 2µ

2(λ+ µ)

1 + ν = 1 +
λ

2(λ+ µ)
=

2(λ+ µ)

2(λ+ µ)
+

λ

2(λ+ µ)
=

3λ+ 2µ

2(λ+ µ)
=

E

2µ

1− 2ν = 1− 2
λ

2(λ+ µ)
=

2(λ+ µ)

2(λ+ µ)
− 2λ

2(λ+ µ)
=

µ

λ+ µ

E

(1 + ν)(1− 2ν)
(1− ν) = E

λ+ 2µ

2(λ+ µ)
· 2µ
E
· λ+ µ

µ
= λ+ 2µ

E

(1 + ν)(1− 2ν)

1

2
(1− 2ν) = E

µ

λ+ µ
· 2µ
E
· 1
2

λ+ µ

µ
= µ

E

(1 + ν)(1− 2ν)
ν = E

λ

2(λ+ µ)
· 2µ
E
· λ+ µ

µ
= λ

and in the end:

D3D=


λ+2µ λ λ 0 0 0
λ λ+2µ λ 0 0 0
λ λ λ+2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

=
E

(1+ν)(1−2ν)


1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2


(16.7)

This matrix is the same as Eq. (3.6) on page 294 of Braess [128]. It is SPD for 0 ≤ ν < 1/2.
In terms of the compliance matrix D−1,

ε⃗ = D−1 · σ⃗

with check these!
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D−1 =
1

µ(3λ+ 2µ)


λ+ µ −λ/2 −λ/2 0 0 0
−λ/2 λ+ µ −λ/2 0 0 0
−λ/2 −λ/2 λ+ µ 0 0 0
0 0 0 3λ+ 2µ 0 0
0 0 0 0 3λ+ 2µ 0
0 0 0 0 0 3λ+ 2µ


then

D−1 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)


Note that the determinant of D−1 is 8(1 + ν)5(1 − 2ν)E−6, so that when ν → 1/2 (incompressible
material), the compliance matrix is singular and the stress cannot be given as a function of strain
[816].

The above equation also leads to:

Eεxx = σxx − ν(σyy + σzz)

Eεyy = σyy − ν(σxx + σzz)

Eεzz = σzz − ν(σxx + σyy)

Eεxy = (1 + ν)σxy

Eεxz = (1 + ν)σxz

Eεyz = (1 + ν)σyz (16.8)

The incompressibility (or bulk modulus) K is defined as p = −K∇⃗ · υ⃗ where p is the pressure
with

p = −1

3
tr(σ)

= −1

3
[λ(∇⃗ · υ⃗) tr(1) + 2µ tr[ε(υ⃗)]]

= −1

3
[λ(∇⃗ · υ⃗)3 + 2µ(∇⃗ · υ⃗)]

= −
(
λ+

2

3
µ

)
(∇⃗ · υ⃗) (16.9)

so that

p = −K∇⃗ · υ⃗ with K = λ+
2

3
µ and σ = −p1+ 2µεd(υ⃗)

Remark. Eq. (16.1) and (16.3) are analogous to the ones that one has to solve in the context of
viscous flow using the penalty method. In this case λ is the penalty coefficient, υ⃗ is the velocity, and
µ is the dynamic viscosity.

Remark. Note that sometimes authors define p = −λ∇⃗ · υ⃗ instead so that then σ = −p1+ 2µε(υ⃗)
(to be very clear, strain tensor is not deviatoric), see for instance Sanan, May, Bollhöfer, and Schenk
[1106] (2020) or Hansbo, Larson, and Larson [528] (2001).
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The Lamé parameter λ and the shear modulus µ are also linked to the Poisson ratio ν, and E,
Young’s modulus:

λ = µ
2ν

1− 2ν
=

νE

(1 + ν)(1− 2ν)
with E = 2µ(1 + ν)

The shear modulus, expressed often in GPa, describes the material’s response to shear stress. The
Poisson ratio describes the response in the direction orthogonal to uniaxial stress. The Young’s
modulus3, expressed in GPa, describes the material’s strain response to uniaxial stress in the direction
of this stress.

In the future we will also need to express the deviatoric part of a tensor as a function of the tensor
itself, all in vector format. Let us consider the stress tensor. Then we have τ = dev(σ) = σ− 1

3
tr[σ]1

which becomes

τ⃗ =


σxx
σyy
σzz
σxy
σxz
σyz

−
1

3


σxx + σyy + σzz
σxx + σyy + σzz
σxx + σyy + σzz

0
0
0

=



2
3
σxx − 1

3
σyy − 1

3
σzz

−1
3
σxx +

2
3
σyy − 1

3
σzz

−1
3
σxx − 1

3
σyy +

2
3
σzz

σxy
σxz
σyz

=



2
3
−1

3
−1

3
0 0 0

−1
3

2
3
−1

3
0 0 0

−1
3
−1

3
2
3

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Λ̃d

·σ⃗

or,

τ⃗ = Λ̃d · σ⃗ (16.10)

where Λ̃d is a deviatoric projection matrix.
Using the definition of K above, we have λ+2µ = K+ 4

3
µ and λ = K− 2

3
µ so that the D matrix

can also be written as a function of K,µ:

D3D =


K + 4

3
µ K − 2

3
µ K − 2

3
µ 0 0 0

K − 2
3
µ K + 4

3
µ K − 2

3
µ 0 0 0

K − 2
3
µ K − 2

3
µ K + 4

3
µ 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



=


K K K 0 0 0
K K K 0 0 0
K K K 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+



4
3
µ −2

3
µ −2

3
µ 0 0 0

−2
3
µ 4

3
µ −2

3
µ 0 0 0

−2
3
µ −2

3
µ 4

3
µ 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


= KΞ+ µΛd (16.11)

D3D = KΞ+ µΛd

The expression above is to be found at https://en.wikipedia.org/wiki/Linear_elasticity

3https://en.wikipedia.org/wiki/Young’s_modulus
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16.2 Plane strain

Typically one of the spatial dimensions (e.g. z) is very large compared to the other two. As a
consequence displacements υz and displacement derivatives ∂z in the z-direction are assumed to be
negligible, i.e. εzz = εxz = εyz = 0 and Eqs. (16.8) become:

Eεxx = σxx − ν(σyy + σzz)

Eεyy = σyy − ν(σxx + σzz)

Eεzz = σzz − ν(σxx + σyy)

Eεxy = (1 + ν)σxy

Eεxz = (1 + ν)σxz

Eεyz = (1 + ν)σyz

leading to σxz = σyz = 0, σzz = ν(σxx + σyy) and

Eεxx = σxx − ν(σyy + σzz)

= σxx − ν(σyy + ν(σxx + σyy))

= (1− ν2)σxx − ν(1 + ν)σyy

Eεyy = σyy − ν(σxx + σzz)

= σyy − ν(σxx + ν(σxx + σyy))

= −ν(1 + ν)σxx + (1− ν2)σyy
Eεxy = (1 + ν)σxy

or,  εxx
εyy
εxy

 =
1

E

 1− ν2 −ν(1 + ν) 0
−ν(1 + ν) 1− ν2 0

0 0 1 + ν

 ·
 σxx

σyy
σxy

 (16.12)

or4  σxx
σyy
σxy

 =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

 ·
 εxx

εyy
εxy


=

E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1

2
(1− 2ν)

 ·
 εxx

εyy
2εxy

 (16.13)

We then have

Dplane strain =
E

(1+ν)(1−2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1

2
(1− 2ν)

 (16.14)

Remark. The compliance matrix for plane strain is not found by removing columns and rows from
the general isotropic compliance matrix!

Let us also look at another notation used in Simpson’s book [1172] (Eq. 12.3). We start from
Eq. (16.3):

4https://www.efunda.com/formulae/solid_mechanics/mat_mechanics/hooke_plane_strain.cfm
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σxx = λ(εxx + εyy) + 2µεxx

= (λ+ 2µ)εxx + λεyy

σyy = λ(εxx + εyy) + 2µεyy

= λεxx + (λ+ 2µ)εyy

σxy = 2µεxy (16.15)

so that  σxx
σyy
σxy

 =

 λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 ·
 εxx

εyy
2εxy


Since K = λ+ 2µ/3, we also have σxx

σyy
σxy

 =

 K + 4
3
µ K − 2

3
µ 0

K − 2
3
µ K + 4

3
µ 0

0 0 µ

 ·
 εxx

εyy
2εxy


or,

Dplane strain =

 K + 4
3
µ K − 2

3
µ 0

K − 2
3
µ K + 4

3
µ 0

0 0 µ


The stress tensor is then as follows:

σ =

 σxx σxy 0
σyx σyy 0
0 0 σzz


and its second moment invariant is given by

I2(σ) =
1

2
σ : σ =

1

2
(σ2

xx + σ2
yy + σ2

zz) + σ2
xy

The deviatoric stress is given by τ = σ − 1
3
tr(σ)1 with in this case

tr(σ) = σxx + σyy + σzz

= σxx + σyy + ν(σxx + σyy)

= (1 + ν)(σxx + σyy) (16.16)

so that

τ = σ − 1 + ν

3
(σxx + σyy)1

=
1

3

 3σxx − (1 + ν)(σxx + σyy) 3σxy 0
3σyx 3σyy − (1 + ν)(σxx + σyy) 0
0 0 3σzz − (1 + ν)(σxx + σyy)


=

1

3

 3σxx − (1 + ν)(σxx + σyy) 3σxy 0
3σyx 3σyy − (1 + ν)(σxx + σyy) 0
0 0 3ν(σxx + σyy)− (1 + ν)(σxx + σyy)


=

1

3

 3σxx − (1 + ν)(σxx + σyy) 3σxy 0
3σyx 3σyy − (1 + ν)(σxx + σyy) 0
0 0 (2ν − 1)(σxx + σyy)

 (16.17)

and also

I2(τ ) =
1

2
τ : τ =

1

2
(τ 2xx + τ 2yy + τ 2zz) + τ 2xy
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Remark. In the case of a (near-)incompressible material, ν → 1
2
then τzz → 0.

16.3 Plane stress

For thin geometries. Let z be the direction perpendicular to the plate. Tractions on the z-surface
are assumed to be negligible, e.g. σzz = σyz = σxz = 0

Eεxx = σxx − ν(σyy + σzz)

Eεyy = σyy − ν(σxx + σzz)

Eεzz = σzz − ν(σxx + σyy)

Eεxy = (1 + ν)σxy

Eεxz = (1 + ν)σxz

Eεyz = (1 + ν)σyz

Immediately we have εxz = εyz = 0. Furthermore,

Eεxx + Eεyy = σxx − νσyy + σyy − νσxx = (1− ν)(σxx + σyy)

so that the third equation can be written

εzz = −
ν

1− ν
(εxx + εyy)

Then,

Eεxx = σxx − νσyy
Eεyy = σyy − νσxx
Eεxy = (1 + ν)σxy (16.18)

or,  εxx
εyy
εxy

 =
1

E

 1 −ν 0
−ν 1 0
0 0 1 + ν

 ·
 σxx

σyy
σxy

 (16.19)

or5,  σxx
σyy
σxy

 =
E

(1− ν2)

 1 ν 0
ν 1 0
0 0 1− ν

 ·
 εxx

εyy
εxy

 (16.20)

We then have

Dplane stress =
E

(1− ν2)

 1 ν 0
ν 1 0
0 0 1

2
(1− ν)

 (16.21)

Remark. The stiffness matrix for plane stress is not found by removing columns and rows from the
general isotropic stiffness matrix.

5https://www.efunda.com/formulae/solid_mechanics/mat_mechanics/hooke_plane_stress.cfm
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16.4 The axisymmetric case

We start from
σ = λ(∇⃗ · υ⃗) 1+ 2µε(υ⃗) (16.22)

In cylindrical coordinates the velocity gradient is given by

∇⃗υ⃗ =


∂ υr
∂ r

1
r
∂ υr
∂ θ
− υθ

r
∂ υr
∂z

∂ υθ
∂ r

1
r
∂ υθ
∂ θ

+ υr
r

∂ υθ
∂z

∂ υz
∂ r

1
r
∂ υz
∂ θ

∂ υz
∂z


In the case of axisymmetry, and in this case symmetry about the z axis, there is invariance with
respect to the rotation around the axis so stresses and other quantities are independent of the θ
coordinate, or simply put ∂θ → 0. The velocity gradient simplifies to:

∇⃗υ⃗ =


∂ υr
∂ r

−υθ
r

∂ υr
∂z

∂ υθ
∂ r

υr
r

∂ υθ
∂z

∂ υz
∂ r

0 ∂ υz
∂z


Also, it follows logically that υθ = 0 so that ultimately:

∇⃗υ⃗ =


∂υr
∂r

0 ∂υr
∂z

0 υr
r

0

∂υz
∂r

0 ∂υz
∂z


and the strain tensor is then given by

ε(υ⃗) =
1

2

(
∇⃗υ⃗+ ∇⃗υ⃗T

)
=


∂ υr
∂ r

0 1
2
(∂υz
∂r

+ ∂υr
∂z

)

0 υr
r

0

1
2
(∂υz
∂r

+ ∂υr
∂z

) 0 ∂υz
∂z

 (16.23)

The term ∇⃗ · υ⃗ is simply the trace of ε(υ⃗) so

∇⃗ · υ⃗ =
∂υr
∂r

+
υr

r
+
∂υz
∂z

Finally the full stress tensor is then

σ =


λ(∂υr

∂r
+ υr

r
+ ∂υz

∂z
) + 2µ∂υr

∂r
0 µ(∂υz

∂r
+ ∂υr

∂z
)

0 λ(∂υr
∂r

+ υr
r
+ ∂υz

∂z
) + 2µυr

r
0

µ(∂υz
∂r

+ ∂υr
∂z

) 0 λ(∂υr
∂r

+ υr
r
+ ∂υz

∂z
) + 2µ∂υz

∂z



=


(λ+ 2µ)∂υr

∂r
+ λ(υr

r
+ ∂υz

∂z
) 0 µ(∂υz

∂r
+ ∂υr

∂z
)

0 (λ+ 2µ)υr
r
+ λ(∂υr

∂r
+ ∂υz

∂z
) 0

µ(∂υz
∂r

+ ∂υr
∂z

) 0 (λ+ 2µ)∂υz
∂z

+ λ(∂υr
∂r

+ υr
r
)
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As we did in the 2D case, we rewrite the six independent stress terms in to a vector σ⃗ and we
use Eq. (16.22) to arrive at:

σ⃗ =


σrr
σθθ
σzz
σrθ
σrz
σθz

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 ·


εrr
εθθ
εzz
2εrθ
2εrz
2εθz

 = ε⃗(υ⃗)

or σ⃗ = D · ε⃗(υ⃗). The components of the ε⃗(υ⃗) vector are

ε⃗(υ⃗) =


εrr
εθθ
εzz
2εrθ
2εrz
2εθz

 =



∂υr
∂r
υr
r
∂υz
∂z

0
∂υz
∂r

+ ∂υr
∂z

0


We see that there are two zeroes and consequently we’ll find that σrθ and σθz are also identically
zero, so we discard these and end up with only four stress components :

σ⃗ =


σrr
σθθ
σzz
σrz

 =


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ

 ·


εrr
εθθ
εzz
2εrz


Note that in the literature the above relationship is often written

σrr
σθθ
σzz
σrz

 =
E

(1 + ν)(1− 2ν)


1− ν λ ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 (1− 2ν)/2

 ·


εrr
εθθ
εzz
2εrz


which is equivalent since E = 2µ(1+ ν) and λ = νE

(1+ν)(1−2ν)
(see for instance Section 5.2.4 in [1430]).

—————————————————-
about the implementation:
Only displacements in the r and z directions remain (note that εθθ is in fact equal to υr/r). In

what follows I rename u = υr and υz = w to simplify notations. Then, inside an element we have

uh(r, z) =
m∑
i=1

Ni(r, z)ui

wh(r, z) =
m∑
i=1

Ni(r, z)wi (16.24)

where Ni are the basis functions attached to the m nodes of the element. We compute the elements
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of the ε tensor of Eq. (16.23) as follows:

εrr =
∂uh

∂r
=

m∑
i=1

∂Ni
∂r

(r, z) ui (16.25)

εθθ =
uhr
r

=
1

r

m∑
i=1

Ni(r, z) ui (16.26)

εzz =
∂wh

∂z
=

m∑
i=1

∂Ni
∂z

(r, z) wi (16.27)

εrz =
1

2

∂uh

∂z
+

1

2

∂wh

∂r
=

1

2

m∑
i=1

∂Ni
∂z

(r, z)ui +
1

2

m∑
i=1

∂Ni
∂r

(r, z)wi (16.28)

Let us take m = 3, i.e. linear triangles, for simplicity. Then the strain vector ε⃗h is given by

ε⃗ h =



εrr

εθθ

εzz

2εrz


=



∂uh

∂r

uh

r

∂wh

∂z

∂uh

∂z
+ ∂wh

∂r


=



∂N1

∂r
0 ∂N2

∂r
0 ∂N3

∂r
0

N1

r
0 N2

r
0 N3

r
0

0 ∂N1

∂z
0 ∂N2

∂z
0 ∂N3

∂z

∂N1

∂z
∂N1

∂r
∂N2

∂z
∂N2

∂r
∂N3

∂z
∂N3

∂r


︸ ︷︷ ︸

B(4×6)

·


u1
w1
u2
w2
u3
w3


︸ ︷︷ ︸

U⃗(6×1)

or ε⃗ h = B · U⃗ and finally


σrr
σθθ
σzz
σrz


︸ ︷︷ ︸

σ⃗

=


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ


︸ ︷︷ ︸

D

·



∂N1

∂r
0 ∂N2

∂r
0 ∂N3

∂r
0

N1

r
0 N2

r
0 N3

r
0

0 ∂N1

∂z
0 ∂N2

∂z
0 ∂N3

∂z

∂N1

∂z
∂N1

∂r
∂N2

∂z
∂N2

∂r
∂N3

∂z
∂N3

∂r


︸ ︷︷ ︸

B(4×6)

·


u1
w1
u2
w2
u3
w3


︸ ︷︷ ︸

U⃗(6×1)

or,

σ⃗ = D ·B · U⃗

Note that in 2D, the matrix D is 3× 3 and B is 3× 6.
I do not know yet how to arrive at what follows

The 6× 6 stiffness matrix is then

K =

∫∫∫
BT ·D ·B dV

with dV = rdrdθdz in cylindrical coordinates. The integral over the θ coordinate yields a factor 2π
so

K = 2π

∫∫
BT ·D ·B rdrdz

The integration can now be performed as simply as was the case in the plane stress problem.
write the derivation for the rhs
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Note that in practice the matrix D is computed as follows (see for example Stone 63):

D =


λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ

 = λ


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+ µ


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1
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16.5 FEM: Incompressible formulation from Zienkiewicz &

Taylor book

This is from Volume 1-The Basis, page 307. Note that the authors use a different sign convention
for pressure so that what follows is adapted from the book.

The authors start by defining the vector m⃗T = (1, 1, 1, 0, 0, 0). Using the vector notation of stress,
the mean stress or pressure is given by

p = −1

3
tr(σ) = −1

3
(σxx + σyy + σzz) = −

1

3
(1, 1, 1, 0, 0, 0) ·


σxx
σyy
σzz
σxy
σxz
σyz

 = −1

3
m⃗T · σ⃗

For isotropic behaviour the ’pressure’ is related to the volumetric strain by the bulk modulus of the
material, K. Thus,

p = −Ktr(ε(υ⃗)) = −Km⃗T · ε⃗(υ⃗)

For an incompressible material K → ∞ and the volumetric strain is simply zero. Since tr(ε(υ⃗)) =
m⃗T · ε⃗(υ⃗) the deviatoric strain is defined by

ε⃗d(υ⃗) = ε⃗(υ⃗)− 1

3
m⃗ tr(ε(υ⃗)) = ε⃗(υ⃗)− 1

3
m⃗m⃗T · ε⃗(υ⃗) =

(
1− 1

3
m⃗m⃗T

)
· ε⃗(υ⃗) = Id · ε⃗(υ⃗)

where Id is the already defined deviatoric projection matrix (see Eq. (16.10)).
change notation to big lambda matrix?

In isotropic elasticity the deviatoric strain is related to the deviatoric stress by the shear modulus
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µ as τ = 2µεd(υ⃗), or

τ⃗ =


2µ 0 0 0 0 0
0 2µ 0 0 0 0
0 0 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


︸ ︷︷ ︸

Cµ

·ε⃗ d(υ⃗)

= Cµ · Id · ε⃗(υ⃗)

= Cµ ·
(
1− 1

3
m⃗m⃗T

)
· ε⃗(υ⃗)

= Cµ · ε⃗(υ⃗)−
1

3


2µ 0 0 0 0 0
0 2µ 0 0 0 0
0 0 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 ·


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 · ε⃗(υ⃗)

= Cµ · ε⃗(υ⃗)−
1

3


2µ 2µ 2µ 0 0 0
2µ 2µ 2µ 0 0 0
2µ 2µ 2µ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 · ε⃗(υ⃗)

=

(
Cµ −

2µ

3
m⃗m⃗T

)
︸ ︷︷ ︸

Dd

·ε⃗(υ⃗) (16.29)

We can also write Dd in a more explicit manner more amenable to implementation:

Dd =
µ

3


4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 (16.30)

CHANGE matrix names/notations!

In the mixed form considered next we shall use as variables the displacement υ⃗ and the pressure
p. Following the usual approach we arrive at a linear system A· X⃗ = b⃗ with (may be be a bit careful
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about signs again)

X⃗ =

(
U⃗
P⃗

)
b⃗ =

(
f⃗

0⃗

)
A =

(
K G
GT −MK

)
K =

∫
Ω

BT ·Dd ·B dV

G =

∫
Ω

BTNp dV

MK =

∫
Ω

1

K
NT

p ·Np dV

Remark. A similar approach is taken in Sanan, May, Bollhöfer, and Schenk [1106] (2020). However

the authors define a new auxiliary pressure p = −λ∇⃗ · υ⃗ (as opposed to p = −K∇⃗ · υ⃗ above).
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16.6 Elastic parameter values for Earth materials

what are E, ν, µ, etc ... for Earth ? bounds ? etc ...

material Young’s modulus (in 106 bars) shear modulus (in 106 bars)

ice 0.1 0.03
shale 0.2–0.3 0.15
limestone 0.4–0.7 0.22–0.26
granite 0.3–0.6 0.2
basalt 0.7–0.9 0.3
steel 2.1 0.83

Taken from https://www.britannica.com/science/rock-geology/Stress-strain-relationships

Note that 1bar = 0.1MPa, so 106bar=105MPa.
In Farrington, Moresi, and Capitanio [387] (2014), we find “Elastic properties within the litho-

sphere and mantle are relatively well constrained with a shear modulus between 1010 and 1011 Pa.”

16.7 Benchmarks and analytical solutions

� Cook’s membrane problem (see Lamichhane [743] (2009) and refs therein; see Lamichhane [742]
(2014)).

� Rectangular beam problem (see Lamichhane [743] (2009) and refs therein; see Lamichhane
[742] (2014)).

� Thick-walled sphere under internal pressure (see Lamichhane [743] (2009) and refs therein).
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Chapter 17

Visco-elasticity: physics, formulations
and FEM

Work in progress!!!

17.1 A remark

In the absence of gravity, density does not enter the equations. As such compressible elasticity is
fine.

If gravitational forces are taken into account, compressible elasticity means that density should
change in space/time. However, a lot of the experiments hereafter are written with a constant density,
meaning that they are reproducible or valid only for incompressible elastic (and viscou) flows!

17.2 Analytical Benchmarks

17.2.1 the 1D solution

We wish to find the general solution τ(t) of from the first order ODE

1

2µ

dτ

dt
+

1

2η
τ = ε̇0 or,

dτ

dt
+
µ

η
τ = 2µε̇0

There is a standard technique to solve such equations, and we start with the following equation
instead:

1

2µ

dτ

dt
+

1

2η
τ = 0

It can be rewritten
dτ

τ
= −µ

η
dt

so ∫
dτ

τ
= −µ

η

∫
dt

ln τ − ln τ0 = −
µ

η
t

ln τ = −µ
η
t+ ln τ0

τ(t) = exp

(
−µ
η
t+ ln τ0

)
= exp

(
−µ
η
t

)
exp (ln τ0) = τ0 exp

(
−µ
η
t

)
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or, using the Maxwell time tM = η/µ,

τ(t) = τ0 exp

(
− t

tM

)
Based on this solution we now consider the following equation

d

dt

[
τ exp

(
t

tM

)]
=

dτ

dt
exp

(
t

tM

)
+ τ

1

tM
exp

(
t

tM

)

=

dτdt + µ

τ
τ︸ ︷︷ ︸

2µε̇0

 exp

(
t

tM

)

Then we proceed to integrate both sides:∫
d

dt

[
τ exp

(
t

tM

)]
dt = 2µε̇0

∫
exp

(
t

tM

)
dt

τ(t) exp

(
t

tM

)
− τ(0) exp

(
0

tM

)
= 2µε̇0tM [exp

(
t

tM

)
− exp

(
0

tM

)
]

τ(t) exp

(
t

tM

)
− τ(0) = 2µε̇0

η

µ
[exp

(
t

tM

)
− 1]

τ(t) exp

(
t

tM

)
= 2µε̇0

η

µ
[exp

(
t

tM

)
− 1] + τ(0)

τ(t) = 2ηε̇0[1− exp

(
− t

tM

)
] + τ(0) exp

(
− t

tM

)
which is the solution of Eq. (4) of Kaus and Becker [680] (2007).

Alternative:
The general solution can be arrived at by means of the Laplace transform (?!) and is given by:

τ (t) = τ (t0) exp

(
−t− t0

tM

)
+ exp

(
− t

tM

)∫ t

t0

2µε̇T exp

(
t′

tM

)
dt′

If t0 = and τ (t0) = 0 then

τ (t) = exp

(
− t

tM

)∫ t

0

2µε̇T exp

(
t′

tM

)
dt′

If the strain rate and shear modulus are constant in time, then

τ (t) = exp

(
− t

tM

)
2µε̇T

∫ t

0

exp

(
t′

tM

)
dt′

= exp

(
− t

tM

)
2µε̇T tM

[
exp

(
t

tM

)
− 1

]
= 2ηε̇T

[
1− exp

(
− t

tM

)]
since tM = η/µ.
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17.2.2 Pure shear

fully incompressible
The first benchmark performed to test the viscoelastic implementation considers the stress build-

up present in a viscoelastic Maxwell body. Contrary to stressed viscous materials, viscoelastic mate-
rials gradually build-up stress when sheared after which a transition to viscous deformation occurs.

An unstressed, incompressible viscoelastic Maxwell medium is subjected to a velocity field re-
sulting in pure shear. The increase of the accumulated stress with time is given by an analytical
solution:

τ = 2η ε̇
(
1− e−

µ
η
t
)

(17.1)

with t time, η the prescribed material viscosity and µ the prescribed material shear modulus. The
domain size is 100×100km. The velocity prescribed at all boundaries equals v = 1 cm/yr in mag-
nitude yielding a constant background strain rate of ε̇ = 2cm/yr/100km ≃ 6.342 × 10−15 s−1. The
viscosity is η = 1021Pa.s, the shear modulus is µ = 1010Pa and the gravity is set to zero. We set
δt = 100yr.

Set up of the stress build-up benchmark. All domain sides have a free slip boundary condition, and pure shear velocity conditions are prescribed. Adapted
from Gerya (2010) [455].

We have

ηeff =
ηδt

δt+ η/µ
=

1021 · 3.154× 109

3.154× 109 + 1021/1010
≃ 3.0592× 1019Pa.s and Z =

ηeff
µδt
≃ 0.9694

The Maxwell time is tM = η
µ
= 1011s ≃ 3171yr. In the absence of elasticity (purely viscous be-

haviour), we have ε̇xx = 6.342× 10−15 and η = 1021 so the deviatoric stress τxx is equal to

τxx = 2 · 1021 · 6.342× 10−15 ≃ 12.68× 106Pa

The first time that the Stokes system is solved, there is no stored stress, i.e. the elastic rhs is
identically zero, so that the system is solved with a viscosity equal to ηeff . We can easily compute
the analytical solution, and we see that ε̇xy = 0 and ω̇xy = 0, which we recover:

Results in Stone 64!
The expected stress value for τxx after the first Stokes solve is

τxx = 2ηeff ε̇xx = 2 · 3.057× 1019 · 6.342× 10−15 ≃ 38.775× 104Pa

Also check Gerya’s book page 358 2nd edition ?

17.2.3 simple shear

17.2.4 Rayleigh-Taylor instability

fully incompressible
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This experiment is presented in Kaus and Becker [680] (2007).
The model consists of a viscoelastic layer of thickness H1 , with density ρ1, viscosity η1 and

elastic shear module µ1 that overlies a viscous layer of thickness H − H1 , with density ρ2 and
viscosity µ2. The interface between the two fluids is perturbed sinusoidally according to h(x) =
(H −H1) +A0 cos(2πx/λ), where H1 is the thickness of the upper layer, H the height of the model,
A0 the initial amplitude and λ the wavelength of the perturbation. If ρ1 > ρ2, the system is
gravitationally unstable.

Taken from Kaus and Becker [680].

The Deborah number is given by

De =
(ρ1 − ρ2)gH

µ

and is here defined as the ratio between the viscous (Stokes) timescale ((ρ1 − ρ2)gH/η1) and the
viscoelastic timescale η1/µ of the upper layer. The authors state: “ Interestingly, the Deborah
number, which is a measure of the importance of elasticity [...], is independent on the viscosity of
the system. This is due to the fact that the magnitude of stress is solely dependent on the density
difference for purely buoyancy-driven flow.” Also: “ In the present definition of the Deborah number
realistic values for lithospheric-scale deformation are 10−4 ≤ De ≤ 1 (with ρ = 10 − 330 kgm−3 ,
g = 10 m s−2 , H = 100− 3000 km, µ = 1010 − 1011 Pa).”

Another parameter controlling the dynamics of the system is the viscosity contrast between the
upper and the lower layer, expressed by R = η1/η2.

We here set H = 500 km, H1 = 100 km, ρ2 = 3300 kgm−3, η2 = 1021 Pa s, µ1 = µ2 = 1010 Pa,
η1 = Rη2, A0 = 1 km, λ = Lx.

17.2.5 stress build-up inside an elastic inclusion in a viscous matrix
(Beuchert & Podlachikov

fully incompressible
This is presented in Section 5.4 of Beuchert and Podladchikov [86] (2010). The authors test their

viscoelastic FEM model against the analytical solution for stress built-up inside an elastic inclusion
in a viscous matrix under pure shear.
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include figure - not in paper

Note that the fluid in question is incompressible as shown by their Eq. (3).
An analytical solution applicable for the time-dependent stress evolution inside a viscoelastic

inclusion embedded in a viscous matrix can be derived:

τxx = −
(a+ 1)2

[
−1 + exp− 2µat

a2+1

]
a

ε̇dxx

where a is the aspect ratio of the inclusion and the matrix viscosity is assumed to be unity.
For this equation to be applicable to our viscoelastic model, we prescribe a high viscosity inside

the inclusion (ηinclusion = 105) and thus obtain an elastic response inside the inclusion. For the
matrix, we apply a viscous rheology with viscosity ηmatrix = 1.

Taken from Beuchert and Podladchikov [86]. Stress built-up inside an elliptical elastic inclusion with aspect ratios a = 1, 2, 5 embedded in a viscous matrix

under constant pure shear loading. Comparison of the analytical solution with the numerical solution obtained in their FEM model for different values of

Deborah number De = 10−4, 3 · 10−4, 10−3 at non-dimensional deviatoric strain rate ε̇dxx = 1. Time and deviatoric stress τxxare non-dimensional. The test

results show a good agreement of the numerical solution with the analytical solution. For time t→∞, the solution for stress inside the elastic inclusion

converges towards the solution for stress inside a viscous inclusion (dashed horizontal line ‘viscous limit’).

17.2.6 Viscoelastic flow past a cylinder in a channel (Beuchert & Pod-
lachikov)

This is presented in Section 5.4 of Beuchert and Podladchikov [86] (2010).
We tested the flow code against a numerical benchmark for iso-viscous, viscoelastic flow past a

circular cylinder in a channel. Figure below shows the domain setup and boundary conditions for
this benchmark. The radius of the circular cylinder r = 1 is half the domain height and the domain
aspect ratio is 3 : 1.
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Taken from Beuchert and Podladchikov [86]. Setup for the benchmark of viscous flow past circular cylinder in a channel. The domain is symmetric about the

horizontal axis and thus only the upper half of the channel is modelled.

At the inflow and outflow boundaries, an established Poiseuille flow vx = 3(R2 − y2)/(2R2) is
imposed; vy = 0 at the sides. Both upper and lower boundaries are fixed in y-direction. We apply
no-slip boundary conditions at the top and along the cylinder wall and free-slip (zero traction)
conditions at the bottom (symmetry axis). For the inflow conditions on σ , we use the analytical
solution for simple shear of a Jaumann fluid, which is valid for Poiseuille flow. In that case, the
Jaumann derivative equations are

τxx + 2Deωτxy = 0 (17.2)

τyy + 2Deωτxy = 0 (17.3)

τxy + 2Deω(τyy − τxx) = 2µε̇xy (17.4)

(17.5)

Given that γ̇ = 2ε̇xy and ω = −1/2γ̇ for simple shear, we obtain from the equation above

τxy =
2µε̇xy

1 + 4De2ω2
=

µγ̇

1 + 4De2ω2
=

µγ̇

1 + 2De2γ̇2

and can then solve for τxx and τyy by substitution. The strain rate γ̇ is given by ∂vx/∂y, that is, by
differentiating the inflow condition vx = 3(R2−y2)/(2R2) with respect to y, resulting in γ̇ = −3y/R2

at the inflow boundary.
The authors further measure the non-dimensional drag force Cd exerted by the passing fluid on

the cylinder wall and compare it with published values.
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Taken from Beuchert and Podladchikov [86]. Non-dimensional deviatoric stresses τ at De = 0 and De = 0.9 resulting from fluid flow past a cylinder in a

channel. The benchmark is conducted on a regular, structured grid at resolution 600× 200 nodes.

17.2.7 Elastic Simple Shear, von Tscharner and Schmalholz [1328] (2015)

This experiment uses a homogeneous cube with the dimensions 1x1x1 which is deformed by simple
shear. The bottom boundary is fixed (i.e., the boundary condition is no slip), the velocities on
the top surface are prescribed in x-direction to generate simple shear and the top boundary is
fixed in z-direction. The boundary conditions are free slip for two vertical boundaries (y=0 and
y=1) and the two remaining vertical boundaries (x=0 and x=1) are free. The viscosity and the
elastic shear modulus are η = 1010 and G = 1, respectively. All model dimensions and material
parameters are given in dimensionless numbers using the model length, the elastic shear modulus
and the background strain rate as characteristic parameters. The results for two simulations, one
with Jaumann correction and one without Jaumann correction, are given in Figure B5 where the
colors indicate the second invariant of the stress tensor. The results with the Jaumann correction
show a homogeneous distribution of stress (Figures a–d), whereas the distribution of the second
invariant of the stress tensor is inhomogeneous without the Jaumann correction and the simulation
“crashes” for high strain (Figures e–h).
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Deformation of a homogeneous cube under simple shear (a–d) with Jaumann correction and (e–h) without Jaumann correction for different amounts of bulk

shear strain c (i.e., ratio of maximal horizontal displacement to model thickness). The colors indicate the second invariant of the stress tensor τii. Without

the Jaumann corrections, the stress distribution becomes inhomogeneous and the simulation crashes for high strain.

17.2.8 Response to load from ice sheet - Nakiboglu and Lambeck (1982)

The domain is 500 × 500km. Vertical gravity is 9.8, density is 3300, viscosity is 3 · 1020 Pa s, shear
modulus is 1010 Pa, free slip on left, right and bottom. A normal stress is imposed on the top for
0 < x < 100km. It corresponds to an ice sheet of density ρi = 900 of 1000m height. The timestep is
set to 100yr. Resolution is set to 50×50 elements. Stress/traction b.c. are explained in Section 7.13.

Analytical solution is provided in Nakiboglu and Lambeck (1982) [925]. Note however that this
is a 2D setup while the original solution is for a cylindrical load and also for a semi-infinite domain.

Effective viscosity is given by

ηeff =
ηδt

δt+ η/µ
= 2.85362675546547e+ 19

Left: ASPECT; Right: stone 64

It was run with ASPECT: prm file in stone 64 results folder.

17.3 Numerical Benchmarks

17.3.1 Bending of elastic slab (Gerya’s book)

The sinking slab benchmark consists of a beam of elastic material which is placed in a weak and
viscous surrounding medium. The initially unstressed beam is attached to the left domain boundary
through boundary conditions. A stress is then applied to the beam in the form of gravity. The
applied gravity force results in the deformation of the beam through bending. After 20 kyr, the
gravity field is turned off and the elastic properties of the beam will then force itself to its original
position. The set-up of the benchmark is given in the following figure:
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Set-up of the benchmark from [455]. The properties of the two materials are given on the left, together
with the initial configuration of the benchmark.

The beam is surrounded by a low-density, low-viscosity and high shear modulus medium of which
the specifications are given in the following table. The boundary conditions of the domain consist of
a no slip condition at the left boundary where the slab is attached and free slip boundary conditions
along all other sides. The results are calculated on a grid with a resolution of 50x50 elements
containing 64 randomly distributed markers at startup. The time step is set to δt = 200yr (i.e.
gravity is switched off after 100 time steps).

Material properties Elastic slab (fluid 1) Surrounding medium (fluid 2)

Density ρ [kg/m3] 4000 1
Viscosity η [Pa· s] 1027 1021

Shear modulus µ [Pa] 1010 1020

Maxwell time tM [yr] 3.17Gyr 3.17× 10−7yr
eff. visc. ηeff [Pa·s] 6.307199602192306e+19 9.999999984145105e+20
visco-elasticity factor Z [-] 0.9999999369280039 1.5854895966744522e-09

17.3.2 Flexure of elastic plate (Choi et al)

This benchmark is presented in Choi, Tan, Lavier, and Calo [238] (2013). The setup is as follows:

Taken from Choi, Tan, Lavier, and Calo [238]. “Effect of elastic compressibility on the prediction of an elastic thin plate subject to an uplifting load. (a) Model

setup for a finite length elastic layer subjected to a finite length buoyant load applied on the bottom. (b) Profiles of mean-subtracted surface topography.”

Material properties elastic plate (1) elastic block (2) viscous mantle (3)

Density ρ kgm−3 2700 1890 2700
Viscosity η Pa s 1035 1035 1017

Shear modulus µ Pa 30 · 109 30 · 109 1050

Maxwell time tM yr 10569930 10569930 3.1709791983764584e-41
eff. visc. ηeff Pa s 4.73039776e+18 4.73039776e+18 1e+17

The value of η1 = η2 = 1035 for the elastic materials was obtained through personal commu-
nication. The value of µ3 = 1050 for the viscous material ensures that ηeff = η3. Note that in
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the publication the authors test both compressible and incompressible formulations, but we restrict
ourselves to incompressible results since our code cannot handle compressible behavior. I also use
dt=5year. Gravity is not specified in the paper.

The authors report a converged total relief of 306-308m.
This benchmark requires either a sticky air layer (see Section 9.1) on top of the plate or a

deformable mesh (ALE formulation, see Section 9.1).

17.3.3 Elastic beam in viscous matrix - von Tscharner and Schmalholz

What follows is taken from von Tscharner and Schmalholz [1328] (2015).
This experiment first is a cylindrical elastic beam in a viscous matrix under gravity. The model

box has the dimensions of 10x0.25x10. The elastic beam which is vertically located in the middle
of the model box has a thickness of H = 1 and a length of L = 5. The viscosity is ηm = 1 and
ηb = 1013 for the matrix and the beam, respectively. The elastic shear modulus is G m 5 10 10 and
G b 5 10 3 for the matrix and beam, respectively, and the density difference is ρb− ρm = 300. These
parameters provide a beam that is effectively elastic and a matrix that is effectively viscous. All
model dimensions and material parameters are given in dimensionless numbers using the thickness of
the beam H, the matrix viscosity and the background strain rate as characteristic parameters. The
boundary conditions are free slip for all boundaries. The results of this simulation are shown in the
figure below where the colors indicate the second invariant of the stress tensor. The elastic beam
is deflected downward under vertical gravity (Figure b). When the gravity is turned off, the beam
deflects upward due to the stored elastic energy and recovers the original rectangular shape which is
stress free (Figure c). A similar test is given in Gerya’s book [2010]. The test shows the reversible
elastic deformation. The elastic beam recovers its original rectangular shape and stress state when
the applied load is removed.

Reversible deformation of an elastic beam in a viscous matrix under gravity. (a) Unstressed initial configuration (gravity off). (b) Deformation of the elastic

beam under gravity. (c) Gravity is turned off. (d) The elastic beam recovers the original rectangular shape with zero stress. Colors indicate the second

invariant of the stress tensor τII .

1012



17.3.4 Elastic beam in viscous matrix - Keller, May, and Kaus

This benchmark comes from Appendix B of Keller et al (2013) [690].
The domain is 7.5×5km. A dominantly elastic beam is fixed to, and protrudes horizontally from

the left wall of the model box. Surrounding the elastic beam is a viscous, but inelastic fluid. All
boundaries are free slip, except for the left wall, which is set to no slip in order to keep the bending
beam fixed to the wall. The beam has a higher density than the surrounding fluid and thus will bend
down elastically driven by gravity. After the beam has accumulated some elastic strain through
bending down, gravity is switched off. If the stress evolution is implemented accurately, the elastic
beam should now, free from the pull of gravity, move upwards again and restore its initial position.

Material properties are as follows:

� beam: ρ = 1500, η = 1024, µ = 1010

� fluid: ρ = 1000, η = 1018, µ = 1011

This choice of parameters leads to a Maxwell time tm = 0.32 yr for the background fluid and
Maxwell times of tm = 3.2 Myr for the beam, meaning that the deformation in this benchmark
problem, which occurs on a timescale of thousands to a million years, will lead to dominantly viscous
deformation in the fluid, and dominantly elastic behaviour of the beam.

Keller et al set the numerical resolution to 300 × 200 elements, with 16 markers per elements
for stress advection. Such a resolution is not feasible with our simple python implementation so the
resolution is then set to 96× 64.

The following plot comes from [690]:

The elastic timestep is set to δte = 100yr and the tectonic timestep is set to the same value. This
yields ηeff = 1018 in the fluid, and ηeff ≃ 3.15× 1019. After 50kyr, the gravity (|⃗g| = 10) is switched
off and the model is ran for another 500kyr.

17.3.5 Boxcar load on an incompressible viscoelastic lithosphere - Wu
(1992)

fully incompressible
This originates in Wu [1372] (1992). The domain is 2500 km long and it is either a halfspace in the

vertical direction or a channel of 100 km width. The material is characterised by ρ = 3400 kgm−3,
Young’s modulus E = 1.13× 1011 Pa and a Poisson ratio ν = 0.5 with |⃗g| = 9.82 m s−2. The author
explores the effect of a linear viscous mantle vs dislocation creep. Time evolution/relaxation figures
are available.
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The Heaviside responses of linear viscoelastic earth models calculated with the finite element method (lines) are compared to those computed using the

conventional transform method (symbols). For a 100 km thick channel.

also explore Wu & Peltier [1373] (1982).

17.3.6 Boxcar load on an incompressible viscoelastic lithosphere - Ham-
pel et al. (2019)

Hampel, Lüke, Krause, and Hetzel [523] (2019)
fully incompressible

a) Viscoelastic Haskell-type half-space models. b) Viscoelastic half-space models used for modelling loading and subsequent unloading (after Wu, 1992; his

Fig. 2). Both model types are meshed with 25x25 km large linear, rectangular plane strain elements suitable for incompressible materials. The same mesh and

element type are used in all model runs. All viscoelastic half-space models have the same boundary conditions (indicated by black triangles): the model

bottom is fixed in both the vertical and horizontal direction while the model sides are fixed in the horizontal direction. In models with an elastic foundation

(Table 1), it is applied to the model surface. Abbreviations for model parameters are ρ density, E Young’s modulus, ν Poisson’s ratio, η viscosity and g

acceleration due to gravity. Following Wu (1992), we use a value of g = 9.82m/s2 in the viscoelastic half-space models. In all models, the load is applied (and

removed, if applicable) instantaneously. The magnitude of the applied load is 15 MPa, which is equivalent to about 1.5 km of ice. The left end of the load

coincides with the origin of the coordinate system at the beginning of the model run. See text for details.
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17.3.7 Kusznir and Bott (1977) experiment

The domain is a 2000 km× 80 km Cartesian box. However since there is a vertical axis of symmetry
it is then reduced to 1000 km × 80 km. It consists of two layers: the top layer is 20 km thick and is
purely elastic characterised by a Young’s modulus E = 1.7×1011Nm−2 and a Poisson ratio ν = 0.25.
The lithosphere below is then 60 km thick and is characterised by an elasto-viscous rheology. The
elastic parameters are identical to the upper layer while the viscosity is set to η0 = 1× 1023 Pa s.

We arbitrarily design the right side as being the axis of symmetry and the boundary condition on
that side are then free slip. On the left side a uniform horizontal stress T is applied at time t=0. The
viscous drag of the asthenosphere below is neglected and the authors do not mention the bottom of
the domain deforming so we’ll also impose free slip boundary conditions at the bottom.

Fig. 4 of the paper shows the vertical displacement of the upper layer so we will use a free surface
boundary condition at the top. The model is ran for 1Myr.

1000 km

80
k
m

E, ν

E, ν, η0
T

After a thorough read of the paper, I have noticed quite a few problems:

� the paper is old and has been digitized but the figures are missing a lot of lines/shades/points
... this could be remedied by finding the article in a library.

� in the intro it is stated: ”Here we investigate the response of a lithosphere divided into upper
elastic and lower uniform visco-elastic layers to simple boundary force and body force systems.”
The authors later talk about ’isostatic forces’ opposing flexure. This means that buoyancy forces
should be taken into account but there is no information about densities or gravity values!

� little uncertainty about boundary conditions. is it free slip or no-slip on the right side ? Looking
at fig 4, it looks like the vertical displacement is zero at x=1000km?

� a Maxwell elasto-viscous rheology is used but this is only mentioned in the Appendix

� the dimensions of the thinned or thickened areas is simply not mentioned.

� Fig 1 shows triangular elements. No mention is made of resolution, type of element, ndofs,
resolution tests, any numerical detail whatsoever. Given the age of the paper, I would guess
P1 elements.

� In the appendix they equate the viscous strain rate to σ/4η. Why 4 ?

� it is also not clear whether the domain is ALE or fully Lagrangian: does it shorten?

� the value of T is never specified!

� the paper was published 45 years ago, it is extremely unlikely any of the two authors is still
available
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Taken from Kusznir and Bott [736]. Measurement locations are indicated on the setup figure above. probably should be reversed

17.3.8 Parallel-Plate Viscometer Problem - SNAC manual

A parallel-plate viscometer problem is simulated, in which viscoelastic material is squeezed between
two parallel plates. The plates are moving at a constant velocity, v0. Each plate has the length of
2L and is at a distance 2h from the other. No slip is assumed between the material and the plates.
The approximate analytical solution is given in the book by Jaeger [631] (1969).

Model Setup: L = 10 m, h = 5 m, viscosity η = 109 Pa s, bulk modulus K = 1.5 GPa, shear
modulus µ = 500 MPa, v0 = 10−4 ms−1, dt = 1 s (results compared after 500 time steps), mesh size:
20× 10 m, each element is a 1 m cube.

Due to the assumption of the original problem setup, artificial forces should be added to left and
right surfaces.

Left: The initial mesh (blue) with the velocity boundary condition (red arrows); Right: The second invariant of stress and velocities plotted on the deformed

mesh. Colored arrows are for SNAC’s solution, black ones for the analytic solution.
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K = λ+ 2
3
µ so λ = 3500

3
MPa ?

From wikipedia1

ν =
3K − 2µ

2(3K + µ)
=

4500− 2 ∗ 500
2(4500 + 500)

=
3500

10000
= 0.35

so we find that the material is compressible ν = 0.35

E =
9Kµ

3K + µ
=

9 ∗ 1500 ∗ 500MPa2

4500 + 500MPa
=

9 ∗ 1500 ∗ 500
5000

MPa = 1350Mpa

17.3.9 Relaxation after extention - Hassani syllabus

compressible ν = 0.25
Un essai de relaxation consiste à imposer à un instant donné une déformation que l’on maintient

constante par la suite. On observe alors comment évolue la contrainte au cours du temps.
The setup of the experiment is shown in the following figure:

The total duration of the experiment is T = 5yr ≃ 15.75× 107 s. The duration of the loading is
T/10 = 6months while the duration of the subsequent relaxation is then 9T/10 ≃ 4.5 yr.

The loading velocity is v = 1mmyr−1 ≃ 3.17 × 10−11ms−1. The sample has size L × L/2 =
20× 10cm and the strain rate is then v/L ≃ 1.5× 10−10 s−1. Young’s modulus is set to 1× 1011 Pa
and the Poisson ratio is 0.25, i.e. µ = 40 GPa. The viscosity is set to η0 = 1×1018 Pa s. The Maxwell
time is then tM = η/µ = 0.8 yr, which is also the time it takes to reduce the maximum stress by a
factor e.

1https://en.wikipedia.org/wiki/Lame_parameters
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17.3.10 Role of elasticity in slab bending - Fourel, Goes, and Morra
[406] (2014)

17.3.11 Shear test in 2D - Farrington, Moresi, and Capitanio [387]
(2014)

This experiment consists of a viscoelastic material undergoing simple shear at a constant rate from
a time t0 though to tmax. At tmax, the shearing velocity is taken to zero using a no-slip velocity
boundary condition. The viscoelastic stresses then decay with time while the material deformation
rate remains zero. The xy component of stored stress, i.e. the nonviscous portion of the total stress,
is given by

τ storxy = exp−µ
η
t

(
C2 cos

(
V t

h

)
− C1 sin

(
V t

h

))
− C2 if t < tmax

=

[
exp−µ

η
tmax

(
C2 cos

(
V t

h

)
− C1 sin

(
V t

h

))
− C2

]
exp−µ

η
(t− tmax) if t > tmax (17.6)

where V is the shear velocity along the top wall boundary, h is the height of the box,

C1 = −
V 2η2µ

µ2h2 + V 2η2

C2 = −
V hηµ2

µ2h2 + V 2η2

The xy component of dimensionless stored stress with dimensionless time for the 2-D viscoelastic material undergoing simple shear and relaxation.
Nondimensional material parameters of η = 102, µ = 102, tM = 1, V = 0.05, h = 1 with ∆te ∈ [0.01, 1] and ∆tc = 1

3
∆te.
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Figure above shows the resulting xy component of the deviatoric stored stress term for a 2-D
viscoelastic material across a range of ∆te. At longer ∆te, the stored stress appears under resolved,
indicating these larger elastic time step values capture dynamics that occur on time scales approx-
imately equal to or greater than the Maxwell relaxation time, that is with a portion of viscous
deformation. For shorter ∆te, the numerically calculated stress approaches the analytic solution,
indicating that the elastic time step is sufficiently small to fully capture the elastic stored stresses
produced within the material under the applied strain rate.

17.3.12 Tortion test in 3D - Farrington, Moresi, and Capitanio [387]
(2014)

insert here eq 9 of paper
The analytic solution outlined by equation (9) can be extended from this essentially 1-D test into

3-D by applying the shear velocity in the x-z plane. Testing of the full viscoelastic implementation
including the rotation terms is possible by placing this 3-D shear test in a coordinate system under
going solid body rotation.

The xy and yz stress components of a material undergoing simple shear within a 3D rotating reference frame. Nondimensional material parameters of
η = 100, µ = 100, α = 1, V = 0.3, h = 1, tmax = 0.5 and ω = 42. Note the coordinate system for this test has the y axis in the vertical with the z axis in

plane. Results for a first (crosses) and fourth- (lines) order accurate Jaumann stress rate integration scheme are shown in comparison to the analytical
solution (black) given by equation (9) within the rotating frame.

Figure above shows the evolution of the stress in comparison to the analytical solution of equation
(9) placed within the rotating frame. The rotating frame is achieved by imposing a velocity boundary
condition of a constant solid body rotation about the y axis in addition to the shearing rate. The
stress within this rotating frame is given by equation (9), with the stress in the nonrotating frame
found by applying a rotation matrix, R, to the nonrotating stress solution. That is, τ = R−1τ ′R,
where ′ denotes the rotated frame, R is the rotation matrix about the y axis given by

R =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


with θ = ωt, ω being the dimensionless rotation rate. The stress components shown in Figure 1b
from within the nonrotating frame can then be given by τ storxy = τ stor

′
xy cos θ and τ storyz = τ stor

′
yz sin θ.

It can be seen that, using a higher-order Jaumann stress rate advection scheme results in accurate
stress advection and rotation within the full 3-D space plus time domain. It should be noted here
that the velocity field used in this test was chosen to rigorously test the rotational terms in equation
(6). Whether these rotational terms are required for individual models is dependent upon the model
setup. For subducting slabs at a constant curvature, the individual parcels of material experience
purely rotational effects, accounting for this within the stress history term would then be required
for consistency.

finish!
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17.3.13 Cylindrical tunnel - Segall book (?)

compressible ν = 0.25
communicated to me by L .van de Wiel.
This is a cylindrical tunnel (2D magma chamber) in an infinite space, with certain radius. The

material close around the hole is warm, and and such viscous. The material further from the hole
is cold, and purely elastic. (accomplished by setting and absurdly high viscosity) There is a clear
transition radius between the two properties The hole contains a pressure, causing the space to
expand.

After the initial elastic deformation, viscous deformation continues in the viscous region of the
domain. I have the implementation of the analytical solution attached to save you time.

See plot with radial deformation for t=0 (green), t=300s (red), t=600s (blue), and t=3000s
(black). thin line is analytic, points are numeric. (with parameters and size parameters as in
analytic.f)
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17.3.14 Relevant literature & various notes

� convection of viscoelastic fluids: Harder [545], Moser, Matyska, Yuen, Malevsky, and Harder
[909], Zhong, Gurnis, and Moresi [1410], Moresi, Dufour, and Mühlhaus [899], Mühlhaus and
Regenauer-Lieb [915], Li and Khayat [784], Li and Khayat [785], Furuichi, Kameyama, and
Kageyama [429]

� stress buildup associated with viscoelastic rheology Kusznir and Bott [736], Kusznir and Park
[737], Poliakov, Cundall, Podlachikov, and Lyakhovsky [1007], Marques and Podladchikov [836]

� viscoelastic effects on geodynamical pbs involving gravitational instability Poliakov, Cundall,
Podlachikov, and Lyakhovsky [1007], Kaus and Becker [680], Burov and Molnar [185], and
Schmeling et al. [1124], Hanyk, Moser, Yuen, and Matyska [544]

� large strain eulerian viscoelasticity Schmalholz, Podladchikov, and Schmid [1117], Vasilyev,
Podladchikov, and Yuen [1313], Cooper, Lenardic, Levander, Moresi, and Benn [278], Moresi,
Quenette, Lemiale, Mériaux, Appelbe, and Mühlhaus [901], Furuichi, Kameyama, and Kageyama
[429], and Popov and Sobolev [1011]

Farrington, Moresi, and Capitanio [387] states “Funiciello et al. [2003] implemented a viscoelastic
rheology in numerical models of subduction, performing a range of numerical simulations to inves-
tigate its effect on subducting slab dynamics. Similar methodologies have addressed the details
of viscoelastic stress within the bending zone during subduction, although a comparison between
viscous and viscoelastic rheology was lacking [Capitanio et al., 2009; Capitanio and Morra, 2012].
Muhlhaus and Regenauer-Lieb [2005] and Moresi et al. [2002] have studied the role of elasticity in
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mantle convection, comparing the viscous case to that of viscoelastic, and Kaus and Becker [2007]
discussed the effect of elasticity on layered Rayleigh-Taylor instabilities. However, a systematic study
into the effects of elastic stresses on models of free subduction has yet to be completed. Morra and
Regenauer-Lieb [2006], Funiciello et al. [2003], Capitanio et al. [2007], Yamato et al. [2007], and
Royden and Husson [2006] have included a viscoelastic slab in subduction models, without explicitly
studying the effects of the elastic component across a range of parameters.”

Check early paper by Braun & Beaumont (1987) [142]
Asgari and Moresi [31] (2012) Herwegh, Poulet, Karrech, and Regenauer-Lieb [566] (2014) Dansereau,

Weiss, Saramito, and Lattes [305] (2016) Thielmann, Kaus, and Popov [1253] (2015) Beuchert, Pod-
ladchikov, Simon, and Rüpke [87] (2010) Sanan, May, Bollhöfer, and Schenk [1106] (2020) von
Tscharner and Schmalholz [1328] (2015) Naliboff, Lithgow-Bertelloni, Ruff, and Koker [928] (2012)
Peltier [987] (1974)
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Chapter 18

Geophysical data
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18.1 The PREM model

prem.tex

The density profile Let us define x = r/R. Following table I of Dziewonski & Anderson (1981)
[357] we have

� for the inner core 0 < r < 1221.5km (or 0 < x < 0.19172814314):

ρ(x) = 13.0885− 8.8381x2

� for the outer core 1221.5 < r < 3480km (or 0.19172814314 < x < 0.5462250824:

ρ(x) = 12.5815− 1.2638x− 3.6426x2 − 5.5281x3

� for the Lower mantle 3480 < r < 5701km:

ρ(x) = 7.9565− 6.4761x+ 5.5283x2 − 3.0807x3

� for the transition zone 1 5701 < r < 5771km:

ρ(x) = 5.3197− 1.4836x

� for the transition zone 2 5771 < r < 5971km:

ρ(x) = 11.2494− 8.0298x

� for the transition zone 3 5971 < r < 6151km:

ρ(x) = 7.1089− 3.8045x

� Low velocity zone 6151 < r < 6291km:

ρ(x) = 2.6910 + 0.6924x

� LID 6291 < r < 6346.6km:
ρ(x) = 2.6910 + 0.6924x

� Lower Crust 6346.6 < r < 6356km:
ρ(x) = 2.9

� Upper Crust 6356 < r < 6368km:
ρ(x) = 2.6

� Ocean 6368 < r < 6371km
ρ(x) = 1.020

Note that the returned densities should be multiplied by 1000 to obtain units of kg/m3.
One can verify that the functions above yield the familiar PREM density profile:
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Corresponding gravity field Following Eq. (10.39), the radial component of the gravitational
acceleration at a position r outside of the Earth is given by:

gr(r) = −
1

r2

∫ r

0

4πGρ(r′)r′2dr′ = −4πG
r2

∫ r

0

ρ(r′)r′2dr′ (18.1)

This integral can be broken up into layer integrals and we can compute the contribution of each
layer to the gravity value gr(r). A layer is characterised by rin and rout. Inside rin the gravity is zero.
Between rin and rout the integral runs from rin to r ≤ rout. Anout outside the layer the integral runs
from rin to rout.

For simplicity the following integrals are computed for x ∈ [0, 1]:

� inner core

inside gic(x) =
4πG
x2

∫ x

0

(13.0885− 8.8381x′2)x′2dx′

=
4πG
x2

(4.36283x3 − 1.76762x5)

= 4πG(4.36283x− 1.76762x3) (18.2)

outside gic(x) =
4πG
x2

∫ 0.19172814314

0

(13.0885− 8.8381x′2)x′2dx′

≃ 0.0302907
4πG
x2

(18.3)

� outer core

inside goc(x) =
4πG
x2

∫ x

0.19172814314

(12.5815− 1.2638x′ − 3.6426x′2 − 5.5281x′3)x′2dx′

= 4πG(−0.92135x4 − 0.72852x3 − 0.31595x2 + 4.19383x− 0.0288961/x2)(18.4)

outside goc(x) =
4πGR3

x2

∫ 0.5462250824

0.19172814314

(12.5815− 1.2638x′ − 3.6426x′2 − 5.5281x′3)x′2dx′

≃ 0.56663
4πG
x2

(18.5)

� lower mantle

inside glm(x) =
4πG
x2

∫ x

()x′2dx′

outside glm(x) =
4πG
x2

∫
()x′2dx′

(18.6)

� transition zone 1

inside glm(x) =
4πG
x2

∫ x

()x′2dx′

outside glm(x) =
4πG
x2

∫
()x′2dx′

(18.7)
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� transition zone 2

inside glm(x) =
4πG
x2

∫ x

()x′2dx′

outside glm(x) =
4πG
x2

∫
()x′2dx′

(18.8)

� transition zone 3

inside glm(x) =
4πG
x2

∫ x

()x′2dx′

outside glm(x) =
4πG
x2

∫
()x′2dx′

(18.9)

glm(r) =

∫ 5701/6371

3480/6371

(7.9565− 6.4761x+ 5.5283x2 − 3.0807x3)x2dx ≃ 0.904793
4πGR3

r2

gtz1(r) =

∫ 5771/6371

5701/6371

(5.3197− 1.4836x)x2dx ≃ 0.0354823
4πGR3

r2

gtz2(r) =

∫ 5971/6371

5771/6371

(11.2494− 8.0298x)x2dx ≃ 0.1026
4πGR3

r2

gtz3(r) =

∫ 6151/6371

5971/6371

(7.1089− 3.8045x)x2dx ≃ 0.0892215
4πGR3

r2

glvz =

∫ 6291/6371

6151/6371

(2.6910 + 0.6924x)x2dx ≃ 0.0705516
4πGR3

r2

glid =

∫ 6346.6/6371

6291/6371

(2.6910 + 0.6924x)x2dx ≃ 0.0289968
4πGR3

r2

glc =

∫ 6356/6371

6346.6/6371

2.9x2dx ≃ 0.00425234
4πGR3

r2

guc =

∫ 6368/6371

6356/6371

2.6x2dx ≃ 0.00488337
4πGR3

r2

go =

∫ 1

6368/6371

1.020x2dx ≃ 0.000480075
4πGR3

r2
(18.10)

Finally

|gr(r)| = gic(r) + goc(r) + glm(r) + gtz1(r) + gtz2(r) + gtz3(r) + glvz(r) + glid(r) + glc(r) + guc(r) + go(r)

=
4πGR3

r2
(0.0302907 + 0.56663 + 0.904793 + 0.0354823 + 0.1026 + 0.0892215 +

0.0705516 + 0.0289968 + 0.00425234 + 0.00488337 + 0.000480075)

≃ 4πGR3

r2
1.838181685

At the surface of the Earth, r = R so we arrive at (after multiplying by 1000, see comment
above):

gPREM(R) ≃ 4π · 6.67408× 10−11 · 6371× 103 · 1.838181685 ≃ 9.82194
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All these calculations should be rechecked, although obviously the obtained value makes much
sense.
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18.2 From 1D tomography to density/temperature

The mantle is heterogeneous but it is also inaccessible. This means that one must rely on indirect
methods to probe its structure. Seismic tomography is a technique for imaging the subsurface of the
Earth with seismic waves produced by earthquakes or explosions. P-, S-, and surface waves can be
used for tomographic models of different resolutions.

Seismic velocity is a meaningful parameter for the interior dynamics of the Earth because there
exists a direct relation between seismic velocity and density. Such a relation was analysed experimen-
tally by (for instance) Barton (1986) who used laboratory measurements of P-wave seismic velocity
and density of rocks [51].

Fourty years later or so, a crucial question remains: what is the exact form of the relation between
density and seismic velocity for the entire Earth’s mantle?

I will here not go into the details of the underlying theories and their approximations but will
show a few useful results.

From tomography to density, the workflow is usually as follows:

d lnVp → d lnVs → d ln ρ→ dρ

Note that if the method is based on shear wave tomography the conversion d lnVp → d lnVs is not
necessary. Also the last step d ln ρ→ dρ requires a background density field, often taken to be either
the PREM model of AK135 (see Section 18.1).

On the following plots are shown radial averages of the ratio d lnVs/d lnVp and d ln ρ/d lnVs:

Taken from Moulik & Ekstrom (2016) [910]
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Profiles of scaling factor ξ = d ln ρ/d lnVs. Data from Steinberger & Calderwood (2006) [1203] and Moulik & Ekstrom (2016) [910]. Data available in

images/dlnrhodlnvs/

Then
δ ln(ρ(r, θ, ϕ)) = ξ(r) · δ ln(Vs(r, θ, ϕ))
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with

δ ln(ρ(r, θ, ϕ)) =
δρ(r, θ, ϕ)

ρref (r)

where ρref is a radial profile, PREM for instance in the case of S40RTS so finally

δρ(r, θ, ϕ) = ρref (r) · δ ln(ρ(r, θ, ϕ)) = ρref (r) · ξ(r) · δ ln(Vs(r, θ, ϕ))

Relevant Literature: [1083]
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18.3 Earth radial viscosity profile

viscosity profile.tex

1995: Taken from Hanyk et al. (1995) [544]. η(z) = (1 + 214.3z exp−16.7(0.7− z)2)× 1021pascals

1997: Taken from Cserepes & Yuen (1997) [292]

2001:Radial viscosity profile of the reference model. 3-layered model is adopted: the lithosphere (0 km to 150 km), the upper mantle (150 km to 670km) and

the lower mantle (670 km to 2900 km). Taken from [1388]
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2006: Non-optimized, normalized viscosity profiles, as sent by B. Steinberger, corresponding to fig. 4 in Steinberger & Calderwood (2006) [1203].

2011: Taken from Cadio et al. [200]. Mantle viscosity structure employed in calculating synthetic geoid anomalies. Red: VR (Ricard et al. , 1993); Blue: VMF

(Mitrovica and Forte, 2004); Cyan: VMF-LVZ (Mitrovica and Forte, 2004); Green: VSC (Steinberger and Calderwood, 2006); Orange: VYN (Yoshida and

Nakakuki, 2009).

2012: Taken from Ciskova et al. [259].
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2014Taken from Kaban et al. [660]. (Black) reference radial viscosity from (Steinberger and Calderwood 2006); (Blue) alternative viscosity model of Kaban

and Trubitsyn (2012); (Light Grey) limits of viscosity variations in the model with LVV (Petrunin et al. 2013).
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2019: Taken from Kaneko et al. [669].
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2023: Taken from Neuharth and Mittelstaedt [934].

Relevant Literature:

� Viscosity profile of the lower mantle [370]

� Matyska et al. (2011) [844]

� Flament (2019) [396]

� Mitrovica & Forte [880]

� King & Masters [706]

� Rudolph et al. [1089]

� steinberger & holme [1202]

� steinberger [1204]

� Cadek & Yuen [198]

� supp of [49]
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18.4 Earth radial temperature profile

adiabatic.tex

The method of manufactured solutions is a relatively simple way of carrying out
We start by the first sentence of Bunge (2005) [170]: ”The average temperature increase through

Earth’s crust and mantle is called the geotherm. Its basic form is assumed to consist of adiabatic
regions where temperatures rise only slightly with depth, and of narrow thermal boundary layers
where temperatures increase rapidly over a depth of a few hundred kilometers (Jeanloz and Morris,
1986) [642].”

Before we look further at the equations behind this temperature profile, we must look at the basic
assumption we make about the type of convection taking place in the mantle: layered convection vs.
whole mantle convection, as depicted here:

Taken from https://geologyengineering.com/2020/05/mantle-convection/

Indeed, the type of convection is then expected to have an strong influence on the radial temperature
profile:

This is also to be found in Poirier’s book [1006]:
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Schematic diagrams of (a) whole-mantle and (b) layered convection models, with corresponding temperature and viscosity profiles (after Peltier & Jarvis

(1982) [989].)

The two-layered convection hypothesis relies essentially on the viscosity jump at the 660 discon-
tinuity and seems to be generally accepted. It also forms the basis of Čadek & van den Berg (1998)
[199] in which the authors carry out an inversion to obtain radial profiles of temperature and viscosity
in the Earth’s mantle inferred from the geoid and lateral seismic structure:

Taken from [199]. Left: Parameterization of the geotherm used in the paper; Right: Four model geotherms reducing the misfit by 70%. The differences

between the models illustrate uncertainties of the solution.

More recently, Katsura et al. (2010) [676] have constructed the following mantle temperature and
temperature gradient profiles:
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Taken from Katsura et al. (2010) [676]. Left: The adiabatic temperature distributions in the mantle. The three solid lines denote the temperature

distributions proposed in this study using three different pressure scales. Those proposed by the previous studies are shown for comparison (BS81: Brown and

Shankland, 1981; IK89: Ito and Katsura, 1989; dS00: da Silva et al. , 2000; SD08: Stacey and Davis, 2008). The mantle solidus proposed by Hirschmann

(2000) is also shown. Right: Adiabatic temperature gradient in the mantle. The adiabatic temperature gradient abruptly increases in association with the

olivine-wadsleyite, wadsleyite-ringwoodite, ringwoodite-perovskite + periclase transitions, as is the case for the thermal expansion. The adiabatic temperature

gradients given in the previous studies are also shown for comparison (BS81: Brown and Shankland, 1981; SD08: Stacey and Davis, 2008 [1191]).

Taken from Neuharth and Mittelstaedt [934].

Prof. Steinberger was gracious to communicate to me the data of Steinberger & Calderwood
(2006) [1203]:
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Temperature profiles from Steinberger & Calderwood [1203].

One can gather data from various papers and books and this yields the following figure1:
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Note that the T values of Stacey (1977) [1190] inexplicably go to 540-550K at the surface. The value 545 has therefore been subtracted from the values in the

paper. These then align remarquably well with those of Katsura et al.

We see that there is a remarkable agreement between many studies for the temperature down to
400km depth. Most show a step in the profile between 400 and 670km depth but the temperature
at 670km depth seems to be between 1650◦C and 1750◦C. Further down, the discrepancy between
studies increases (effectively boiling down to the value of the adiabatic gradient). 100km above the
CMB all studies seem to indicate a temperature of 2300-2400◦C. Temperature values at the CMB
differ a lot and as noted in Bull et al. (2009) [167]: ”Estimates of CMB temperature vary greatly.
[...] We impose a surface temperature of 273 K and investigate three CMB temperatures: 3000 K
(consistent with previous studies of this nature, e.g., Kellogg et al. ., 1999 [693]), 3950 K (consistent
with recent results on the double-crossing of Post- Perovskite, e.g., Hernlund et al. ., 2005 [565]; van
der Hilst et al. , 2007 [572]; Alfè et al. ., 2002), and 4800 K (Knittle and Jeanloz, 1991). The 3950
K temperature is the ’reference’ temperature which we use for the majority of cases.” The CMB
temperature is set to 2900− 3200◦C in Fowler [408].

Also, oceanic plates being thinner than continental plates (alongside with different radiogenic
decay and thermal properties) one can draw two representative mantle geotherms [1288]:

1It must be said that finding actual data -not figures- is remarkably difficult.

1036



Taken from Turcotte & Schubert [1288]

1037



[from ASPECT manual]
———————————————

Isentropic gradient The material properties also define the slope of the adiabat (the change in
temperature with pressure at constant entropy) at all pressures and temperatures. Using the cyclic
relation, we can define this slope in terms of partial differentials of the entropy with respect to
pressure and temperature: (

∂T

∂p

)
S

= −
(
∂T

∂S

)
p

(
∂S

∂p

)
T

(18.11)

= −
(
T

Cp

)(
−α
ρ

)
(18.12)

=
αT

ρCp
(18.13)

This expression does not pose a constraint on the material properties, but in order to be self-
consistent, the adiabat must be computed following this relation.

For complex material models, obtaining analytical functions which obey all these relations may
be a non-trivial exercise. Furthermore, it is often not immediately clear when a given formulation
is thermodynamically inconsistent. Indeed, both the thermodynamic and the geodynamic literature
contain many equations of state and material parameterizations which do not obey these relations!
This may not invalidate the results obtained with these models, but it is a point worth keeping in mind
as the geodynamics community moves to more complicated and more realistic parameterizations.

A final note of warning: Some compressible formulations in Aspect (Section ??) use the
isothermal compressibility, while others use the isentropic compressibility. Fully self-consistent mate-
rial models must either specify what approximation of the compressible equations they are consistent
with (see Section ??), or have a switch so that they use the correct compressibility for each of the
different approximations. The conversion between isothermal and isentropic compressibilities is given
in (??).

————————————————–

Initial conditions and the adiabatic pressure/temperature The thermo-mechanically cou-
pled (Navier-)Stokes equations require us to pose initial conditions for the temperature Note that the
equations themselves do not require that initial conditions are specified for the velocity and pressure
variables (since there are no time derivatives on these variables in the model).

Nevertheless, a nonlinear solver will have difficulty converging to the correct solution if we start
with a completely unphysical pressure for models in which coefficients such as density ρ and viscosity
η depend on the pressure and temperature. To this end, Aspect uses pressure and temperature
fields pad(z), Tad(z) computed in the adiabatic conditions model (see Section ??). By default, these
fields satisfy adiabatic conditions:

ρCp
d

dz
Tad(z) =

∂ρ

∂T
Tad(z)gz, (18.14)

d

dz
pad(z) = ρgz, (18.15)

where strictly speaking gz is the magnitude of the vertical component of the gravity vector field, but
in practice we take the magnitude of the entire gravity vector.

These equations can be integrated numerically starting at z = 0, using the depth dependent
gravity field and values of the coefficients ρ = ρ(p, T, z), Cp = Cp(p, T, z). As starting conditions at
z = 0 we choose a pressure pad(0) equal to the average surface pressure (often chosen to be zero, see
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Section ??), and an adiabatic surface temperature Tad(0) that is also selected in the input parameter
file.

Note: The adiabatic surface temperature is often chosen significantly higher than the
actual surface temperature. For example, on earth, the actual surface temperature is on the
order of 290 K, whereas a reasonable adiabatic surface temperature is maybe 1600 K. The
reason is that the bulk of the mantle is more or less in thermal equilibrium with a thermal
profile that corresponds to the latter temperature, whereas the very low actual surface
temperature and the very high bottom temperature at the core-mantle boundary simply
induce a thermal boundary layer. Since the temperature and pressure profile we compute
using the equations above are simply meant to be good starting points for nonlinear solvers,
it is important to choose this profile in such a way that it covers most of the mantle well;
choosing an adiabatic surface temperature of 290 K would yield a temperature and pressure
profile that is wrong almost throughout the entire mantle.

For instance, let us consider α = 3 · 10−5, gz = 10, Cp = 1250, ρ = ρ0(1 − α(T − T0) so that
∂ρ
∂T

= −αρ0 with ρ0 = 3300.
Then we must solve the following equation

ρ0(1− α(T − T0))Cp
dT

dz
= −αT 2gz

———————————-
In Verhoogen (1951) [1319]: As is well known, the adiabatic gradient may be written as

dT

dP
= αT/ρCp

If hydrostatic equilibrium is assumed, the pressure varies with depth h as dP = ρgdh, so that

d lnT

dh
=
αg

Cp

from which the temperature T at any depth h may be computed as a function of the temperature
at any assigned depth if the ratio α/Cp is known at all depths (g, the acceleration of gravity, will be
taken as constant in the mantle).

———————————-
———————————-
From DyMaLi: In the interior of a convecting medium temperatures follow an adiabatic profile.

At the top and bottom of a convecting layer thermal boundary layers with large thermal gradients
form. The interior is thermally well mixed and therefore essentially isothermal, with a slight increase
of temperatures with depth due to the effect of pressure. For example in the Earth’s mantle the
geothermal gradient ∂T/∂z is about 20C/km near the surface and about 0.3C/km in the interior
of the mantle. This small gradient in the interior is the adiabatic gradient. If a small volume of
material is moved to shallower depth is experiences a slight increase in volume due to the decreasing
pressure and associated with this a slight decrease in temperature. This change in temperature is
the adiabatic temperature change.

The adiabatic gradient can be determined from the thermodynamics relation between entropy
per unit mass S, temperature T, and pressure P:

dS =

(
dS

dT

)
P

dT +

(
dS

dP

)
T

dP =
Cp
T
dT − α

ρ
dP
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In case of a reversible adiabatic process the entropy change is zero, and so the adiabatic gradient is:(
dT

dP

)
S

=
αT

ρCp

The gradient can also be expressed in terms of depth, remembering that dp = ρgdz in a hydrostatic
fluid: (

dT

dz

)
S

=
αgT

Cp

Thus to determine the adiabatic gradient one needs values of α and Cp with depth. These are
obtained from laboratory experiments.

One also needs an estimate of density as a function of depth, which is generally determined from
seismology. Integration of the adiabatic gradient in terms of pressure then gives temperature as
a function of pressure. Temperature as a function of depth is obtained by integrating the density
distribution to obtain g as a function of depth.

not finished ———————————-
Vol07 02
This adiabaticity hypothesis should, however, not be taken too literally (Jeanloz and Morris,

1987 [641]). In most numerical simulations, the resulting averaged geotherm can be far (a few
hundred kelvins) from adiabatic (Bunge et al. , 2001 [171]). First, radioactive heating, dissipation,
and diffusion are never totally negligible, second, even if each fluid parcel follows its own adiabatic
geotherm, the average geotherm may not correspond to any particular adiabat.

———————————- From Steinberger oct 26th, 2020:
Yes, I think the temperature below the lithosphere is still fairly well-constrained, based on magmas

produced on mid-oceanic ridges (away from plumes) if one takes these as representative. Regarding
Dannberg and Sobolev (not Solomatov!) I don’t know why it is lower. In their supplementary figures,
the extrapolation to the surface is actually ∼ 1250K, not 1250◦C, which is even less. Perhaps best
to directly ask Juliane about this.

How the temperature increases with depth is more uncertain; the temperature gradient is often
taken as adiabatic; that’s what I also assumed in the 2006 paper, then it is defined by a ordinary
differential equation (eq. 12 in that paper). I think the main uncertainty is the thermal expansivity.
In my model, it strongly decreases with depth, I guess that is why my models have a lower temperature
in the lower mantle than other models. I think that strong decrease in expansivity is still the
consensus, but I didn’t closely follow the literature recently. But the temperature gradient between
the thermal boundary layers may actually be subadiabatic, hence even lower, due to cold slabs sinking
to and accumulating above the CMB, and hot plume material feeding into the asthenosphere, below
the lithosphere. So, yes, I would say the difference in the deep mantle (if not more) reflects the
current state in the community.

And I think the uncertainites of CMB temperature are even larger. And I would of course be
happy if you host my data on a public github repo. Just for the viscosity profile, there should be
some explanation given that it shouldn’t necessarily be taken ”at face value” but that (like in the
2006 paper) it is possible to multiply different parts of the profile with different ”scaling viscosities”.

———————————-
Relevant Literature: On the thermal gradient in the Earth’s deep interior, Tirone (2016) [1270]

Is the mantle geotherm subadiabatic, Jeanloz & Morris (1987) [641]
Mantle convection, the asthenosphere, and Earth’s thermal history King (2015) [704]

check section 7.7 in Fowler !
boundary layer jape82
evolution shpe79
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18.5 Earth radial thermal expansion profile

thermal expansion profile.tex

Taken from Steinberger and Calderwood [1203].

see Matyska et al. (2011) [844]
Mantle convection with internal heating and pressure-dependent thermal expansivity, Leitch et

al. (1991) [763]
Eq(8) of Hassan et al. [552]

Taken from Neuharth and Mittelstaedt [934].
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18.6 Earth radial density profile

density profile.tex
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Let us look at the density and pressure profiles in a 1D isothermal ’planet’. We start from

−∇⃗p+ ρg⃗ = 0⃗

In 1D, and assuming g⃗ = −ge⃗z:
−dp
dz
− ρg = 0

or
dp

dz
= −ρg

Assuming ρ and g constant in the domain z ∈ [0, L], we can solve this ODE and we obtain:

p(z) = ρg(L− z)
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Let us now turn to the case of an isothermal but compressible fluid. Its density is now given by

ρ(p) = ρ0(1− βp)

where β is the compressibility (assumed to be constant in the domain). We must then solve

dp

dz
= −ρ0(1− βp)g ⇒

dp

1− βp
= −ρ0gdz

⇒
∫

dp

1− βp
= −

∫
ρ0gdz

⇒ − 1

β
ln(1− βp) = −ρ0gz + C

⇒ ln(1− βp) = βρ0gz +D

⇒ 1− βp = exp (βρ0gz +D)

⇒ p(z) =
1

β
[1− exp (βρ0gz +D)]

(18.16)

At z = L we require p = 0 so we obtain

p(z) =
1

β
[1− exp (βρ0g(z − L))]

Note that when the compressibility tends to zero, by virtue of

expx ∼ 1 + x+
x2

2
+ ...

for x→ 0 we then recover the linear pressure profile above.
Let us now take ρ0 = 4000 kgm−3, g = 10m s−2 and β = 4 · 10−12 Pa−1 [439] and L = 3000 km.
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Taken from Neuharth and Mittelstaedt [934].
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18.7 Earth radial thermal conductivity profile

thermal conductivity profile.tex

Taken from Neuharth and Mittelstaedt [934].
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Appendix A

Matrix properties

A.0.1 Symmetric matrices

Any symmetric matrix has only real eigenvalues, is always diagonalizable, and has orthogonal eigen-
vectors. A symmetric N ×N real matrix M is said to be

� positive definite if x⃗ ·M · x⃗ > 0 for every non-zero vector x⃗ of n real numbers. All the
eigenvalues of a Symmetric Positive Definite (SPD) matrix are positive. If A and B are positive
definite, then so is A+B. The matrix inverse of a positive definite matrix is also positive definite.
An SPD matrix has a unique Cholesky decomposition. In other words the matrix M is positive
definite if and only if there exists a unique lower triangular matrix L, with real and strictly
positive diagonal elements, such that M = LLT (the product of a lower triangular matrix and
its conjugate transpose). This factorization is called the Cholesky decomposition of M .

� positive semi-definite if x⃗ ·M · x⃗ ≥ 0

� negative definite if x⃗ ·M · x⃗ < 0

� negative semi-definite if x⃗ ·M · x⃗ ≤ 0

The Stokes linear system (
K G
GT 0

)
·
(

v
p

)
=

(
f
g

)
is indefinite (i.e. it has positive as well as negative eigenvalues).

A square matrix that is not invertible is called singular or degenerate. A square matrix is
singular if and only if its determinant is 0. Singular matrices are rare in the sense that if you pick a
random square matrix, it will almost surely not be singular.

A.0.2 Eigenvalues of positive definite matrix

Suppose our matrix M has eigenvalue λ.
If λ = 0, then there is some eigenvector x⃗ so that M · x⃗ = λx⃗ = 0⃗. But then x⃗T ·M · x⃗ = 0, and

soM is not positive definite.
If λ < 0, then there is some eigenvector x⃗ so that M · x⃗ = λx⃗. But then x⃗T ·M · x⃗ = λ|x⃗|2, which

is negative since |x⃗|2 > 0 and λ < 0. Thus M is not positive definite.
And so if M is positive definite, it only has positive eigenvalues.
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A.0.3 Schur complement

From wiki. In linear algebra and the theory of matrices, the Schur complement of a matrix block
(i.e., a submatrix within a larger matrix) is defined as follows. Suppose A, B, C, D are respectively
p× p, p× q, q × p and q × q matrices, and D is invertible. Let

M =

(
A B
C D

)
so that M is a (p + q)× (p + q) matrix. Then the Schur complement of the block D of the matrix
M is the p× p matrix

S = A−B ·D−1 ·C

Application to solving linear equations: The Schur complement arises naturally in solving a system
of linear equations such as

A · x⃗+B · y⃗ = f⃗

C · x⃗+D · y⃗ = g⃗

where x⃗, f⃗ are p-dimensional vectors, y⃗, g⃗ are q-dimensional vectors, and A, B, C, D are as above.
Multiplying the bottom equation by B ·D−1 and then subtracting from the top equation one obtains

(A−B ·D−1 ·C) · x⃗ = f⃗ −B ·D−1 · g⃗

Thus if one can invert D as well as the Schur complement of D, one can solve for x⃗, and then by
using the equation C · x⃗ + D · y⃗ = g⃗ one can solve for y. This reduces the problem of inverting a
(p+ q)× (p+ q) matrix to that of inverting a p× p matrix and a q× q matrix. In practice one needs
D to be well-conditioned in order for this algorithm to be numerically accurate.

Considering now the Stokes system:(
K G
GT −C

)
·
(
v⃗
p⃗

)
=

(
f⃗
g⃗

)
Factorising for p⃗ we end up with a velocity-Schur complement. Solving for p⃗ in the second
equation and inserting the expression for p⃗ into the first equation we have

Sv · v⃗ = f⃗ with Sv = K+G · C−1 ·GT

Factorising for v⃗ we get a pressure-Schur complement.

Sp · p⃗ = GT ·K−1 · f⃗ with Sp = GT ·K−1 ·G+ C
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Appendix B

Don’t be a hero - unless you have to

What follows was published online on July 17th, 2017 at https://blogs.egu.eu/divisions/gd/
2017/07/19/dont-be-a-hero-unless-you-have-to/ It was written by me and edited by Iris van
Zelst, at the time PhD student at ETH Zürich.

In December 2013, I was invited to give a talk about the Aspect code [1] at the American
Geological Union conference in San Francisco. Right after my talk, Prof. Louis Moresi took the
stage and gave a talk entitled: Underworld: What we set out to do, How far did we get, What did
we Learn?

The abstract went as follows:
“Underworld was conceived as a tool for modelling 3D lithospheric deformation coupled with the

underlying / surrounding mantle flow. The challenges involved were to find a method capable of
representing the complicated, non-linear, history dependent rheology of the near surface as well as
being able to model mantle convection, and, simultaneously, to be able to solve the numerical system
efficiently. [...] The elegance of the method is that it can be completely described in a couple of
sentences. However, there are some limitations: it is not obvious how to retain this elegance for
unstructured or adaptive meshes, arbitrary element types are not sufficiently well integrated by the
simple quadrature approach, and swarms of particles representing volumes are usually an inefficient
representation of surfaces.”

Aside from the standard numerical modelling jargon, Louis used a term during his talk which I
thought at the time had a nice ring to it: hero codes. In short, I believe he meant the codes written
essentially by one or two people who at some point in time spent great effort into writing a code
(usually choosing a range of applications, a geometry, a number of dimensions, a particular numerical
method to solve the relevant PDEs(1), and a tracking method for the various fields of interest).

In the long list of Hero codes, one could cite (in alphabetical order) CitcomS [1], Douar [8],
Fantom [2], IELVIS [5], LaMEM [3], pTatin [4], SLIM3D [10], Sopale [7], StaggYY [6], Sulec [11],
Underworld [9], and I apologise to all other heroes out there whom I may have overlooked. And who
does not want to be a hero? The Spiderman of geodynamics, the Superwoman of modelling?

Louis’ talk echoed my thoughts on two key choices we (computational geodynamicists) are facing:
Hero or not, and if yes, what type?

Hero or not?

Speaking from experience, it is an intense source of satisfaction when peer-reviewed published
results are obtained with the very code one has painstakingly put together over months, if not years.
But is it worth it?

On the one hand, writing one own’s code is a source of deep learning, a way to ensure that one
understands the tool and knows its limitations, and a way to ensure that the code has the appropriate
combination of features which are necessary to answer the research question at hand. On the other
hand, it is akin to a journey; a rather long term commitment; a sometimes frustrating endeavour,
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with no guarantee of success. Let us not deny it - many a student has started with one code only
to switch to plan B sooner or later. Ultimately, this yields a satisfactory tool with often little to no
perennial survival over the 5 year mark, a scarce if at all existent documentation, and almost always
not compliant with the growing trend of long term repeatability. Furthermore, the resulting code
will probably bear the marks of its not-all-knowing creator in its DNA and is likely not to be optimal
nor efficient by modern computational standards.

This brings me to the second choice: elegance & modularity or taylored code & raw performance?
Should one develop a code in a very broad framework using as much external libraries as possible or
is there still space for true heroism?

It is my opinion that the answer to this question is: both. The current form of heroism no
more lies in writing one’s own FEM(2)/FDM(3) packages, meshers, or solvers from scratch, but in
cleverly taking advantage of state-of-the-art packages such as for example p4est [15] for Adaptive
Mesh Refinement, PetSc [13] or Trilinos [14] for solvers, Saint Germain [17] for particle tracking,
deal.ii [12] or Fenics [16] for FEM, and sharing their codes through platforms such as svn, bitbucket
or github.

In reality, the many different ways of approaching the development or usage of a (new) code is
linked to the diversity of individual projects, but ultimately anyone who dares to touch a code (let
alone write one) is a hero in his/her own right: although (super-)heroes can be awesome on their
own, they often complete each other, team up and join forces for maximum efficiency. Let us all be
heroes, then, and join efforts to serve Science to the best of our abilities.

Abbreviations
(1) PDE: Partial Differential Equation
(2) FEM: Finite Element Method
(3) FDM: Finite Difference Method
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Appendix C

Some useful Python commands

app useful python.tex

C.0.1 Sparse matrices

So far, the best way I have found to deal with sparse matrices is to declare the matrix as a ’lil matrix’
(linked list).

from sc ipy . spar s e import cs r matr ix , l i l m a t r i x
A mat = l i l m a t r i x ( (Nfem ,Nfem) , dtype=np . f l o a t 6 4 )

One then adds terms to it as if it was a full/dense matrix. Once the assembly is done, the
conversion to CSR format is trivial:

A mat=A mat . t o c s r ( )

Finally the solver can be called:

s o l=sps . l i n a l g . sp so l v e (A mat , rhs )

C.0.2 condition number

if the matrix has been declared as lil matrix, first convert it to a dense matrix:

A mat=A mat . dense ( )

The condition number of the matrix is simply obtained as follows:

from numpy import l i n a l g as LA
pr in t (LA. cond (A mat ) )

C.0.3 Weird stuff

Python is touted as the one language students should learn and master. However it is a language
which allows *way* too much liberty in its syntax and encourages students to be sloppy.

For instance the following code runs just fine:

f o r k in range (0 , 5 ) :
f o r k in range (0 , 5 ) :

f o r k in range (0 , 5 ) :
p r i n t ( k )

This alone should disqualify this language. It is easy to see the obvious problem with this code,
but adding a few lines of code in between each ’for’ line hides the problem and the absence of any
warning makes this code a nightmare to debug.
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C.0.4 Making simple 2D plots

import matp lo t l i b . pyplot as p l t

# number o f po in t s
N=100

# a de s p i c a b l e way o f f i l l i n g two arrays
x data =[ ]
y data =[ ]
f o r i in range (0 ,N) :

x=i
y=i **2+2* i +1.
x data . append (x )
y data . append (y )

# genera t ing a 2D f i g u r e wi th the data
p l t . f i g u r e ( )
p l t . p l o t ( x data , y data , l a b e l = ’name o f data ’ )
p l t . x l ab e l ( ’ x=ax i s l a b e l ’ )
p l t . y l ab e l ( ’ y=ax i s l a b e l ’ )
p l t . l egend ( )
p l t . s a v e f i g ( ’ myplot . pdf ’ , bbox inches=’ t i g h t ’ )
p l t . show ( )

0 20 40 60 80 100
x-axis label

0

2000

4000

6000

8000

10000

y-
ax

is 
la

be
l

name of data

C.0.5 Making simple 3D plots of scatter

f i g = p l t . f i g u r e ( )
ax = p l t . axes ( p r o j e c t i o n=’ 3d ’ )
ax . s e t t i t l e ( ” i n s e r t here t ext f o r t i t l e ” )
s i z e = . . some value . .
ax . scatter3D (x , y , z , s = s i z e )
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C.0.6 How to debug your code

Debugging a FE code is by no means trivial. There is (at least) a grid, a connectivity array, basis
functions and their derivatives, the elemental matrices and rhs, the assembly, boundary conditions,
and a call to a solver before the solution (if the solver returns one!) can be visualised.

� First and foremost, make sure that your grid of points is correct. For instance, you can resort
to exporting it to an ascii file as follows:

np . save txt ( ’ v e l o c i t y . a s c i i ’ , np . array ( [ x , y , u , v ] ) .T, header=’# x , y , u , v ’ )

In two dimensions, you should set for example nelx=3 and nely=2, so that for Q1 elements
the grid counts 12 points. Then make sure the coordinates and the order of the points makes
sense. Repeat the process for pressure nodes, temperature nodes, etc ...

� Then it is time to check the connectivity array(s).

f o r i e l in range (0 , ne l ) :
p r i n t ( ” i e l=” , i e l )
f o r k in range (0 ,m)

p r in t ( ”node ” , i con [ 0 , i e l ] , ” at pos . ” , x [ i con [ 0 , i e l ] ] , y [ i con [ 0 , i e l ] ] )

This displays the list of nodes and their positions making each element. Repeat the process for
every connectivity array.

� We can go on with testing that the all basis functions are 1 on their node and zero elsewhere:

f o r i in range (0 ,m) :
p r i n t ( ’ node ’ , i , ’ : ’ ,NNV( rnodes [ i ] , snodes [ i ] ) )

here the arrays rnodes and snodes contain the (r,s) coordinates of the m nodes

� test jacobian, compute volume of domain

� sum(dNNNdx)=0

� print nodes where bc

C.0.7 Optional arguments

Courtesy of Henry Brett.

de f myfunc (a , b , * opt ional arguments , **keyword arguments ) :
p r i n t ( a )
p r i n t (b)
f o r ar in opt iona l arguments :

p r i n t ( ar )
d=keyword arguments . get ( ”d” , None )
p r i n t (d)

a=”dog”
b=” cat ”
myfunc (a , b , ” shrek ” , ” f i ona ” ,d=”donkey” )
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C.0.8 drawing and filling quadrilaterals

import matp lo t l i b . pyplot as p l t

p l t . f i g u r e ( f i g s i z e =(3 , 3) )
p l t . ax i s ( ’ equal ’ )

x=(1 , 1 . 5 , 1 . 6 , 0 . 8 )
y=(0 , =0 .1 ,1 .5 ,1 .2 )
p l t . f i l l ( x , y , ”b” )

x=(0 ,0 .5 ,0 .6 , =0 .2)
y=(0 , =0 .4 ,1 .1 ,1 .1 )
p l t . f i l l ( x , y , ” r ” )

p l t . s a v e f i g ( ’ xxx . pdf ’ )
p l t . show ( )

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5
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Appendix D

Some useful maths

maths.tex

D.0.1 Inverse of a 3x3 matrix

Let us assume we wish to solve the system A · X⃗ = b⃗, with X⃗ = (x, y). Then the solution is given
by The solution is given by

x =
1

det(A)

∣∣∣∣ b1 a21
b2 a22

∣∣∣∣ y =
1

det(A)

∣∣∣∣ a11 b1
a21 b2

∣∣∣∣
D.0.2 Inverse of a 3x3 matrix

Let us consider the 3× 3 matrix M

M =

 Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz


1. Find det(M), the determinant of the Matrix M . The determinant will usually show up in the

denominator of the inverse. If the determinant is zero, the matrix won’t have an inverse.

2. Find MT , the transpose of the matrix. Transposing means reflecting the matrix about the
main diagonal.

MT =

 Mxx Myx Mzx

Mxy Myy Mzy

Mxz Myz Mzz


3. Find the determinant of each of the 2 × 2 minor matrices. For instance M̃xx = MyyMzz −
MyzMzy, or M̃xz =MxyMyz −MxzMyy.

4. assemble the M̃ matrix:

M̃ =

 +M̃xx −M̃xy +M̃xz

−M̃yx +M̃yy −M̃yz

+M̃zx −M̃zy +M̃zz


5. the inverse of M is then given by

M 1 =
1

det(M )
M̃
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Another approach which of course is equivalent to the above is Cramer’s rule. Let us assume we
wish to solve the system A · X⃗ = b⃗, with X⃗ = (x, y, z). Then the solution is given by

x =
1

det(M )

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣ y =
1

det(M )

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣ z =
1

det(M)

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
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Appendix E

Elemental matrices for simple geometries

app elemental matrix.tex

In what follows I compute the mass matrix for a variety of reference elements. If you wish to use
these in a code, do not forget to take the jacobian of the transformation/mapping into account.

E.0.1 1D segments

Linear basis functions

Let us start with the mass matrix (which we encountered in Section 6.1 – although we leave the ρCp
term out):

Me =

∫
Ωe

N⃗T N⃗dV =

∫ +1

−1

N⃗T N⃗dr (E.1)

on the reference element, with

N⃗T =

(
N1(r)
N2(r)

)
=

1

2

(
1− r
1 + r

)
We have ∫ +1

−1

N1(r)N1(r)dr = 2/3 (E.2)∫ +1

−1

N1(r)N2(r)dr = 1/3 (E.3)∫ +1

−1

N2(r)N2(r)dr = 2/3 (E.4)

Following the procedure in Section 6.1 we arrive at

M e =
1

3

(
2 1
1 2

)
The lumped mass matrix is then

M̄ e =
1

3

(
2 + 1 0
0 1 + 2

)
=

(
1 0
0 1

)
(E.5)
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Remark. The sum of all the terms in the mass matrix must be equal to 2. Indeed:∑
ij

Mij =
∑
ij

∫ +1

−1

NiNjdr

=

∫ +1

−1

(N1N1 +N1N2 +N2N1 +N2N2)dr

=

∫ +1

−1

[N1(N1 +N2) +N2(N1 +N2)]dr

=

∫ +1

−1

(N1 +N2)dr

= 2

Quadratic basis functions

There are now three nodes in the segment so that the mass matrix is now a 3× 3 matrix. We have
(see Section 5.2.1)

N⃗T (r) =

 N1(r)
N2(r)
N3(r)

 =

 1
2
r(r − 1)
1− r2

1
2
r(r + 1)

 (E.6)

We then have to compute ∫ +1

−1

N1(r)N1(r)dr =
8

30
= 0.26666∫ +1

−1

N1(r)N2(r)dr =
4

30
= 0.13333∫ +1

−1

N1(r)N3(r)dr = − 2

30
= −0.06666...∫ +1

−1

N2(r)N2(r)dr =
16

15
= 1.06666∫ +1

−1

N2(r)N3(r)dr =
4

30
= 0.13333∫ +1

−1

N3(r)N3(r)dr =
8

30
= 0.26666

and finally

M e =
1

30

 8 4 −2
4 32 4
−2 4 8

 (E.7)

The lumped mass matrix is then

M̄ e =
1

30

 8 + 4− 2 0 0
0 4 + 32 + 4
0 0 −2 + 4 + 8


=

1

30

 10 0 0
0 40 0
0 0 10


=

1

3

 1 0 0
0 4 0
0 0 1

 (E.8)

1057



We can easily verify that ∑
ij

Mij = 2
∑
ij

M̄ij = 2

Cubic basis functions

There are now four nodes in the segment so that the mass matrix is now a 4 × 4 matrix. We have
(see Section 5.2.3)

N⃗T (r) =


N1(r)
N2(r)
N3(r)
N4(r)

 =
1

16


−1 + r + 9r2 − 9r3

9− 27r − 9r2 + 27r3

9 + 27r − 9r2 − 27r3

−1− r + 9r2 + 9r3

 (E.9)

∫ +1

−1

N1(r)N1(r)dr =
1

256

4096

105∫ +1

−1

N1(r)N2(r)dr =
1

256

1056

35∫ +1

−1

N1(r)N3(r)dr = − 1

256

384

35∫ +1

−1

N1(r)N4(r)dr =
1

256

608

105∫ +1

−1

N2(r)N2(r)dr =
1

256

6912

35∫ +1

−1

N2(r)N3(r)dr = − 1

256

864

35∫ +1

−1

N2(r)N4(r)dr = − 1

256

384

35∫ +1

−1

N3(r)N3(r)dr =
1

256

6912

35∫ +1

−1

N3(r)N4(r)dr =
1

256

1056

35∫ +1

−1

N4(r)N4(r)dr =
1

256

4096

105

and finally

M e =
1

16

1

105


256 198 −72 38
198 1296 −162 −72
−72 −162 1296 198
38 −72 198 256

 (E.10)
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The lumped mass matrix is then

M̄ e =
1

16

1

105


256 + 198− 72 + 38 0 0 0

0 198 + 1296− 162− 72 0 0
0 0 −72− 162 + 1296 + 198 0
0 0 0 38− 72 + 198 + 256



=
1

16

1

105


420 0 0 0
0 1260 0 0
0 0 1260 0
0 0 0 420



=
1

4


1 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1


We can easily verify that ∑

ij

Mij = 2
∑
ij

M̄ij = 2

Quartic basis functions

There are now five nodes in the segment so that the mass matrix is now a 5 × 5 matrix. We have
(see Section 5.2.4)

N⃗T (r) =


N1(r)
N2(r)
N3(r)
N4(r)
N5(r)

 =
1

6


r − r2 − 4r3 + 4r4

−8r + 16r2 + 8r3 − 16r4

6− 30r2 + 24r4

8r + 16r2 − 8r3 − 16r4

−r − r2 + 4r3 + 4r4

 (E.11)

1059



∫ +1

−1

N1(r)N1(r)dr =
1

36

1168

315∫ +1

−1

N1(r)N2(r)dr =
1

36

1184

315∫ +1

−1

N1(r)N3(r)dr = − 1

36

232

105∫ +1

−1

N1(r)N4(r)dr =
1

36

32

45∫ +1

−1

N1(r)N5(r)dr = − 1

36

116

315∫ +1

−1

N2(r)N2(r)dr =
1

36

1024

45∫ +1

−1

N2(r)N3(r)dr = − 1

36

512

105∫ +1

−1

N2(r)N4(r)dr =
1

36

1024

315∫ +1

−1

N2(r)N5(r)dr =
1

36

32

45∫ +1

−1

N3(r)N3(r)dr =
1

36

832

35∫ +1

−1

N3(r)N4(r)dr = − 1

36

512

105∫ +1

−1

N3(r)N5(r)dr = − 1

36

232

105∫ +1

−1

N4(r)N4(r)dr =
1

36

1024

45∫ +1

−1

N4(r)N5(r)dr =
1

36

1184

315∫ +1

−1

N5(r)N5(r)dr =
1

36

1168

315
(E.12)

M e =
1

36

1

315


1168 1184 −696 224 −116
1184 7168 −1536 1024 224
−696 −1536 7488 −1536 −696
224 1024 −1536 7168 1184
−116 224 −696 1184 1168

 (E.13)

The lumped mass matrix is then

M̄ e = =
1

36

1

315


1764 0 0 0 0
0 8064 0 0 0
0 0 3024 0 0
0 0 0 8064 0
0 0 0 0 1764

 =
1

45


7 0 0 0 0
0 32 0 0 0
0 0 12 0 0
0 0 0 32 0
0 0 0 0 7

 (E.14)
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We can once again easily verify that∑
ij

Mij = 2
∑
ij

M̄ij = 2

Note that all the integrals above were done very conveniently with the WolframAlpha soft-
ware/website1. Example:

E.0.2 Quadrilaterals: rectangular linear elements

Mass matrix

We assume that each element is a rectangle of size hx × hy. We start from the linear basis functions
in the reference element as a function of r, s:

N1(r, s) =
1

4
(1− r)(1− s) (E.15)

N2(r, s) =
1

4
(1 + r)(1− s) (E.16)

N3(r, s) =
1

4
(1 + r)(1 + s) (E.17)

N3(r, s) =
1

4
(1− r)(1 + s) (E.18)

and their derivatives:

∂rN1(r, s) = −1

4
(1− s)

∂rN2(r, s) =
1

4
(1− s)

∂rN3(r, s) =
1

4
(1 + s)

∂rN4(r, s) = −1

4
(1 + s)

∂sN1(r, s) = −1

4
(1− r)

∂sN2(r, s) = −1

4
(1 + r)

∂sN3(r, s) =
1

4
(1 + r)

∂sN4(r, s) =
1

4
(1− r)

1https://www.wolframalpha.com/
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We wish to compute the integral of a function f(x, y) over the rectangular element:∫∫
f(x, y)dxdy =

∫∫
f(x(r, s), y(r, s))

∣∣∣∣∂(x, y)∂(r, s)

∣∣∣∣ drds (E.19)

=

∫∫
f(x(r, s), y(r, s))

∣∣∣∣∣∣
∂x/∂r ∂x/∂s

∂y/∂r ∂y/∂s

∣∣∣∣∣∣ drds (E.20)

From

x(r, s) =
4∑
i=1

Ni(r, s)xi andd y(r, s) =
4∑
i=1

Ni(r, s)yi

we can write

∂x

∂r
(r, s) =

∂N1

∂r
x1 +

∂N2

∂r
x2 +

∂N3

∂r
x3 +

∂N4

∂r
x4

= −1

4
(1− s)x1 +

1

4
(1− s)x2 +

1

4
(1 + s)x3 −

1

4
(1 + s)x4

=
1

4
(−x1 + x2 + x3 − x4 + s(x1 − x2 + x3 − x4))

=
1

4
(hx + hx + s(x1 − x2 + x2 − x1))

=
1

2
hx

∂x

∂s
(r, s) =

∂N1

∂s
x1 +

∂N2

∂s
x2 +

∂N3

∂s
x3 +

∂N4

∂s
x4

= −1

4
(1− r)x1 −

1

4
(1 + r)x2 +

1

4
(1 + r)x3 +

1

4
(1− r)x4

=
1

4
(−x1 − x2 + x3 + x4 + r(x1 − x2 + x3 − x4))

=
1

4
(−x1 − x2 + x2 + x1 + r(x1 − x2 + x2 − x1))

= 0
∂y

∂r
(r, s) = 0

∂y

∂s
(r, s) =

1

2
hy (E.21)

Then ∣∣∣∣∣∣
∂x/∂r ∂x/∂s

∂y/∂r ∂y/∂s

∣∣∣∣∣∣ =
∣∣∣∣ hx 0

0 hy

∣∣∣∣ = hxhy
4

and finally ∫∫
□
f(x, y)dxdy =

hxhy
4

∫ 1

−1

∫ 1

−1

f(x(r, s), y(r, s))drds (E.22)
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Then the mass matrix is given by

Me =
hxhy
4

∫ 1

−1

∫ 1

−1


N1(r, s)N1(r, s) N1(r, s)N2(r, s) N1(r, s)N3(r, s) N1(r, s)N4(r, s)
N2(r, s)N1(r, s) N2(r, s)N2(r, s) N2(r, s)N3(r, s) N2(r, s)N4(r, s)
N3(r, s)N1(r, s) N3(r, s)N2(r, s) N3(r, s)N3(r, s) N3(r, s)N4(r, s)
N4(r, s)N1(r, s) N4(r, s)N2(r, s) N4(r, s)N3(r, s) N4(r, s)N4(r, s)

 drds

=
hxhy
9



1 1/2 1/4 1/2

1/2 1 1/2 1/4

1/4 1/2 1 1/2

1/2 1/4 1/2 1


(E.23)

Diffusion matrix

Ke
d = k

hxhy
4

∫ +1

−1

∫ +1

−1

BT (r, s) ·B(r, s) drds

with

B(r, s) =


− 1
hx

1
2
(1− s) 1

hx
1
2
(1− s) 1

hx
1
2
(1 + s) − 1

hx
1
2
(1 + s)

− 1
hy

1
2
(1− r) − 1

hy
1
2
(1 + r) 1

hy
1
2
(1 + r) 1

hy
1
2
(1− r)


Then

BT (r, s) ·B(r, s) (E.24)

=


− 1
hx

1
2
(1− s) − 1

hy
1
2
(1− r)

1
hx

1
2
(1− s) − 1

hy
1
2
(1 + r)

1
hx

1
2
(1 + s) 1

hy
1
2
(1 + r)

− 1
hx

1
2
(1 + s) 1

hy
1
2
(1− r)

 ·
 − 1

hx
1
2
(1− s) 1

hx
1
2
(1− s) 1

hx
1
2
(1 + s) − 1

hx
1
2
(1 + s)

− 1
hy

1
2
(1− r) − 1

hy
1
2
(1 + r) 1

hy
1
2
(1 + r) 1

hy
1
2
(1− r)

(E.25)

=
1

4h2x


−(1− s) −(1− r)
(1− s) −(1 + r)
(1 + s) (1 + r)
−(1 + s) (1− r)

 · ( −(1− s) (1− s) (1 + s) −(1 + s)
−(1− r) −(1 + r) (1 + r) (1− r)

)
(E.26)

=
1

4h2x


(1− r)2 (1− r2) −(1− r2) −(1− r)2
(1− r2) (1 + r)2 −(1 + r)2 −(1− r2)
−(1− r2) −(1 + r)2 (1 + r)2 (1− r2)
−(1− r)2 −(1− r2) (1− r2) (1− r)2

 (E.27)

=
1

4h2y


(1− s)2 −(1− s)2 −(1− s2) (1− s2)
−(1− s)2 (1− s)2 (1− s2) −(1− s2)
−(1− s2) (1− s2) (1 + s)2 −(1 + s)2

(1− s2) −(1− s2) −(1 + s)2 (1 + s)2

 (E.28)

(E.29)
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So in the end

Ke
d = k

hxhy
4

∫ +1

−1

∫ +1

−1

1

4h2x


(1− r)2 (1− r2) −(1− r2) −(1− r)2
(1− r2) (1 + r)2 −(1 + r)2 −(1− r2)
−(1− r2) −(1 + r)2 (1 + r)2 (1− r2)
−(1− r)2 −(1− r2) (1− r2) (1− r)2

 drds (E.30)

+
hxhy
4

∫ +1

−1

∫ +1

−1

1

4h2y


(1− s)2 −(1− s)2 −(1− s2) (1− s2)
−(1− s)2 (1− s)2 (1− s2) −(1− s2)
−(1− s2) (1− s2) (1 + s)2 −(1 + s)2

(1− s2) −(1− s2) −(1 + s)2 (1 + s)2

 drds (E.31)

= k
khy
8hx

∫ +1

−1


(1− r)2 (1− r2) −(1− r2) −(1− r)2
(1− r2) (1 + r)2 −(1 + r)2 −(1− r2)
−(1− r2) −(1 + r)2 (1 + r)2 (1− r2)
−(1− r)2 −(1− r2) (1− r2) (1− r)2

 dr (E.32)

+
khx
8hy

∫ +1

−1


(1− s)2 −(1− s)2 −(1− s2) (1− s2)
−(1− s)2 (1− s)2 (1− s2) −(1− s2)
−(1− s2) (1− s2) (1 + s)2 −(1 + s)2

(1− s2) −(1− s2) −(1 + s)2 (1 + s)2

 ds (E.33)

= k
khy
8hx

4

3


2 1 −1 2
1 2 −2 −1
−1 −2 2 1
−2 −1 1 2

+
khx
8hy

4

3


2 −2 −1 1
−2 2 1 −1
−1 1 2 −2
1 −1 −2 2

 (E.34)

=
khxhy

6


2
h2x

+ 2
h2y

− 2
h2x

+ 1
h2y
− 1
h2x
− 1

h2y

1
h2x
− 2

h2y

− 2
h2x

+ 1
h2y

2
h2x

+ 2
h2y

1
h2x
− 2

h2y
− 1
h2x
− 1

h2y

− 1
h2x
− 1

h2y

1
h2x
− 2

h2y

2
h2x

+ 2
h2y

− 2
h2x

+ 1
h2y

1
h2x
− 2

h2y
− 1
h2x
− 1

h2y
− 2
h2x

+ 1
h2y

2
h2x

+ 2
h2y

 (E.35)

Advection matrix

Ka = ρCp
hxhy
4

∫ +1

−1

∫ +1

−1

NT (r, s)(ν⃗ ·B(r, s)) drds

with

ν⃗·B(r, s) =

(
− u

2hx
(1− s)− v

2hy
(1− r) u

2hx
(1− s)− v

2hy
(1 + r)

u

2hx
(1 + s)+

v

2hy
(1 + r) − u

2hx
(1 + s)+

v

2hy
(1− r)

)

1064



Assuming that the velocity is constant within the element (which is almost always not true!), we can
write:

Ka = ρCp
hxhy
16

v

2hy

∫ +1

−1

∫ +1

−1


(1− r)(1− s)
(1 + r)(1− s)
(1 + r)(1 + s)
(1− r)(1 + s)

 (−(1− r) − (1 + r) (1 + r) (1− r)) drds(E.36)

+ ρCp
hxhy
16

u

2hx

∫ +1

−1

∫ +1

−1


(1− r)(1− s)
(1 + r)(1− s)
(1 + r)(1 + s)
(1− r)(1 + s)

 (−(1− s) (1− s) (1 + s) − (1 + s)) drds(E.37)

= ρCp
hxv

32

∫ +1

−1

∫ +1

−1


(1− r)(1− s)
(1 + r)(1− s)
(1 + r)(1 + s)
(1− r)(1 + s)

 (−(1− r) − (1 + r) (1 + r) (1− r)) drds(E.38)

+ ρCp
hyu

32

∫ +1

−1

∫ +1

−1


(1− r)(1− s)
(1 + r)(1− s)
(1 + r)(1 + s)
(1− r)(1 + s)

 (−(1− s) (1− s) (1 + s) − (1 + s)) drds(E.39)

= ρCp
1

12

vhx

−2 −1 1 2
−1 −2 2 1
−1 −2 2 1
−2 −1 1 2

+ uhy


−2 2 1 −1
−2 2 1 −1
−1 1 2 −2
−1 1 2 −2


 (E.40)

and finally

Ka =
ρCp
3



−1
2
uhy − 1

2
vhx

1
2
uhy − 1

4
vhx

1
4
uhy +

1
4
vhx −1

4
uhy +

1
2
vhx

−1
2
uhy − 1

4
vhx

1
2
uhy − 1

2
vhx

1
4
uhy +

1
2
vhx −1

4
uhy +

1
4
vhx

−1
4
uhy − 1

4
vhx

1
4
uhy − 1

2
vhx

1
2
uhy +

1
2
vhx −1

2
uhy +

1
4
vhx

−1
4
uhy − 1

2
vhx

1
4
uhy − 1

4
vhx

1
2
uhy +

1
4
vhx −1

2
uhy +

1
2
vhx


Matrices for D.G.

In the context of Discontinuous Galerkin methods we will need

Jx =

∫
□
∂xN⃗

T (x, y)N⃗(x, y)dxdy

Jy =

∫
□
∂yN⃗

T (x, y)N⃗(x, y)dxdy

(E.41)

We have

∂xNi(x, y) =
∂Ni

∂r

∂r

∂x
and ∂yNi(x, y) =

∂Ni

∂s

∂s

∂y

Since

r =
2

hx
(x− x0)− 1 and s =

2

hy
(y − y0)− 1

then
∂r

∂x
=

2

hx

∂s

∂y
=

2

hy
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so

Jx =

∫
□
∂xN⃗

T (x, y)N⃗(x, y)dxdy

=
2

hx

hxhy
4

∫ +1

−1

∫ +1

−1

∂rN⃗
T (r, s)N⃗(r, s)drds

=
hy
2

∫ +1

−1

∫ +1

−1


−1

4
(1− s)

+1
4
(1− s)

+1
4
(1 + s)

−1
4
(1 + s)

( 1
4
(1− r)(1− s) 1

4
(1 + r)(1− s) 1

4
(1 + r)(1 + s) 1

4
(1− r)(1 + s)

)
drds

=
hy
32

∫ +1

−1

∫ +1

−1


−(1− r)(1− s)2 −(1 + r)(1− s)2 −(1 + r)(1− s2) −(1− r)(1− s2)
(1− r)(1− s)2 (1 + r)(1− s)2 (1 + r)(1− s2) (1− r)(1− s2)
(1− r)(1− s2) (1 + r)(1− s2) (1 + r)(1 + s)2 (1− r)(1 + s)2

−(1− r)(1− s2) −(1 + r)(1− s2) −(1 + r)(1 + s)2 −(1− r)(1 + s)2

 drds

=
hy
32


−16/3 −16/3 −8/3 −8/3
16/3 16/3 8/3 8/3
8/3 8/3 16/3 16/3
−8/3 −8/3 −16/3 −16/3



=
hy
12


−2 −2 −1 −1
2 2 1 1
1 1 2 2
−1 −1 −2 −2


Jy =

∫
□
∂yN⃗

T (x, y)N⃗(x, y)dxdy

=
2

hy

hxhy
4

∫ +1

−1

∫ +1

−1


−1

4
(1− r)

−1
4
(1 + r)

+1
4
(1 + r)

+1
4
(1− r)

( 1
4
(1− r)(1− s) 1

4
(1 + r)(1− s) 1

4
(1 + r)(1 + s) 1

4
(1− r)(1 + s)

)
drds

=
hx
32

∫ +1

−1

∫ +1

−1


−(1− r)2(1− s) −(1− r2)(1− s) −(1− r2)(1 + s) −(1− r)2(1 + s)
−(1− r2)(1− s) −(1 + r)2(1− s) −(1 + r)2(1 + s) −(1− r2)(1 + s)
(1− r2)(1− s) (1 + r)2(1− s) (1 + r)2(1 + s) (1− r2)(1 + s)
(1− r)2(1− s) (1− r2)(1− s) (1− r2)(1 + s) (1− r)2(1 + s)

 drds

=
hx
32


−16/3 −8/3 −8/3 −16/3
−8/3 −16/3 −16/3 −8/3
8/3 16/3 16/3 8/3
16/3 8/3 8/3 16/3



=
hx
12


−2 −1 −1 −2
−1 −2 −2 −1
1 2 2 1
2 1 1 2

 (E.42)
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Computing matrix C1

C1 =

∫
∂Ω1

N⃗T (x, y)N⃗(x, y)dΓ

The edge ∂Ω1 is bounded by the coordinates of nodes x1, y1 and x2, y2. This segment can be
parameterised by t ∈ [0, 1]:

r⃗(t) = (1− t)
(
x1
y1

)
+ t

(
x2
y2

)
=

(
(x2 − x1)t+ x1
(y2 − y1)t+ y1

)
Let us assume that C is a smooth curve and that it is given by the parametric equations x = h(t),

y = g(t) and a ≤ t ≤ b. The line integral of a function f(x, y) over C is computed as follows.

∫
C

f(x, y)ds =

∫ b

a

f(h(t), g(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

In our case dx/dt = x2 − x1 and dy/dt = y2 − y1 so√(
dx

dt

)2

+

(
dy

dt

)2

=
√

(x2 − x1)2 + (y2 − y1)2 = hx

Then

C1 =

∫
∂Ω1

N⃗T (x, y)N⃗(x, y)dΓ

=


∫
∂Ω1

N1(x, y)N1(x, y)dΓ
∫
∂Ω1

N1(x, y)N2(x, y)dΓ
∫
∂Ω1

N1(x, y)N3(x, y)dΓ
∫
∂Ω1

N1(x, y)N4(x, y)dΓ∫
∂Ω1

N2(x, y)N1(x, y)dΓ
∫
∂Ω1

N2(x, y)N2(x, y)dΓ
∫
∂Ω1

N2(x, y)N3(x, y)dΓ
∫
∂Ω1

N2(x, y)N4(x, y)dΓ∫
∂Ω1

N3(x, y)N1(x, y)dΓ
∫
∂Ω1

N3(x, y)N2(x, y)dΓ
∫
∂Ω1

N3(x, y)N3(x, y)dΓ
∫
∂Ω1

N3(x, y)N4(x, y)dΓ∫
∂Ω1

N4(x, y)N1(x, y)dΓ
∫
∂Ω1

N4(x, y)N2(x, y)dΓ
∫
∂Ω1

N4(x, y)N3(x, y)dΓ
∫
∂Ω1

N4(x, y)N4(x, y)dΓ



= hx



∫ 1

0
N1(x(t), y(t))N1(x(t), y(t))dt

∫ 1

0
N1(x(t), y(t))N2(x(t), y(t))dt

∫ 1

0
N1(x(t), y(t))N3(x(t), y(t))dt

∫ 1

0
N1(x(t), y(t))N4(x(t), y(t))dt∫ 1

0
N2(x(t), y(t))N1(x(t), y(t))dt

∫ 1

0
N2(x(t), y(t))N2(x(t), y(t))dt

∫ 1

0
N2(x(t), y(t))N3(x(t), y(t))dt

∫ 1

0
N2(x(t), y(t))N4(x(t), y(t))dt∫ 1

0
N3(x(t), y(t))N1(x(t), y(t))dt

∫ 1

0
N3(x(t), y(t))N2(x(t), y(t))dt

∫ 1

0
N3(x(t), y(t))N3(x(t), y(t))dt

∫ 1

0
N3(x(t), y(t))N4(x(t), y(t))dt∫ 1

0
N4(x(t), y(t))N1(x(t), y(t))dt

∫ 1

0
N4(x(t), y(t))N2(x(t), y(t))dt

∫ 1

0
N4(x(t), y(t))N3(x(t), y(t))dt

∫ 1

0
N4(x(t), y(t))N4(x(t), y(t))dt


(E.43)
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On this edge y1 = y2 so y(t) = y1.

N1(x(t), y(t)) =
x3 − x(t)
x3 − x1

y3 − y(t)
y3 − y1

=
x3 − (x2 − x1)t− x1

x3 − x1
y3 − y1
y3 − y1

=
x3 − x1 − (x3 − x1)t

x3 − x1
y3 − y1
y3 − y1

= (1− t) (E.44)

N2(x(t), y(t)) =
x(t)− x1
x2 − x1

y3 − y(t)
y3 − y2

=
(x2 − x1)t+ x1 − x1

x2 − x1
y3 − y1
y3 − y2

= t (E.45)

N3(x(t), y(t)) = 0 by construction on edge 1 (E.46)

N4(x(t), y(t)) = 0 by construction on edge 1 (E.47)

so that

C1 = hx


∫ 1

0
(1− t)2dt

∫ 1

0
(1− t)tdt 0 0∫ 1

0
t(1− t)dt

∫ 1

0
t2dt 0 0

0 0 0 0
0 0 0 0



= hx


1/3 1/6 0 0
1/6 1/3 0 0
0 0 0 0
0 0 0 0



=
hx
6


2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 (E.48)

Computing matrix C3

edge3

4-------3

| |

| |

| |

1-------2

C3 =

∫
∂Ω3

N⃗T (x, y)N⃗(x, y)dΓ =

∫
3→4

N⃗T (x, y)N⃗(x, y)dΓ

The edge ∂Ω3 is bounded by the coordinates of nodes x3, y3 and x4, y4. This segment can be
parameterised by t ∈ [0, 1]:

r⃗(t) = (1− t)
(
x3
y3

)
+ t

(
x4
y4

)
=

(
(x4 − x3)t+ x3
(y4 − y3)t+ y3

)
=

(
(x4 − x3)t+ x3

y3

)
since y3 = y4. Here again the jacobian of the transformation is hx.
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N1(x(t), y(t)) = 0 by construction on edge 3

N2(x(t), y(t)) = 0 by construction on edge 3

N3(x(t), y(t)) =
x(t)− x1
x3 − x1

y(t)− y1
y3 − y1

=
(x4 − x3)t+ x3 − x1

x3 − x1
y3 − y1
y3 − y1

=
(x4 − x3)t+ x3 − x1

x3 − x1
= 1− t

N4(x(t), y(t)) =
x(t)− x3
x4 − x3

y(t)− y1
y4 − y1

=
(x4 − x3)t+ x3 − x3

x4 − x3
y3 − y1
y4 − y1

= t (E.49)

Then

C3 = hx


0 0 0 0
0 0 0 0

0 0
∫ 1

0
(1− t)2dt

∫ 1

0
(1− t)tdt

0 0
∫ 1

0
t(1− t)dt

∫ 1

0
t2dt



= hx


0 0 0 0
0 0 0 0
0 0 1/3 1/6
0 0 1/6 1/3



=
hx
6


0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

 (E.50)

The K and G matrices for Q1 × P0 in 2D

Let us consider a regular grid composed of nelx × nely rectangular linear elements on a domain
of dimensions Lx × Ly. We are here interested in the elemental matrices Ke and Ge. Borrowing
(for example) from stone 1 we can write a simple code which compute these matrices by means of
numerical integration. This code is available there: python codes/Gel/compute K G S q1p0.py.

We start with square elements and a constant viscosity η = 1. We find that Ke is independent of
the resolution (i.e. independent of nelx = nely):

Ke =



1 0.25 −0.5 −0.25 −0.5 −0.25 0 0.25
0.25 1 0.25 0 −0.25 −0.5 −0.25 −0.5
−0.5 0.25 1 −0.25 0 −0.25 −0.5 0.25
−0.25 0 −0.25 1 0.25 −0.5 0.25 −0.5
−0.5 −0.25 0 0.25 1 0.25 −0.5 −0.25
−0.25 −0.5 −0.25 −0.5 0.25 1 0.25 0

0 −0.25 −0.5 0.25 −0.5 0.25 1 −0.25
0.25 −0.5 0.25 −0.5 −0.25 0 −0.25 1
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and its lumped version K̃i,j =
∑
j

|Ki,j| is:

K̃e =


3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


Let us now turn to non-square elements. Let us print Ke and Ge for 2 resolutions, 4x8 and 8x4:

Ke =



1 0.25 0 −0.25 −0.5 −0.25 −0.5 0.25
0.25 1.5 0.25 0.5 −0.25 −0.75 −0.25 −1.25
0 0.25 1 −0.25 −0.5 −0.25 −0.5 0.25

−0.25 0.5 −0.25 1.5 0.25 −1.25 0.25 −0.75
−0.5 −0.25 −0.5 0.25 1 0.25 0 −0.25
−0.25 −0.75 −0.25 −1.25 0.25 1.5 0.25 0.5
−0.5 −0.25 −0.5 0.25 0 0.25 1 −0.25
0.25 −1.25 0.25 −0.75 −0.25 0.5 −0.25 1.5


Ge =



0.0625
0.125
−0.0625
0.125
−0.0625
−0.125
0.0625
−0.125



Ke =



1.5 0.25 −1.25 −0.25 −0.75 −0.25 0.5 0.25
0.25 1 0.25 −0.5 −0.25 −0.5 −0.25 0
−1.25 0.25 1.5 −0.25 0.5 −0.25 −0.75 0.25
−0.25 −0.5 −0.25 1 0.25 0 0.25 −0.5
−0.75 −0.25 0.5 0.25 1.5 0.25 −1.25 −0.25
−0.25 −0.5 −0.25 0 0.25 1 0.25 −0.5
0.5 −0.25 −0.75 0.25 −1.25 0.25 1.5 −0.25
0.25 0 0.25 −0.5 −0.25 −0.5 −0.25 1


Ge =



0.125
0.0625
−0.125
0.0625
−0.125
−0.0625
0.125
−0.0625


We find that both matrices Ke and Ge are different from each other and different from the ones

obtained with square elements. We have no other choice than computing these by hand in order to
express these as a function of hx and hy. Let us start with Ke:

Ke =

∫∫
Ωe

BT ·Cη ·B dV =

∫ x3

x1

∫ y3

y1

BT (x, y) ·Cη ·B(x, y) dxdy with Cη = η

 2 0 0
0 2 0
0 0 1


In a rectangle bounded by [x1, x3]× [y1, y3] the basis functions are given by:

N ν
1 (x, y) =

(
x3 − x
hx

)(
y3 − y
hy

)
N ν

2 (x, y) =

(
x− x1
hx

)(
y3 − y
hy

)
N ν

3 (x, y) =

(
x− x1
hx

)(
y − y1
hy

)
N ν

4 (x, y) =

(
x3 − x
hx

)(
y − y1
hy

)
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so that

∂N ν
1

∂x
= − 1

hx

y3 − y
hy

= − 1

hx

1

2
(1− s)

∂N ν
2

∂x
=

1

hx

y3 − y
hy

= +
1

hx

1

2
(1− s)

∂N ν
3

∂x
=

1

hx

y − y1
hy

= +
1

hx

1

2
(1 + s)

∂N ν
4

∂x
= − 1

hx

y − y1
hy

= − 1

hx

1

2
(1 + s)

∂N ν
1

∂y
= − 1

hy

x3 − x
hx

= − 1

hy

1

2
(1− r)

∂N ν
2

∂y
= − 1

hy

x− x1
hx

= − 1

hy

1

2
(1 + r)

∂N ν
3

∂y
=

1

hy

x− x1
hx

= +
1

hy

1

2
(1 + r)

∂N ν
4

∂y
=

1

hy

x3 − x
hx

= +
1

hy

1

2
(1− r)

The matrix B is given by

B(x, y) =


∂Nν

1

∂x
0

∂Nν
2

∂x
0

∂Nν
3

∂x
0

∂Nν
4

∂x
0

0
∂Nν

1

∂y
0

∂Nν
2

∂y
0

∂Nν
3

∂y
0

∂Nν
4

∂y

∂Nν
1

∂y

∂Nν
1

∂x

∂Nν
2

∂y

∂Nν
2

∂x

∂Nν
3

∂y

∂Nν
3

∂x

∂Nν
4

∂y

∂Nν
4

∂x


so that

Cη ·B = η


2
∂Nν

1

∂x
0 2

∂Nν
2

∂x
0 2

∂Nν
3

∂x
0 2

∂Nν
4

∂x
0

0 2
∂Nν

1

∂y
0 2

∂Nν
2

∂y
0 2

∂Nν
3

∂y
0 2

∂Nν
4

∂y

∂Nν
1

∂y

∂Nν
1

∂x

∂Nν
2

∂y

∂Nν
2

∂x

∂Nν
3

∂y

∂Nν
3

∂x

∂Nν
4

∂y

∂Nν
4

∂x
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Let us start with the diagonal terms

K11 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
11
dxdy

=

∫ x3

x1

∫ y3

y1

[
2

(
∂N ν

1

∂x

)2

+

(
∂N ν

1

∂y

)2
]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
2

(
− 1

hx

1

2
(1− s)

)2

+

(
− 1

hy

1

2
(1− r)

)2
]
drds

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
1

2h2x
(1− s)2 + 1

4h2y
(1− r)2

]
drds

=
hxhy
4

[
1

h2x

8

3
+

1

2h2y

8

3

]
=

1

3

(
2hy
hx

+
hx
hy

)
K22 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
22
dxdy

=

∫ x3

x1

∫ y3

y1

[(
∂N ν

1

∂x

)2

+ 2

(
∂N ν

1

∂y

)2
]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[(
− 1

hx

1

2
(1− s)

)2

+ 2

(
− 1

hy

1

2
(1− r)

)2
]
drds

=
hxhy
4

[
1

2h2x

8

3
+

1

h2y

8

3

]
=

1

3

(
hy
hx

+
2hx
hy

)
K33 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
33
dxdy

=

∫ x3

x1

∫ y3

y1

[
2

(
∂N ν

2

∂x

)2

+

(
∂N ν

2

∂y

)2
]
dxdy

= K11

K44 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
44
dxdy

=

∫ x3

x1

∫ y3

y1

[(
∂N ν

2

∂x

)2

+ 2

(
∂N ν

2

∂y

)2
]
dxdy

= K22

K55 = K11

K66 = K22

K77 = K11

K88 = K22
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Let us now focus on the first row of K:

K12 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
11
dxdy

=

∫ x3

x1

∫ y3

y1

[
∂N ν

1

∂x

∂N ν
1

∂y

]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
− 1

hx

1

2
(1− s) · − 1

hy

1

2
(1− r)

]
drds

=
1

16

∫ +1

−1

∫ +1

−1

(1− s)(1− r)drds

=
1

4

K13 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
13
dxdy

=

∫ x3

x1

∫ y3

y1

[
2
∂N ν

1

∂x

∂N ν
2

∂x
+
∂N ν

1

∂y

∂N ν
2

∂y

]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
−2 1

hx

1

2
(1− s) · 1

hx

1

2
(1− s)− 1

hy

1

2
(1− r) · − 1

hy

1

2
(1 + r)

]
drds

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
− 1

2h2x
(1− s)(1− s) + 1

4h2y
(1− r)(1 + r)

]
drds

=
hxhy
4

[
− 1

2h2x
2
8

3
+

1

4h2y

4

3
2

]
=

1

3

(
−2hy
hx

+
hx
2hy

)
K14 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
11
dxdy

=

∫ x3

x1

∫ y3

y1

[
∂N ν

2

∂x

∂N ν
1

∂y

]
dxdy

= −1

4

K15 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
15
dxdy

=

∫ x3

x1

∫ y3

y1

[
2
∂N ν

1

∂x

∂N ν
3

∂x
+
∂N ν

1

∂y

∂N ν
3

∂y

]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
−2 1

hx

1

2
(1− s) · 1

hx

1

2
(1 + s)− 1

hy

1

2
(1− r) · 1

hy

1

2
(1 + r)

]
drds

=
hxhy
4

[
− 1

2h2x

4

3
2− 1

4h2y

4

3
2

]
=

1

3

(
−hy
hx
− hx

2hy

)
K16 = −1

4

K17 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
17
dxdy

=

∫ x3

x1

∫ y3

y1

[
2
∂N ν

1

∂x

∂N ν
4

∂x
+
∂N ν

1

∂y

∂N ν
4

∂y

]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
−2 1

hx

1

2
(1− s) · − 1

hx

1

2
(1 + s)− 1

hy

1

2
(1− r) · 1

hy

1

2
(1− r)

]
drds

=
hxhy
4

[
1

2h2x
2
4

3
− 1

4h2y

8

3
2

]
=

1

3

(
hy
hx
− hx
hy

)
K18 =

1

4
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And now the other rows:

K23 =
1

4
K24 = −K17

K25 = −1

4

K26 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
26
dxdy

=

∫ x3

x1

∫ y3

y1

[
2
∂N ν

1

∂y

∂N ν
3

∂y
+
∂N ν

1

∂x

∂N ν
3

∂x

]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
−2 1

hy

1

2
(1− r) · 1

hy

1

2
(1 + r)− 1

hx

1

2
(1− s) · 1

hx

1

2
(1 + s)

]
drds

=
hxhy
4

[
− 1

2h2y

4

3
2− 1

4h2x
2
4

3

]
=

1

3

(
−hx
hy
− hy

2hx

)
K27 = −1

4

K28 =

∫ x3

x1

∫ y3

y1

(
BT ·Cη ·B

)
17
dxdy

=

∫ x3

x1

∫ y3

y1

[
2
∂N ν

1

∂y

∂N ν
4

∂y
+
∂N ν

1

∂x

∂N ν
4

∂x

]
dxdy

=
hxhy
4

∫ +1

−1

∫ +1

−1

[
−2 1

hy

1

2
(1− r) · 1

hy

1

2
(1− r)− 1

hx

1

2
(1− s) · − 1

hx

1

2
(1 + s)

]
drds

=
hxhy
4

[
− 1

2h2y

8

3
2 +

1

4h2x
2
4

3

]
=

1

3

(
−2hx
hy

+
hy
2hx

)
K34 = −1

4
K35 = K17

K36 = −1

4
K37 = K15

K38 = +
1

4

K45 =
1

4
K46 = K28

K47 =
1

4
K48 = K26

K56 =
1

4
K57 = K13

K58 = −1

4

K67 =
1

4
K68 = −K17

K78 = −1

4
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so that (matrix Ke is symmetric so only half is shown here)2:



1
3

(
2hy

hx
+ hx
hy

)
1
4

1
3

(
− 2hy

hx
+ hx

2hy

)
− 1

4
1
3

(
−hy
hx

− hx
2hy

)
− 1

4
1
3

(
hy

hx
− hx
hy

)
1
4

. 1
3

(
hy

hx
+ 2hx

hy

)
1
4

− 1
3

(
hy

hx
− hx
hy

)
− 1

4
1
3

(
−hx
hy

− hy

2hx

)
− 1

4
1
3

(
− 2hx
hy

+
hy

2hx

)
. . 1

3

(
2hy

hx
+ hx
hy

)
− 1

4
1
3

(
hy

hx
− hx
hy

)
− 1

4
1
3

(
−hy

hx
− hx

2hy

)
1
4

. . . 1
3

(
hy
hx

+ 2hx
hy

)
1
4

1
3

(
− 2hx
hy

+
hy

2hx

)
1
4

1
3

(
−hx
hy

− hy

2hx

)
. . . . 1

3

(
2hy

hx
+ hx
hy

)
1
4

1
3

(
− 2hy

hx
+ hx

2hy

)
− 1

4

. . . . . 1
3

(
hy

hx
+ 2hx

hy

)
1
4

− 1
3

(
hy

hx
− hx
hy

)
. . . . . . 1

3

(
2hy
hx

+ hx
hy

)
− 1

4

. . . . . . . 1
3

(
hy

hx
+ 2hx

hy

)



For reference I present here under 3 matrices obtained with three coarse resolutions:

� 4× 4 mesh

[[ 1.0000 0.2500 -0.5000 -0.2500 -0.5000 -0.2500 0.0000 0.2500]

[ 0.2500 1.0000 0.2500 -0.0000 -0.2500 -0.5000 -0.2500 -0.5000]

[-0.5000 0.2500 1.0000 -0.2500 0.0000 -0.2500 -0.5000 0.2500]

[-0.2500 -0.0000 -0.2500 1.0000 0.2500 -0.5000 0.2500 -0.5000]

[-0.5000 -0.2500 0.0000 0.2500 1.0000 0.2500 -0.5000 -0.2500]

[-0.2500 -0.5000 -0.2500 -0.5000 0.2500 1.0000 0.2500 -0.0000]

[ 0.0000 -0.2500 -0.5000 0.2500 -0.5000 0.2500 1.0000 -0.2500]

[ 0.2500 -0.5000 0.2500 -0.5000 -0.2500 -0.0000 -0.2500 1.0000]]

� 7× 5 mesh

[[ 1.1714 0.2500 -0.8143 -0.2500 -0.5857 -0.2500 0.2286 0.2500]

[ 0.2500 0.9429 0.2500 -0.2286 -0.2500 -0.4714 -0.2500 -0.2429]

[-0.8143 0.2500 1.1714 -0.2500 0.2286 -0.2500 -0.5857 0.2500]

[-0.2500 -0.2286 -0.2500 0.9429 0.2500 -0.2429 0.2500 -0.4714]

[-0.5857 -0.2500 0.2286 0.2500 1.1714 0.2500 -0.8143 -0.2500]

[-0.2500 -0.4714 -0.2500 -0.2429 0.2500 0.9429 0.2500 -0.2286]

[ 0.2286 -0.2500 -0.5857 0.2500 -0.8143 0.2500 1.1714 -0.2500]

[ 0.2500 -0.2429 0.2500 -0.4714 -0.2500 -0.2286 -0.2500 0.9429]]

� 5× 7 mesh

[[ 0.9429 0.2500 -0.2429 -0.2500 -0.4714 -0.2500 -0.2286 0.2500]

[ 0.2500 1.1714 0.2500 0.2286 -0.2500 -0.5857 -0.2500 -0.8143]

[-0.2429 0.2500 0.9429 -0.2500 -0.2286 -0.2500 -0.4714 0.2500]

[-0.2500 0.2286 -0.2500 1.1714 0.2500 -0.8143 0.2500 -0.5857]

[-0.4714 -0.2500 -0.2286 0.2500 0.9429 0.2500 -0.2429 -0.2500]

[-0.2500 -0.5857 -0.2500 -0.8143 0.2500 1.1714 0.2500 0.2286]

[-0.2286 -0.2500 -0.4714 0.2500 -0.2429 0.2500 0.9429 -0.2500]

[ 0.2500 -0.8143 0.2500 -0.5857 -0.2500 0.2286 -0.2500 1.1714]]

2Values above are fully checked, values in matrix below should be re-checked to be sure
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Turning now to the lumped version of Ke, and because the sum of ±1/4 terms always add up to 1,
we find:

K̃11 = |K11|+ |K13|+ |K15|+ |K17|+ 1

K̃22 = |K22|+ |K24|+ |K26|+ |K28|+ 1

K̃33 = |K31|+ |K33|+ |K35|+ |K37|+ 1

K̃44 = |K42|+ |K44|+ |K46|+ |K48|+ 1

K̃55 = |K51|+ |K53|+ |K55|+ |K57|+ 1

K̃66 = |K62|+ |K64|+ |K66|+ |K68|+ 1

K̃77 = |K71|+ |K73|+ |K75|+ |K77|+ 1

K̃88 = |K82|+ |K84|+ |K86|+ |K88|+ 1

Turning now to the Ge matrix, we find:

Ge = −
∫
Ωe

BT ·N p dV = −
∫
Ωe



∂N1

∂x
∂N1

∂y
∂N2

∂x
∂N2

∂y
∂N3

∂x
∂N3

∂y
∂N4

∂x
∂N4

∂y


dV = −hxhy

4

∫ +1

−1

∫ +1

−1



− 1
hx

1
2
(1− s)

− 1
hy

1
2
(1− r)

+ 1
hx

1
2
(1− s)

− 1
hy

1
2
(1 + r)

+ 1
hx

1
2
(1 + s)

+ 1
hy

1
2
(1 + r)

− 1
hx

1
2
(1 + s)

+ 1
hy

1
2
(1− r)


drds =



hy/2
hx/2
−hy/2
+hx/2
−hy/2
−hx/2
+hy/2
−hx/2


which is Eq. (3.65) in Elman, Silvester, and Wathen [371]. Since the pressure is constant inside each
element, then Gel is (ndofV ∗mV ,mP ) = (8× 1).

E.0.3 Quadrilaterals: rectangular quadratic elements

(tikz q22d.tex)

r

s

0 4 1

7 8 5

3 6 2

N⃗ (r, s) =



N1(r, s)
N2(r, s)
N3(r, s)
N4(r, s)
N5(r, s)
N6(r, s)
N7(r, s)
N8(r, s)
N9(r, s)


=



N1(r)N1(s)
N2(r)N1(s)
N3(r)N1(s)
N1(r)N2(s)
N2(r)N2(s)
N3(r)N2(s)
N1(r)N3(s)
N2(r)N3(s)
N3(r)N3(s)


=



1
2
r(r − 1)1

2
s(s− 1)

(1− r2)1
2
s(s− 1)

1
2
r(r + 1)1

2
s(s− 1)

1
2
r(r − 1)(1− s2)

(1− r2)(1− s2)1
2
r(r + 1)(1− s2)

1
2
r(r − 1)1

2
s(s+ 1)

(1− r2)1
2
s(s+ 1)

1
2
r(r + 1)1

2
s(s+ 1)
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The mass matrix on the reference element is then

M e =

∫∫
□


N1N1 N1N2 N1N3 N1N4 N1N5 N1N6 N1N7 N1N8 N1N9

N2N1 N2N2 N2N3 N2N4 N2N5 N2N6 N2N7 N2N8 N2N9

. . .
N9N1 N9N2 N9N3 N9N4 N9N5 N9N6 N9N7 N9N8 N9N9

 drds

with for example3 ∫∫
□
N1(r, s)N1(r, s) drds =

16

225
(E.51)∫∫

□
N1(r, s)N2(r, s) drds =

8

225
(E.52)∫∫

□
N1(r, s)N3(r, s) drds = − 4

225
(E.53)∫∫

□
N1(r, s)N8(r, s) drds =

−2
225

(E.54)∫∫
□
N1(r, s)N9(r, s) drds =

1

225
(E.55)∫∫

□
N5(r, s)N5(r, s) drds =

256

225
(E.56)

(E.57)

In stone 107, we find for a 3x2 mesh on domain 6x4:

M =

[[ 16. 8. -4. 8. 4. -2. -4. -2. 1.]

[ 8. 64. 8. 4. 32. 4. -2. -16. -2.]

[ -4. 8. 16. -2. 4. 8. 1. -2. -4.]

[ 8. 4. -2. 64. 32. -16. 8. 4. -2.]

[ 4. 32. 4. 32. 256. 32. 4. 32. 4.]

[ -2. 4. 8. -16. 32. 64. -2. 4. 8.]

[ -4. -2. 1. 8. 4. -2. 16. 8. -4.]

[ -2. -16. -2. 4. 32. 4. 8. 64. 8.]

[ 1. -2. -4. -2. 4. 8. -4. 8. 16.]] / 225

3Thank you WolframAlpha again!
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E.0.4 Hexahedra: cuboid elements

We here assume that each element is a cuboid4. We set the domain size to Lx = 4, Lx = 3 and
Lz = 2, with nelx = 4, nely = 3 and nelz = 2. Here again the viscosity is set to η = 1 so that we
find that

Kel =
1

8 · 9



32 6 6 −8 −6 −6 −10 −6 −3 4 6 3 4 3 6 −10 −3 −6 −8 −3 −3 −4 3 3
6 32 6 6 4 3 −6 −10 −3 −6 −8 −6 3 4 6 3 −4 3 −3 −8 −3 −3 −10 −6
6 6 32 6 3 4 3 3 −4 3 6 4 −6 −6 −8 −6 −3 −10 −3 −3 −8 −3 −6 −10
−8 6 6 32 −6 −6 4 −6 −3 −10 6 3 −10 3 6 4 −3 −6 −4 −3 −3 −8 3 3
−6 4 3 −6 32 6 6 −8 −6 6 −10 −3 −3 −4 3 −3 4 6 3 −10 −6 3 −8 −3
−6 3 4 −6 6 32 −3 6 4 −3 3 −4 6 −3 −10 6 −6 −8 3 −6 −10 3 −3 −8
10 −6 3 4 6 −3 32 6 −6 −8 −6 6 −8 −3 3 −4 3 −3 4 3 −6 −10 −3 6
−6 −10 3 −6 −8 6 6 32 −6 6 4 −3 −3 −8 3 −3 −10 6 3 4 −6 3 −4 −3
−3 −3 −4 −3 −6 4 −6 −6 32 −6 −3 4 3 3 −8 3 6 −10 6 6 −8 6 3 −10
4 −6 3 −10 6 −3 −8 6 −6 32 −6 6 −4 −3 3 −8 3 −3 −10 3 −6 4 −3 6
6 −8 6 6 −10 3 −6 4 −3 −6 32 −6 3 −10 6 3 −8 3 −3 −4 −3 −3 4 −6
3 −6 4 3 −3 −4 6 −3 4 6 −6 32 −3 6 −10 −3 3 −8 −6 3 −10 −6 6 −8
4 3 −6 −10 −3 6 −8 −3 3 −4 3 −3 32 6 −6 −8 −6 6 −10 −6 3 4 6 −3
3 4 −6 3 −4 −3 −3 −8 3 −3 −10 6 6 32 −6 6 4 −3 −6 −10 3 −6 −8 6
6 6 −8 6 3 −10 3 3 −8 3 6 −10 −6 −6 32 −6 −3 4 −3 −3 −4 −3 −6 4
10 3 −6 4 −3 6 −4 −3 3 −8 3 −3 −8 6 −6 32 −6 6 4 −6 3 −10 6 −3
−3 −4 −3 −3 4 −6 3 −10 6 3 −8 3 −6 4 −3 −6 32 −6 6 −8 6 6 −10 3
−6 3 −10 −6 6 −8 −3 6 −10 −3 3 −8 6 −3 4 6 −6 32 3 −6 4 3 −3 −4
−8 −3 −3 −4 3 3 4 3 6 −10 −3 −6 −10 −6 −3 4 6 3 32 6 6 −8 −6 −6
−3 −8 −3 −3 −10 −6 3 4 6 3 −4 3 −6 −10 −3 −6 −8 −6 6 32 6 6 4 3
−3 −3 −8 −3 −6 −10 −6 −6 −8 −6 −3 −10 3 3 −4 3 6 4 6 6 32 6 3 4
−4 −3 −3 −8 3 3 −10 3 6 4 −3 −6 4 −6 −3 −10 6 3 −8 6 6 32 −6 −6
3 −10 −6 3 −8 −3 −3 −4 3 −3 4 6 6 −8 −6 6 −10 −3 −6 4 3 −6 32 6
3 −6 −10 37− 3 −8 6 −3 −10 6 −6 −8 −3 6 4 −3 3 −4 −6 3 4 −6 6 32


and

Gel =
1

2 · 9



1
1
1
−1
1
1
−1
−1
1
1
−1
1
1
1
−1
−1
1
−1
−1
−1
−1
1
−1
−1



4https://en.wikipedia.org/wiki/Cuboid
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E.0.5 Triangles: linear elements

We start from the linear basis functions in the reference triangle given as a function of r, s:

N1(r, s) = 1− r − s (E.58)

N2(r, s) = r (E.59)

N3(r, s) = s (E.60)

and their derivatives:

∂rN1(r, s) = −1
∂rN2(r, s) = 1

∂rN3(r, s) = 0

∂sN1(r, s) = −1
∂sN2(r, s) = 0

∂sN3(r, s) = 1

We wish to compute the integral of a function f(x, y) over the triangle by means of a change of
variables (x, y)→ (r, s):∫∫

f(x, y)dxdy =

∫∫
f(x(r, s), y(r, s))

∣∣∣∣∂(x, y)∂(r, s)

∣∣∣∣ drds
=

∫∫
f(x(r, s), y(r, s))

∣∣∣∣∣∣
∂x/∂r ∂x/∂s

∂y/∂r ∂y/∂s

∣∣∣∣∣∣ drds (E.61)

From

x(r, s) =
3∑
i=1

Ni(r, s)xi and y(r, s) =
3∑
i=1

Ni(r, s)yi

we can write

∂x

∂r
(r, s) =

3∑
i=1

∂Ni
∂r

xi =
∂N1

∂r
x1 +

∂N2

∂r
x2 +

∂N3

∂r
x3 = −x1 + x2

∂x

∂s
(r, s) =

3∑
i=1

∂Ni
∂s

xi =
∂N1

∂s
x1 +

∂N2

∂s
x2 +

∂N3

∂s
x3 = −x1 + x3

∂y

∂r
(r, s) =

3∑
i=1

∂Ni
∂r

yi =
∂N1

∂r
x1 +

∂N2

∂r
x2 +

∂N3

∂r
y3 = −y1 + y2

∂y

∂s
(r, s) =

3∑
i=1

∂Ni
∂s

yi =
∂N1

∂s
y1 +

∂N2

∂s
y2 +

∂N3

∂s
y3 = −y1 + y3 (E.62)

Then∣∣∣∣∣∣
∂x/∂r ∂x/∂s

∂y/∂r ∂y/∂s

∣∣∣∣∣∣ =
∣∣∣∣ −x1 + x2 −x1 + x3
−y1 + y2 −y1 + y3

∣∣∣∣ = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) = 2S

where S is the area of the triangle and which is independent of (r, s). Looking at the reference
element, we find that when r goes from 0 to 1, s can only take values between 0 and 1− r.
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Then the bounds of the integrals are simply:∫∫
△
f(x, y)dxdy = 2S

∫ 1

0

(∫ 1−r

0

f(x(r, s), y(r, s))ds

)
dr (E.63)

and the mass matrix is given by

Me = 2S

∫ 1

0

∫ 1−r

0

 (1− r − s)2 (1− r − s)r (1− r − s)s
(1− r − s)r r2 rs
(1− r − s)s rs s2

 ds

 dr (E.64)

= 2S

∫ 1

0


∫ 1−r
0

(1− r − s)2ds
∫ 1−r
0

(1− r − s)rds
∫ 1−r
0

(1− r − s)sds∫ 1−r
0

(1− r − s)rds
∫ 1−r
0

r2ds
∫ 1−r
0

rsds∫ 1−r
0

(1− r − s)sds
∫ 1−r
0

rsds
∫ 1−r
0

s2ds

 dr (E.65)

= 2S

 1/12 1/24 1/24
1/24 1/12 1/24
1/24 1/24 1/12

 (E.66)

=
S

12

 2 1 1
1 2 1
1 1 2

 (E.67)

This is Eq.(4.10e) of Li [779]. Also note that in the context of the heat transport equation this matrix
is multiplied by ρCp.

We will then compute the Jx and Jy matrices. We start from the basis functions expressed in
the (x, y) coordinate system:

N1(x, y) =
1

2S
(x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y)

N2(x, y) =
1

2S
(x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y)

N3(x, y) =
1

2S
(x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y)
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where S is the area of the element. We then have

∂xN1(x, y) =
1

2S
(y2 − y3)

∂xN2(x, y) =
1

2S
(y3 − y1)

∂xN3(x, y) =
1

2S
(y1 − y2)

∂yN1(x, y) =
1

2S
(x3 − x2)

∂yN2(x, y) =
1

2S
(x1 − x3)

∂yN3(x, y) =
1

2S
(x2 − x1)

We start with

Jx =

∫∫
△
∂xN⃗ T N⃗dV

=

∫∫
△

 1
2S
(y2 − y3)

1
2S
(y3 − y1)

1
2S
(y1 − y2)

( N1(x, y) N2(x, y) N3(x, y)
)
dxdy

=
1

2S

 y23
∫∫

△N1dxdy y23
∫∫

△N2dxdy y23
∫∫

△N3dxdy

y31
∫∫

△N1dxdy y31
∫∫

△N2dxdy y31
∫∫

△N3dxdy

y12
∫∫

△N1dxdy y12
∫∫

△N2dxdy y12
∫∫

△N3dxdy

 (E.68)

where we have introduced the notation xij = xi − xj. We then need to compute∫∫
△
N1(x, y)dxdy = 2S

∫ 1

0

(∫ 1−r

0

N1(x(r, s), y(r, s))ds

)
dr

= 2S

∫ 1

0

(∫ 1−r

0

(1− r − s)ds
)
dr

= 2S
1

6
(E.69)∫∫

△
N2(x, y)dxdy = 2S

∫ 1

0

(∫ 1−r

0

N2(x(r, s), y(r, s))ds

)
dr

= 2S

∫ 1

0

(∫ 1−r

0

rds

)
dr

= 2S
1

6
(E.70)∫∫

△
N3(x, y)dxdy = 2S

∫ 1

0

(∫ 1−r

0

N3(x(r, s), y(r, s))ds

)
dr

= 2S

∫ 1

0

(∫ 1−r

0

sds

)
dr

= 2S
1

6
(E.71)

verify!!

Finally:

Jx =
1

6

 y23 y23 y23
y31 y31 y31
y12 y12 y12
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Likewise

Jy =

∫∫
△
∂yN⃗ T N⃗dV

=

∫∫
△

 1
2S
(x3 − x2)

1
2S
(x1 − x3)

1
2S
(x2 − x1)

( N1(x, y) N2(x, y) N3(x, y)
)
dxdy

=
1

6

 x32 x32 x32
x13 x13 x13
x21 x21 x21

 (E.72)

We now turn to the other two matrices, the advection Ka and diffusion Kd matrices. The gradient
matrix B is given by

B =

(
∂xN1 ∂xN2 ∂xN3

∂yN1 ∂yN2 ∂yN3

)
=

1

2S

(
y23 y31 y12
x32 x13 x21

)
then

Kd =

∫∫
△
BTkB dV =

∫∫
△

k

4S2

 y23 x32
y31 x13
y12 x21

 · ( y23 y31 y12
x32 x13 x21

)
dV

If k is constant within the element, then

Kd =
k

4S

 y23 x32
y31 x13
y12 x21

 · ( y23 y31 y12
x32 x13 x21

)
Turning now to the advection matrix

Ka =

∫∫
△
N⃗ T ν⃗ ·B dV

=

∫∫
△
N⃗ T (x, y)ν⃗(x, y) ·B(x, y) dxdy

= 2S

∫∫
△
N⃗ T (x(r, s), y(r, s))ν⃗(x(r, s), y(r, s)) ·B(x(r, s), y(r, s)) drds

= 2S

∫∫
△

 1− r − s
r
s

 ν⃗(x(r, s), y(r, s)) · 1

2S

(
y23 y31 y12
x32 x13 x21

)
drds

=

∫∫
△

 N1(r, s)
N2(r, s)
N3(r, s)

 ν⃗(x(r, s), y(r, s)) ·
(
y23 y31 y12
x32 x13 x21

)
drds

If the velocity is constant within the element (rather rare case) then this can be integrated exactly.
If not, a quadrature rule must be used.

Let us assume that indeed velocity is constant inside the element. Then ν⃗(x(r, s), y(r, s)) =
(u0, v0) and then

Ka =

∫∫
△

 N1(r, s)
N2(r, s)
N3(r, s)

 (u0, v0) ·
(
y23 y31 y12
x32 x13 x21

)
drds

=

∫∫
△

 N1(r, s)
N2(r, s)
N3(r, s)

( u0y23 + v0x32 u0y31 + v0x13 u0y12 + v0x21
)
drds

(E.73)
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Using Eqs. (E.69),(E.70),(E.71) we arrive at

Ka =
S

3

 1
1
1

( u0y23 + v0x32 u0y31 + v0x13 u0y12 + v0x21
)

(E.74)
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C1 =

∫
∂Ω1

N⃗T (x, y)N⃗(x, y)dΓ

The edge ∂Ω1 is bounded by the coordinates of nodes x1, y1 and x2, y2. This segment can be param-
eterised by t ∈ [0, 1]:

r⃗(t) = (1− t)
(
x1
y1

)
+ t

(
x2
y2

)
=

(
(x2 − x1)t+ x1
(y2 − y1)t+ y1

)
Let us assume that C is a smooth curve and that it is given by the parametric equations x = h(t),

y = g(t) and a ≤ t ≤ b. The line integral of a function f(x, y) over C is computed as follows.

∫
C

f(x, y)ds =

∫ b

a

f(h(t), g(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

In our case dx/dt = x2 − x1 and dy/dt = y2 − y1 so√(
dx

dt

)2

+

(
dy

dt

)2

=
√

(x2 − x1)2 + (y2 − y1)2 = L1

Then

C1 =

∫
∂Ω1

N⃗T (x, y)N⃗(x, y)dΓ

=


∫
∂Ω1

N1(x, y)N1(x, y)dΓ
∫
∂Ω1

N1(x, y)N2(x, y)dΓ
∫
∂Ω1

N1(x, y)N3(x, y)dΓ∫
∂Ω1

N2(x, y)N1(x, y)dΓ
∫
∂Ω1

N2(x, y)N2(x, y)dΓ
∫
∂Ω1

N2(x, y)N3(x, y)dΓ∫
∂Ω1

N3(x, y)N1(x, y)dΓ
∫
∂Ω1

N3(x, y)N2(x, y)dΓ
∫
∂Ω1

N3(x, y)N3(x, y)dΓ



= L1


∫ 1

0
N1(x(t), y(t))N1(x(t), y(t))dt

∫ 1

0
N1(x(t), y(t))N2(x(t), y(t))dt

∫ 1

0
N1(x(t), y(t))N3(x(t), y(t))dt∫ 1

0
N2(x(t), y(t))N1(x(t), y(t))dt

∫ 1

0
N2(x(t), y(t))N2(x(t), y(t))dt

∫ 1

0
N2(x(t), y(t))N3(x(t), y(t))dt∫ 1

0
N3(x(t), y(t))N1(x(t), y(t))dt

∫ 1

0
N3(x(t), y(t))N2(x(t), y(t))dt

∫ 1

0
N3(x(t), y(t))N3(x(t), y(t))dt


(E.75)

We are about to compute the individual terms of the matrix one by one but we will need:

S =
1

2
[(x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3)]

=
1

2
[x1y2 − x1y3 − x3y2 + x3y3 − x2y1 + x2y3 + x3y1 − x3y3]

=
1

2
[x1y2 − x1y3 − x3y2 − x2y1 + x2y3 + x3y1]

(E.76)
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and

N1(x(t), y(t)) =
1

2S
[x2y3 − x3y2 + (y2 − y3)x(t) + (x3 − x2)y(t)]

=
1

2S
[x2y3 − x3y2 + y23(x21t+ x1) + x32(y21t+ y1)]

=
1

2S
[x2y3 − x3y2 + y23x1 + x32y1 + (y23x21 + x32y21)t]

=
1

2S
[x2y3 − x3y2 + x1y2 − x1y3 + x3y1 − x2y1︸ ︷︷ ︸

2S

(E.77)

+(x2y2 − x1y2 − x2y3 + x1y3 + x3y2 − x3y1 − x2y2 + x2y1)t]

=
1

2S
[2S − (x1y2 + x2y3 − x1y3 − x3y2 + x3y1 − x2y1︸ ︷︷ ︸

2S

)t]

=
1

2S
[2S − 2St]

= 1− t (E.78)

N2(x(t), y(t)) =
1

2S
[x3y1 − x1y3 + (y3 − y1)(x21t+ x1) + (x1 − x3)(y21t+ y1)]

=
1

2S
[x3y1 − x1y3 + (y3 − y1)x1 + (x1 − x3)y1 + (y31x21 + x13y21)t]

=
1

2S
[x3y1 − x1y3 + x1y3 − x1y1 + x1y1 − x3y1 + (y31x21 + x13y21)t]

=
1

2S
(y31x21 + x13y21)t

= t (E.79)

N3(x(t), y(t)) =
1

2S
(x1y2 − x2y1 + (y1 − y2)x(t) + (x2 − x1)y(t))

=
1

2S
(x1y2 − x2y1 + (y1 − y2)(x21t+ x1) + (x2 − x1)(y21t+ y1))

=
1

2S
(x1y2 − x2y1 + (y1 − y2)x1 + (x2 − x1)y1 + (y12x21 + x21y21)t)

=
1

2S
(x1y2 − x2y1 + x1y1 − x1y2 + x2y1 − x1y1 + (y12x21 − x21y12)t)

= 0 (E.80)

then

∫ 1

0

N1(x(t), y(t))N1(x(t), y(t))dt =

∫ 1

0

(1− t)2dt = 1/3 (E.81)∫ 1

0

N1(x(t), y(t))N2(x(t), y(t))dt =

∫ 1

0

(1− t)tdt = 1/6 (E.82)∫ 1

0

N1(x(t), y(t))N3(x(t), y(t))dt = 0 (E.83)∫ 1

0

N2(x(t), y(t))N2(x(t), y(t))dt =

∫ 1

0

t2dt = 1/3 (E.84)∫ 1

0

N2(x(t), y(t))N3(x(t), y(t))dt = 0 (E.85)∫ 1

0

N3(x(t), y(t))N3(x(t), y(t))dt = 0 (E.86)
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and finally

C1 =

∫
∂Ω1

N⃗T (x, y)N⃗(x, y)dΓ =
L1

6

 2 1 0
1 2 0
0 0 0

 (E.87)

C2 =

∫
∂Ω2

N⃗T (x, y)N⃗(x, y)dΓ =
L2

6

 0 0 0
0 2 1
0 1 2

 (E.88)

C3 =

∫
∂Ω3

N⃗T (x, y)N⃗(x, y)dΓ =
L3

6

 2 0 1
0 0 0
1 0 2

 (E.89)
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Appendix F

Finite element terminology in various
languages

English French Dutch
Finite Element Method Méthode des éléments finis Eindige-elementenmethode
Finite Difference Method Méthode des différences finies Eindige-differentiemethode
Finite Volume Method Méthode des volumes finis
Matrix Matrice
Heat transport eq. Equation de transport de la chaleur Warmtetransport vergelijking
Momentum conservation eq. équation de conservation du moment Wet van behoud van impuls
Mass conservation / continuity eq. Continüıteitsvergelijking
Iterative solver solveur itératif
Elemental matrix
Boundary conditions conditions aux limites randvoorwaarden
(In)compressible (in)compressible
Surface processes processus de surface
an element un élément
Computational geodynamics géodynamique numérique
Assembly assemblage
Strong form
Weak form formulation variationnelle / formulation faible
Basis function
Shape function
Partial differential eq. (PDE) équation aux dérivées partielles (EDP) partiële differentiaalvergelijking
Node noeud knooppunt
Grid, mesh (la) maille / (le) maillage rooster
Stiffness matrix matrice de raideur stijfheidsmatrix
Displacement vector vecteur déplacement verplaatsingsvector
Tessellation pavage Betegeling
Mass matrix matrice de masse
Classical mechanics mécanique Newtonienne (de) klassieke mechanica
Momentum (le) moment (de) impuls
Perimeter (le) perimetre (de) omtrek
Wavelength (la) longueur d’onde de golflengte
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Appendix G

Fun modelling

Because sometimes numerical modelling is fun ...

Pressures produced when penguins pooh - calculations on avian

defaecation [869]

Clothes washing simulations [3]

[486]

[984]

Lithospheric thickness anomaly near the trench and possible driving force of subduction [422]
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Convergent margin tectonics [1215]

[1435]

[1166]

[550]
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[120]

Effect of soccer shoe upper on ball behaviour in curve kicks [624]

[1321]

[1053]

[1129]
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Appendix H

Beautiful/interesting images from
computational geodynamics

[1419] [1192]

[303] [414]

[867] [454]

[54] [703]
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[272]

[183] [990]

[291] [1239]

[1164] [948]
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[484] [67]

[585] [1143]
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Appendix I

Working with Git from the terminal

I.0.1 Contributing to Aspect

1. make sure that you have an account on GitHub (say, https://github.com/myusername) and
carry out a proper setup on your local computer as follows:
$ git config --global user.name "firstname lastname"

$ git config --global user.email your@email

2. On github.com, fork the official Aspect repository to your repository:
go to https://github.com/geodynamics/aspect and click on the ’fork’ button on the upper
right corner of the screen.

3. On your machine, in a terminal, clone your repository with
$ git clone git@github.com:myusername/aspect.git. This is now your main1 branch.

4. Follow the instructions at https://docs.github.com/en/authentication/connecting-to-github-with-ssh/
adding-a-new-ssh-key-to-your-github-account to add a new SSH key to your GitHub ac-
count.

5. create a remote of your (online) repository
$ git remote add origin git@github.com:myusername/aspect.git and in order to avoid
potential confusion later on, we shall rename our github repo as follows:
$ git remote rename origin myusername

6. Also create a remote of the official version with
$ git remote add upstream https://github.com/myusername/aspect

7. Do $git remote -v which shows you the URLs that git has stored for the shortname to be
used when reading and writing to that remote.

$ git remote -v

myusername git@github.com:myusername/aspect.git (fetch)

myusername git@github.com:myusername/aspect.git (push)

upstream https://github.com/geodynamics/aspect.git (fetch)

upstream https://github.com/geodynamics/aspect.git (push)

1previously ’master’, although this term should not be used anymore
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geodynamics repository ”upstream”
https://github.com/geodynamics/aspect

my repository ”myusername”
https://github.com/myusername/aspect

O
N
L
IN

E
L
O
C
A
L
M
A
C
H
IN

E

pull request

Branches:
main
otherbranch
savemyphd
tryout
crazyidea
branchformyplugin

update main branch:

git pull upstream main

push branch to my repo:

git push myusername branchformyplugin

Very concretely, if you wish to contribute: Let us assume that you have found a typo in the
file “physics.cc” and you wish to fix this problem.

1. If this is the very first time you use git, the following instruction is not needed. If not, make
sure that your terminal points at your main branch: $ git checkout main

2. Then, make sure you update your local version: $ git pull upstream main and also update
your own repo online: $ git push username main

3. Create a new branch with a self explanatory name: $ git branch fix_typo Then do $ git branch

to see all your branches. The one that is coloured is the active branch. In order to switch to
this new branch, do $ git checkout fix_typo. Redo $ git branch to verify that the branch
’fix typo’ is highlighted.

4. Edit the file physics.cc, correct the typo, save and exit. Do $ git status and you should see
the filename highlighted next to ’modified’.

5. before we go any further, we need to run the indenting script with astyle. In the build directory
run $ make indent. Note that you need a specific version of astyle, see https://github.com/
geodynamics/aspect/wiki/Indenting-code-and-installing-the-correct-version-of-astyle

6. add a changelog entry in doc/modules/changes. Look at the entries and find the one that
resembles your contribution the most. Use it to write your entry.

7. If this is the only modification you wish to communicate, you then need to add and commit it
as follows:

$ git add physics.cc

If you do $ git status again, the file should have changed colour. Then do
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$ git commit -m "message"

where ’message’ is a very short description of the modification (e.g. ’I fixed a typo’).

8. We now need to bring this modification online

$ git push myusername fix_typo

9. You are nearly done. The last step takes place on github.com: when you log onto your own
github fieldstone page, you should see a large green rectangle ”Compare and pull request”.
Click on this button, follow the instructions.

10. a new page opens, entitled ”Open a pull request” (PR). If necessary, add a detailed description
of the pull request (this makes sense when you contribute a piece of code, or a whole new
section, etc ...). Later you will be able to review the requested changes at the bottom. In the
end, simply click ”Create pull request”.

11. Once you have done so, Aspect developers will then review it. If they have no comment, the
PR will be accepted and your modification will then be incorporated in the main repo. If they
have comments, you will be notified via github and a back-and-forth discussion will ensue until
the PR is accepted.

12. if the reviewers have comments. Edit/change your file(s). Then add these (git add ...), and
commit again (git commit -m "msg") and push as before.
OR: better:
git commit --amend -a so that you don’t have to squash/fixup afterwards

13. After the PR has been accepted, the branch is no longer needed. Switch back to your local
main branch: $ git checkout main . Update your local main and online repo (see step # 2)
and then delete the no-longer-needed branch as follows:

$ git branch -d fix_typo

———————————–
If there is a pb with your PR and u need to rebase. For example if your 2 PRs modify the same

line (say for example reference.bib - in that case better spread your changes to different locations in
the reference.bib)

� carry out modifications as required by reviewers

� git add files, and git commit

� git checkout main

� git branch, make sure you are indeed back on main

� git pull upstream main. depending how much happened in the last hours/days it will dis-
play a bunch of files/updates

� git checkout my_branch

� git rebase main. Follow instructions, resolve conflicts in indicated files. git add problematic_file.
Finish with git rebase --continue.
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� git push -f cedrict my_branch

To configure the editor used by git (do it once):

git config --global core.editor "vim"

git stash git stash pop
git log
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how to squash/fixup:
git rebase -i main − >
A similar window as this will open:

Since we wish to squash (or rather fixup!) we do:

save and exit
do git diff

1099



I.0.2 Contributing a cookbook in Aspect

1. Download/update/install Aspect

2. In the cookbooks folder, create a new folder: $ mkdir my_cool_setup

3. In this folder, place your .prm file, say my cool setup.prm

4. Make sure your .prm file is clean, commented, and contains a header with a concise description
of what the experiment is, and/or in which publication it originates.

5. In the folder, create a new folder: $ mkdir doc

6. In this folder create the file my cool setup.md file which contains the text for the cookbook.
Look at other cookbooks md files for examples of how to include a figure, an equation, cite
publications, etc ...

7. Place in this same folder all figures pertaining to the cookbook entry in the manual.

8. go to /doc/sphinx/user/cookbooks/ and add your cookbook to the list in (for example)
geophysical-setups.md

9. if you with to cite publications, add them to /doc/sphinx/references.bib

10. In order to generate the manual, go to /doc/sphinx and do $ make html

11. if you wish to re-generate the part of the manual that comes from the documentation of .cc
files, then got to \build and make the code, then do in /doc/:

./update_parameters.sh /home/absolute/path/aspect/build/aspect

and then do make html. If you re-modify the .cc file, you need to redo all 3 steps.

12. If there is no error, you should be able to open the file /doc/sphinx/\_build/html/index.html
with firefox

13. if the referencing of the figures does not work correctly, simply do make clean and then make
html again.

14. before you make a pull request, make sure you run make indent
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I.0.3 Contributing to fieldstone

This appendix was contributed by E. van der Wiel.

1. make sure that you have an account on GitHub (say, https://github.com/myusername) and
carry out a proper setup on your local computer as follows:
$ git config --global user.name "firstname lastname"

$ git config --global user.email your@email

2. On github.com, fork the official fieldstone repository to your repository:
go to https://github.com/cedrict/fieldstone and click on the ’fork’ button on the upper
right corner of the screen.

3. On your machine, in a terminal, clone your repository with
$ git clone git@github.com:myusername/fieldstone.git. This is now your main2 branch.

4. On your machine, find your security key 3 with $ less ~/.ssh/id_dsa.pub and copy this into
github.com so you can push to your repository. See https://help.github.com/en/articles/
connecting-to-github-with-ssh on how to configure github with ssh support (no more
login/password to type – if you have cloned the repository wish ssh, not html). Please also check
the instructions at https://help.github.com/en/articles/connecting-to-github-with-ssh.

5. create a remote of your (online) repository
git remote add origin git@github.com:myusername/fieldstone.git and in order to avoid
potential confusion later on, we shall rename our github repo as follows:
$ git remote rename origin myusername

6. Also create a remote of the official version with
$ git remote add upstream https://github.com/cedrict/fieldstone

2also ’master’, although this term should not be used anymore
3Note that you can create a public key as follows: https://help.github.com/articles/generating-ssh-keys/
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Cedric’s repository ”upstream”
https://github.com/cedrict/fieldstone

my repository ”myusername”
https://github.com/myusername/fieldstone

O
N
L
IN

E
L
O
C
A
L

pull request

Branches:
main
otherbranch
savemyphd
tryout
crazyidea
branchformyplugin

update main branch:

git pull upstream main

push branch to my repo:

git push myusername branchformyplugin

Very concretely, if you wish to contribute: Let us assume that you have found a typo in the
file ”physics.tex” and you wish to report the problem to me. The easiest way is to write me an
email with the nature of the problem and the proposed fix. Although I will be grateful for your
contribution, this approach can be improved upon by using git’s ”pull request” command.

1. If this is the very first time you use git, the following instruction is not needed. If not, make
sure that your terminal points at your main branch: $ git checkout master

2. Then, make sure you update your local version: $ git pull upstream master and also up-
date your own repo online: $ git push

3. Create a new branch with a self explanatory name: $ git branch fix_typo Then do $
git branch to see all your branches. The one that is coloured is the active branch. In order to
switch to this new branch, do $ git checkout fix_typo. Redo $ git branch to verify that
the branch ’fix typo’ is highlighted.

4. Edit the file and correct the typo, save and exit. Do $ git status and you should see the
filename highlighted next to ’modified’.

5. If this is the only modification you wish to communicate, you then need to add and commit it
as follows:

$ git add physics.tex

If you do git status again, the file should have changed colour (?). Then do

$ git commit -m "message"

where ’message’ is a very short description of the modification (e.g. ’I fixed a typo’).
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6. We now need to bring this modification online

$ git push myusername fix_typo

7. You are nearly done. The last step takes place on github.com: when you log onto your own
github fieldstone page, you should see a large green rectangle ”Compare and pull request”.
Click on this button.

8. a new page opens, entitled ”Open a pull request”. If necessary, add a detailed description of
the pull request (this makes sense when you contribute a piece of code, or a whole new section,
etc ...). You can review the requested changes at the bottom. In the end, simply click ”Create
pull request”.

9. Once you have done so, I will receive an email which notifies me of the pull request. I will
then review it. If I have no comment, I will accept the PR and your modification will then
be incorporated in the master repo. If I have comments, you will be notified via github and a
back-and-forth discussion will ensue until I accept the PR.

10. After the PR has been accepted, the branch is no longer needed. Switch back to your local
master branch: $ git checkout master . Update your local master and online repo (see step
# 2) and then delete the no-longer-needed branch as follows:

$ git branch -d fix_typo
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Screen captures of the procedure described above as carried out by E. van der Wiel on his Apple laptop.
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In what follows we summarize the most important commands one should and remember while
working with github. After creating an account one can ’fork’ a repository (repo) in the online
environment. This repository is a copy from the master directory of the developer and should not be
used to adapt or change, as changes from the developer (updates) should be obtained in this ’fork’,
or as it could also be called; your master branch.

In order to be able to work within a repository, for instance, to run and compile different programs,
you should have you own branch of the repository in which YOU CAN make changes. The following
commands should be used to make, copy and publish your own version of the repo to your local
device and the online github environment.

command what it does
git branch shows all branches of your repository and high-

lights the one you’re in.
git checkout -b
<my own branch>

This makes your own branch called
”my own branch”.

git push origin
<my own branch>

This pushes your own, local, branch to as a second
branch in the online repo of github.

git checkout <name> changing the branch your working in (e.g. master
or my own branch). Or replace the name with a
hyphen to switch to the last branch.

git branch -d <my own branch> Delete your local branch.

The following commands should be used in order to update your own local branches from updates
made by somewhere else (upstream/master is the main repository). One should do this for the local
master branch and, where possible as well for the different local branches you have committed changes
to already.

command what it does
git checkout master To make sure you are in the right branch
git fetch upstream to fetch updates from upstream repositories to you

own local branch (e.g. to update your master
branch.

git merge upstream/master Command to update the branch with the fethched
repo from ’upstream’.

git push origin master To level your own online repository again with
the one on your local drive (and thus the one up-
stream).

git checkout <my own branch> To switch to your own adapted branch of the repo.
git merge master Used from another branch working directory to

combine the new released version of the master
repo with the one where all your own changes are
put. ->Then git finds all conflicts in different files
which you need to resolve.

git add . This adds the resolved issues in your own local
branch (not master). After which you are able to
commit and push your changes back to the online
respository.

While you are working in your own branch you can change, add or delete files in any amount you
want. However, always check whether your changes do not inflict the outcome of for instance your
code. And when uploading from your terminal: if you commit and then push from master branch
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your changes will automatically be inserted in the online version of your master branch, when done
from another branch it will be shown as a pull request towards your master branch. This request
can than, for instance be forwarded to the main repo.

command what it does
git commit -a This will send your changes/updates from your

branch as a commit to your own local branch.
git push origin <changes> To update the remote repository (on Github) from

you local repository (in this case the ’changes’
branch). (Actually upload the new version). On-
line one can then judge what to do with it. !! this is
a pull request towards your own fork/local branch

git status Showing the status of your current branch; it
shows which files are different between the mas-
ter file and your adapted branch.

git diff <changes> This shows the exact differences between the differ-
ent branches; one can simply ask for the difference
between two branches when pwd in one branch ask
for the other branch.

git merge <my own branch> When used from the master branch (or any
other???) this accepts the changes made in your
branch and puts them in your local(!) master
branch.

git pull origin master if the main repository changes, one can pull the
newest version towards it’s own master file. While
keeping your own branches alive with you own
changes and vica versa: by running this command
the origin/master (remote file) will be cloned and
updated to the working branch you are in.

git stash (apply) ?? While updating your local branch, sometimes
git wants to overrule your own changes, with this
command you can ’stash’ them to look at the dif-
ferences later. ??
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Appendix J

Writing a report as homework

app grading.tex

� The document should contain your full name and student number on the first page.

� The file should be a pdf which name contains your family name

� Layout: is the document visually pleasing? Is it well structured?

� Is there a complete bibliography (when applicable)?

� Does the structure follows this: Introduction - Methods - Results - Discussion - Conclusion -
Appendix ?

� Figures: Are they properly numbered? captioned? all figures must be referenced in the text.
Are they of good enough quality (no visible pixels)? are they readable? are all axis labelled?

� Text: Overall quality of the language. Are there still typos? Do all sentence make sense?

� if you wish to show lines of code, use verbatim or lstlisting1

� Discussion: are the results properly discussed, analyzed? are potential problems, errors, limi-
tations discussed?

� Conclusion: Are the findings/results summarized and generalized?

No Yes

6.67 ∗ 10−11 6.67× 10−11

kg/m3 kg/m3 or kg.m−3

1x1 1×1
cos cos

docx file pdf file
’if you do this’ passive form

No grey background

1https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
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No lists/arrays with numbers

Too many arrows

Poor choice of arrow colour

Be careful about how you export your figures. These are unreadable.
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Parenthesis too small

1.6E+10 is not acceptable. Replace by 1.6 · 1010

Equation number is too close to the equation itself. Use labels, do not number equations by hand.

Formatting of both axis lead to unreadable figure.

In LATEX use \sum\limits

Are so many digits necessary?
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use \usepackage[cm]{fullpage} to allow for wider text.

This figure style is to be avoided. Simply use dots and/or lines.

Here Ra and Nu are plotted in log-log scale, not log(Ra) and log(Nu).

The dots at the beginning and end of the lines are not necessary.
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Never never use ’you’.

Do not use ’X’ but × (\times).

J.0.1 Computational Geodynamics Report

All the comments above apply, with additional instructions:

� report should be in LATEX

� The document should contain your full name and student number on the first page.

� The report file should be a pdf which name contains your family name

� not more than 25 pages. If more, use appendices wisely.

� document should be structured in two main parts: FDM and FEM.

� no equations unless necessary to the discussion (still mention the equation that you are solving
but refer to an external document/article/book for example).

� use lstlisting package to include code

� use \usepackage[cm]{fullpage} to format your document

� all codes either in appendix or in zip file (bearing your name).

� a decent introduction (half page to one page) which links the topic of this course to geosciences.

� discussion of results (stability, convergence, influence of resolution, remarks of all kinds).

� if you did not succeed in doing a particular exercise, please explain what you think the problem
is, how you know it is not working, etc ...

� think about colormaps, image compression

� DEADLINE: July 16th, 2023, 23:59

I will use this table to grade your reports:
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title, names, student nb
LATEX?
document layout
equations look
equations numbered
use of equations
figs: caption
figs: pixels?
figs: correct?
English grammar
Typos Introduction
methods/results
Discussion/Conclusion
Extra work?
Bibliography
code layout
code style
code accuracy
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Appendix K

Analytical expressions for Gel

The elemental matrix Gel is given by (see Section 7.5):

Gel = −
∫
Ωe

BT ·NdΩ = −
∫
Ωe



∂xN
ν
1 0 ∂yN

ν
1

0 ∂yN
ν
1 ∂xN

ν
1

∂xN
ν
2 0 ∂yN

ν
2

0 ∂yN
ν
2 ∂xN

ν
2

. . . . . . . . .

. . . . . . . . .
∂xN

ν
mν

0 ∂yN
ν
mν

0 ∂yN
ν
mν

∂xN
ν
mν


·

 Np
1 Np

2 . . . Np
mp

Np
1 Np

2 . . . Np
mp

0 0 . . . 0

 dΩ

In what follows I set out to compute this elemental matrix for the reference element. All of the
integrals were computed with WolframAlpha since it allowed me to copy-paste the LATEXcode directly
into the website prompt area and obtain the value of these integrals.

K.0.1 Q1 × P0 element - 2D

For this element, mν = 4 and mp = 1 so Gel is a 8× 1 matrix:

Gel = −
∫
Ωe

BT ·NdΩ = −
∫
Ωe



∂rN
ν
1 0 ∂sN

ν
1

0 ∂sN
ν
1 ∂rN

ν
1

∂rN
ν
2 0 ∂sN

ν
2

0 ∂sN
ν
2 ∂rN

ν
2

∂rN
ν
3 0 ∂sN

ν
3

0 ∂sN
ν
3 ∂rN

ν
3

∂rN
ν
4 0 ∂sN

ν
4

0 ∂sN
ν
4 ∂rN

ν
4


·

 Np
1

Np
1

0

 dΩ

also, since Np
1 = 1 then

Gel = −
∫
Ωe

BT ·NdΩ = −
∫
Ωe



∂rN
ν
1

∂sN
ν
1

∂rN
ν
2

∂sN
ν
2

∂rN
ν
3

∂sN
ν
3

∂rN
ν
4

∂sN
ν
4


dΩ =



1
1
−1
1
−1
−1
1
−1
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A macro element made of a single element makes no sense since if velocity is prescribed on all
sides there is not a single velocity dof left.

We then consider the following macro-element:

velocity pressure

7====8====9 .====.====.

| | | | 3 | 4 |

4====5====6 .====.====. NV=9

| | | | 1 | 2 |

1====2====3 .====.====. NP=4

The assembled G matrix is then 18× 4:

G =



1 0 0 0
1 0 0 0
−1 1 0 0
1 1 0 0
0 −1 0 0
0 1 0 0
1 0 1 0
−1 0 1 0
−1 1 −1 1
−1 −1 1 1
0 −1 0 −1
0 −1 0 1
0 0 1 0
0 0 −1 0
0 0 −1 1
0 0 −1 −1
0 0 0 −1
0 0 0 −1


After applying boundary conditions on nodes 1,2,3,4,6,7,8,9:

G =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−1 1 −1 1
−1 −1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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or,

G̃ =

(
−1 1 −1 1
−1 −1 1 1

)
The null space is of size two, spawn by the two vectors:

[[-0.1 0.7]

[ 0.7 0.1]

[ 0.7 0.1]

[-0.1 0.7]]

In the book the authors proceed to show that any such macroelement made of rectangles has a
spurious mode.

See code python codes/Gel/macro element q1p0.py

K.0.2 Q1 × P0 element - 3D

For this element, mν = 8 and mp = 1 so Gel is a 3 ∗ 8× 1 matrix:

Gel = −
∫
Ωe

BT ·NdΩ = −
∫
Ωe



∂rN
ν
1 0 0 ∂sN

ν
1 ∂tN

ν
1 0

0 ∂sN
ν
1 0 ∂rN

ν
1 0 ∂tN

ν
1

0 0 ∂tN
ν
1 0 ∂rN

ν
1 ∂sN

ν
1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
∂rN

ν
8 0 0 ∂sN

ν
8 ∂tN

ν
8 0

0 ∂sN
ν
8 0 ∂rN

ν
8 0 ∂tN

ν
8

0 0 ∂tN
ν
8 0 ∂rN

ν
8 ∂sN

ν
8


·


Np

1

Np
1

Np
1

0
0
0

 dΩ
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also, since Np
1 = 1 then

Gel = −
∫
Ωe

BT ·NdΩ = −
∫
Ωe



∂rN
ν
1

∂sN
ν
1

∂tN
ν
1

∂rN
ν
2

∂sN
ν
2

∂tN
ν
2

∂rN
ν
3

∂sN
ν
3

∂tN
ν
3

∂rN
ν
4

∂sN
ν
4

∂tN
ν
4

∂rN
ν
5

∂sN
ν
5

∂tN
ν
5

∂rN
ν
6

∂sN
ν
6

∂tN
ν
6

∂rN
ν
7

∂sN
ν
7

∂tN
ν
7

∂rN
ν
8

∂sN
ν
8

∂tN
ν
8



dΩ = −



∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(−1)(1− s)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(−1)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(1− s)(−1)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(+1)(1− s)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(−1)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(1− s)(−1)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(+1)(1 + s)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(+1)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(1 + s)(−1)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(−1)(1 + s)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(+1)(1− t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(1 + s)(−1)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(−1)(1− s)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(−1)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(1− s)(+1)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(+1)(1− s)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(−1)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(1− s)(+1)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(+1)(1 + s)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(+1)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1 + r)(1 + s)(+1)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(−1)(1 + s)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(+1)(1 + t)drdsdt∫ +1

−1

∫ +1

−1

∫ +1

−1
1
8
(1− r)(1 + s)(+1)drdsdt



=



1
1
1
−1
1
1
−1
−1
1
1
−1
1
1
1
−1
−1
1
−1
−1
−1
−1
1
−1
−1



If we consider a macro-element 2x2x2 of size Lx=Ly=Lz=4, apply velocity b.c on the all sides
we are left with

G̃ =

 −1.− 1.− 1.− 1.1.1.1.1.
−1.− 1.1.1.− 1.− 1.1.1.
−1.1.− 1.1.− 1.1.− 1.1.


Null space has dimension 5:

[[-0.35355339 0.35355339 0.35355339 0.35355339 0.35355339]

[ 0.35355339 -0.35355339 -0.35355339 0.35355339 0.35355339]

[ 0.35355339 -0.35355339 0.35355339 -0.35355339 0.35355339]

[ 0.41990569 0.58009431 0.19336477 0.19336477 -0.19336477]

[ 0.58009431 0.41990569 -0.19336477 -0.19336477 0.19336477]

[ 0.19336477 -0.19336477 0.74028293 0.03317615 -0.03317615]

[ 0.19336477 -0.19336477 0.03317615 0.74028293 -0.03317615]

[-0.19336477 0.19336477 -0.03317615 -0.03317615 0.74028293]]

K.0.3 Q1 ×Q1 element

For this element, mν = 4 and mp = 4 so Gel is a 8× 4 matrix:
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Gel = −
∫
Ωe

BT ·NdΩ (K.1)

= −
∫
Ωe



∂rN
ν
1 0 ∂sN

ν
1

0 ∂sN
ν
1 ∂rN

ν
1

∂rN
ν
2 0 ∂sN

ν
2

0 ∂sN
ν
2 ∂rN

ν
2

∂rN
ν
3 0 ∂sN

ν
3

0 ∂sN
ν
3 ∂rN

ν
3

∂rN
ν
4 0 ∂sN

ν
4

0 ∂sN
ν
4 ∂rN

ν
4


·

 Np
1 Np

2 Np
3 Np

4

Np
1 Np

2 Np
3 Np

4

0 0 . . . 0

 dΩ (K.2)

= −
∫
Ωe



Np
1∂rN

ν
1 Np

2∂rN
ν
1 Np

3∂rN
ν
1 Np

4∂rN
ν
1

Np
1∂sN

ν
1 Np

2∂sN
ν
1 Np

3∂sN
ν
1 Np

4∂sN
ν
1

Np
1∂rN

ν
2 Np

2∂rN
ν
2 Np

3∂rN
ν
2 Np

4∂rN
ν
2

Np
1∂sN

ν
2 Np

2∂sN
ν
2 Np

3∂sN
ν
2 Np

4∂sN
ν
2

Np
1∂rN

ν
3 Np

2∂rN
ν
3 Np

3∂rN
ν
3 Np

4∂rN
ν
3

Np
1∂sN

ν
3 Np

2∂sN
ν
3 Np

3∂sN
ν
3 Np

4∂sN
ν
3

Np
1∂rN

ν
4 Np

2∂rN
ν
4 Np

3∂rN
ν
4 Np

4∂rN
ν
4

Np
1∂sN

ν
4 Np

2∂sN
ν
4 Np

3∂sN
ν
4 Np

4∂sN
ν
4


dΩ (K.3)

(K.4)

We have Nν
i = Np

i with i = 1, 2, 3, 4, so we can drop the superscripts and we can write:

Gel = −
∫
Ωe



N1∂rN1 N2∂rN1 N3∂rN1 N4∂rN1

N1∂sN1 N2∂sN1 N3∂sN1 N4∂sN1

N1∂rN2 N2∂rN2 N3∂rN2 N4∂rN2

N1∂sN2 N2∂sN2 N3∂sN2 N4∂sN2

N1∂rN3 N2∂rN3 N3∂rN3 N4∂rN3

N1∂sN3 N2∂sN3 N3∂sN3 N4∂sN3

N1∂rN4 N2∂rN4 N3∂rN4 N4∂rN4

N1∂sN4 N2∂sN4 N3∂sN4 N4∂sN4


dΩ (K.5)

∫
Ωe

N1∂rN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(−1)(1− s)drds = −1/3 (K.6)

∫
Ωe

N1∂sN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(1− r)(−1)drds = −1/3 (K.7)

∫
Ωe

N1∂rN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(+1)(1− s)drds = 1/3 (K.8)

∫
Ωe

N1∂sN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(1 + r)(−1)drds = −1/6 (K.9)

∫
Ωe

N1∂rN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(+1)(1 + s)drds = 1/6 (K.10)

∫
Ωe

N1∂sN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(1 + r)(+1)drds = 1/6 (K.11)

∫
Ωe

N1∂rN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(−1)(1 + s)drds = −1/6 (K.12)

∫
Ωe

N1∂sN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

4
(1− r)(+1)drds = 1/3 (K.13)
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∫
Ωe

N2∂rN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(−1)(1− s)drds = −1/3 (K.14)

∫
Ωe

N2∂sN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(1− r)(−1)drds = −1/6 (K.15)

∫
Ωe

N2∂rN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(+1)(1− s)drds = 1/3 (K.16)

∫
Ωe

N2∂sN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(1 + r)(−1)drds = −1/3 (K.17)

∫
Ωe

N2∂rN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(+1)(1 + s)drds = 1/6 (K.18)

∫
Ωe

N2∂sN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(1 + r)(+1)drds = 1/3 (K.19)

∫
Ωe

N2∂rN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(−1)(1 + s)drds = −1/6 (K.20)

∫
Ωe

N2∂sN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

4
(1− r)(+1)drds = 1/6 (K.21)

∫
Ωe

N3∂rN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(−1)(1− s)drds = −1/6 (K.22)

∫
Ωe

N3∂sN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(1− r)(−1)drds = −1/6 (K.23)

∫
Ωe

N3∂rN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(+1)(1− s)drds = 1/6 (K.24)

∫
Ωe

N3∂sN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(1 + r)(−1)drds = −1/3 (K.25)

∫
Ωe

N3∂rN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(+1)(1 + s)drds = 1/3 (K.26)

∫
Ωe

N3∂sN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(1 + r)(+1)drds = 1/3 (K.27)

∫
Ωe

N3∂rN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(−1)(1 + s)drds = −1/3 (K.28)

∫
Ωe

N3∂sN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

4
(1− r)(+1)drds = 1/6 (K.29)

∫
Ωe

N4∂rN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(−1)(1− s)drds = −1/6 (K.30)

∫
Ωe

N4∂sN1dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(1− r)(−1)drds = −1/3 (K.31)

∫
Ωe

N4∂rN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(+1)(1− s)drds = 1/6 (K.32)

∫
Ωe

N4∂sN2dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(1 + r)(−1)drds = −1/6 (K.33)

∫
Ωe

N4∂rN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(+1)(1 + s)drds = 1/3 (K.34)

∫
Ωe

N4∂sN3dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(1 + r)(+1)drds = 1/6 (K.35)

∫
Ωe

N4∂rN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(−1)(1 + s)drds = −1/3 (K.36)

∫
Ωe

N4∂sN4dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

4
(1− r)(+1)drds = 1/3 (K.37)

Putting it all together:

Gel = −



−1/3 −1/3 −1/6 −1/6
−1/3 −1/6 −1/6 −1/3
1/3 1/3 1/6 1/6
−1/6 −1/3 −1/3 −1/6
1/6 1/6 1/3 1/3
1/6 1/3 1/3 1/6
−1/6 −1/6 −1/3 −1/3
1/3 1/6 1/6 1/3


=

1

6



2 2 1 1
2 1 1 2
−2 −2 −1 −1
1 2 2 1
−1 −1 −2 −2
−1 −2 −2 −1
1 1 2 2
−2 −1 −1 −2


(K.38)

I have implemented a 3x3 quadrature integration to numerically compute the matrix in the file
python codes/Gel/programQ1Q1.py. The code returns:
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[[ 0.33333333 0.33333333 0.16666667 0.16666667]

[ 0.33333333 0.16666667 0.16666667 0.33333333]

[-0.33333333 -0.33333333 -0.16666667 -0.16666667]

[ 0.16666667 0.33333333 0.33333333 0.16666667]

[-0.16666667 -0.16666667 -0.33333333 -0.33333333]

[-0.16666667 -0.33333333 -0.33333333 -0.16666667]

[ 0.16666667 0.16666667 0.33333333 0.33333333]

[-0.33333333 -0.16666667 -0.16666667 -0.33333333]]

which is indeed what we have obtained above.
Similarly to the Q1P0 element, a macroelement made of a single element has zero left over vel

dof after b.c. are applied on all sides, so we resort to the following macroelement:

velocity pressure

7====8====9 7====8====9

| | | | | |

4====5====6 4====5====6 NV=9

| | | | | |

1====2====3 1====2====3 NP=9

After assembly we have G is a ndofV ∗NV × ndofP ∗NP = 18 ∗ 9 matrix:

G =
1

6



2 2 0 1 1 0 0 0 0
2 1 0 2 1 0 0 0 0
−2 0 2 −1 0 1 0 0 0
1 4 1 1 4 1 0 0 0
0 −2 −2 0 −1 −1 0 0 0
0 1 2 0 1 2 0 0 0
1 1 0 4 4 0 1 1 0
−2 −1 0 0 0 0 2 1 0
−1 0 1 −4 0 4 −1 0 1
−1 −4 −1 0 0 0 1 4 1
0 −1 −1 0 −4 −4 0 −1 −1
0 −1 −2 0 0 0 0 1 2
0 0 0 1 1 0 2 2 0
0 0 0 −2 −1 0 −2 −1 0
0 0 0 −1 0 1 −2 0 2
0 0 0 −1 −4 −1 −1 −4 −1
0 0 0 0 −1 −1 0 −2 −2
0 0 0 0 −1 −2 0 −1 −2
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and after imposing boundary conditions on nodes 1,2,3,4,6,7,8,9:

G =
1

6



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 1 −4 0 4 −1 0 1
−1 −4 −1 0 0 0 1 4 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


or,

G =
1

6

(
−1 0 1 −4 0 4 −1 0 1
−1 −4 −1 0 0 0 1 4 1

)
When passed to null space as argument it returns the following nullspace:

[[ 1.47619e-01 -6.57142e-01 -7.40148e-18 6.57142e-01 -1.47619e-01 6.66666e-02 1.80952e-01]

[-1.90476e-01 9.52380e-02 -7.40148e-17 -9.52380e-02 1.90476e-01 6.66666e-01 1.42857e-01]

[ 9.57142e-01 1.04761e-01 -7.40148e-18 -1.04761e-01 4.28571e-02 6.66666e-02 -9.52380e-03]

[ 9.52380e-02 6.19047e-01 2.34780e-34 3.80952e-01 -9.52380e-02 -2.11471e-18 9.52380e-02]

[-8.45884e-18 4.22942e-18 1.00000e+00 -4.22942e-18 8.45884e-18 2.96059e-17 6.34413e-18]

[-9.52380e-02 3.80952e-01 5.35591e-34 6.19047e-01 9.52380e-02 -4.82418e-18 -9.52380e-02]

[ 4.28571e-02 -1.04761e-01 7.40148e-18 1.04761e-01 9.57142e-01 -6.66666e-02 9.52380e-03]

[ 7.61904e-02 -3.80952e-02 2.96059e-17 3.80952e-02 -7.61904e-02 7.33333e-01 -5.71428e-02]

[-4.76190e-03 8.57142e-02 7.40148e-18 -8.57142e-02 4.76190e-03 -6.66666e-02 9.61904e-01]]

which is very bad: the dimension of the nullspace is 9!
Note that it does not mean that this element is unstable (see Q2Q1) since it is a sufficient but

not necessary condition. We could test with larger macroelements (see Q2Q1) and these could prove
to have a properly sized nullspace.

See code python codes/Gel/macro element q1q1.py
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K.0.4 Q+
1 ×Q1 element

For the quadrilateral MINI element, mν = 5 and mp = 4 so Gel is a 10× 4 matrix:

Gel = −
∫
Ωe

BT ·NdΩ (K.39)

= −
∫
Ωe



∂rN
ν
1 0 ∂sN

ν
1

0 ∂sN
ν
1 ∂rN

ν
1

∂rN
ν
2 0 ∂sN

ν
2

0 ∂sN
ν
2 ∂rN

ν
2

∂rN
ν
3 0 ∂sN

ν
3

0 ∂sN
ν
3 ∂rN

ν
3

∂rN
ν
4 0 ∂sN

ν
4

0 ∂sN
ν
4 ∂rN

ν
4

∂rN
ν
5 0 ∂sN

ν
5

0 ∂sN
ν
5 ∂rN

ν
5


·

 Np
1 Np

2 Np
3 Np

4

Np
1 Np

2 Np
3 Np

4

0 0 . . . 0

 dΩ (K.40)

= −
∫
Ωe



Np
1∂rN

ν
1 Np

2∂rN
ν
1 Np

3∂rN
ν
1 Np

4∂rN
ν
1

Np
1∂sN

ν
1 Np

2∂sN
ν
1 Np

3∂sN
ν
1 Np

4∂sN
ν
1

Np
1∂rN

ν
2 Np

2∂rN
ν
2 Np

3∂rN
ν
2 Np

4∂rN
ν
2

Np
1∂sN

ν
2 Np

2∂sN
ν
2 Np

3∂sN
ν
2 Np

4∂sN
ν
2

Np
1∂rN

ν
3 Np

2∂rN
ν
3 Np

3∂rN
ν
3 Np

4∂rN
ν
3

Np
1∂sN

ν
3 Np

2∂sN
ν
3 Np

3∂sN
ν
3 Np

4∂sN
ν
3

Np
1∂rN

ν
4 Np

2∂rN
ν
4 Np

3∂rN
ν
4 Np

4∂rN
ν
4

Np
1∂sN

ν
4 Np

2∂sN
ν
4 Np

3∂sN
ν
4 Np

4∂sN
ν
4

Np
1∂rN

ν
5 Np

2∂rN
ν
5 Np

3∂rN
ν
5 Np

4∂rN
ν
5

Np
1∂sN

ν
5 Np

2∂sN
ν
5 Np

3∂sN
ν
5 Np

4∂sN
ν
5


dΩ (K.41)

We have :

Nν
1 = Np

1 −
1

4
b(r, s) (K.42)

Nν
2 = Np

2 −
1

4
b(r, s) (K.43)

Nν
3 = Np

3 −
1

4
b(r, s) (K.44)

Nν
4 = Np

4 −
1

4
b(r, s) (K.45)

Nν
5 = b(r, s) (K.46)

so that (once again I drop the superscripts)

Gel = −
∫
Ωe



N1∂rN1 N2∂rN1 N3∂rN1 N4∂rN1

N1∂sN1 N2∂sN1 N3∂sN1 N4∂sN1

N1∂rN2 N2∂rN2 N3∂rN2 N4∂rN2

N1∂sN2 N2∂sN2 N3∂sN2 N4∂sN2

N1∂rN3 N2∂rN3 N3∂rN3 N4∂rN3

N1∂sN3 N2∂sN3 N3∂sN3 N4∂sN3

N1∂rN4 N2∂rN4 N3∂rN4 N4∂rN4

N1∂sN4 N2∂sN4 N3∂sN4 N4∂sN4

0 0 0 0
0 0 0 0


dΩ+

1

4

∫
Ωe



N1∂rb N2∂rb N3∂rb N4∂rb
N1∂sb N2∂sb N3∂sb N4∂sb
N1∂rb N2∂rb N3∂rb N4∂rb
N1∂sb N2∂sb N3∂sb N4∂sb
N1∂rb N2∂rb N3∂rb N4∂rb
N1∂sb N2∂sb N3∂sb N4∂sb
N1∂rb N2∂rb N3∂rb N4∂rb
N1∂sb N2∂sb N3∂sb N4∂sb
−4N1∂rb −4N2∂rb −4N3∂rb −4N4∂rb
−4N1∂sb −4N2∂sb −4N3∂sb −4N4∂sb


dΩ

The matrix which only contains Ni functions is in fact the Gel matrix for standard Q1 × Q1

elements as we have seen in the previous section so we need not recompute it.
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Bubble function 1

Let us now assume the bubble is bubble 1:

b1(r, s) = (1− r)(1− s)(1− r2)(1− s2)
∂rb1(r, s) = (3r2 − 2r − 1)(1− s)(1− s2)
∂sb1(r, s) = (3s2 − 2s− 1)(1− r)(1− r2)

1

4

∫ +1

−1

∫ +1

−1
N1∂rb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)(3r2 − 2r − 1)(1− s)(1− s2)drds = 2/15

1

4

∫ +1

−1

∫ +1

−1
N1∂sb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)(3s2 − 2s− 1)(1− r)(1− r2)drds = 2/15

1

4

∫ +1

−1

∫ +1

−1
N2∂rb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)(3r2 − 2r − 1)(1− s)(1− s2)drds = −2/15

1

4

∫ +1

−1

∫ +1

−1
N2∂sb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)(3s2 − 2s− 1)(1− r)(1− r2)drds = 4/45

1

4

∫ +1

−1

∫ +1

−1
N3∂rb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)(3r

2 − 2r − 1)(1− s)(1− s2)drds = −4/45

1

4

∫ +1

−1

∫ +1

−1
N3∂sb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)(3s

2 − 2s− 1)(1− r)(1− r2)drds = −4/45

1

4

∫ +1

−1

∫ +1

−1
N4∂rb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)(3r

2 − 2r − 1)(1− s)(1− s2)drds = 4/45

1

4

∫ +1

−1

∫ +1

−1
N4∂sb1drds =

1

4

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)(3s

2 − 2s− 1)(1− r)(1− r2)drds = −2/15

Gel = −



−1/3 −1/3 −1/6 −1/6
−1/3 −1/6 −1/6 −1/3
1/3 1/3 1/6 1/6
−1/6 −1/3 −1/3 −1/6
1/6 1/6 1/3 1/3
1/6 1/3 1/3 1/6
−1/6 −1/6 −1/3 −1/3
1/3 1/6 1/6 1/3
0 0 0 0
0 0 0 0


+



2/15 −2/15 −4/45 4/45
2/15 4/45 −4/45 −2/15
2/15 −2/15 −4/45 4/45
2/15 4/45 −4/45 −2/15
2/15 −2/15 −4/45 4/45
2/15 4/45 −4/45 −2/15
2/15 −2/15 −4/45 4/45
2/15 4/45 −4/45 −2/15
−8/15 8/15 16/45 −16/45
−8/15 −16/45 16/45 8/15


(K.47)

I have implemented a 3x3 quadrature integration to numerically compute the matrix in the file
python codes/Gel/programQ1pQ1.py. The code returns:

[[ 0.46666667 0.2 0.07777778 0.25555556]

[ 0.46666667 0.25555556 0.07777778 0.2 ]

[-0.2 -0.46666667 -0.25555556 -0.07777778]

[ 0.3 0.42222222 0.24444444 0.03333333]

[-0.03333333 -0.3 -0.42222222 -0.24444444]

[-0.03333333 -0.24444444 -0.42222222 -0.3 ]

[ 0.3 0.03333333 0.24444444 0.42222222]

[-0.2 -0.07777778 -0.25555556 -0.46666667]

[-0.53333333 0.53333333 0.35555556 -0.35555556]

[-0.53333333 -0.35555556 0.35555556 0.53333333]]
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which is indeed what we have obtained above. It can be rewritten

Gel =
1

90



42 18 7 23
42 23 7 18
−18 −42 −23 −7
27 38 22 3
−3 −27 −38 −22
−3 −22 −38 −27
27 3 22 38
−18 −7 −23 −42
−48 48 32 −32
−48 −32 32 48


Let us now build a macroelement of size LxxLy=4x4 made of 2x2 elements. Each element has a

Gel like the one above since they are of size 2x2:

velocity pressure

7====8====9 7====8====9

| 12 | 13 | | | |

4====5====6 4====5====6 NV=13

| 10 | 11 | | | |

1====2====3 1====2====3 NP=9

I am here following the approach by Lamichhane [741] but I am not sure why he did not use
a single element macro-element? Probably because when applying bc on all four nodes of a single
element, the left over matrix G̃el is composed of the last two rows of Gel and this has a nullspace of
dimension 2.
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After assembly we have G is a ndofV ∗NV × ndofP ∗NP = 26 ∗ 9 matrix:

G =
1

90



42 18 0 23 7 0 0 0 0
42 23 0 18 7 0 0 0 0
−18 0 18 −7 0 7 0 0 0
27 80 23 3 40 7 0 0 0
0 −18 −42 0 −7 −23 0 0 0
0 27 38 0 3 22 0 0 0
27 3 0 80 40 0 23 7 0
−18 −7 0 0 0 0 18 7 0
−3 0 3 −40 0 40 −7 0 7
−3 −40 −7 0 0 0 3 40 7
0 −3 −27 0 −40 −80 0 −7 −23
0 −3 −22 0 0 0 0 3 22
0 0 0 27 3 0 38 22 0
0 0 0 −18 −7 0 −42 −23 0
0 0 0 −3 0 3 −22 0 22
0 0 0 −3 −40 −7 −27 −80 −23
0 0 0 0 −3 −27 0 −22 −38
0 0 0 0 −3 −22 0 −27 −38
−48 48 0 −32 32 0 0 0 0
−48 −32 0 48 32 0 0 0 0
0 −48 48 0 −32 32 0 0 0
0 −48 −32 0 48 32 0 0 0
0 0 0 −48 48 0 −32 32 0
0 0 0 −48 −32 0 48 32 0
0 0 0 0 −48 48 0 −32 32
0 0 0 0 −48 −32 0 48 32
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After boundary conditions on Vnodes 1,2,3,4,6,7,8,9, the matrix G looks like:

G =
1

90



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−3 0 3 −40 0 40 −7 0 7
−3 −40 −7 0 0 0 3 40 7
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−48 48 0 −32 32 0 0 0 0
−48 −32 0 48 32 0 0 0 0
0 −48 48 0 −32 32 0 0 0
0 −48 −32 0 48 32 0 0 0
0 0 0 −48 48 0 −32 32 0
0 0 0 −48 −32 0 48 32 0
0 0 0 0 −48 48 0 −32 32
0 0 0 0 −48 −32 0 48 32


or, removing the lines with only zeros, we arrive at a 10× 9 matrix as in Lamichhane [741]:

G̃ =
1

90



−3 0 3 −40 0 40 −7 0 7
−3 −40 −7 0 0 0 3 40 7
−48 48 0 −32 32 0 0 0 0
−48 −32 0 48 32 0 0 0 0
0 −48 48 0 −32 32 0 0 0
0 −48 −32 0 48 32 0 0 0
0 0 0 −48 48 0 −32 32 0
0 0 0 −48 −32 0 48 32 0
0 0 0 0 −48 48 0 −32 32
0 0 0 0 −48 −32 0 48 32


This matrix is then passed as argument to the null space function which returns a single vector

such that ker(G̃) = (1, 1, 1, 1, 1, 1, 1, 1, 1).
It must be said that the matrix above contains similar values as the one in [741] as well as

the same number of nonzeros. Similarities: 16 times ±48/90 = ±8/15 = 2 · 4/15 and 16 times
±32/90 = ±16/45 = 2 · 8/45 as in the paper (aside from scaling factor 2). However the 12 remaining
values differ ?

Bubble function 2

When looking at bubble 2 with β = 1/4, we get
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Gel =
1

180



79 41 9 51
79 51 9 41
−41 −79 −51 −9
49 81 39 11
−11 −49 −81 −39
−11 −39 −81 −49
49 11 39 81
−41 −9 −51 −79
−76 76 84 −84
−76 −84 84 76


After assembly we have G is a ndofV ∗NV × ndofP ∗NP = 26 ∗ 9 matrix:

G =
1

180



79 41 0 51 9 0 0 0 0
79 51 0 41 9 0 0 0 0
−41 0 41 −9 0 9 0 0 0
49 160 51 11 80 9 0 0 0
0 −41 −79 0 −9 −51 0 0 0
0 49 81 0 11 39 0 0 0
49 11 0 160 80 0 51 9 0
−41 −9 0 0 0 0 41 9 0
−11 0 11 −80 0 80 −9 0 9
−11 −80 −9 0 0 0 11 80 9
0 −11 −49 0 −80 −160 0 −9 −51
0 −11 −39 0 0 0 0 11 39
0 0 0 49 11 0 81 39 0
0 0 0 −41 −9 0 −79 −51 0
0 0 0 −11 0 11 −39 0 39
0 0 0 −11 −80 −9 −49 −160 −51
0 0 0 0 −11 −49 0 −39 −81
0 0 0 0 −11 −39 0 −49 −81
−76 76 0 −84 84 0 0 0 0
−76 −84 0 76 84 0 0 0 0
0 −76 76 0 −84 84 0 0 0
0 −76 −84 0 76 84 0 0 0
0 0 0 −76 76 0 −84 84 0
0 0 0 −76 −84 0 76 84 0
0 0 0 0 −76 76 0 −84 84
0 0 0 0 −76 −84 0 76 84
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After boundary conditions are applied:

G =
1

180



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−11 0 11 −80 0 80 −9 0 9
−11 −80 −9 0 0 0 11 80 9
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−76 76 0 −84 84 0 0 0 0
−76 −84 0 76 84 0 0 0 0
0 −76 76 0 −84 84 0 0 0
0 −76 −84 0 76 84 0 0 0
0 0 0 −76 76 0 −84 84 0
0 0 0 −76 −84 0 76 84 0
0 0 0 0 −76 76 0 −84 84
0 0 0 0 −76 −84 0 76 84


or,

G̃ =
1

180



−11 0 11 −80 0 80 −9 0 9
−11 −80 −9 0 0 0 11 80 9
−76 76 0 −84 84 0 0 0 0
−76 −84 0 76 84 0 0 0 0
0 −76 76 0 −84 84 0 0 0
0 −76 −84 0 76 84 0 0 0
0 0 0 −76 76 0 −84 84 0
0 0 0 −76 −84 0 76 84 0
0 0 0 0 −76 76 0 −84 84
0 0 0 0 −76 −84 0 76 84


We make the same observation as for bubble 1: when this matrix is passed as argument to the

null space function, it returns a single vector such that ker(G̃) = (1, 1, 1, 1, 1, 1, 1, 1, 1).

Special case: β = 0 The bubble is then

b(r, s) = (1− r2)(1− s2)

We repeat the same process and arrive at
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Gel =
1

18



8 4 1 5
8 5 1 4
−4 −8 −5 −1
5 8 4 1
−1 −5 −8 −4
−1 −4 −8 −5
5 1 4 8
−4 −1 −5 −8
−8 8 8 −8
−8 −8 8 8


and

G̃ =
1

18



−1 0 1 −8 0 8 −1 0 1
−1 −8 −1 0 0 0 1 8 1
−8 8 0 −8 8 0 0 0 0
−8 −8 0 8 8 0 0 0 0
0 −8 8 0 −8 8 0 0 0
0 −8 −8 0 8 8 0 0 0
0 0 0 −8 8 0 −8 8 0
0 0 0 −8 −8 0 8 8 0
0 0 0 0 −8 8 0 −8 8
0 0 0 0 −8 −8 0 8 8


Finally the null space function returns:

[[ 0.27870965 -0.34974409]

[ 0.39102578 0.31160686]

[ 0.27870965 -0.34974409]

[ 0.39102578 0.31160686]

[ 0.27870965 -0.34974409]

[ 0.39102578 0.31160686]

[ 0.27870965 -0.34974409]

[ 0.39102578 0.31160686]

[ 0.27870965 -0.34974409]]

i.e. the null space has dimension 2, so that the element is then not stable.
See code python codes/Gel/macro element q1pq1.py

K.0.5 Q+
1 ×Q1 element in 3D

For the quadrilateral MINI element, mν = 9 and mp = 8 so Gel is a 27 × 8 matrix (obtained with
103 quadrature points, no difference with 63 points).

Gel = −
∫
Ωe

BT ·NdΩ = −
∫
Ωe
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Np

1 Np
2 . . . Np

8

Np
1 Np

2 . . . Np
8

Np
1 Np

2 . . . Np
8

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0

 dΩ
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Gel = −
∫
Ωe
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dΩ = −GQ1×Q1
el

+
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∫ ∫ ∫
Np

1∂rN
ν
1 drdsdt =

∫ ∫ ∫
N1∂rN1drdsdt−

1

8

∫ ∫ ∫
N1∂rb drdsdt (K.48)

=
8

27
− 1

8

4

75
=

1

1350
(400− 9) =

372

1350
(K.49)∫ ∫ ∫

Np
2∂rN

ν
1 drdsdt =

∫ ∫ ∫
N2∂rN1drdsdt−

1

8

∫ ∫ ∫
N2∂rb drdsdt (K.50)

=
4

27
− 1

8
(K.51)∫ ∫ ∫

Np
3∂rN

ν
1 drdsdt =

∫ ∫ ∫
N3∂rN1drdsdt−

1

8

∫ ∫ ∫
N3∂rb drdsdt (K.52)

=
2

27
− 1

8
(K.53)∫ ∫ ∫

Np
4∂rN

ν
1 drdsdt =

∫ ∫ ∫
N4∂rN1drdsdt−

1

8

∫ ∫ ∫
N4∂rb drdsdt (K.54)

=
4

27
(K.55)∫ ∫ ∫

Np
5∂rN

ν
1 drdsdt =

∫ ∫ ∫
N5∂rN1drdsdt−

1

8

∫ ∫ ∫
N5∂rb drdsdt (K.56)

=
4

27
(K.57)∫ ∫ ∫

Np
6∂rN

ν
1 drdsdt =

∫ ∫ ∫
N6∂rN1drdsdt−

1

8

∫ ∫ ∫
N6∂rb drdsdt (K.58)

=
2

27
(K.59)∫ ∫ ∫

Np
7∂rN

ν
1 drdsdt =

∫ ∫ ∫
N7∂rN1drdsdt−

1

8

∫ ∫ ∫
N7∂rb drdsdt (K.60)

=
1

27
(K.61)∫ ∫ ∫

Np
8∂rN

ν
1 drdsdt =

∫ ∫ ∫
N8∂rN1drdsdt−

1

8

∫ ∫ ∫
N8∂rb drdsdt (K.62)

=
2

27
(K.63)

(K.64)
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For bubble function #1:

Gel =
1

1350



372 228 102 198 198 102 43 107
372 198 102 228 198 107 43 102
372 198 107 198 228 102 43 102
−228 −372 −198 −102 −102 −198 −107 −43
222 348 252 78 123 182 118 27
222 348 182 123 78 252 118 27
−78 −222 −348 −252 −27 −123 −182 −118
−78 −252 −348 −222 −27 −118 −182 −123
147 198 332 198 3 102 268 102
222 78 252 348 123 27 118 182
−228 −102 −198 −372 −102 −43 −107 −198
222 123 182 348 78 27 118 252
222 78 27 123 348 252 118 182
222 123 27 78 348 182 118 252
−228 −102 −43 −102 −372 −198 −107 −198
−78 −222 −123 −27 −252 −348 −182 −118
147 198 102 3 198 332 268 102
−78 −252 −118 −27 −222 −348 −182 −123
−3 −147 −198 −102 −102 −198 −332 −268
−3 −102 −198 −147 −102 −268 −332 −198
−3 −102 −268 −102 −147 −198 −332 −198
147 3 102 198 198 102 268 332
−78 −27 −123 −222 −252 −118 −182 −348
−78 −27 −118 −252 −222 −123 −182 −348
−576 576 384 −384 −384 384 256 −256
−576 −384 384 576 −384 −256 256 384
−576 −384 −256 −384 576 384 256 384


Considering a 2x2x2 macroelement of size 4x4x4. Then NV=3*3*3+8=35, NP=3*3*3=27 Matrix

G is 3*35x27=105*27
After bc are imposed on all nodes on the boundary, 9 Vnodes are still free (8 bubble nodes and

the node in the middle), i.e. 9*3 dofs = 27 and there are 3x3x3=27 pressure nodes. So G̃ is 27*27.
no less.

We get

G̃ =
1

1350

(
jfgljhhgl

)
I have tried all kinds of bubbles but I usually arrive at a null space of dimension 3 to 5... typically

for bubble 1, dim=5, while for bubble=2 dim=3.
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K.0.6 Q2 ×Q1 element

Gel = −
∫
Ωe

BT ·NdΩ

= −
∫
Ωe
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·
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∫
Ωe
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dΩ (K.65)
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∫
Ωe

N
p
1 ∂rN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

2
(2r − 1)

1

2
s(s− 1)drds = −5/18 (K.66)

∫
Ωe

N
p
2 ∂sN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)

1

2
r(r − 1)

1

2
(2s− 1)drds = −5/18 (K.67)

∫
Ωe

N
p
3 ∂rN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

2
(2r − 1)

1

2
s(s− 1)drds = −1/18 (K.68)

∫
Ωe

N
p
4 ∂sN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)

1

2
r(r − 1)

1

2
(2s− 1)drds = 0 (K.69)

∫
Ωe

N
p
1 ∂rN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

2
(2r − 1)

1

2
s(s− 1)drds = 0 (K.70)

∫
Ωe

N
p
2 ∂sN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)

1

2
r(r − 1)

1

2
(2s− 1)drds = 0 (K.71)

∫
Ωe

N
p
3 ∂rN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

2
(2r − 1)

1

2
s(s− 1)drds = 0 (K.72)

∫
Ωe

N
p
4 ∂sN

ν
1 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)

1

2
r(r − 1)

1

2
(2s− 1)drds = −1/18 (K.73)

... same procedure for 1,2,3,4,5,6,7...

∫
Ωe

N
p
1 ∂rN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)(−2r)(1− s2)drds = 4/9 (K.74)

∫
Ωe

N
p
2 ∂sN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1− s)(1− r2)(−2s)drds = 4/9 (K.75)

∫
Ωe

N
p
3 ∂rN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)(−2r)(1− s2)drds = −4/9 (K.76)

∫
Ωe

N
p
4 ∂sN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1− s)(1− r2)(−2s)drds = 4/9 (K.77)

∫
Ωe

N
p
1 ∂rN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)(−2r)(1− s2)drds = −4/9 (K.78)

∫
Ωe

N
p
2 ∂sN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1 + r)(1 + s)(1− r2)(−2s)drds = −4/9 (K.79)

∫
Ωe

N
p
3 ∂rN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)(−2r)(1− s2)drds = 4/9 (K.80)

∫
Ωe

N
p
4 ∂sN

ν
9 dΩ =

∫ +1

−1

∫ +1

−1

1

4
(1− r)(1 + s)(1− r2)(−2s)drds = −4/9 (K.81)

We obtain

−
∫
Ωe

(
Np

1∂rN
ν
9 Np

2∂rN
ν
9 Np

3∂rN
ν
9 Np

4∂rN
ν
9

Np
1∂sN

ν
9 Np

2∂sN
ν
9 Np

3∂sN
ν
9 Np

4∂sN
ν
9

)
dΩ = −4

9

(
1 −1 −1 1
1 1 −1 −1

)
which is identical to Eq.(3.53) of Elman et al. [371].

I have implemented a 3x3 quadrature integration to numerically compute the matrix in the file
python codes/Gel/programQ2Q1.py:

[[ 2.77777778e-01 5.55555556e-02 1.73472348e-18 3.68628739e-18]

[ 2.77777778e-01 -1.29020059e-17 -3.46944695e-18 5.55555556e-02]

[-5.55555556e-02 -2.77777778e-01 -2.77555756e-17 -3.03576608e-18]

[-2.19008839e-17 2.77777778e-01 5.55555556e-02 -4.33680869e-18]

[-3.46944695e-18 -1.38777878e-17 -2.77777778e-01 -5.55555556e-02]

[ 2.60208521e-18 -5.55555556e-02 -2.77777778e-01 6.93889390e-18]

[ 4.01154804e-18 4.33680869e-18 5.55555556e-02 2.77777778e-01]

[-5.55555556e-02 6.07153217e-18 2.08166817e-17 -2.77777778e-01]

[-2.22222222e-01 2.22222222e-01 0.00000000e+00 -8.67361738e-19]

[ 5.55555556e-01 5.55555556e-01 1.11111111e-01 1.11111111e-01]

[-1.11111111e-01 -5.55555556e-01 -5.55555556e-01 -1.11111111e-01]

[-8.67361738e-19 -2.22222222e-01 2.22222222e-01 6.93889390e-18]

[-8.67361738e-18 -6.93889390e-18 2.22222222e-01 -2.22222222e-01]

[-1.11111111e-01 -1.11111111e-01 -5.55555556e-01 -5.55555556e-01]

[ 5.55555556e-01 1.11111111e-01 1.11111111e-01 5.55555556e-01]

[-2.22222222e-01 -5.20417043e-18 6.93889390e-18 2.22222222e-01]

[-4.44444444e-01 4.44444444e-01 4.44444444e-01 -4.44444444e-01]

[-4.44444444e-01 -4.44444444e-01 4.44444444e-01 4.44444444e-01]]
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or,

Gel =
1

18



5 1 0 0
5 0 0 1
−1 −5 0 0
0 5 1 0
0 0 −5 −1
0 −1 −5 0
0 0 1 5
−1 0 0 −5
−4 4 0 0
10 10 2 2
−2 −10 −10 −2
0 −4 4 0
0 0 4 −4
−2 −2 −10 −10
10 2 2 10
−4 0 0 4
−8 8 8 −8
−8 −8 8 8


Reading Elman [371] we see that this element is stable but patches of even and odd elements

actually are needed to establish the stability of the element.

1134



Appendix L

Computational Geophysics GEO4-1427 -
projects

compgeo.tex

L.0.1 Convection in a box *

This exercise builds on your existing 2D advection-diffusion code. Scale up the benchmark described
in Section 12.2.9 so that it runs in a 1000x1000 km domain with Earth-like parameters and velocities
(the maximum velocity is denoted by νconv and will be varied). Start with an initial zero temperature
field and Earth-like boundary conditions on the top and bottom, e.g. T = 20 at the top and T = 1000
at the bottom. Set k = 3, Cp = 1250 and ρ = 3000.

Run the code until steady state is reached. Implement an algorithm which computes the average
temperature

< T >=
1

LxLy

∫∫
T (x, y)dxdy

in the domain and plot it as a function of time. Also compute the root mean square velocity in the
domain:

νrms =

√
1

LxLy

∫∫
(u2 + v2)dxdy

Plot the steady state < T > and νrms as a function of the resolution h. Plot the temperature on the
x = Lx/2 line for different values of νconv. When possible, make a link with the Mantle Dynamics
practical.

Bonus: Compute and plot the heat flux q⃗ = −∇⃗T in the center of the elements.

L.0.2 Corner flow subduction *

� In this experiment the velocity is prescribed in geometrically simple subducting and overriding
plates, while the velocity in the mantle is computed by means of an analytical solution coined
’corner flow velocity’. Details are to be found in G.K. Batchelor, An introduction to fluid
dynamics. Cambridge University Press, 1967.

� Write a function which prescribes the velocity in a lithospheric sized domain.

� Use this velocity to drive the system in time (choose the appropriate values for the coefficients
in the heat transport equation)

� prescribe a constant temperature value at the top, and fix the temperature on both sides, but
only in the plates (along lengths l1 and l2. Choose an appropriate plate temperature model.
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� Run the model over millions of years with different velocities.

� Measure the depth of the isotherm 800◦ as a function of time (bonus).

� Is steady state ever reached ?

If all goes well, you should be able to recover similar results:

a) b)
3D setup with prescribed velocity. b) example of temperature field evolution

what are l1, l2 ? rephrase !

L.0.3 From 2D to 3D **

Rewrite your 2D FEM advection-diffusion code so that it now runs on a cube. You will need to
create a new connectivity array, compute new elemental matrices, etc ... Center the cube on the
origin of the axis system.

Compute the steady-state solution of a problem without heat advection. The domain is a unit
cube, k = ρ = Cp = 1. A temperature Tmax = 1 is prescribed at the bottom and Tmin = 0 at the top.

Same problem when these boundary conditions are now prescribed on the faces.
Prescribe an temperature field such that it is 1 everywhere in the domain but 2 inside a sphere

of radius 0.1 centered at (0.66, 0.66, 0.66). This time no diffusion takes place but we wish to advect
the field using the velocity ν⃗ = (y, x, 0). What is the highest resolution that is achievable on your
computer?

L.0.4 Triangular linear elements */**

Redo the 2D advection-diffusion exercises with triangular elements. You will need to make a new icon
array, and recompute the mass matrix and other matrices. The triangular elements are constructed
by splitting square elements along the diagonal. See Section 5.3.7 for the basis functions and their
derivatives. See Appendix E.0.5 for the calculations of the matrices.

L.0.5 Triangular linear elements ***

Same exercise as above, with an additional task: run the benchmark presented in Section 12.2.11.
For this you will need to generate a mesh such that nodes are placed on the perimeter of the cylinder
and there is no node inside the cylinder:

You can build it by hand, or you can use an external mesher library (see Delaunay triangulation
inside scipy). Vary the heat conduction coefficient to show the effect of diffusion on the obtained
steady state temperature field.
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L.0.6 Diffusion of topography ****

In a 2D plane assign each node an initial topography h(x, y, t = 0) given by

h(x, y, t = 0) = h0 sin(πx/Lx) + ξ(x, y)δh

where Lx and Ly are the dimensions of the domain, h0 is the height of the orogen, xi(x, y) is a
random perturbation in [−1, 1] and δh is the amplitude of the perturbation.

We wish to ’erode’ the topography by means of a (nonlinear) diffusion law as in section 2.1.1 of
Burov & Cloetingh [183].

1. What are the physical parameters needed to carry out this experiment? What are the appro-
priate boundary conditions? What is the steady state? What are the relevant time scales?
How should we choose the time step?

2. Write a code which solves the linear diffusion equation until steady state is reached. Explore
the effect of δh. Compute the slope ∇⃗h inside each element and plot its time evolution.

3. Implement the nonlinear diffusion law and run the model once again.

4. If a source term is added to the diffusion equation it is in fact a vertical velocity (∂h/∂t has
the dimensions of a velocity). Add a source term which generates uplift in a symmetric and
asymmetric manner.

Relevant Literature[1262] [1209], also check Appendix H.

L.0.7 An example of a hand-built triangular mesh

We start from a 8x5 domain which is tesselated as follows:

x

y

We can first label the nodes:
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x

y

1 2 3 4 5

6

7
8

9
10

11

12

13

14

15

16

17

18

and then label the elements:

x

y

1 2 3 4 5

6

7
8

9
10

11

12

13

14

15

16

17

18

1

2

3 4

5 6
7

8

9

10 11

12

13
14

15

16
17

18

19

20

21

22

23

We can finally build the connectivity array by hand:
icon(1,1)=1
icon(2,1)=6
icon(3,1)=7
icon(1,2)=1
icon(2,2)=2
icon(3,2)=6
icon(1,3)=7
icon(2,3)=6
icon(3,3)=8
...
icon(1,12)=11
icon(2,12)=12
icon(3,12)=13
...
icon(1,19)=14
icon(2,19)=15
icon(3,19)=16

The labelling of nodes and elements above is done by a human so it starts at 1. When imple-
menting this in python, you know what to do ...
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L.0.8 How to visualise data on a triangular mesh with Paraview

If arrays x,y contain the coordinates of the nodes, your connectivity array is called icon, and your
mesh consistes of nel elements and comprises nnp nodes, you can use the following code to generate
a vtu file to be opened with Paraview. You also need a temperature array T.

Code at https:
//raw.githubusercontent.com/cedrict/fieldstone/master/images/compgeo/mesh_visu.py

v t u f i l e=open ( ’mesh . vtu ’ , ”w” )
v t u f i l e . wr i t e ( ”<VTKFile type=’UnstructuredGrid ’ v e r s i on = ’0.1 ’ byte o rde r=’BigEndian ’>

\n” )
v t u f i l e . wr i t e ( ”<UnstructuredGrid> \n” )
v t u f i l e . wr i t e ( ”<Piece NumberOfPoints=’ %5d ’ NumberOfCells=’ %5d ’> \n” %(nnp , ne l ) )
v t u f i l e . wr i t e ( ”<Points> \n” )
v t u f i l e . wr i t e ( ”<DataArray type=’Float32 ’ NumberOfComponents= ’3 ’ Format=’ a s c i i ’> \n” )
f o r i in range (0 , nnp ) :

v t u f i l e . wr i t e ( ”%10e %10e %10e \n” %(x [ i ] , y [ i ] , 0 . ) )
v t u f i l e . wr i t e ( ”</DataArray>\n” )
v t u f i l e . wr i t e ( ”</Points> \n” )
#v t u f i l e . wr i t e (”<Cel lData Sca l a r s=’ s c a l a r s ’>\n”)
#v t u f i l e . wr i t e (”<DataArray type=’Float32 ’ Name=’area ’ Format=’ a s c i i ’> \n”)
#fo r i e l in range (0 , ne l ) :
# v t u f i l e . wr i t e (”%10e\n” % ( area [ i e l ] ) )
#v t u f i l e . wr i t e (”</DataArray>\n”)
#v t u f i l e . wr i t e (”</Cel lData>\n”)
v t u f i l e . wr i t e ( ”<PointData Sca l a r s =’ s c a l a r s ’>\n” )
v t u f i l e . wr i t e ( ”<DataArray type=’Float32 ’ Name=’T ’ Format=’ a s c i i ’> \n” )
f o r i in range (0 , nnp ) :

v t u f i l e . wr i t e ( ”%10e \n” %T[ i ] )
v t u f i l e . wr i t e ( ”</DataArray>\n” )
v t u f i l e . wr i t e ( ”</PointData>\n” )
v t u f i l e . wr i t e ( ”<Cel l s>\n” )
v t u f i l e . wr i t e ( ”<DataArray type=’ Int32 ’ Name=’ c onne c t i v i t y ’ Format=’ a s c i i ’> \n” )
f o r i e l in range (0 , ne l ) :

v t u f i l e . wr i t e ( ”%d %d %d\n” %(icon [ 0 , i e l ] , i con [ 1 , i e l ] , i con [ 2 , i e l ] ) )
v t u f i l e . wr i t e ( ”</DataArray>\n” )
v t u f i l e . wr i t e ( ”<DataArray type=’ Int32 ’ Name=’ o f f s e t s ’ Format=’ a s c i i ’> \n” )
f o r i e l in range (0 , ne l ) :

v t u f i l e . wr i t e ( ”%d \n” %(( i e l +1)*3) )
v t u f i l e . wr i t e ( ”</DataArray>\n” )
v t u f i l e . wr i t e ( ”<DataArray type=’ Int32 ’ Name=’ types ’ Format=’ a s c i i ’>\n” )
f o r i e l in range (0 , ne l ) :

v t u f i l e . wr i t e ( ”%d \n” %5)
v t u f i l e . wr i t e ( ”</DataArray>\n” )
v t u f i l e . wr i t e ( ”</Ce l l s>\n” )
v t u f i l e . wr i t e ( ”</Piece>\n” )
v t u f i l e . wr i t e ( ”</UnstructuredGrid>\n” )
v t u f i l e . wr i t e ( ”</VTKFile>\n” )
v t u f i l e . c l o s e ( )
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Appendix M

Using prisms in forward gravity
modelling

This appendix was written by Sverre Hassing as part of his Bachelor thesis. Although the final
formula are definitely correct, the derivations below may still contain a typo.

The derivations for prisms have been published in the early 50’s [822]. However, to the best of
our knowledge the full derivation has not been carried out in English in full detail. The derivations
are based on those of Mader (1951) [822] and of Nagy et al. (2000) [922, 921]. Mader provided the
derivations in some detail, while Nagy et al. interpreted the results in a more modern style.

M.0.1 Basic formulas

The derivations for prisms are a lot more complicated than that for the point masses. We start with
the following two integral equations which are integral part of the derivations:

∫
x2dx

x2 + z2
= x− z arctan x

z
(M.1)∫

dx√
x2 + y2 + z2

= ln
(
x+

√
x2 + y2 + z2

)
(M.2)

Another equation that will come back multiple times is of the form:∫
du

(v2 + w2)
√
u2 + v2 + w2

(M.3)

This can be solved with a trigonometric substitution, where u =
√
v2 + w2 tanϕ. This means that

du =
√
v2+w2

cos2ϕ
dϕ.∫
du

(v2 + w2)
√
u2 + v2 + w2

=

∫ √
v2 + w2

cos2ϕ

1

(v2 + w2) tan2 ϕ+ v2
dϕ√

v2 + w2 + (v2 + w2) tan2 ϕ)

=

∫ √
v2 + w2

cosϕ2

1

v2(tan2 ϕ+ 1) + w2 tan2 ϕ

dϕ√
(v2 + w2)(tan2 ϕ+ 1)

=

∫ √
v2 + w2

cosϕ2

1
v2+w2 sin2 ϕ

cos2ϕ

dϕ
√
v2+w2

cosϕ

=

∫
cosϕdϕ

v2 + w2 sin2 ϕ
(M.4)
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A second substitution is needed where t = w
v
sinϕ and dt = v

w
cosϕdϕ:∫

cosϕdϕ

v2 + w2 sin2 ϕ
=

∫
vdt

w(v2 + v2t2)

=
1

vw

∫
dt

1 + t2

=
1

vw
arctan t

=
1

vw
arctan

w sinϕ

v
(M.5)

Now the sinϕ needs to be converted back to u, v, w. If it is known that tanϕ = u√
v2+w2 , then it

follows that sinϕ = u√
u2+v2+w2 . Eq.(M.5) then becomes

1

vw
arctan

w sinϕ

v
=

1

vw
arctan

uw

v
√
u2 + v2 + w2

(M.6)

and finally ∫
du

(v2 + w2)
√
u2 + v2 + w2

=
1

vw
arctan

uw

v
√
u2 + v2 + w2

(M.7)

M.0.2 The gravitational potential

Each prism is assumed to have constant density ρ. The gravitational potential is integrated over the
whole volume of the prism:

U(P ) = −Gρ
∫ x2

x1

∫ y2

y1

∫ z2

z1

dxdydz√
x2 + y2 + z2︸ ︷︷ ︸

I

(M.8)

In what follows we work out the exact form for the triple integral term. Elementary Eq. (M.2)
can be applied to the integral for dx in Eq. (M.8).

I =

∫∫∫
dxdydz√
x2 + y2 + z2

=

∫∫ (∫
dx√

x2 + y2 + z2

)
dydz

=

∫∫
ln
(
x+

√
x2 + y2 + z2

)
dydz (M.9)

We further proceed with the integration with respect to y. We define

f =
∫
ln
(
x+

√
x2 + y2 + z2

)
dz g′ = dy

f ′ = y(
x+
√
x2+y2+z2

)√
x2+y2+z2

g = y

and using
∫
fg′ = fg −

∫
fg′ we have

I = y

∫
ln
(
x+

√
x2 + y2 + z2

)
dz︸ ︷︷ ︸

A

−
∫∫

y2dz(
x+

√
x2 + y2 + z2

)√
x2 + y2 + z2

dy

︸ ︷︷ ︸
B

(M.10)

The calculation of I is then split into two large integrals denoted A and B, calculated in the
following subsections. Note that we have not made use of the integral bounds yet.
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The calculation of A

The first step in calculating A is to carry out a similar partial integration as seen before.

f = ln
(
x+

√
x2 + y2 + z2

)
g′ = dz

f ′ = ∂f
∂z

= z(
x+
√
x2+y2+z2

)√
x2+y2+z2

g = z

A = y

z ln(x+√x2 + y2 + z2
)
−
∫

z2dz(
x+

√
x2 + y2 + z2

)√
x2 + y2 + z2


= yz ln

(
x+

√
x2 + y2 + z2

)
︸ ︷︷ ︸

A0

− y
∫

z2dz(
x+

√
x2 + y2 + z2

)√
x2 + y2 + z2︸ ︷︷ ︸

A1

(M.11)

We now focus on the A1 integral. We first multiply the numerator and denominator by −x +√
x2 + y2 + z2. The last step uses Eqs. (M.2), (M.7) and (M.1) respectively for each term.

A1 =

∫
z2dz(

x+
√
x2 + y2 + z2

)√
x2 + y2 + z2

−x+
√
x2 + y2 + z2

−x+
√
x2 + y2 + z2

=

∫
(−xz2 + z2

√
x2 + y2 + z2)dz

(x2 + y2 + z2 − x2)
√
x2 + y2 + z2

=

∫
−xz2dz

(y2 + z2)
√
x2 + y2 + z2

+

∫
z2
√
x2 + y2 + z2dz

(y2 + z2)
√
x2 + y2 + z2

=

∫
−x (z2 + y2 − y2) dz

(y2 + z2)
√
x2 + y2 + z2

+

∫
z2dz

y2 + z2

=

∫
−xdz√

x2 + y2 + z2
+

∫
xy2dz

(y2 + z2)
√
x2 + y2 + z2

+

∫
z2dz

y2 + z2

= −x
∫

dz√
x2 + y2 + z2

+ xy2
∫

dz

(y2 + z2)
√
x2 + y2 + z2

+

∫
z2dz

y2 + z2

= −x ln
(
z +

√
x2 + y2 + z2

)
+ y arctan

xz

y
√
x2 + y2 + z2

+ z − y arctan z
y

(M.12)

This can be combined to get the final expression for A:

A = y

(
z ln

(
x+

√
x2 + y2 + z2

)
+ x ln

(
z +

√
x2 + y2 + z2

)
− y arctan xz

y
√
x2 + y2 + z2

− z + y arctan
z

y

)
(M.13)

The last two terms can be left out because they will cancel out when computing the integration
boundaries from x1 to x2, because these terms do not contain the variable x. Finally we arrive at
the following expression for A:

A = yz ln
(
x+

√
x2 + y2 + z2

)
+ xy ln

(
z +

√
x2 + y2 + z2

)
− y2 arctan xz

y
√
x2 + y2 + z2

(M.14)
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The calculation of B

The inner integral can be simplified similarly to how A1 was simplified in Eq. (M.12), by multiplying
both numerator and denominator with −x+

√
x2 + y2 + z2. The last step uses Eqs. (M.7) and (M.1):

B = −
∫
y2
∫

dz(
x+

√
x2 + y2 + z2

)√
x2 + y2 + z2

−x+
√
x2 + y2 + z2

−x+
√
x2 + y2 + z2

dy

= −
∫
y2
∫ −x+

√
x2 + y2 + z2

(x2 + y2 + z2 − x2)
√
x2 + y2 + z2

dzdy

= −
∫
y2

(
−
∫

xdz

(y2 + z2)
√
x2 + y2 + z2

+

∫
dz

y2 + z2

)
dy

= −
∫
y2

(
−1

y
arctan

xz

y
√
x2 + y2 + z2

+
1

y
arctan

z

y

)
dy

=

∫
y arctan

xz

y
√
x2 + y2 + z2

dy (M.15)

Again the second term can be left out, because it does not contain the variable x. The next step is
to apply a partial integration to B.

f = arctan xz

y
√
x2+y2+z2

g′ = y

f ′ = −xz
1

y2
√
x2+y2+z2

+ 1

(x2+y2+z2)
3
2

x2z2

y2(x2+y2+z2)
+1

g = y2

2

B =
y2

2
arctan

xz

y
√
x2 + y2 + z2

+
xz

2

∫
y2

1

y2
√
x2+y2+z2

+ 1

(x2+y2+z2)
3
2

x2z2

y2(x2+y2+z2)
+ 1︸ ︷︷ ︸

B1

(M.16)

Let us finish by calculating the integral B1:
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B1 =
xz

2

∫
y2

1

y2
√
x2+y2+z2

+ 1
(x2+y2+z2)3/2

x2z2

y2(x2+y2+z2)
+ 1

dy

=
xz

2

∫
y2

x2+y2+z2

y2(x2+y2+z2)3/2
+ y2

y2(x2+y2+z2)3/2

x2z2+y2(x2+y2+z2)
y2(x2+y2+z2)

dy

=
xz

2

∫
y2

x2+2y2+z2

y2(x2+y2+z2)3/2

x2z2+y2(x2+y2+z2)
y2(x2+y2+z2)

dy

=
xz

2

∫
y2

x2 + 2y2 + z2√
x2 + y2 + z2(x2z2 + y2(x2 + y2 + z2))

dy

=
xz

2

∫
y2

x2 + 2y2 + z2√
x2 + y2 + z2(x2 + y2)(z2 + y2)

dy

=
xz

2

(∫
2dy√

x2 + y2 + z2
+

∫
−(x2 + z2)y2 − 2x2z2

(x2 + y2)(y2 + z2)
√
x2 + y2 + z2

dy

)

= xz ln
(
y +

√
x2 + y2 + z2

)
− xz

2

∫
(x2 + z2)y2 + 2x2z2

(x2 + y2)(y2 + z2)
√
x2 + y2 + z2

dy

= xz ln
(
y +

√
x2 + y2 + z2

)
− xz

2

∫
x2y2 + y2z2 + 2x2z2

(x2 + y2)(y2 + z2)
√
x2 + y2 + z2

dy

= xz ln
(
y +

√
x2 + y2 + z2

)
− xz

2

∫
x2(y2 + z2) + z2(x2 + y2)

(x2 + y2)(y2 + z2)
√
x2 + y2 + z2

dy

= xz ln
(
y +

√
x2 + y2 + z2

)
− xz

2

∫
x2

(x2 + y2)
√
x2 + y2 + z2

dy − xz

2

∫
z2

(y2 + z2)
√
x2 + y2 + z2

dy

= xz ln
(
y +

√
x2 + y2 + z2

)
− xz

2

x2 arctan yz

x
√
x2+y2+z2

xz
− xz

2

z2 arctan xy

z
√
x2+y2+z2

xz

= xz ln
(
y +

√
x2 + y2 + z2

)
− x2

2
arctan

yz

x
√
x2 + y2 + z2

− z2

2
arctan

xy

z
√
x2 + y2 + z2

(M.17)

This can be combined to get the full expression for B:

B = xz ln
(√

x2 + y2 + z2 + y
)
−x

2

2
arctan

zy

x
√
x2 + y2 + z2

+
y2

2
arctan

xz

y
√
x2 + y2 + z2

−z
2

2
arctan

xy

x
√
z2 + y2 + z2

Combining A and B

Now A and B can be combined to get the expression of I

I = A+B

= yz ln
(
x+

√
x2 + y2 + z2

)
+ xy ln

(
z +

√
x2 + y2 + z2

)
− y2 arctan xz

y
√
x2 + y2 + z2

+ xz ln
(√

x2 + y2 + z2 + y
)
− x2

2
arctan

zy

x
√
x2 + y2 + z2

+
y2

2
arctan

xz

y
√
x2 + y2 + z2

− z2

2
arctan

xy

x
√
z2 + y2 + z2

= yz ln
(
x+

√
x2 + y2 + z2

)
+ xy ln

(
z +

√
x2 + y2 + z2

)
+ xz ln

(
y +

√
x2 + y2 + z2

)
− x2

2
arctan

zy

x
√
x2 + y2 + z2

− y2

2
arctan

xz

y
√
x2 + y2 + z2

− z2

2
arctan

xy

x
√
z2 + y2 + z2

(M.18)
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The boundaries for the volume from Eq. (??) need to be applied to the result of the integration.
The boundary conditions are computed by plugging the upper value into the equation and subtracting
the equation with the lower value plugged in. When the upper and lower values are respectively x2
and x1 for some function f(x), this is f(x2) − f(x1). This can be represented more efficiently with
a summation over the subscript. Something needs to be added to still keep the subtraction in there.
This can be done by adding a factor of −1i, where i is the summation index. This will be positive

when i is even and negative when i is odd. The new way of showing the result would be
2∑
i=1

−1if(xi).

This is especially useful when there are three different integration boundaries to resolve. r will be
used instead of

√
x2 + y2 + z2.

I =

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣yz ln (x+ r) + xy ln (z + r) + xz ln (y + r)− x2

2
arctan

zy

xr
− y2

2
arctan

xz

yr
− z2

2
arctan

xy

xr

∣∣∣∣x2
x1

∣∣∣∣∣
y2

y1

∣∣∣∣∣∣
z2

z1

=
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
yjzk ln (xi + rijk) + xiyj ln (zk + rijk) + xizk ln (yj + rijk)

−x
2
i

2
arctan

zkyj
xirijk

−
y2j
2
arctan

xizk
yjrijk

− z2k
2
arctan

xiyj
xirijk

)
(M.19)

There is probably a mistake in eq above and below, last term, most likely should contain zk in denominator?

Finally,

U(r⃗) = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
yjzk ln (xi + rijk) + xiyj ln (zk + rijk) + xizk ln (yj + rijk)

−x
2
i

2
arctan

zkyj
xirijk

−
y2j
2
arctan

xizk
yjrijk

− z2k
2
arctan

xiyj
xirijk

)
(M.20)

M.0.3 The gravity vector g⃗

In 3D Cartesian coordinates the gravity vector is expressed as

g⃗ = −∇⃗U =


−∂U

∂x

−∂U
∂y

−∂U
∂z

 (M.21)

The easiest way to calculate this is by including the partial derivatives in the original integral (M.8).

Ix(r⃗) =

∫∫∫
∂

∂x

dxdydz√
x2 + y2 + z2

= −
∫∫∫

xdxdydz

(
√
x2 + y2 + z2)3

=

∫∫
dydz√

x2 + y2 + z2
(M.22)
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The integral (M.2) can be used, followed by the calculation of A as seen in Section M.0.2 without
the multiplication with y:

Ix(r⃗) =

∫
ln
(
x+

√
x2 + y2 + z2

)
dz

= z ln
(
y +

√
x2 + y2 + z2

)
+ y ln

(
z +

√
x2 + y2 + z2

)
− x arctan yz

x
√
x2 + y2 + z2

(M.23)

The integration boundaries can be applied. Multiplication with G and ρ is the final step in deriving
the element of the gravity vector component (gx).

gx = Gρ
2∑

i,j,k=1

(−1)i+j+k
zk ln(yj +√x2i + y2j + z2k

)
+ yj ln

(
zj +

√
x2i + y2j + z2k

)
− xi arctan

yjzk

xi
√
x2i + y2j + z2k


The same can be done for the y− and z−components and in the end we obtain

gx = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
zk ln (yj + rijk) + yj ln (zj + rijk)− xi arctan

yjzk
xirijk

)

gy = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
zk ln (xi + rijk) + xi ln (zj + rijk)− yj arctan

xizk
yjrijk

)

gz = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
xi ln (yj + rijk) + yj ln (xi + rijk)− zk arctan

xiyj
zkrijk

)

These equations can be found in various other papers such as Eq. (6) in Heck and Seitz, 2007
[556], Eqs. (8,11,12) in Nagy et al. , 2000 [922] (note that there is a mistake there that is later fixed
in [921]), appendix A in Couder-Castaneda et al. ., 2015 [279] and the derivation between (14) and
(15) in Mader, 1951 [822].

M.0.4 The gravity gradient tensor

The different elements of the gravity gradient tensor can be determined by partially differentiating
each component of the gravity vector with respect to each space coordinate. As will be shown later,
T should be a symmetric matrix and its trace should equal zero.

The diagonal terms

Txx =
∂

∂x
gx = −

∂2

∂x2
U(r⃗) = Gρ ∂

2

∂x2
(−I(r⃗)) (M.24)

Ixx(r⃗) =

∫∫∫
∂2

∂x2
dxdydz√
x2 + y2 + z2

=

∫∫
∂

∂x

dydz√
x2 + y2 + z2

= −
∫∫

xdydz√
x2 + y2 + z2

3 (M.25)
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A trigonometric substitution is applied to solve this integral. This uses y =
√
x2 + z2 tanϕ and

dy =

√
x2+y2

cos2 ϕ
dϕ.

Ixx = −x
∫∫ √

x2 + y2

cos2 ϕ

dϕdz√
(x2 + z2) tan2 ϕ+ x2 + z2

3

= −x
∫∫ √

x2 + y2

cos2 ϕ

dϕdz√
(x2 + z2)(tan2 ϕ+ 1)

3

= −x
∫∫ √

x2 + y2

cos2 ϕ

dϕdz(√
(x2+z2)

cosϕ

)3

= −x
∫

1

x2 + z2

∫
cosϕ dϕdz

= −x
∫

1

x2 + z2
sinϕdz (M.26)

Now the substitution needs to be undone. If tanϕ = y√
x2+z2

, then sinϕ = y√
x2+y2+z2

and then

Ixx = −xy
∫

dz

(x2 + z2)
√
x2 + y2 + z2

(M.27)

This can be solved by applying equation (M.7).

Ixx = −xy
xy

arctan
yz

x
√
x2 + y2 + z2

= − arctan
yz

x
√
x2 + y2 + z2

The tensor element Txx is then formulated as follows (the other elements of the diagonal are found
by cyclic permutation of x, y and z):

Txx = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
− arctan

yjzk
xirijk

)

Tyy = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
− arctan

xizk
yjrijk

)

Tzz = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k
(
− arctan

xiyj
zkrijk

)

The off-diagonal terms of the tensor

The other elements are easier to calculate, because the partial derivatives cancel out the integrals:
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Ixy =

∫∫∫
∂2

∂x∂y

dxdydz√
x2 + y2 + z2

=

∫∫
∂

∂y

dydz√
x2 + y2 + z2

=

∫
dz√

x2 + y2 + z2

= ln
(
z +

√
x2 + y2 + z2

)
(M.28)

Ixz =

∫∫∫
∂2

∂x∂z

dxdydz√
x2 + y2 + z2

=

∫∫
∂

∂z

dydz√
x2 + y2 + z2

=

∫
dy√

x2 + y2 + z2

= ln
(
y +

√
x2 + y2 + z2

)
(M.29)

Iyz =

∫∫∫
∂2

∂y∂z

dxdydz√
x2 + y2 + z2

=

∫∫
∂

∂z

dxdz√
x2 + y2 + z2

=

∫
dx√

x2 + y2 + z2

= ln
(
x+

√
x2 + y2 + z2

)
(M.30)

From these calculations it should be obvious why T is a symmetric tensor. When applying the
second partial derivatives, their order does not matter:

Ixy =

∫∫∫
∂2

∂x∂y

dxdydz√
x2 + y2 + z2

=

∫∫∫
∂2

∂y∂x

dxdydz√
x2 + y2 + z2

= Iyx (M.31)

The tensor elements following from this are:

Txy = Tyx = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k (ln (zk + rijk))

Txz = Tzx = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k (ln (yj + rijk))

Tyz = Tzy = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k (ln (xi + rijk))
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M.0.5 Revisiting Poisson’s equation

The gravitational potential Poisson equation is ∇2U = 4πGρ. This can and should be verified for the
derived equations for prisms. Inside the prism, the density has an assigned constant value. Outside
of the prism, the density is zero, so the result is ∇2U = 0. These cases will be treated separately.

Outside the prism

∇2U = 0 can be written ∂2U
∂x2

+ ∂2U
∂y2

+ ∂2U
∂z2

= 0. which is the trace of T . We first add the terms and
then the boundary conditions are applied.

We will need the formula to add arctangents together:

arctan a+ arctan b = arctan
a+ b

1− ab
(M.32)

We start by adding the terms Txx and Tyy together:

Txx + Tyy = (−1)i+j+k arctan yz
xr

+ (−1)i+j+k arctan xz
yr

= (−1)i+j+k arctan
yz
xr

+ xz
yr

1− yz
xr

xz
yr

= (−1)i+j+k arctan
y2z
xyr

+ x2z
xyr

1− xyz2

xyr2

= (−1)i+j+k arctan
z(x2+y2)
xyr

xy(r2−z2)
xyr2

= (−1)i+j+k arctan xyzr
2(x2 + y2)

x2y2r(r2 − z2)

= (−1)i+j+k arctan zr(x2 + y2)

xy(x2 + y2 + z2 − z2)
= (−1)i+j+k arctan zr

xy
(M.33)

By considering a right triangle with sides 1 and x, it easy to prove that:

arctanx+ arctan
1

x
=
π

2
(M.34)

This can be used to transform the arctan to one that is similar to Tzz.

Txx + Tyy = (−1)i+j+k arctan zr
xy

= (−1)i+j+k
(π
2
− arctan

xy

zr

)
(M.35)

The last step is to add the term Tzz:

∇2U = Txx + Tyy + Tzz = (−1)i+j+k
(π
2
− arctan

xy

zr
+ arctan

xy

zr

)
= (−1)i+j+kπ

2
(M.36)

The end result is a single value. When the boundary conditions are applied this single value will be
subtracted from itself resulting in zero, so ∇2U(r⃗) = 0.

Inside the prism

We can simply put the observation point at the centre of the prism. The coordinates of the prism
are now such that −x1 = x2, −y1 = y2 and −z1 = z2. All eight terms for these conditions results
give π

2
, so the result is:

∇2U = Gρ8π
2
= 4πGρ (M.37)

1149



M.0.6 Better numerical stability

Heck and Seitz (2007) [556] modify the standard formulae for the prism to get a better numerical
stability in the logarithms. This is done by dividing the inside of the logs by an extra factor:

ln (zk + rijk)→ ln
zk + rijk√
x2i + y2j

This extra factor disappears when applying the boundary conditions in the z direction, so that
the results remain identical:

∣∣∣∣∣∣ln zk + rijk√
x2i + y2j

∣∣∣∣∣∣
z2

z1

=
∣∣∣ln (zk + rijk)− ln

√
x2i + y2j

∣∣∣z2
z1

= ln (z2 + rijk)− ln
√
x2i + y2j − ln (z1 + rijk) + ln

√
x2i + y2j

= ln (z2 + rijk)− ln (z1 + rijk) (M.38)
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Appendix N

Solutions to exercises of GEO3-1313

N.0.1 Problem 1

I =
1

3
(Ix + Iy + Iz)

=
1

3

∫∫∫
V

ρ(r)(y2 + z2)dV +
1

3

∫∫∫
V

ρ(r)(x2 + z2)dV +
1

3

∫∫∫
V

ρ(r)(x2 + y2)dV

=
1

3

∫∫∫
V

ρ(r)(2x2 + 2y2 + 2z2)dV

=
2

3

∫∫∫
V

ρ(r)r2dV

=
2

3

∫∫∫
V

ρ(r)r2r2 sin θdr dθ dϕ

=
2

3

∫ R

0

∫ π

0

∫ 2π

0

ρ(r)r2r2 sin θdr dθ dϕ

=
2

3

(∫ π

0

sin θdθ

)(∫ 2π

0

dϕ

)∫ R

0

ρ(r)r4dr

=
8π

3

∫ R

0

ρ(r)r4dr (N.1)

Alternative solution: I is evaluated for the special case where the rotation axis is the z-axis,
where d = rsinθ. Substitution in I =

∫
V
ρd2dV yields

I =

∫∫∫
V

ρ(r)(r2 sin2 θ)dV

=

∫ R

0

∫ π

0

∫ 2π

0

ρ(r)(r2 sin2 θ)r2 sin θdr dθ dϕ

=

(∫ π

0

sin3 θdθ

)(∫ 2π

0

dϕ

)∫ R

0

ρ(r)r4dr
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By writing sin3 θ = sin θ(1− cos2 θ) we can operate a change of variables u = cos θ, and we arrive at∫
sin3 θdθ = 4/3 (skipping a few steps here) and we obtain the expected result.

1152



N.0.2 Problem 2

For a uniform sphere, we have ρ(r) = ρ0. Then

I =
8π

3

∫ R

0

ρ0r
4dr

=
8π

3
ρ0

∫ R

0

r4dr

=
8π

15
ρ0R

5

∫ R

0

r4dr

The mass of the sphere is

M =

∫∫∫
V

ρ(r)dV

= ρ0

∫ R

0

∫ π

0

∫ 2π

0

r2 sin θdr dθ dϕ

= ρ0
4

3
πR3 (N.2)

In the end we get

I =
2

5
MR2

When all the mass is concentrated in the center, then ρ(r) = ρ0δ(r) where δ is the Dirac delta
function1. Then

I =
8π

3

∫ R

0

ρ0δ(r)r
4dr

=
8π

3
ρ0

∫ R

0

δ(r)r4dr

= 0 (N.3)

When all the mass is concentrated in a shell of zero thickness of radius R, then ρ(r) = ρ0δ(r−R),
so

I =
8π

3

∫ R

0

ρ0δ(r −R)r4dr

=
8π

3
ρ0

∫ R

0

δ(r −R)r4dr

=
8π

3
ρ0R

4 (N.4)

Conversely, its mass is

M =

∫∫∫
V

ρ(r)dV

= ρ0

∫ R

0

∫ π

0

∫ 2π

0

δ(r −R)r2 sin θdr dθ dϕ

= ρ04πR
2 (N.5)

and then

I =
2

3
MR2

1https://en.wikipedia.org/wiki/Dirac_delta_function
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N.0.3 Problem 3

⟨ρ⟩ =
1

V

∫∫∫
V

ρdV

=
1

4
3
πR3

∫∫∫
V

ρ(r)r2 sin θdr dθdϕ

=
1

4
3
πR3

4π

∫ R

0

ρ(r)r2dr

=
3

R3

∫ R

0

ρ(r)r2dr (N.6)

We then turn to the moment of inertia:

I =
8π

3

∫ R

0

ρ(r)r4dr (N.7)

= fMR2 (N.8)

where

M =

∫∫∫
V

ρ(r)dV = V
1

V

∫∫∫
V

ρ(r)dV︸ ︷︷ ︸
⟨ρ⟩

=
4

3
πR3⟨ρ⟩

We then insert this expression of M in Eq. (N.8):

I = f
4

3
πR3⟨ρ⟩R2 = f

4

3
πR5⟨ρ⟩

Equating this to Eq. N.7 yields

8π

3

∫ R

0

ρ(r)r4dr = f
4

3
πR5⟨ρ⟩

or,

f⟨ρ⟩R5 = 2

∫ R

0

ρ(r)r4dr (N.9)

We now make use of the expression for the density:

ρ(r) =

{
ρc 0 ≤ r ≤ Rc

ρm Rc ≤ r ≤ R

Then Eq. (N.6) yields

⟨ρ⟩ =
3

R3

∫ R

0

ρ(r)r2dr

=
3

R3

(∫ Rc

0

ρcr
2dr +

∫ R

Rc

ρmr
2dr

)
=

3

R3

(
R3
c

3
ρc +

1

3
(R3 −R3

c)ρm

)
=

R3
c

R3
ρc + (1− R3

c

R3
)ρm

=

(
Rc

R

)3

ρc +

[
1−

(
Rc

R

)3
]
ρm (N.10)
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We know ρm, but not ρc, so we write:

ρc = ρm

[
1 +

(
R

Rc

)3(⟨ρ⟩
ρm
− 1

)]
(N.11)

We now turn to Eq. (N.9). Since

2

∫ R

0

ρ(r)r4dr = 2

∫ Rc

0

ρcr
4dr + 2

∫ R

Rc

ρmr
4dr

=
2

5

[
R5
cρc + (R5 −R5

c)ρm
]

then

f⟨ρ⟩R5 =
2

5

[
R5
cρc + (R5 −R5

c)ρm
]

or,
5f⟨ρ⟩R5

2ρm
= R5

c

ρc
ρm

+ (R5 −R5
c)

5f⟨ρ⟩R5

2ρm
= R5

c(
ρc
ρm
− 1) +R5)

Now dividing by R5 on each side:

5f⟨ρ⟩
2ρm

=

(
Rc

R

)5(
ρc
ρm
− 1

)
+ 1

Using Eq. (N.11), we can write

ρc
ρm
− 1 =

(
R

Rc

)3(⟨ρ⟩
ρm
− 1

)
so finally

5f⟨ρ⟩
2ρm

− 1 =

(
Rc

R

)5(
R

Rc

)3(⟨ρ⟩
ρm
− 1

)
or,

5f⟨ρ⟩
2ρm

− 1 =

(
Rc

R

)2(⟨ρ⟩
ρm
− 1

)
and then (

Rc

R

)
=

 5f⟨ρ⟩
2ρm
− 1(

⟨ρ⟩
ρm
− 1
)
1/2
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N.0.4 Problem 4

Assume a uniform mantle ρm and core ρc. For the total mass we have

M =

∫
V

ρdV = 4π

∫ R

0

ρ(r)r2dr =
4π

3
R3
cρc +

4π

3
(R3 −R3

c)ρm

For the moment of inertia we have,

I =
8π

3

∫ R

0

ρ(r)r4dr =
8π

15
R5
cρc +

8π

15
(R5 −R5

c)ρm

In matrix form the above equations become:(
4π
3
R3
c

4π
3
(R3 −R3

c)
8π
15
R5
c

8π
15
(R5 −R5

c)

)
·
(

ρc
ρm

)
=
(
M I

)
We use Cramers rule(

a11 a12
a21 a22

)
·
(
x1
x2

)
=

(
b1
b2

)
⇒

(
x1
x2

)
=

1

∆

(
a22 −a12
−a21 a11

)
·
(
b1
b2

)
In our case the determinant of the matrix is

∆ =
32π2

45

[
R3
c(R

5 −R3
c)−R5

c(R
3 −R3

c)
]

N.0.5 Problem 5

skipped

N.0.6 Problem 6

see lecture notes

N.0.7 Problem 7

g =
GM
R2

=
6.67e− 11 ∗ 5.97e24

63710002
≃ 9.8

N.0.8 Problem 8

pCMB =

∫
ρgdz ≃ ρ0g0(REarth −RCMB) ≃ 127.5GPa
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N.0.9 Problem 9

U(r⃗) = − Gm1

|r⃗1 − r⃗|
= − Gm1√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

∇⃗U =

 ∂xU
∂yU
∂zU


We have

∂xU = −Gm1
∂

∂x

1√
(x1 − x)2 + (y1 − y)2 + (z1 − z)2

= −Gm1 · −
1

2

−2(x1 − x)
[(x1 − x)2 + (y1 − y)2 + (z1 − z)2]3/2

= Gm1
1

[(x1 − x)2 + (y1 − y)2 + (z1 − z)2]
−(x1 − x)√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

= Gm1
1

|r⃗1 − r⃗|2
−(x1 − x)√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

We repeat this operation for ∂y and ∂z and finally:

−∇⃗U =

 ∂xU
∂yU
∂zU

 = Gm1
1

|r⃗1 − r⃗|2


(x1−x)
|r⃗1−r⃗|
(y1−y)
|r⃗1−r⃗|
(z1−z)
|r⃗1−r⃗|

 =
Gm1

|r⃗1 − r⃗|2
e⃗r⃗1r⃗ = g⃗

N.0.10 Problem 10∫
V

∆UdV =

∫
V

4πGρdV = 4πG
∫
V

Mδ(r⃗ − r⃗0)dV = 4πGM

∫
V

∆UdV =

∫
V

∇⃗2UdV =

∫
V

∇⃗ · ∇⃗UdV =

∫
Γ

∇⃗U · n⃗dS =

∫
Γ

(−g⃗) · n⃗dS =

∫
Γ

gdS = 4πr2g

Note that we have g⃗ which is pointing towards the center and therefore has the opposite direction
to n⃗ which is normal to the shell surface so that (−g⃗) · n⃗ = g. Also the integral on Γ is at constant
radius so g(r) can be taken out of the integral.

Finally we obtain

g =
GM
r2

N.0.11 Problem 11

We start from ∇⃗2U = 4πGρ. We then have

[∇⃗2][U ] = [G][ρ]

so
[U ] = [G][ρ]/[∇⃗2] =M−1L3T−2 ·ML−3 · L2 = L2T−2 =ML2T−2︸ ︷︷ ︸

energy

/M

(see lecture notes on physical dimensions)
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N.0.12 Problem 12

Escape velocity is speed at which kinetic energy is equal to gravitational potential energy, i.e.

1

2
mv2 = mgH

so v =
√
2gH and since g = GM/R2 then the escape velocity at the surface (i.e. H = R) is given by

v =
√

2GM/R

vearth ≃ 11.2km/s

vmoon ≃ 2.4km/s

See https://www.newworldencyclopedia.org/entry/Escape_velocity

N.0.13 Problem 13

E = −
∫
V

ρUdV

= −
∫
V

ρ0U(r)r
2 sin θ drdθdϕ

= −4πρ0
∫ R

0

r2U(r)dr

= −4πρ0
∫ R

0

r2
[
2π

3
Gρ0r2 −

3

2

GM
R

]
dr

= −8π2ρ20
3
G
∫ R

0

r4dr + 6ρ0π
GM
R

∫ R

0

r2dr

= ...

=
8π

5
ρ0MR2G (N.12)

N.0.14 Problem 14

We start from the Laplace operator in spherical coordinates:

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

Because of the symmetry of the problem, the solution is expected to only depend on r, and not on
θ nor ϕ, so that ∂θ → 0 and ∂ϕ → 0 in the equation above. We end up with:

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
Inside the planet, the density is not zero, so we need to solve a Poisson equation

∆U =
1

r2
∂

∂r

(
r2
∂U

∂r

)
= 4πGρ0

Outside the planet the density is zero and we need to solve a Laplace equation:

∆U =
1

r2
∂

∂r

(
r2
∂U

∂r

)
= 0
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We start with the Poisson equation which we rewrite as follows:

∂

∂r

(
r2
∂U

∂r

)
= 4πGρ0r2

We integrate once and obtain

r2
∂U

∂r
=

4π

3
Gρ0r3 + A

where A is a constant to be specified later. We divide by r2 and obtain

∂U

∂r
=

4π

3
Gρ0r +

A

r2

The radial component of the gradient operator is simply ∂r so that the equation above is (save a
minus sign) gr:

gr(r) = −
4π

3
Gρ0r −

A

r2

When r → 0 the gravity acceleration must remain finite so we need to set A = 0. Then

gr(r)|inside = −
4π

3
Gρ0r

We integrate once more and obtain

U(r)|inside =
2π

3
Gρ0r2 +B

where B is a constant.
We now turn to the Laplace equation outside the planet which yields

r2
∂U

∂r
= C

where C is a constant. Then it follows that

∂U

∂r
=
C

r2

or,

U(r) = −C
r
+D

When r →∞ the potential tends to zero, so that D = 0. Then

U(r)outside = −
C

r

and from gr(r) = −∂rU we get

gr(r)|outside = −
C

r2

We have solved the Poisson and Laplace equations but remain two constants to be specified. In
order to do so we invoke the continuity of the gravity acceleration and potential at the surface of the
planet:

gr(r = R)|inside = gr(r = R)|outside
U(r = R)|inside = U(r = R)|outside
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The first continuity condition yields

− C

R2
= −4π

3
Gρ0R

i.e., C =MG. The second continuity condition then yields

−C
R

= −MG
R

=
2π

3
Gρ0R2 +B

i.e. B = −3
2
MG
R
.

If all the mass is concentrated at the origin then by definition

gr(r) =
MG
r2

U(r) = −MG
R

Finally

P (r) = −
∫ R

r

ρ(r′)g(r′)dr′ =

∫ R

r

ρ0
4π

3
Gρ0r′dr′ =

2π

3
Gρ20(R2 − r2)

N.0.15 Problem 15

We start from (10.36), i.e

U(r) = −
∫ ∞

r

Gm(r′)

r′2
dr′

Outside the sphere, r > R and the mass at any location r′ > R is simply M . Then

U(r) = −
∫ ∞

r

GM

r′2
dr′ = −GM

r

When r < R we can split the integral in two:

U(r) = −
∫ R

r

Gm(r′)

r′2
dr′ −

∫ ∞

R

Gm(r′)

r′2
dr′

We have just computed the second term so we focus on the first one. In this integral the mass
m(r′) = 4

3
πr′3ρ0 so that

U(r) = −
∫ R

r

G

r′2
4

3
πr′3ρ0dr

′ − GM
r

= −1

2

4

3
πG(R2 − r2)− GM

r
=

2π

3
ρ0Gr2 −

3

2

GM
r
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Appendix O

A quick guide to Paraview and gnuplot

O.0.1 Paraview

Installation procedure

If you have Ubuntu, type the following in a terminal and follow the instructions.

sudo apt-get install paraview

Upon completion, type ’paraview’ followed by Enter in the terminal and your screen should look
similar to Screen Capture 1.

If you run Windows or MacOS1, go to www.paraview.org. Click on ’download’. The website
automatically detects your OS2. Download the latest version(.exe for Windows, .dmg for Apple),
and install it on your computer. Find the icon on your computer, double click on it and your screen
should look similar to Screen Capture 1.

Screen Capture 1.

Opening a file

Press Ctrl+O on your keyboard or click File>Open> and the following window should appear after
you press the green button Apply:

1You could also use Home Brew https://formulae.brew.sh/cask/paraview
2https://en.wikipedia.org/wiki/Operating_system
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Left click of the mouse allows you to move the domain in the plotting area, Right click allows you to zoom in and out.

Select the .vtu file you wish to import in the session or a whole list of them. Your Paraview
session should then look like this:

1: click on this icon to change the background colour to white;
2: click this icon for plotting vector field arrows and follow instructions below;

3: click this icon for isocontours and follow the intructions below.

4: click on this menu to select the field you wish to plot;
5: click on this menu and select Surface With Edges to see the mesh;

6: click on this icon to remove the red-yellow-green axis in the plotting area.

Colours and log scale

I have loaded the .vtu file, chosen a white background, zoomed in, selected the temperature field, so
that my screen looks now like this (I have also moved the colour bar):
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7: change the range of the variable;
8: change the colour scale;

9: change the number of colours inside the scale;

10: switch on logarithmic scale.

When it comes to choosing colours, please see: Crameri, Shephard, and Heron [286] and Zelst,
Crameri, Pusok, Glerum, Dannberg, and Thieulot [1403].

If you find that the circled area is missing on your screen, go to View and click on Color Map Editor.

add how to add color scales

Isocontours

Having clicked on the icon numbered 3 in the panels above, your screen should look like this:

11: value of the isocontour;
12: add or remove an isocontour;

13: toggle the background grey square and the isocontours on/off by clicking on their respective eye.
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Left: If you want automatically generated isocontours, remove the existing one and click on 20. A small window opens: fill the min/max/number values and

click OK. Right: Having obtained these isocontours you can change the colour of the lines by clicking on 19.

Vector field arrows

In order to obtain such arrows, make sure that you go through points 14 and 15.

Then click on the icon 16. In order to change the scale of the arrows change the value in 17.

Exporting to png

File>Save Screenshot. Click OK on the first panel. Enter the name of the file you have chosen and
click OK.

Exporting line data

Filters > Data Analysis > Plot Over Line.

You can change the coordinates of the beginning and the end of the line.
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Getting rid of ’Apply’

It can be annoying to have to press Apply all the time so if you wish to bypass it, got to Edit >
Settings, and tick the ’Auto Apply’ box in the window that appears.

Multiple vtu files at once

You can load multiple vtu files or the same one multiple times and move each where you want it.

Warp by scalar

Filters ¿ Alphabetical ¿ Warp By Scalar

O.0.2 gnuplot

gnuplot is a famous and widely used command-line program that can generate two- and three-
dimensional plots of functions, data, and data fits. It dates back to 1986 and runs on all operating
systems (Linux, Unix, Microsoft Windows, macOS).

http://www.gnuplot.info/

http://www.gnuplotting.org/

http://lowrank.net/gnuplot/index-e.html

The gray boxes indicate that its content takes place in the terminal.

Installing gnuplot

If you are using Ubuntu, you can install gnuplot as follows:

> sudo apt-get install gnuplot
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Interactive use

In the following pages I explain how to use the gnuplot program from the terminal. Having done so,
in the terminal simply type

> gnuplot

The following should then appear:

G N U P L O T

Version 5.2 patchlevel 2 last modified 2017-11-01

Copyright (C) 1986-1993, 1998, 2004, 2007-2017

Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info

faq, bugs, etc: type "help FAQ"

immediate help: type "help" (plot window: hit ’h’)

Terminal type is now ’wxt’

gnuplot>

The prompt means that gnuplot is expecting instructions. We start by making sure that the
terminal type is such that a window appears in this interactive mode. We test this by plotting a
simple function, f(x) = x:

gnuplot> plot x

You should then obtain something similar:

You can specify the x range, change the function to x2 +
√
x and label the axes as follows:

gnuplot> set xlabel ’time’

gnuplot> set ylabel ’cost’

gnuplot> plot[-5:7] x**2+sqrt(x)
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We can also plot functions of both x and y as follows:

gnuplot> splot x*y, x**2+y

and we get

Another nice feature in the interactive is the fact that you can use the left button of the mouse
to rotate the plot!

Finally, let us assume that there is a file results.dat in the folder and that it contains results from
experimental measurements or numerical values organised in columns as follows:

1e17 8 0 256000 384000 4.91094e-12 -0.00533647 -714769 0

1e17 32 0 256000 384000 1.96438e-11 -0.0213459 -2.85908e+06 0

1e17 128 0 256000 384000 7.8575e-11 -0.0853835 -1.14363e+07 0

2e17 8 0 256000 384000 3.43871e-12 -0.00533555 -714753 0

2e17 32 0 256000 384000 1.37548e-11 -0.0213422 -2.85901e+06 0

2e17 128 0 256000 384000 5.50193e-11 -0.0853688 -1.1436e+07 0

4e17 8 0 256000 384000 4.13458e-12 -0.00533372 -714720 0

...

67108864e17 128 0 256000 384000 -5.28841e-12 -0.0212269 -1.27701e+07 0

134217728e17 8 0 256000 384000 2.93622e-13 -0.00132619 -798163 0

134217728e17 32 0 256000 384000 1.17449e-12 -0.00530475 -3.19265e+06 0

134217728e17 128 0 256000 384000 4.69795e-12 -0.021219 -1.27706e+07 0
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268435456e17 8 0 256000 384000 4.03077e-13 -0.00132594 -798181 0

268435456e17 32 0 256000 384000 1.61231e-12 -0.00530376 -3.19272e+06 0

268435456e17 128 0 256000 384000 6.44923e-12 -0.0212151 -1.27709e+07 0

In this case we may with to plot the 6th column as a function of the 1st one:

plot ’results.dat’ using 1:6 with linespoint linewidth 2 title ’velocity’

Since typing these instructions time and time again is a bit tedious gnuplot allows the user to use
short versions of these commands:

gnuplot> plot ’results.dat’ u 1:6 w lp lw 2 t ’velocity’

We see that the range of x values spans many order of magnitudes so we wish to use a logarithmic
scale on the x-axis.

gnuplot> set log x

Also, I can combine data with analytical function:

gnuplot> set log x

gnuplot> plot ’results.dat’ u 1:6 w lp lw 2 t ’velocity’, 1e7/x lw 3 , 6e-11

Finally, we may wish to export the plot to a file, say a pdf file. We must then re-assign the terminal,
give a name to the file and re-plot:

gnuplot> set term pdf

gnuplot> set output ’results.pdf’

gnuplot> plot ’results.dat’ u 1:6 w lp lw 2 t ’velocity’, 1e7/x lw 3 , 6e-11

You can exit the session by typing
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gnuplot> exit

You should find results.pdf in your folder next to results.dat.

Scripting gnuplot

Although the interactive approach is very useful its workflow is not practical if one wishes (for
instance) to produce the same plot with different data, or to communicate a figure to another
scientist.

We will therefore now turn to scripting. The idea is simple: write all the gnuplot commands in
a text file, say script.gnuplot and pass this script as argument to gnuplot:

> gnuplot script.gnuplot

This file contains the following:

set term pdf font "Times,12pt"

set output ’results.pdf’

set grid

set xlabel ’x’

set ylabel ’cost’

set log x

set title ’my title above the plot’

plot ’results.dat’ u 1:6 w lp lw 2 t ’velocity’, 1e7/x lw 3 t ’fit’ , 6e-11 t ’threshold’

-4x10-11

-2x10-11

 0

 2x10-11

 4x10-11

 6x10-11

 8x10-11

 1x10-10

 1x1017  1x1018  1x1019  1x1020  1x1021  1x1022  1x1023  1x1024  1x1025

co
st

x

my title above the plot

velocity
fit

threshold

Note that I have added a title to the plot as well.

Greek letters

In order to display Greek letters the /Symbol command:

set xlabel ’{/Symbol d}{/Symbol r}’

Alphabet Symbol Alphabet Symbol Alphabet Symbol Alphabet Symbol

A Alpha N Nu a alpha (α) n nu ν
B Beta O Omicron b beta (β) o omicron
C Chi P Pi c chi (χ) p pi π
D Delta Q Theta d delta (δ) q theta θ
E Epsilon R Rho e epsilon (ϵ) r rho ρ
F Phi S Sigma f phi (ϕ) s sigma σ
G Gamma T Tau g gamma (γ) t tau τ
H Eta U Upsilon h eta (η) u upsilon υ
I iota W Omega i iota (ι) w omega ω
K Kappa X Xi k kappa (κ) x xi ξ
L Lambda Y Psi l lambda (λ) y psi ψ
M Mu Z Zeta m mu (µ) z zeta ζ
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piecewise function

You can define piecewise functions as follows:

f(x) = x<a ? 1 : 1/0

g(x) = x>=a ? 1 : 1/0

and then use these functions like any function, e.g.:

plot[-10:12] f(x),g(x)

linetype and dashtype

There are essentially three ways of plotting data:

plot ’results.dat’ u 1:6 w l

plot ’results.dat’ u 1:6 w p

plot ’results.dat’ u 1:6 w lp

corresponding to (from left to right):

-4x10-11

-2x10-11

 0

 2x10-11

 4x10-11

 6x10-11

 8x10-11

 1x10-10

 1x1017  1x1018  1x1019  1x1020  1x1021  1x1022  1x1023  1x1024  1x1025

co
st

x

my title above the plot

velocity

-4x10-11

-2x10-11

 0

 2x10-11

 4x10-11

 6x10-11

 8x10-11

 1x10-10

 1x1017  1x1018  1x1019  1x1020  1x1021  1x1022  1x1023  1x1024  1x1025

co
st

x

my title above the plot

velocity

-4x10-11

-2x10-11

 0

 2x10-11

 4x10-11

 6x10-11

 8x10-11

 1x10-10

 1x1017  1x1018  1x1019  1x1020  1x1021  1x1022  1x1023  1x1024  1x1025
co

st

x

my title above the plot

velocity

The following script

set output ’linetypes.pdf’

plot[][]\

x+0 w l lt 0 t ’linetype 1’,\

x+1 w l lt 1 t ’linetype 2’,\

x+2 w l lt 2 t ’linetype 3’,\

x+3 w l lt 3 t ’linetype 4’,\

x+4 w l lt 4 t ’linetype 5’,\

x+5 w l lt 5 t ’linetype 6’,\

x+6 w l lt 6 t ’linetype 7’,\

x+7 w l lt 7 t ’linetype 8’,\

x+8 w l lt 8 t ’linetype 9’,\

x+9 w l lt 9 t ’linetype 10’,\

x+10 w l lt 10 t ’linetype 11’,\

x+11 w l lt 11 t ’linetype 12’

generates the following plot:

-10

-5

 0

 5

 10

 15

 20

 25

-10 -5  0  5  10

linetype 1
linetype 2
linetype 3
linetype 4
linetype 5
linetype 6
linetype 7
linetype 8
linetype 9

linetype 10
linetype 11
linetype 12
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We see that the colours repeat from linetype 10. Fortunately we can also combine linetypes with
dashtypes. The following script

set output ’dashtypes.pdf’

plot[][]\

x+1 w l lt 1 dt 1 t ’linetype 2’,\

x+2 w l lt 2 dt 2 t ’linetype 3’,\

x+3 w l lt 3 dt 3 t ’linetype 4’,\

x+4 w l lt 4 dt 4 t ’linetype 5’,\

x+5 w l lt 5 dt 5 t ’linetype 6’,\

x+6 w l lt 6 dt 6 t ’linetype 7’,\

x+7 w l lt 7 dt 7 t ’linetype 8’,\

x+8 w l lt 8 dt 8 t ’linetype 9’,\

x+9 w l lt 9 dt 9 t ’linetype 10’,\

x+10 w l lt 10 dt 10 t ’linetype 11’,\

x+11 w l lt 11 dt 11 t ’linetype 12’

generates the following plot

-10

-5

 0

 5

 10

 15

 20

 25

-10 -5  0  5  10

linetype 2
linetype 3
linetype 4
linetype 5
linetype 6
linetype 7
linetype 8
linetype 9

linetype 10
linetype 11
linetype 12

and we see that there are only 5 different dash types.
Finally, we turn to point types. The following script

set output ’pointtypes.pdf’

plot[][]\

x+0 w p pt 0 ps .5 t ’linetype 1’,\

x+1 w p pt 1 ps .5 t ’linetype 2’,\

x+2 w p pt 2 ps .5 t ’linetype 3’,\

x+3 w p pt 3 ps .5 t ’linetype 4’,\

x+4 w p pt 4 ps .5 t ’linetype 5’,\

x+5 w p pt 5 ps .5 t ’linetype 6’,\

x+6 w p pt 6 ps .5 t ’linetype 7’,\

x+7 w p pt 7 ps .5 t ’linetype 8’,\

x+8 w p pt 8 ps .5 t ’linetype 9’,\

x+10 w p pt 10 ps .5 t ’pointtype 10’,\

x+11 w p pt 11 ps .5 t ’pointtype 11’,\

x+12 w p pt 12 ps .5 t ’pointtype 12’,\

x+13 w p pt 12 ps .5 t ’pointtype 13’,\

x+14 w p pt 12 ps .5 t ’pointtype 14’

generates the following plot
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-10

-5

 0

 5

 10

 15

 20

 25

-10 -5  0  5  10

pointtype 0
pointtype 1
pointtype 2
pointtype 3
pointtype 4
pointtype 5
pointtype 6
pointtype 7
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Note that I have used the ps command (’point size’) to make the points 50% smaller than normal.

Moving the ’key’

The default is inside top right, but it can be changed, e.g.:

set key outside

set key bottom left

corresponding to (from left to right):

-4x10-11

-2x10-11

 0

 2x10-11

 4x10-11

 6x10-11

 8x10-11

 1x10-10
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x

my title above the plot

velocity
fit

threshold
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 1x10-10

 1x1017  1x1018  1x1019  1x1020  1x1021  1x1022  1x1023  1x1024  1x1025

co
st

x

my title above the plot

velocity
fit

threshold

Plotting arrows

Let us now turn to the velocity.dat file which consists of four columns: x, y, νx and νy.

set output ’velocity_1.pdf’

set xlabel ’x’

set ylabel ’y’

set xtics 0.125

set ytics 0.333333333333

set grid

set size square

plot[0:1][0:1]\

’velocity.dat’ u 1:2:3:4 w vectors lt -1 notitle

Note that I have required the plot to be square, that the tics on the x-axis should be spaced 0.125
while the tics on the y-axis should be spaced 0.333. We obtain the left plot a):

 0
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 0.666667

 1

 0  0.125  0.25  0.375  0.5  0.625  0.75  0.875  1

y

x

 0

 0.333333
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 1

 0  0.125  0.25  0.375  0.5  0.625  0.75  0.875  1

y

x
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The arrows are too small, so we scale each vector component by a factor 4. All we need to do is
as follows:

plot[0:1][0:1]\

’velocity.dat’ u 1:2:($3*4):($4*4) w vectors lt -1 notitle

Note the dollar sign which means that gnuplot takes the value in column 3 or 4 and multiplies it
by 4. The resulting figure is shown in b).

Powers of 10

set format y "10^{%L}"

Least square fit

Assuming we have a file containing data, e.g. data.ascii, that we want to fit by means of a linear
relationship over the range [−1,+1]:

f(x)=a*x+b

fit [-1:1] f(x) ’data.ascii’ u 1:2 via a,b

This should return a few lines in the console indicating whether convergence was reached and then
also the a and b values. In order to plot the line, simply do:

plot[] ’data.ascii’ u 1:2, f(x)

coloring areas

set style rect fc lt -1 fs solid 0.1 noborder

set obj rect from 0, graph 0 to 15, graph 1

vertical line

To draw a vertical line from the bottom to the top of the graph at x=3, use:

set arrow from 3, graph 0 to 3, graph 1 nohead

Show list of all available colors

In an interactive gnuplot session type:

> show colors
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Appendix P

A few LATEXfeatures

newcommand

This features allows to define new commands which can then be used throughout the document. In
manual.tex you will find

\newcommand{\K}{{\mathbb{K}}}

\newcommand{\Ranb}{{\mathsf{Ra}}}

\newcommand{\nineteeneightysix}{{\color{violet}\bf 1986}}

which correspond to K, Ra and 1986.

fullpage package

How to extend margins for the whole document (such as this one):

\usepackage[cm]{fullpage}

siunitx package

\usepackage{siunitx}

\DeclareSIUnit\year{yr}

tikz

\usetikzlibrary{arrows, arrows.meta}
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include verbatim material inside a line

\verb"git pull upstream master" and then eat an ice cream.

results in git pull upstream master and then eat an ice cream.

bibliography

opla
\footfullcite

how to refer to a latex document from another document?

This is the first latex file names manual.tex. It contains sections and equations, all labelled.

\documentclass[a4paper]{book}

\begin{document}

\chapter{opla1} \label{ch1}

\section{meuh} \label{ss1}

\subsection{popo}

opla \ref{ch1} opla \ref{ss1}

\begin{equation}

\alpha= \beta \label{eq:one}

\end{equation}

\end{document}

This second file will load the manual.aux with the ’xr’ package and then all labels of that file are
now available in this file:

\documentclass[a4paper]{article}

\usepackage{amsmath}

\usepackage{xr}

\externaldocument[MMM-]{manual}

\begin{document}

opla

the introduction to volume1 (\ref{MMM-ss1})

see \eqref{MMM-eq:one}

\end{document}

1175



Appendix Q

Linux how to

When encountering the terminal for the first time one soon realises that some basic commands are
needed to navigate the folders, edit, copy or delete files, etc ...

Please also have a look at this website: https://ryanstutorials.net/linuxtutorial/
For Windows users, you must abandon your preconceived (and totally arbitrary) ideas about the

’C:’ drive. Before hard drives even existed, the computer would have one or two floppy drives and
would reserve the A: and B: drive letters for them. Nowadays these devices are usually not installed
in the computer anymore, but the labelling remains1.

The root of the file system is simply /. Your ’home’ is most likely in /home/your-family-name/.
Inside this you will find Documents, Downloads, etc ...

The basic set of commands is in fact not very large (Please also watch https://youtu.be/

6bMYzzrycV0):

� man: Documentation in Linux is mostly available in the form of man pages. They are usually
written in the style of a reference manual and can be daunting at first. They are usually: the
name, a compact formulation of the syntax (that can be scary for more complex programs),
a description about what the software actually is and does, examples (if you are lucky) and
explanations of all the options mentioned above. Typical use:

> man name-of-command-I-want-to-learn-about

� cd: it stands for ’change directory’ (i.e. change folder). Typical use:

> cd results

where results should be an existing folder. You can check this with:

� ls: it stands for ’list’. This commands lists all files and folders Typical use:

> ls

or

> ls -la

if you wish to have one item per line, or

1https://en.wikipedia.org/wiki/Drive_letter_assignment
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> ls -l

if you also want to see all files/folders starting with ’.’ My preference goes to

> ls -lhG

Use the ’man’ command to know what this does!

� mv: it stands for ’move’ but it has in fact a hidden functionality: rename. If you type

> mv garfield.txt odie.txt

then the file garfield.txt has been renamed odie.txt 2.

You can move a file in a different folder as follows:

> mv garfield.txt ../myfolder/

This moves the file to a folder that is one level up. This will work only if the folder exists. If
you need to make a new folder, then use:

� mkdir: it stands for ’make directory’. Typical usage

> mkdir res_123

creates a folder named res 123.

� rm: it stands for ’remove’. Before we go any further: this command is dangerous. Unlike its
counterpart based on selecting a file with a mouse and deleting it, rm does not send the file
to the Trash folder (or Windows Recycle Bin). It simply deletes it forever. No turning back!
Typical usage

> rm myoldfile.txt

deletes the file. Note that by default, it does not remove directories. In order to remove a
folder, one needs to type

> rm -r myoldfolder

Unless you are an experienced user, never use rm in conjunction with * and/or in a recursive
way. If things go wrong, you will delete entire portions of your hard drive at best, or will
destroy your operating system at worse.

� pwd: it stands for ’print working directory’. If you are unsure of where the current prompt of
the terminal is, simply

> pwd

and it will return the full path, from the root to where the prompt is.

� du: it stands for ’disk usage’. In this case always tag the -h option to it:

2https://en.wikipedia.org/wiki/Odie Obviously one cannot transform Garfield into Odie.
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> du -h

It will list the size of all folders in the folder the prompt is in. If you wish to know the size of
an object simply do

> du -h file-or-folder

The ls -lh command would have told you as much, but for all files inside the folder.

� grep: searches for patterns in each file. Typical usage

> grep linear *.tex

This searches all occurrences of the word ’linear’ in all .tex files. If you wish to look for this
word in all files inside subfolders:

> grep -r linear .

� more: allows to visualise the content of an ascii3 file inside the terminal without using a text
editor. In other words, you can look into the file but not change its content.

> more interesting-file

� top/htop: allows to visualise which process is running on the computer and how much CPU
and memory it takes.

� wget: it is a computer program that retrieves content from web servers. It is part of the GNU
Project. Its name derives from ”World Wide Web” and ”get.” It supports downloading via
HTTP, HTTPS, and FTP.

> wget address.of.file.online.on.server

See example of use in Section 11.12.5.

� ssh: This command is necessary to connect to a remote computer from the terminal. By
default most Linux computers run a client and server ssh program so that one can connect to
any other computer if its address is known (as well as the username and password). Here is
how I connect to my shrek desktop computer:

> ssh shrek.geo.uu.nl -Y -l thieulot

The -Y option ensures that I have X11 support. If successful, the prompt of the terminal points
to the default folder on the remote machine and I can control the remote computer via the
command line. Type exit to break the connection.

This is used to log in on remote servers like clusters where large calculations take place.

� sftp: allows to get or put files on a remote computer via a secrured connection. By default,
SFTP uses the SSH protocol to authenticate and establish a secure connection. Because of
this, the same authentication methods are available that are present in SSH.

3https://en.wikipedia.org/wiki/ASCII
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> sftp garfield@remote.univ.nl

This will prompt for the password of the remote machine associated to user garfield. If succesful
the prompt in the terminal then points to the default folder on the remote computer. Once
connected simply type exit to break the connection. All shell commands are available: pwd,
ls, cd, etc ... you can list the contents of the current directory on the local machine using lls.
If we want to download files from our remote host, you can do so using the get command:

> get remotefile

If you wish to download an entire folder, simply use

> get -r remotefolder

Conversely, you can transfer files from your local machine onto the remote one:

> put remotefile

� scp: to do

In what follows I list a few ’tricks’ which I find useful or just can never remember:

� How to convert files in batch

> convert ’*.png’ converted_%04d.jpg

� How to Remove unwanted empty lines in a file with vi(m)
Use either of the following commands to delete all empty lines:

:g/^$/d

:v/./d

If you want to delete all lines that are empty or that contain only whitespace characters (spaces,
tabs), use either of:

:g/^\s*$/d

:v/\S/d

� How to find LAPACK

## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1

## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

� How to apt-get MUMPS

> sudo apt-get install libmumps-seq-dev

� How to remove a big file wrongly committed
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> git filter-branch --tree-filter ’rm -rf path/to/your/file’ HEAD

> git push

� How to check your disk usage (ubuntu)

Disk Usage Analyzer (aka Baobab) is a graphical, menu-driven viewer that you can use to view
and monitor your disk usage and folder structure. It is part of every GNOME desktop.

> baobab

� How to convert images into another format in the command line

> convert file.png file.jpg

You can also resize on the fly:

> convert -resize 70% file.png file.jpg

� How to compress files: tar is used to pack files into an archive without zipping them. This
enables easy attaching to email, or to sending across the internet without the computer having
to start a new transfer for every file. Also it ensures everything belong to a certain package
stays together. Optionally it can be used to zip files. Let us have an example of three files;
a.txt, b.py and c.dat These can be packed together with

> tar -cf allFiles.tar *

c stands for compress and f for file, as can be seen in the manpage of tar. It can similarly be
extracted using the command:

> tar -xf allFiles.tar *

to recover three original files.

Additionally, it is possible to zip them as well, by adding a z to the options. The default
extension then becomes tgz:

> tar -czf allFiles.tgz *

> tar -xzf allFiles.tgz *
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Appendix R

on using Fortran

R.0.1 Full matrix multiplications in fortran

In fortran there is the intrinsic function matmul. However, it turns out that it is not always the
fastest option to carry out (full) matrix multiplications.

This code is designed to test this:

program t e s t
imp l i c i t none
! The order o f the square matr ices i s 2000.
i n t e g e r ( kind=4) : : n=1000
! Ca l cu l a t e the matrix mu l t i p l i c a t i o n s :
! i ) c :=a*b in a t r i p l e do=l oop .
! i i ) d:=a*b by matmul (a , b ) .
! i i i ) e :=a*b by dgemm in INTEL MKL.
r e a l ( kind=8) , a l l o c a t a b l e : : a ( : , : ) , b ( : , : ) , c ( : , : ) , d ( : , : ) , e ( : , : )
r e a l ( kind=8) : : alpha , beta
i n t e g e r ( kind=4) : : i , j , k , lda , ldb , lde
r e a l ( kind=8) : : s t a r t , f i n i s h

a l l o c a t e ( a (n , n) ,b (n , n) , c (n , n) ,d (n , n) , e (n , n) )
alpha =1.0 ; beta=1.0
lda=n ; ldb=n ; lde=n

! Generate the matrices , a and b , randomly .
c a l l cpu time ( s t a r t )
c a l l random seed ( )
do j =1, n
do i =1, n
c a l l random number ( a ( i , j ) )
c a l l random number (b( i , j ) )
enddo
enddo
c a l l cpu time ( f i n i s h )
wr i t e ( un i t=6, fmt=100) ”The gene ra t i on o f two matr i ce s takes ” , f i n i s h=s ta r t , ” seconds .

”

! i ) c :=a*b in a t r i p l e do=l oop .
c a l l cpu time ( s t a r t )
c=0.0D0
do j =1, n
do i =1, n
do k=1, n
c ( i , j )=c ( i , j )+a ( i , k ) *b(k , j )
enddo
enddo
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enddo
c a l l cpu time ( f i n i s h )
wr i t e ( un i t=6, fmt=100) ”A t r i p l e do=loop takes ” , f i n i s h=s ta r t , ” seconds . ”

! i i ) d:=a*b by matmul (a , b ) .
c a l l cpu time ( s t a r t )
d=0.0D0
d=matmul ( a , b )
c a l l cpu time ( f i n i s h )
wr i t e ( un i t=6, fmt=100) ”A matmul ( a , b) func t i on takes ” , f i n i s h=s t a r t , ” seconds . ”

! i i i ) e :=a*b by dgemm in INTEL MKL.
c a l l cpu time ( s t a r t )
e=0.0D0
c a l l dgemm(”N” , ”N” ,n , n , n , alpha , a , lda , b , ldb , beta , e , l de )
c a l l cpu time ( f i n i s h )
wr i t e ( un i t=6, fmt=100) ”A DGEMM subrout ine takes ” , f i n i s h=s ta r t , ” seconds . ”

d e a l l o c a t e ( a , b , c , d , e )

stop
100 format (A, F8 . 3 ,A)
end program t e s t

It is compiled as follows:

> gfortran -O3 prog.f90 -lblas

For 100× 100 matrices:

The generation of two matrices takes 0.004 seconds.

A triple do-loop takes 0.009 seconds.

A matmul(a,b) function takes 0.001 seconds.

A DGEMM subroutine takes 0.000 seconds.

For 1000× 1000 matrices:

The generation of two matrices takes 0.123 seconds.

A triple do-loop takes 1.527 seconds.

A matmul(a,b) function takes 0.080 seconds.

A DGEMM subroutine takes 0.054 seconds.

For 1000× 2000 matrices:

The generation of two matrices takes 0.392 seconds.

A triple do-loop takes 33.785 seconds.

A matmul(a,b) function takes 0.725 seconds.

A DGEMM subroutine takes 0.455 seconds.

R.0.2 A simple example of an Interface

program kwadraat

imp l i c i t none

in t ege r , parameter : : IntegerRoot = 6
rea l , parameter : : RealRoot = 4 .5
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I n t e r f a c e Square
func t i on RealSquare ( root )

r e a l : : root
r e a l : : RealSquare

end func t i on

func t i on IntegerSquare ( root )
i n t e g e r : : root
i n t e g e r : : IntegerSquare

end func t i on
end i n t e r f a c e

wr i t e (* ,* ) ” In t eg e r square : ” , Square ( IntegerRoot )
wr i t e (* ,* ) ”Real square : ” , Square ( rea lRoot )

end program

func t i on IntegerSquare ( root )
imp l i c i t none
i n t e g e r : : root , IntegerSquare
IntegerSquare = root **2

end func t i on

func t i on RealSquare ( root )
imp l i c i t none
r e a l : : root , RealSquare
RealSquare = root * root

end func t i on
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Appendix S

mineral parameters

S.0.1 Olivine

Wet Dry
ref. A Q (kJ/mol) V n A Q (kJ/mol) V (µm3/mol) n comment

[505] 3.91 · 103MPa−n/s 430 0 3 2.42× 105MPa−n/s 540 3.5 refers to [673]
= 3.91 · 10−15Pa−n/s = 2.42× 10−16Pa−n/s

[295] 3.91 · 10−15Pa−n/s 430 0 3 refers to [673]
[613] 2.4× 10−16Pa−n/s 540 25 3.5 refers to [673]
[614] 0 2.42× 10−15Pa−n/s 540 25 3.5 refers to [673]
[673] 3.906 · 10−15Pa−n/s 430 10-20 3 2.4169 · 10−16Pa−n/s 540 15-25 3.5 dislocation creep
[632] 0 1.43× 10−15Pa−n/s 65 25 3.5 refers to [673]
[482] 4.89 · 10−15Pa−n/s 515 3.5 refers to [577]
[1023] 4.89 · 10−15Pa−n/s 515 3.5 4.85× 10−17Pa−n/s 535 3.5 refers to [577]
[577] 4.89 · 10−15Pa−n/s 515 3.5 4.85× 10−17Pa−n/s 535 3.5
[672] 106.1MPa−n/s 510± 30 −14± 2 3± 0.1 dislocation creep

= 1.26 · 10−12Pa−n/s
[1041] 2× 103MPa−n/s 471± 31 4± 0.1 2.5× 104MPa−n/s 532± 52 17± 4 3.5± 0.5 refers to [708]. de-

scribed as empirical
average power-law
creep parameters

= 2 · 10−21Pa−n/s = 2.5 · 10−17Pa−n/s
[1245] 5.33 · 10−19 480 11 3.5 (dislocation) refers to

[578]
[1245] 1.5 · 10−18 335 4 1 (diffusion) refers to

[578]
[685] 105.04MPa−n/s 530 15-20 3.5 dislocation creep

= 1.1 · 10−16Pa−n/s
[782] 470 0± 5 3 dislocation creep
[578] 3.58 · 10−16Pa−n/s 480± 40 11 3.5± 0.3 1.1 · 10−16Pa−n/s 530± 4 14-23 3.5± 0.3 dislocation
[578] 8 · 10−9Pa−n/s 335± 75 4 1 1.2 · 10−8Pa−n/s 375± 50 2-10 1 diffusion

ELEFANT
wetolivine1 3.9063 · 10−15Pa−n/s 430 15 3 dislocation creep [673]
dryolivine1 2.4169 · 10−16Pa−n/s 540 20 3.5 dislocation creep [673]
wetolivine2 4.89 · 10−15Pa−n/s 515 3.5 dislocation creep [577]
dryolivine2 4.85× 10−17Pa−n/s 535 3.5 dislocation creep [577]
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S.0.2 Quartz

Wet Dry
ref. A Q (kJ/mol) V () n A Q (kJ/mol) V () n comment

[505] 3.2× 10−4MPa−n/s 154 2.3 refers to [1040] (ok)
= 5.072 · 10−18Pa−n/s

[1245] 8.57 · 10−28Pa−n/s 223 0 4 refers to [465]
→ 1.1 · 10−28Pa−n/s

[632] 8.574× 10−28Pa−s/s 26.8 0 4 refers to [465]
→ 1.1 · 10−28Pa−n/s

[613, 614, 295, 482] 1.10× 10−28Pa−s/s 223 0 4 refers to [465]
[61] 2.91× 10−3 151 1.8 refers to [634]
[465] 1.8 · 10−8±2MPa−n/s 137± 34 0 4± 0.9 with melt

= 1.8 · 10−32±2Pa−n/s
1.1 · 10−4±2MPa−n/s 223± 56 0 4± 0.9 no melt
= 1.1 · 10−28±2Pa−n/s

ELEFANT
wetquartz1 1.1 · 10−28±2Pa−n/s 223± 56 0 4± 0.9 no melt
note that Buiter in [1245] says that 8.57 value is alreay scaled. Same for [632]. There are indeed,

because for n = 4 the multiplicative factor is approx. 7.794, and 8.574/7.794=1.1 as in [465].

S.0.3 Plagioclase

Wet Dry
ref. A Q (kJ/mol) V () n A Q (kJ/mol) V () n comment

[1040] 3.2× 10−4MPa−n/s 238 3.2
= 3.2× 10−23.2Pa−n/s 238 3.2
= 2.02× 10−23Pa−n/s 238 3.2

ELEFANT
dryplagioclase1 2.02× 10−23Pa−n/s 238 3.2

S.0.4 Peridotite

Wet Dry
ref. A Q (kJ/mol) V () n A(Pa−n) Q (kJ/mol) V () n comment

[1040] 2.0× 103 471 4 2.5× 104 532 3.5

ELEFANT
peridotite 2.0× 103 471 4 2.5× 104 532 3.5

S.0.5 Diabase

Wet Dry
ref. A Q (kJ/mol) V () n A(Pa−n) Q (J/mol) V () n comment

[295, 482] 5.04× 10−28 485 4.7 refers to [820]
[820] 485± 30 4.7± 0.6

ELEFANT
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S.0.6 Gabbro

ref. A Q (kJ/mol) V () n comment

[1245] 1.12 · 10−10Pa−n/s 497 0 3.4 refers to [1358]

ELEFANT
Looking in [1358] , can’t find the number !?!

S.0.7 Serpentine

ref. A Q (kJ/mol) V () n comment

[570] 4.47 · 10−38Pa−n/s 8.9 3.2cm3 3.8
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Appendix T

Invariants

Remember: I1,2,3 are moment invariants while K1,2,3 are principal invariants.

Second invariants

Remembering that the deviatoric stress tensor τ is symmetric:

I2(τ ) =
1

2
τ : τ

=
1

2
(τ 2xx + τ 2yy + τ 2zz + 2τ 2xy + 2τ 2xz + 2τ 2yz)

I2(τ ) =
1

2

∑
ij

τijτji

=
1

2

∑
ij

τijτij (τ is symm)

=
1

2
τ : τ

I2(τ ) =
1

2
tr[τ · τ ]

=
1

2
tr

 τ 2xx + τxyτyx + τxzτzx · ·
· τyxτxy + τ 2yy + τyzτzy ·
· · τzxτxz + τzyτyz + τ 2zz


=

1

2
tr

 τ 2xx + τ 2xy + τ 2xz · ·
· τ 2xy + τ 2yy + τ 2yz ·
· · τ 2xz + τ 2yz + τ 2zz

 (τ is symm)

=
1

2
(τ 2xx + τ 2yy + τ 2zz + 2τ 2xy + 2τ 2xz + 2τ 2yz) (T.1)
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K2(σ) =
1

2
[tr(σ)2 − tr(σ2)]

=
1

2

[
(σxx + σyy + σzz)

2 − (σ2
xx + σxyσyx + σxzσzx + σ2

yy + σxyσyx + σyzσzy + σ2
zz + σxzσzx + σyzσzy)

]
=

1

2

[
(σxx + σyy + σzz)

2 − (σ2
xx + σ2

yy + σ2
zz + 2σxyσyx + 2σxzσzx + 2σyzσzy)

]
=

1

2

[
σ2
xx + σ2

yy + σ2
zz + 2σxxσyy + 2σxxσzz + 2σyyσzz − (σ2

xx + σ2
yy + σ2

zz + 2σxyσyx + 2σxzσzx + 2σyzσzy)
]

=
1

2
[2σxxσyy + 2σxxσzz + 2σyyσzz − (2σxyσyx + 2σxzσzx + 2σyzσzy)]

= σxxσyy + σxxσzz + σyyσzz − σxyσyx − σxzσzx − σyzσzy (T.2)

= σxxσyy + σyyσzz + σxxσzz − σ2
xy − σ2

xz − σ2
yz (T.3)
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Let us now express the second invariant of the deviatoric stress tensor as a function of the
invariants of the full stress tensor (just to be sure I have carried this out twice in what follows):

I2(τ ) =
1

2

∑
ij

τijτji

=
1

2

∑
ij

(
σij −

1

3
I1(σ)δij

)(
σij −

1

3
I1(σ)δij

)
=

1

2

∑
ij

[
σijσij + σij

(
−1

3
I1(σ)δij

)
+ σij

(
−1

3
I1(σ)δij

)
+

(
−1

3
I1(σ)δij

)(
−1

3
I1(σ)δij

)]
=

1

2

∑
ij

[
σijσij −

2

3
I1(σ)σijδij +

1

9
I1(σ)2δij

]
=

1

2

∑
ij

σijσij︸ ︷︷ ︸
I2(σ)

−1

3
I1(σ)

∑
ij

σijδij︸ ︷︷ ︸
I1(σ)

+
1

18
I1(σ)2

∑
ij

δij︸ ︷︷ ︸
3

= I2(σ)−
1

3
I1(σ)2 +

1

6
I1(σ)2

= −1

6
I1(σ)2 + I2(σ)

I2(τ ) =
1

2
τ : τ

=
1

2
(τ 2xx + τ 2yy + τ 2zz) + τ 2xy + τ 2xz + τ 2yz

=
1

2

(
(σxx −

1

3
I1(σ))2 + (σyy −

1

3
I1(σ))2 + (σzz −

1

3
I1(σ))2

)
+ σ2

xy + σ2
xz + σ2

yz

=
1

2

(
σ2
xx −

2

3
σxxI1(σ) +

1

9
I1(σ)2 + σ2

yy −
2

3
σyyI1(σ) +

1

9
I1(σ)2 + σ2

zz −
2

3
σzzI1(σ) +

1

9
I1(σ)2

)
+ σ2

xy + σ2
xz + σ2

yz

=
1

2

(
σ2
xx + σ2

yy + σ2
zz −

2

3
(σxx + σyy + σzz)I1(σ) +

1

3
I1(σ)2

)
+ σ2

xy + σ2
xz + σ2

yz

=
1

2

(
σ2
xx + σ2

yy + σ2
zz −

2

3
I1(σ)2 +

1

3
I1(σ)2

)
+ σ2

xy + σ2
xz + σ2

yz

=
1

2

(
σ2
xx + σ2

yy + σ2
zz −

1

3
I1(σ)2

)
+ σ2

xy + σ2
xz + σ2

yz

= −1

6
I1(σ)2 +

1

2

(
σ2
xx + σ2

yy + σ2
zz

)
+ σ2

xy + σ2
xz + σ2

yz

= −1

6
I1(σ)2 + I2(σ) (T.4)

So there is no doubt:

I2(τ ) = −
1

6
I1(σ)2 + I2(σ)

Note that this relationship is often found is a very confusing form where moment invariants K1,2,3

are used instead of principal invariants I1,2,3 (although the letter I is used!). We have established
that I2(σ) = 1

2
K1(σ)

2 −K2(σ) with K1(σ) = I1(σ) so that

I2(τ ) = −
1

6
I1(σ)2 + I2(σ) = −

1

6
K1(σ)

2 +
1

2
K1(σ)

2 −K2(σ) =
1

3
K1(σ)

2 −K2(σ)
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that is:

I2(τ ) =
1

3
K1(σ)

2 −K2(σ)

If one replaces K’s by I’s then one finds the formula in the literature 1 2.

1https://www.pantelisliolios.com/deviatoric-stress-and-invariants/
2https://en.wikipedia.org/wiki/Cauchy_stress_tensor
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third invariants

Let us now look at the third invariant:

I3(τ ) =
1

3

∑
ijk

τijτjkτki

=
1

3
(τ 3xx + τ 3yy + τ 3zz) + τxx(τ

2
xy + τ 2xz) + τyy(τ

2
xy + τ 2yz) + τzz(τ

2
xz + τ 2yz) + 2τxyτxzτyz

I3(τ ) = det(τ )

= τxx(τyyτzz − τ 2yz)− τyx(τxyτzz − τzyτxz) + τzx(τxyτyz − τyyτxz)
= τxxτyyτzz − τxxτ 2yz − τzzτ 2xy + τxyτyzτyz + τxyτyzτyz − τyyτ 2xz
= τxxτyyτzz − τxxτ 2yz − τzzτ 2xy + 2τxyτyzτyz − τyyτ 2xz
= τxxτyyτzz − (−τyy − τzz)τ 2yz − (−τxx − τyy)τ 2xy + 2τxyτyzτyz − (−τxx − τzz)τ 2xz
= τxxτyyτzz + τxx(τ

2
xy + τ 2xz) + τyy(τ

2
xy + τ 2yz) + τzz(τ

2
xz + τ 2yz) + 2τxyτxzτyz

The first term is still different than 1
3
(τ 3xx+ τ 3yy + τ 3zz)... or is it? Let us have a go using the fact that

τ is deviatoric:

τxxτyyτzz = τxx(−τxx − τzz)(−τxx − τyy)
= τxx(τ

2
xx + τxxτyy + τxxτzz + τyyτzz)

= τ 3xx + τ 2xxτyy + τ 2xxτzz + τxxτyyτzz

τxxτyyτzz = (−τyy − τzz)τyy(−τxx − τyy)
= τyy(τxxτyy + τ 2yy + τxxτzz + τyyτzz)

= τxxτ
2
yy + τ 3yy + τxxτyyτzz + τ 2yyτzz

τxxτyyτzz = (−τyy − τzz)(−τxx − τzz)τzz
= τzz(τxxτyy + τyyτzz + τxxτzz + τ 2zz)

= τxxτyyτzz + τyyτ
2
zz + τxxτ

2
zz + τ 3zz

⇒ τxxτyyτzz =
1

3
(τxxτyyτzz + τxxτyyτzz + τxxτyyτzz)

=
1

3
(τ 3xx + τ 2xxτyy + τ 2xxτzz + τxxτyyτzz

+τxxτ
2
yy + τ 3yy + τxxτyyτzz + τ 2yyτzz

+τxxτyyτzz + τyyτ
2
zz + τxxτ

2
zz + τ 3zz)

=
1

3
[τ 3xx + τ 3yy + τ 3zz + τxxτyy(τxx + τyy + τzz︸ ︷︷ ︸

=0

) + τxxτzz(τxx + τyy + τzz︸ ︷︷ ︸
=0

) + τyyτzz(τxx + τyy + τzz︸ ︷︷ ︸
=0

)]

=
1

3
(τ 3xx + τ 3yy + τ 3zz)

Let us now turn to I3(τ ) =
1
3
tr[τ · τ · τ ]. Assuming the tensor τ to be symmetric then

τ =

 a d e
d b f
e f c


then, thanks to https://www.wolframalpha.com/ I find that

τ ·τ ·τ =

 a(a2 + d2 + e2) + d(ad + bd + ef) + e(ae + ce + df) d(a2 + d2 + e2) + b(ad + bd + ef) + f(ae + ce + df) e(a2 + d2 + e2) + f(ad + bd + ef) + c(ae + ce + df)

a(ad + bd + ef) + d(b2 + d2 + f2) + e(bf + cf + de) d(ad + bd + ef) + b(b2 + d2 + f2) + f(bf + cf + de) e(ad + bd + ef) + f(b2 + d2 + f2) + c(bf + cf + de)

a(ae + ce + df) + d(bf + cf + de) + e(c2 + e2 + f2) d(ae + ce + df) + b(bf + cf + de) + f(c2 + e2 + f2) e(ae + ce + df) + f(bf + cf + de) + c(c2 + e2 + f2)
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and then

1

3
tr[τ · τ · τ ] =

1

3
(a3 + b3 + c3) + c(e2 + f 2) + a(d2 + e2) + 2def + b(d2 + f 2)

=
1

3
(τ 3xx + τ 3yy + τ 3zz) + τxx(τ

2
xy + τ 2xz) + τyy(τ

2
xy + τ 2yz) + τzz(τ

2
xz + τ 2yz) + 2τxyτxzτyz
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Let us now express the third invariant of the deviatoric stress tensor as a function of the invariants
of the full stress tensor (just to be sure I have carried this out twice in what follows):

I3(τ ) =
1

3

∑
ijk

τijτjkτki

=
1

3

∑
ijk

(
σij −

1

3
I1(σ)δij

)
τjkτki

=
1

3

∑
ijk

[
σijτjkτki −

1

3
I1(σ)δijτjkτki

]
=

1

3

∑
ijk

σijτjkτki −
1

9

∑
ijk

I1(σ)δijτjkτki

=
1

3

∑
ijk

σijτjkτki −
1

9
I1(σ)

∑
ik

τikτki

=
1

3

∑
ijk

σijτjkτki −
2

9
I1(σ)

1

2

∑
ik

τikτki︸ ︷︷ ︸
I2(τ )

=
1

3

∑
ijk

σijτjkτki −
2

9
I1(σ)I2(τ )

=
1

3

∑
ijk

σij

(
σjk −

1

3
I1(σ)δjk

)(
σki −

1

3
I1(σ)δki

)
− 2

9
I1(σ)I2(τ )

=
1

3

∑
ijk

(
σijσjkσki − σijσjk

1

3
I1(σ)δki − σijσki

1

3
I1(σ)δjk + σij

1

9
I1(σ)2δjkδki

)
− 2

9
I1(σ)I2(τ )

=
1

3

∑
ijk

σijσjkσki −
1

3

∑
ijk

σijσjk
1

3
I1(σ)δki −

1

3

∑
ijk

σijσki
1

3
I1(σ)δjk +

1

3

∑
ijk

σij
1

9
I1(σ)2δjkδki −

2

9
I1(σ)I2(τ )

=
1

3

∑
ijk

σijσjkσki︸ ︷︷ ︸
I3(σ)

−1

9
I1(σ)

∑
ij

σijσji −
1

9
I1(σ)

∑
ij

σijσji +
1

27
I1(σ)2

∑
ijk

σijδjkδki︸ ︷︷ ︸
I1(σ)

−2

9
I1(σ)I2(τ )

= I3(σ)−
2

9
I1(σ)

1

2

∑
ij

σijσji︸ ︷︷ ︸
I2(σ)

−2

9
I1(σ)

1

2

∑
ij

σijσji︸ ︷︷ ︸
I2(σ)

+
1

27
I1(σ)3 −

2

9
I1(σ)I2(τ )

= I3(σ)−
4

9
I1(σ)I2(σ) +

1

27
I1(σ)3 −

2

9
I1(σ)I2(τ )

Then we use I2(τ ) = −1
6
I1(σ)2 + I2(σ) so

I3(τ ) = I3(σ)−
4

9
I1(σ)I2 +

1

27
I1(σ)3 −

2

9
I1(σ)

(
−1

6
I1(σ)2 + I2(σ)

)
= I3(σ)−

4

9
I1(σ)I2 +

1

27
I1(σ)3 +

1

27
I1(σ)3 −

2

9
I1(σ)I2(σ)

=
2

27
I1(σ)3 −

2

3
I1(σ)I2(σ) + I3(σ)
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We start this time from

I3(τ ) =
1

3
(τ 3xx + τ 2yy + τ 3zz) + τxx(τ

2
xy + τ 2xz) + τyy(τ

2
xy + τ 2yz) + τzz(τ

2
xz + τ 2yz) + 2τxyτyzτyz

We have

τ 3xx =

(
σxx −

1

3
I1(σ)

)3

= σ3
xx − 3σ2

xx

1

3
I1(σ) + 3σxx

1

9
I1(σ)2 −

1

27
I1(σ)3

τ 3yy =

(
σyy −

1

3
I1(σ)

)3

= σ3
yy − 3σ2

yy

1

3
I1(σ) + 3σyy

1

9
I1(σ)2 −

1

27
I1(σ)3

τ 3zz =

(
σzz −

1

3
I1(σ)

)3

= σ3
zz − 3σ2

zz

1

3
I1(σ) + 3σzz

1

9
I1(σ)2 −

1

27
I1(σ)3

Then

τ 3xx + τ 2yy + τ 3zz = σ3
xx − 3σ2

xx

1

3
I1(σ) + 3σxx

1

9
I1(σ)2 −

1

27
I1(σ)3

+ σ3
yy − 3σ2

yy

1

3
I1(σ) + 3σyy

1

9
I1(σ)2 −

1

27
I1(σ)3

+ σ3
zz − 3σ2

zz

1

3
I1(σ) + 3σzz

1

9
I1(σ)2 −

1

27
I1(σ)3

= σ3
xx + σ3

yy + σ3
zz − I1(σ)(σ2

xx + σ2
yy + σ2

zz) +
1

3
(σxx + σyy + σzz)I1(σ)2 −

1

9
I1(σ)3

= σ3
xx + σ3

yy + σ3
zz − I1(σ)(σ2

xx + σ2
yy + σ2

zz) +
1

3
I1(σ)3 −

1

9
I1(σ)3

= σ3
xx + σ3

yy + σ3
zz − I1(σ)(σ2

xx + σ2
yy + σ2

zz) +
2

9
I1(σ)3

I3(τ ) =
1

3
(τ 3xx + τ 2yy + τ 3zz) + τxx(τ

2
xy + τ 2xz) + τyy(τ

2
xy + τ 2yz) + τzz(τ

2
xz + τ 2yz) + 2τxyτyzτyz

=
1

3
(σ3

xx + σ3
yy + σ3

zz)−
1

3
I1(σ)(σ2

xx + σ2
yy + σ2

zz) +
2

27
I1(σ)3

+(σxx −
1

3
I1(σ))(σ2

xy + σ2
xz) + (σyy −

1

3
I1(σ))(σ2

xy + σ2
yz) + (σzz −

1

3
I1(σ))(σ2

xz + σ2
yz) + 2σxyσyzσyz

=
1

3
(σ3

xx + σ3
yy + σ3

zz)−
1

3
I1(σ)(σ2

xx + σ2
yy + σ2

zz + σ2
xy + σ2

xz + σ2
xy + σ2

yz + σ2
xz + σ2

yz) +
2

27
I1(σ)3

+σxx(σ
2
xy + σ2

xz) + σyy(σ
2
xy + σ2

yz) + σzz(σ
2
xz + σ2

yz) + 2σxyσyzσyz

=
1

3
(σ3

xx + σ3
yy + σ3

zz)−
1

3
I1(σ)(σ2

xx + σ2
yy + σ2

zz + 2σ2
xy + 2σ2

xz + 2σ2
yz) +

2

27
I1(σ)3

+σxx(σ
2
xy + σ2

xz) + σyy(σ
2
xy + σ2

yz) + σzz(σ
2
xz + σ2

yz) + 2σxyσyzσyz

=
1

3
(σ3

xx + σ3
yy + σ3

zz)−
2

3
I1(σ)

1

2
(σ2

xx + σ2
yy + σ2

zz + 2σ2
xy + 2σ2

xz + 2σ2
yz)︸ ︷︷ ︸

I2(σ)

+
2

27
I1(σ)3

+σxx(σ
2
xy + σ2

xz) + σyy(σ
2
xy + σ2

yz) + σzz(σ
2
xz + σ2

yz) + 2σxyσyzσyz

=
2

27
I1(σ)3 −

2

3
I1(σ)I2(σ) + I3(σ)
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Then, without doubt

I3(τ ) =
2

27
I1(σ)3 −

2

3
I1(σ)I2(σ) + I3(σ)

Let us now rewrite this relationship as a function of the principal invariants using the following
relationships:

I1(σ) = K1(σ)

I2(σ) =
1

2
K1(σ)

2 −K2(σ)

I3(σ) =
1

3
K1(σ)

3 −K1(σ)K2(σ) +K3(σ)

I3(τ ) =
2

27
I1(σ)3 −

2

3
I1(σ)I2(σ) + I3(σ)

=
2

27
K1(σ)

3 − 2

3
K1(σ)

(
1

2
K1(σ)

2 −K2(σ)

)
+

1

3
K1(σ)

3 −K1(σ)K2(σ) +K3(σ)

=
2

27
K1(σ)

3 − 1

3
K1(σ)

3 +
2

3
K1(σ)K2(σ) +

1

3
K1(σ)

3 −K1(σ)K2(σ) +K3(σ)

=
2

27
K1(σ)

3 − 1

3
K1(σ)K2(σ) +K3(σ) (T.5)

I3(τ ) =
2

27
K1(σ)

3 − 1

3
K1(σ)K2(σ) +K3(σ) (T.6)

If one replaces the K’s by I’s then one finds the formula in the literature 3 4.

∂I3(τ )
∂σ

=
∂

∂σ

(
2

27
I1(σ)3 −

2

3
I1(σ)I2(σ) + I3(σ)

)
=

2

9
I1(σ)2

∂I1(σ)
∂σ︸ ︷︷ ︸
1

−2

3

∂I1(σ)
∂σ︸ ︷︷ ︸
1

I2(σ)−
2

3
I1(σ)

∂I2(σ)
∂σ︸ ︷︷ ︸
σ

+
∂I3(σ)
∂σ︸ ︷︷ ︸
σ·σ

=
2

9
I1(σ)21−

2

3
1I2(σ)−

2

3
I1(σ)σ + σ · σ

=

(
2

9
I1(σ)2 −

2

3
I2(σ)

)
1− 2

3
I1(σ)σ + σ · σ (T.7)

Using I2(τ ) = −1
6
I1(σ)2 + I2(σ):

∂I3(τ )
∂σ

=

(
2

9
I1(σ)2 −

2

3
I2(τ )−

1

9
I1(σ)2

)
1− 2

3
I1(σ)σ + σ · σ

=

(
1

9
I1(σ)2 −

2

3
I2(τ )

)
1− 2

3
I1(σ)σ + σ · σ

=

(
1

9
I1(σ)2 −

2

3
I2(τ )

)
1− 2

3
I1(σ)

(
τ +

1

3
I1(σ)1

)
+

(
τ +

1

3
I1(σ)1

)
·
(
τ +

1

3
I1(σ)1

)
=

(
1

9
I1(σ)2 −

2

3
I2(τ )

)
1− 2

3
I1(σ)τ −

2

9
I1(σ)21+ τ · τ +

2

3
I1(σ)τ +

1

9
I1(σ)21

= τ · τ − 2

3
I2(τ )1 (T.8)

3https://www.pantelisliolios.com/deviatoric-stress-and-invariants/
4https://en.wikipedia.org/wiki/Cauchy_stress_tensor
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which is the so-called Hill tensor5.
Note that this tensor is deviatoric:

tr

[
τ · τ − 2

3
I2(τ )1

]
= tr[τ · τ ]− 2I2(τ ) = 2I2(τ )− 2I2(τ ) = 0

5https://en.wikipedia.org/wiki/Lode_coordinates
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Derivatives

The derivatives of the invariants with respect to the stress tensor are tensors given as follows:

∂I1(σ)
∂σ

=


∂I1(σ)
∂σxx

∂I1(σ)
∂σxy

∂I1(σ)
∂σxz

∂I1(σ)
∂σyx

∂I1(σ)
∂σyy

∂I1(σ)
∂σyz

∂I1(σ)
∂σzx

∂I1(σ)
∂σzy

∂I1(σ)
∂σzz

 =

 1 0 0
0 1 0
0 0 1

 = 1 (T.9)

∂I2(σ)
∂σ

=


∂I2(σ)
∂σxx

∂I2(σ)
∂σxy

∂I2(σ)
∂σxz

∂I2(σ)
∂σyx

∂I2(σ)
∂σyy

∂I2(σ)
∂σyz

∂I2(σ)
∂σzx

∂I2(σ)
∂σzy

∂I2(σ)
∂σzz

 =
1

2

 2σxx 2σxy 2σxz
2σyx 2σyy 2σyz
2σzx 2σzy 2σzz

 = σ (T.10)

∂I3(σ)
∂σ

=


∂I3(σ)
∂σxx

∂I3(σ)
∂σxy

∂I3(σ)
∂σxz

∂I3(σ)
∂σyx

∂I3(σ)
∂σyy

∂I3(σ)
∂σyz

∂I3(σ)
∂σzx

∂I3(σ)
∂σzy

∂I3(σ)
∂σzz


=

 σ2
xx + σ2

xy + σ2
xz σxxσxy + σyyσxy + σxzσyz σxxσxz + σzzσxz + σxyσyz

... σ2
yy + σ2

xy + σ2
yz ...

... ... ...σ2
zz + σ2

xz + σ2
yz


= σ · σ (T.11)

where we have used the generic form of the second and third invariants, i.e. not assuming the tensors
to be symmetric so that (for example) σxz and σzx are distinct quantities.

The Lodé angle θL(τ ) is actually a function of I2(τ ) and I3(τ ) as follows:

sin 3θL(τ ) = −
3
√
3

2

I3(τ )
I2(τ )3/2

Since this quantity unambiguously depends on the deviatoric stress tensor, I will omit the ’(τ )’
dependency in what follows. Then

∂

∂I2(τ )
sin 3θL = 3 cos 3θL(τ )

∂θL
∂I2(τ )

∂

∂I3(τ )
sin 3θL = 3 cos 3θL(τ )

∂θL
∂I3(τ )
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so that
∂θL

∂I2(τ )
=

1

3 cos 3θL

∂

∂I2(τ )
sin 3θL

=
1

3 cos 3θL

∂

∂I2(τ )

(
−3
√
3

2

I3(τ )
I2(τ )3/2

)

=
1

3 cos 3θL

(
−3
√
3

2

I3(τ )
I2(τ )3/2

)(
−3

2

1

I2(τ )

)
=

1

3 cos 3θL
sin 3θL

(
−3

2

1

I2(τ )

)
= −1

2
tan 3θL

1

I2(τ )

∂θL
∂I3(τ )

=
1

3 cos 3θL

∂

∂I3(τ )
sin 3θL

=
1

3 cos 3θL

∂

∂I3(τ )

(
−3
√
3

2

I3(τ )
I2(τ )3/2

)

=
1

3 cos 3θL

(
−3
√
3

2

1

I2(τ )3/2

)

=
1

3 cos 3θL

(
−3
√
3

2

I3(τ )
I2(τ )3/2

)
1

I3(τ )

=
1

3 cos 3θL
sin 3θL

1

I3(τ )

=
1

3
tan 3θL

1

I3(τ )
We have just established the useful relationships

∂θL
∂I2(τ )

= −1

2
tan 3θL

1

I2(τ )
(T.12)

∂θL
∂I3(τ )

=
1

3
tan 3θL

1

I3(τ )
(T.13)

and in the end we can write

∂θL
∂σ

=
∂θL(τ )

∂I2(τ )
∂I2(τ )
∂σ

+
∂θL(τ )

∂I3(τ )
∂I3(τ )
∂σ

=

(
−1

2
tan 3θL

1

I2(τ )

)
∂I2(τ )
∂σ

+

(
1

3
tan 3θL

1

I3(τ )

)
∂I3(τ )
∂σ

= tan 3θL

[
−1

2

1

I2(τ )
∂I2(τ )
∂σ

+
1

3

1

I3(τ )
∂I3(τ )
∂σ

]
=

sin 3θL
cos 3θL

[
−1

2

1

I2(τ )
∂I2(τ )
∂σ

+
1

3

1

I3(τ )
∂I3(τ )
∂σ

]
=

1

cos 3θL

(
−3
√
3

2

I3(τ )
I2(τ )3/2

)[
−1

2

1

I2(τ )
∂I2(τ )
∂σ

+
1

3

1

I3(τ )
∂I3(τ )
∂σ

]
= −

√
3

2 cos 3θL

[
−3

2

I3(τ )
I2(τ )5/2

∂I2(τ )
∂σ

+
1

I2(τ )3/2
∂I3(τ )
∂σ

]
(T.14)
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i.e.

∂θL
∂σ

= = −
√
3

2 cos 3θL

[
−3

2

I3(τ )
I2(τ )5/2

∂I2(τ )
∂σ

+
1

I2(τ )3/2
∂I3(τ )
∂σ

]
(T.15)

which is Eq. (7.68) of Owen & Hinton:

Taken from Owen and Hinton [967]
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Appendix U

The Γ tensor in plasticity

WARNING: this is not finished.
Let us start from

⃗̇ε = Γ(σ⃗) · σ⃗

Note that we will later need Γ−1 which begs the question of it being invertible... In Zienkiewicz
[1422], the author states: “In many forms of the visco-plastic law the relationship ⃗̇ε = Γ(σ⃗) · σ⃗ is
such that no volumetric strain rate exists i.e. the material is incompressible. Now Γ does not posses
an inverse”.

U.0.1 Computing the Γ matrix

Let us first establish that we can write quite generally in the isotropic case

∂Q

∂σ⃗
= Γ0 · σ⃗

By applying the chain rule we can write

∂Q

∂σ⃗
=

∂Q

∂I1(σ)
∂I1(σ)
∂σ⃗

+
∂Q

∂I2(τ )
∂I2(τ )
∂σ⃗

+
∂Q

∂I3(τ )
∂I3(τ )
∂σ⃗

=

(
∂Q

∂I1(σ)
M1(σ) +

∂Q

∂I2(τ )
M2(σ) +

∂Q

∂I3(τ )
M3(σ)

)
· σ⃗ (U.1)

All we have to do now is to compute the three symmetric matrices M1,2,3(σ) which independent of
F or Q.
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Computing matrix M1

∂I1(σ)
∂σ⃗

=
∂

∂σ⃗
(σxx + σyy + σzz)

=



∂
∂σxx

(σxx + σyy + σzz)
∂

∂σyy
(σxx + σyy + σzz)

∂
∂σzz

(σxx + σyy + σzz)
∂

∂σxy
(σxx + σyy + σzz)

∂
∂σxz

(σxx + σyy + σzz)
∂

∂σyz
(σxx + σyy + σzz)



=


1
1
1
0
0
0



=
1

σxx + σyy + σzz


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 · σ⃗

=
1

I1(σ)


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

M1(σ)

·σ⃗ (U.2)

Computing matrix M2

We start from

I2(τ ) =
1

6

[
(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2

]
+ σ2

xy + σ2
xz + σ2

yz (U.3)
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Then

∂I2(τ )
∂σ⃗

=



∂
∂σxx
I2(τ )

∂
∂σyy
I2(τ )

∂
∂σzz
I2(τ )

∂
∂σxy
I2(τ )

∂
∂σxz
I2(τ )

∂
∂σyz
I2(τ )



=



1
6
(2(σxx − σyy) + 2(σxx − σzz))

1
6
(−2(σxx − σyy) + 2(σyy − σzz))

1
6
(−2(σyy − σzz)− 2(σxx − σzz))

2σxy
2σxz
2σyz



=



2
3
σxx − 1

3
σyy − 1

3
σzz

−2
3
σxx +

4
3
σyy − 2

3
σzz

−2
3
σxx − 2

3
σyy +

4
3
σzz

2σxy
2σxz
2σyz



=


2/3 −1/3 −1/3 0 0 0
−1/3 2/3 −1/3 0 0 0
−1/3 −1/3 2/3 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


︸ ︷︷ ︸

M2(σ)

·σ⃗ (U.4)

This is the same matrix as in Eq. (13.11) in Zienkiewicz [1422] (1975).
Another look at it using tensors: we start this time from

I2(τ ) =
1

6

[
(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2

]
+

1

2
(σ2

xy + σ2
xz + σ2

yz + σ2
yx + σ2

zx + σ2
zy)(U.5)

Then

∂I2(τ )
∂σ

=


∂I2(τ )
∂σxx

∂I2(τ )
∂σxy

∂I2(τ )
∂σxz

∂I2(τ )
∂σyx

∂I2(τ )
∂σyy

∂I2(τ )
∂σyz

∂I2(τ )
∂σzx

∂I2(τ )
∂σzy

∂I2(τ )
∂σzz


=

 2
3
σxx − 1

3
σyy − 1

3
σzz σxy σxz

σyx −2
3
σxx +

4
3
σyy − 2

3
σzz σyz

σzx σzy −2
3
σxx − 2

3
σyy +

4
3
σzz


= σ − 1

3
I1(σ)1

= τ (U.6)

1202



Computing matrix M3

The third invariant proves to be the most annoying:

I3(τ ) =
1

3

∑
i,j,k

τijτjkτki (U.7)

=
1

3
τxx(τ

2
xx + 3τ 2xy + 3τ 2xz)

+
1

3
τyy(3τ

2
xy + τ 2yy + 3τ 2yz)

+
1

3
τzz(3τ

2
xz + 3τ 2yz + τ 2zz)

+ 2τxyτxzτyz (U.8)

Then

∂I3(τ )
∂σ⃗

=



∂
∂σxx
I3(τ )

∂
∂σyy
I3(τ )

∂
∂σzz
I3(τ )

∂
∂σxy
I3(τ )

∂
∂σxz
I3(τ )

∂
∂σyz
I3(τ )



=



∂
∂τxx
I3(τ ) ∂τxx∂σxx

∂
∂τyy
I3(τ ) ∂τyy∂σyy

∂
∂τzz
I3(τ ) ∂τzz∂σzz

∂
∂τxy
I3(τ ) ∂τxy∂σxy

∂
∂τxz
I3(τ ) ∂τxz∂σxz

∂
∂τyz
I3(τ ) ∂τyz∂σyz



=



∂
∂τxx
I3(τ )23

∂
∂τyy
I3(τ )23

∂
∂τzz
I3(τ )23

∂
∂τxy
I3(τ )1

∂
∂τxz
I3(τ )1

∂
∂τyz
I3(τ )1



=



∂
∂τxx
I3(τ )23

∂
∂τyy
I3(τ )23

∂
∂τzz
I3(τ )23

2τxxτxy + 2τyyτxy + 2τxzτyz
2τxxτxz + 2τzzτxz + 2τxyτyz
2τyyτyz + 2τzzτyz + 2τxyτxz

 (U.9)

=


(τ 2xx + τ 2xy + τ 2xz)

2
3

(τ 2xy + τ 2yy + τ 2yz)
2
3

(τ 2xz + τ 2yz + τ 2zz)
2
3

2τxxτxy + 2τyyτxy + 2τxzτyz
2τxxτxz + 2τzzτxz + 2τxyτyz
2τyyτyz + 2τzzτyz + 2τxyτxz

 (U.10)
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We have τ = σ − 1
3
I1(σ)1 so

τxx = σxx −
1

3
I1 ⇒ τ 2xx = (σxx −

1

3
I1)2 = σ2

xx −
2

3
σxxI1 +

1

9
I21 (U.11)

τyy = σyy −
1

3
I1 ⇒ τ 2yy = (σyy −

1

3
I1)2 = σ2

yy −
2

3
σyyI1 +

1

9
I21 (U.12)

τzz = σzz −
1

3
I1 ⇒ τ 2zz = (σzz −

1

3
I1)2 = σ2

zz −
2

3
σzzI1 +

1

9
I21 (U.13)

Finally

∂I3(τ )
∂σ⃗

=


(σ2

xx − 2
3
σxxI1 + 1

9
I21 + σ2

xy + σ2
xz)

2
3

(σ2
xy + σ2

yy − 2
3
σyyI1 + 1

9
I21 + σ2

yz)
2
3

(σ2
xz + σ2

yz + σ2
zz − 2

3
σzzI1 + 1

9
I21 )23

2(σxx − 1
3
I1)σxy + 2(σyy − 1

3
I1)σxy + 2σxzσyz

2(σxx − 1
3
I1)σxz + 2(σzz − 1

3
I1)σxz + 2σxyσyz

2(σyy − 1
3
I1)σyz + 2(σzz − 1

3
I1)σyz + 2σxyσxz

 (U.14)

=


(σ2

xx − 2
3
σxxI1 + σ2

xy + σ2
xz)

2
3

(σ2
xy + σ2

yy − 2
3
σyyI1 + σ2

yz)
2
3

(σ2
xz + σ2

yz + σ2
zz − 2

3
σzzI1)23

2σxxσxy + 2σyyσxy + 2σxzσyz
2σxxσxz + 2σzzσxz + 2σxyσyz
2σyyσyz + 2σzzσyz + 2σxyσxz

+



1
9
I21 2

3
1
9
I21 2

3
1
9
I21 2

3

−4
3
I1σxy

−4
3
I1σxz

−4
3
I1σyz



=


(σ2

xx − 2
3
σxxI1 + σ2

xy + σ2
xz)

2
3

(σ2
xy + σ2

yy − 2
3
σyyI1 + σ2

yz)
2
3

(σ2
xz + σ2

yz + σ2
zz − 2

3
σzzI1)23

2(σxx + σyy)σxy + 2σxzσyz
2(σxx + σzz)σxz + 2σxyσyz
2(σyy + σzz)σyz + 2σxyσxz

+
2

3
I1



1
9
I1

1
9
I1

1
9
I1

−2σxy
−2σxz
−2σyz

 (U.15)

=


(σ2

xx − 2
3
σxxI1 + σ2

xy + σ2
xz)

2
3

(σ2
xy + σ2

yy − 2
3
σyyI1 + σ2

yz)
2
3

(σ2
xz + σ2

yz + σ2
zz − 2

3
σzzI1)23

2(I1 − σzz)σxy + 2σxzσyz
2(I1 − σyy)σxz + 2σxyσyz
2(I1 − σxx)σyz + 2σxyσxz

+
2

3
I1



1
3
σxx

1
3
σyy

1
3
σzz

1
3
σxx

1
3
σyy

1
3
σzz

1
3
σxx

1
3
σyy

1
3
σzz

−2
−2

−2

 ·


σxx
σyy
σzz
σxy
σxz
σyz

(U.16)

FINISH!!!!! not complicated but no rush. Also try to see whether it matches table I of Zienkiewicz
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and Cormeau [1423] - note the different ordering of terms in vector

1
3
σxx

1
3
σzz

1
3
σyy −2

3
σyz

1
3
σxz

1
3
σxy

1
3
σzz

1
3
σyy

1
3
σxx

1
3
σyz −2

3
σxz

1
3
σxy

1
3
σyy

1
3
σxx

1
3
σzz

1
3
σyz

1
3
σxz −2

3
σxy

−2
3
σyz

1
3
σyz

1
3
σyz −σxx σxy σxz

1
3
σxz −2

3
σxz

1
3
σxz σxy −σyy σyz

1
3
σxy

1
3
σxy −2

3
σxy σxz σyz −σzz

 ·


σxx
σyy
σzz
σyz
σxz
σxy

 (U.17)

=
1

3


σxx σzz σyy −2σyz σxz σxy
σzz σyy σxx σyz −2σxz σxy
σyy σxx σzz σyz σxz −2σxy
−2σyz σyz σyz −3σxx 3σxy 3σxz
σxz −2σxz σxz 3σxy −3σyy 3σyz
σxy σxy −2σxy 3σxz 3σyz −3σzz

 ·


σxx
σyy
σzz
σyz
σxz
σxy

 (U.18)

=



σ2
xx + 2σyyσzz − σxyσyz + σ2

xz

σ2
yy + 2σxxσzz + 2σxyσyz − 2σ2

xz

σ2
zz + 2σxxσyy − σxyσyz + σ2

xz

(−2σxx + σyy + σzz)σyz − 3σxxσxy + 3σxyσxz + 3σxzσyz
(σxx − 2σyy + σzz)σxz + 3σ2

xy − 3σyyσxz + 3σ2
yz

(σxx + σyy − 2σzz)σxy
+3σxyσxz + 3σxzσxz − 3σxzσyz


(U.19)
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Appendix V

Using gmsh

In the left menu Modules>Geometry>Elementary entities>Add choose Rectangle and input the
coordinates of the lower left corner and its size. Then click on Tools>Options and Tools>Statistics.
Your screen should look like this:

In the left menu click on Mesh>2D to generate an unstructured mesh. You should get this:
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Make sure you can visualise the nodes by setting:

If you wish to use quadrilaterals

If you wish to generate second order elements click on Mesh>Set order 2:

You can refine the mesh by clicking on Refine by splitting
Export the mesh: File>Export. Choose .mesh format.
In Options - General - General tab click on Use dark interface and in Options - Mesh - Visibility

tab click on Node labels. Your screen now looks like this:
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Also in Options - Mesh - General choose Delaunay instead of Frontal Delaunay to get this

In order to re-generate a mesh, you mish wish to click on 1D and then on 2D again.
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Appendix W

Directional derivative, total and material
derivative

The following is a brief review of some basics of differential calculus which underlie many derivations
in continuum mechanics.

W.0.1 Directional derivative

Let’s start with a 2-dimensional example of a function f of the two variables x and y, hence f(x, y).
Consider an arbitrary point (x0, y0) in the domain of f . We want to determine the rate of change

of f in any direction in (x0, y0).
Let (x1, y1) be another point and define the unit vector points from (x0, y0) in the direction of

(x1, y1) as:

n⃗ =

(
n1

n2

)
=

1

d

(
x1 − x0
y1 − y0

)
with d =

√
(x1 − x0)2 + (y1 − y0)2

The line segment connecting the two points can be parameterised as:

x = x0 + sn1

y = y0 + sn2 , s ∈ [0, d] (W.1)

Note that s, the arclength parameter, has the same dimension as the coordinates. On this line the
function f is described by the 1-D function f(s) = f(x(s), y(s)), s ∈ [0; d]. The rate of change of
f(x, y) in the direction of n⃗ at some point (x(s), y(s)) on the line is then ∂f(s)/∂s. This derivative
can be related to the original coordinates as follows using the change rule of partial differentiation:

df(s)

ds
=
f(x(s), y(s))

ds
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

Using Eq. (W.1) this gives:
df(s)

ds
=
∂f

∂x
n1 +

∂f

∂y
n2 = ∇⃗f · n⃗ (W.2)

This is the so-called directional derivative which can be computed in any point (x, y) and direction
n⃗ as long as the two basic partial derivatives ∂f/∂x and ∂f/∂y, which give the rate of change in the
positive direction of the two axes, respectively, exist in (x, y).

Importantly, df(s)/ds can be directly compared to ∂f/∂x and ∂f/∂y because all derivatives have
the same physical dimension in any application by virtue of the parameterisation (W.1). A change
of parameterisation parameter affects the l.h.s. of (W.2) but not the r.h.s because the latter depends
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on the x and y coordinates and the unit vector n (which by definition (W.1) is dimensionless). A
change of parameterisation variable from arc-length s to time t = s/v will change the l.h.s. into

df

ds
=
df

dt

dt

ds
=

1

v

df

dt

Substituting this result in (W.2) and rewriting gives another type of directional derivative:

df(t)

dt
= ∇⃗ · ν⃗

where ⃗upnu = νn⃗ can be interpreted as the local velocity vector, but only if this would be useful in
the context of what f physically represents. Such re-parameterisation is useful in case one explicitly
wants to determine the rate-of-change of f with respect to a parameter different from the arc-length s.
The material derivative of continuum mechanics is an example of such a scaled directional derivative
(see below).

W.0.2 Total differential

We can make the result (W.2) independent of parameterization as follows. By differentiating (W.1)
to s, we find

dx(s) = n1ds and dy(s) = n2ds (W.3)

If we align the differential vector dr⃗ = (dx, dy)T with the line segment we can write dr⃗ = (dx(s), dy(s))T .
By using (W.3) we get dr⃗(s) = n⃗ds and |dr⃗| = ds =

√
dx2 + dy2 because n⃗ is of unit length. These

relations between dr⃗, dx, dy, and ds, all with the same physical dimension, are general used. Next,
rewriting (W.2) as df(s) = (∇⃗ · n⃗)ds = ∇⃗ · (n⃗ds) gives:

df(s) = ∇⃗f · dr⃗(s)

Because the line segment (x0, y0)→ (x1, y1) is arbitrarily chosen we can as well write

df = ∇⃗f · dr⃗ = ∂f

∂x
dx+

∂f

∂y
dy (W.4)

Equation (W.4) is called the total differential of f(x, y) which holds in each point (x, y) where the
partial derivatives are calculated.

This leads to the following interpretation: Given a function f(x, y) then in any point (x, y) in
which the partial derivatives ∂f/∂x and ∂f/∂y exist we can compute the change df in f that occurs
when going from (x, y) → (x + dx, y + dy) as (W.4), where df = f(x + dx, y + dy) − f(x, y). This
holds for every choice, including 0 or negative, of the differential steps dx and dy.

Generalisation to N -dimensional space: For any multi-parameter function f(x1, ...xN) equation
(W.4) generalizes to the total differential

df =
∂f

∂x1
dx1 + ...

∂f

∂xN
dxN = ∇⃗fT · dr⃗

Similarly, equations (W.1) and (W.2) can be generalized to functions of any number of parameters
by parameterising the line connecting points (x01, ...x

0
N) and (x1, ...xN):

x1 = x01 + sn1

...

xN = x0N + snN
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with s ∈ [0; d] and d =
√

(x1 − x01)2 + (xN − x0N)2.
Direction of maximal change: It follows from (W.2) or (W.4) that the change of a function is

largest if ∇⃗f · dr⃗ is maximum which occurs in any chosen point when ∇⃗f is parallel to dr⃗. This
implies that in every point the gradient vector ∇⃗f always points in the direction of maximum change
of f and that |∇⃗f | = |df(s)/ds| is that maximum change.

Calculating a normal vector: Suppose that f(x1, ..., xN) = k is the level surface of function f for
the constant k (for example the irregular and time-dependent temperature surface T (t, x1, x2, x3) =
20 degrees in a room full of people). The equation f(x1, ..., xN) = k implicitly defines the (N − 1)-
dimensional surface in N -dimensional space of all points for which f = k. We want to determine in
any chosen point of this surface the vector n⃗ that is perpendicular to the surface. This is done as
follows: Consider (W.4): df = ∇⃗f · dr⃗ and take dr⃗ to be a step from a point (x1, ...xN) on f = k
along the level surface, i.e. dr⃗ lies in the level surface. In this case df = 0 because f = k on the level
surface. We find from (W.4) that ∇⃗f · dr⃗ = 0, implying that ∇⃗f is perpendicular to dr⃗. Hence, ∇⃗f
is a vector which is always normal to a level surface. The unit normal in any point (x1, ...xN) on the

level surface is then calculated as: n⃗ = ∇⃗f/
∣∣∣∇⃗f ∣∣∣ where ∇⃗f is the gradient in that point.

A corollary of this result is that if one calculates ∇⃗f in some point (x01, ...x
0
N) in N -space, then

one also knows the local direction of the level surface f(x1, ...xN) = f(x01, ...x
0
N) that passes through

(x01, ...x
0
N).

W.0.3 The material derivative

In continuum mechanics we distinguish the spatial coordinates x1, x2, x3 and time t. Hence any
function defined on this 4-parameter space is written as f(t, x1, x2, x3). The total differential (10) is
then

df =
∂f

∂t
dt+

∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 (W.5)

In principle, the time differential dt and spatial differentials dxi can be arbitrarily chosen. For
instance, taking dt = 0 that only the spatial changes in the function at fixed time are considered,
while taking dxi = 0 focuses on the temporal variation in a chosen fixed point. Generally, in
continuum mechanics a special choice is made for the directional derivative, which involves the local
direction of the flow. This direction is given at any point (x1, x2, x3) and any time t by the velocity
vector

ν⃗(t, x1, x2, x3) =
dr⃗

dt
(W.6)

where dr⃗ is the spatial step taken by a flow particle from (x1, x2, x3)→ (x1 + dx1, x2 + dx2, x3 + dx3)
during the time interval t→ t+ dt. Hence, the flow direction dr⃗ in point (x1, x2, x3) depends on the
time t such that dr⃗(t) = v(t, x1, x2, x3)dt.

Taking ν⃗ = (ν1,ν2,ν3)
T equation (W.5) becomes

df =
∂f

∂t
dt+

∂f

∂x1
ν1dt+

∂f

∂x2
ν2dt+

∂f

∂x3
ν3dt

Dividing by δt yields

Df

Dt
=
∂f

∂t
+
∂f

∂x1
ν1 +

∂f

∂x2
ν2 +

∂f

∂x3
ν3 ==

∂f

∂t
+ ν⃗ · ∇⃗f

This equation is called the material derivative of f and describes the rate of change of f with time
in the local direction of the flow.

FINISH
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W.0.4 Material derivative of a volume integral

Let F (r⃗, t) be some scalar function depending on spatial coordinates r⃗ and time t and V (t) a volume
that may also depend on t. Define the volume integral

I(t) =

∫
V (t)

F (r⃗, t)dV.

For example, if F is density, then I(t) is the mass contained in the volume.
Assume a deforming medium with incremental displacement field s⃗(r⃗, t). Consider the deforma-

tion that occurs between t and t+∆t in which ∆t is a very small time step such that we can write
that a particle at position r⃗ at time t will be displaced to r⃗ +∆r⃗ at t+∆t.

Then

∆r⃗ = s⃗(r⃗, t+∆t)− s⃗(r⃗, t) = s⃗(r⃗, t+∆t)− s⃗(r⃗, t)
∆t

∆t = ν⃗∆t

where ν⃗ = ds⃗/dt is the velocity vector at (r⃗, t).
The volume V (t) will deform to V ′(t+∆t). The material derivative of I(t) is defined as:

DI

Dt
=

D

Dt

∫
V (t)

F (r⃗, t)dV = lim
∆t→0

1

∆t

[∫
V ′(t+∆t)

F (r⃗ +∆r⃗, t+∆t)dV ′ −
∫
V (t)

F (r⃗, t)dV

]
(W.7)

For incremental ∆t we can approximate

F (r⃗ +∆r⃗, t+∆t) = F (r⃗, t) +
∂F

∂xj
vj∆t+

∂F

∂t
∆t = F (r⃗, t) +

DF

Dt
∆t

Further, from continuum mechanics we have for the volume change associated with the incremental
displacement field s⃗(r⃗, t):

dV ′ − dV
dV ′ = ∇⃗ · s⃗ = ∇⃗ · (ν⃗∆t)

or

dV ′ =

(
1 +

∂vj
∂xj

∆t

)
dV

Using these results

F (r⃗+∆r⃗, t+∆t)dV ′ =

(
F (r⃗, t) +

DF

Dt
∆t

)(
1 +

∂vj
∂xj

∆t

)
dV = F (r⃗, t)dV+

DF

Dt
∆tdV+F (r⃗, t)

∂vj
∂xj

∆tdV+
DF

Dt

∂vj
∂xj

∆t2dV

such that now the integration over V ′ can be replaced by an integration over V :∫
V ′(t+δt)

F (r⃗ +∆r⃗, t+∆t)dV ′ ≃
∫
V (t)

F (r⃗, t)dV +

∫
V (t)

[(
DF

Dt
+
∂vj
∂xj

)
∆t+

DF

Dt

∂vj
∂xj

∆t2
]
dV

Substituting this result in the above definition of the material derivative

DI

Dt
= lim

∆t→0

1

∆t

[∫
V (t)

(
DF

Dt
+
∂vj
∂xj

)
∆t+

DF

Dt

∂vj
∂xj

∆t2 dV

]
This leads to material derivative of a volume integral:

D

Dt

∫
V (t)

FfV =

∫
V (t)

DF

Dt
+ F

∂vj
∂xj

dV
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[301] J. Dannberg, Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, and R. Myhill. “The importance
of grain size to mantle dynamics and seismological observations”. In: Geochem. Geophys.
Geosyst. 18 (2017), pp. 3034–3061. doi: 10.1002/2017GC006944.

[302] J. Dannberg and T. Heister. “Compressible magma/mantle dynamics: 3-D, adaptive simula-
tions in ASPECT”. In:Geophy. J. Int. 207 (2016), pp. 1343–1366. doi: 10.1093/gji/ggw329.
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Antonio Villaseñor. “Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity
gradient and other gravity data modelling: Application to the Atlantic-Mediterranean tran-
sition zone”. In: International Journal of Applied Earth Observation and Geoinformation 35
(2015), pp. 54–69. doi: 10.1016/j.jag.2014.02.003.

[425] CW Fuller, SD Willett, D Fisher, and CY Lu. “A thermomechanical wedge model of Taiwan
constrained by fission-track thermochronometry”. In: Tectonophysics 425.1-4 (2006), pp. 1–
24. doi: 10.1016/j.tecto.2006.05.018.

[426] P. Fullsack. “An arbitrary Lagrangian-Eulerian formulation for creeping flows and its appli-
cation in tectonic models”. In: Geophy. J. Int. 120 (1995), pp. 1–23. doi: 10.1111/j.1365-
246X.1995.tb05908.x.

[427] Jean Furstoss. “Approche numérique de l’évolution microstructurale des péridotites”. PhD
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Mühlhaus. “Mantle Dynamics–A Case Study”. In: Advances in Geocomputing. 2009, pp. 139–
181. doi: 10.1007/978-3-540-85879-9_5.

[477] S. Gourvenec. “Bearing capacity under combined loading”. In: 9th Australia New Zealand
Conference on Geomechanics, Auckland, New Zealand, 8-11 february 2004. 2004.

[478] S. Gourvenec, M. Randolph, and O. Kingsnorth. “Undrained bearing capacity of square and
rectangular footings”. In: International Journal of Geomechanics 6 (2006), pp. 147–157.

[479] R Govers and MJR Wortel. “Initiation of asymmetric extension in continental lithosphere”.
In: Tectonophysics 223.1-2 (1993), pp. 75–96.

[480] R. Govers and M.J.R. Wortel. “Lithosphere tearing at STEP faults: Response to edges of
subduction zones ”. In: Earth Planet. Sci. Lett. 236 (2005), pp. 505–523.

[481] J. Grandy. Efficient Computation of Volume of Hexahedral Cells. Tech. rep. UCRL-ID-
128886. Lawrence Livermore National Laboratory, 1997.

[482] R. Gray and R.N. Pysklywec. “Geodynamic models of mature continental collision: Evolu-
tion of an orogen from lithospheric subduction to continental retreat/delamination”. In: J.
Geophys. Res. 117.B03408 (2012). doi: 10.1029/2011JB008692.

[483] R. Gray and R.N. Pysklywec. “Influence of viscosity pressure dependence on deep lithospheric
tectonics during continental collision”. In: J. Geophys. Res. 118 (2013). doi: 10.1002/jgrb.
50220.

[484] Harry W Green. “Shearing instabilities accompanying high-pressure phase transformations
and the mechanics of deep earthquakes”. In: Proceedings of the National Academy of Sciences
104.22 (2007), pp. 9133–9138. doi: 10.1073pnas.0608045104.

[485] P.M. Gresho, S.T. Chan, M.A. Christon, and A.C. Hindmarsch. “A little more on stabilised
Q1Q1 for transient viscous incompressible flow”. In: Int. J. Num. Meth. Fluids 21 (1995),
pp. 837–856. doi: 10.1002/fld.1650211005.

[486] P.M. Gresho and R.L. Lee. “Don’t suppress the wiggles - They’re telling you something!”
In: Computers and Fluids 9 (1981), pp. 223–253.

1242

https://doi.org/10.1016/j.jocs.2016.06.006
https://doi.org/10.1029/2002GL015540
https://doi.org/10.1080/14786430500197991
https://doi.org/10.1007/978-3-540-85879-9_5
https://doi.org/10.1029/2011JB008692
https://doi.org/10.1002/jgrb.50220
https://doi.org/10.1002/jgrb.50220
https://doi.org/10.1073兾pnas.0608045104
https://doi.org/10.1002/fld.1650211005


[487] P.M. Gresho, R.L. Lee, R.L. Sani, M.K. Maslanik, and B.E. Eaton. “The consistent Galerkin
FEM for computing derived boundary quantities in thermal and/or fluid problems”. In: Int.
J. Num. Meth. Fluids 7 (1987), pp. 371–394.

[488] P.M. Gresho and R.L. Sani. Incompressible flow and the Finite Element Method, vol II -
Isothermal Laminar Flow. John Wiley and Sons, Ltd, 2000. isbn: 978-0471492504.

[489] P.M. Gresho and S.B. Sutton. “Application of the FIDAP code to the 8:1 thermal cavity
problem”. In: Int. J. Num. Meth. Fluids 40 (2002), pp. 1083–1092. doi: 10.1002/d.394.

[490] Philip M Gresho. “Some current CFD issues relevant to the incompressible Navier-Stokes
equations”. In: Computer Methods in Applied Mechanics and Engineering 87.2-3 (1991),
pp. 201–252. doi: 10.1016/0045-7825(91)90006-R.

[491] PM Gresho and RL Lee. “Partial vindication of the bilinear velocity, piecewise constant
pressure element”. In: Journal of Computational Physics 60.1 (1985), pp. 161–164. doi:
10.1016/0021-9991(85)90023-3.

[492] Ralf Greve. “Application of a polythermal three-dimensional ice sheet model to the Green-
land ice sheet: response to steady-state and transient climate scenarios”. In: Journal of
Climate 10.5 (1997), pp. 901–918.

[493] Ralf Greve and Heinz Blatter. Dynamics of ice sheets and glaciers. Springer Science & Busi-
ness Media, 2009.

[494] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical simulation in Fluid Dynamics.
SIAM, 1997.

[495] D. Griffiths and D. Silvester. Unstable modes of the Q1-P0 element. Tech. rep. 257. University
of MAnchester/UMIST, 1994.

[496] D.F. Griffiths. “Finite Elements for Incompressible Flow”. In: Math. Meth. in the Appl. Sci.
1 (1979), pp. 16–31.

[497] Piotr P Grinevich and Maxim A Olshanskii. “An iterative method for the Stokes-type
problem with variable viscosity”. In: SIAM Journal on Scientific Computing 31.5 (2009),
pp. 3959–3978. doi: 10.1137/08744803.

[498] Thomas Grombein, Kurt Seitz, and Bernhard Heck. “Optimized formulas for the gravita-
tional field of a tesseroid”. In: Journal of Geodesy 87.7 (2013), pp. 645–660. doi: 10.1007/
s00190-013-0636-1.

[499] L. Gross, L. Bourgouin, A. Hale, and H.-B. Mühlhaus. “Interface modeling in incompressible
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[898] L. Moresi, F. Dufour, and H.B. Mühlhaus. “A Lagrangian integration point finite element
method for large deformation modeling of visco-elastic geomaterials”. In: J. Comp. Phys.
184.2 (2003), pp. 476–497. doi: 10.1016/S0021-9991(02)00031-1.
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[1115] Michael Schäfer, Stefan Turek, Franz Durst, Egon Krause, and Rolf Rannacher. “Benchmark
computations of laminar flow around a cylinder”. In: Flow simulation with high-performance
computers II. 1996, pp. 547–566. doi: 10.1007/978-3-322-89849-4_39.

[1116] S.M. Schmalholz. “A simple analytical solution for slab detachment”. In: Earth Planet. Sci.
Lett. 304 (2011), pp. 45–54. doi: 10.1016/j.epsl.2011.01.011.

[1117] S.M. Schmalholz, Y.Yu. Podladchikov, and D.W. Schmid. “A spectral/finite difference method
for simulating large deformations of heterogeneous, viscoelastic materials”. In: Geophy. J.
Int. 145 (2001), pp. 199–208. doi: 10.1046/j.0956-540x.2000.01371.x.

[1118] Stefan M Schmalholz. “3D numerical modeling of forward folding and reverse unfolding of a
viscous single-layer: Implications for the formation of folds and fold patterns”. In: Tectono-
physics 446.1-4 (2008), pp. 31–41.

[1119] J. Schmalzl and U. Hansen. “Mixing the Earth’s mantle by thermal convection: A scale
dependent phenomenon”. In: Geophysical Research Letters 21.11 (1994), pp. 987–990. doi:
10.1029/94GL00049.

[1120] J. Schmalzl, G.A. Houseman, and U. Hansen. “Mixing in vigorous, time-dependent three-
dimensional convection and application to Earth’s mantle”. In: Journal of Geophysical Re-
search B: Solid Earth 101.B10 (1996), pp. 21847–21858.

[1121] J. Schmalzl, G.A. Houseman, and U. Hansen. “Mixing properties of three-dimensional (3-D)
stationary convection”. In: Physics of Fluids 7.5 (1995), pp. 1027–1033. doi: 10.1063/1.
868614.

[1122] Jörg Schmalzl and Alexander Loddoch. “Using subdivision surfaces and adaptive surface
simplification algorithms for modeling chemical heterogeneities in geophysical flows”. In:
Geochemistry, Geophysics, Geosystems 4.9 (2003).

1281

https://doi.org/10.21105/joss.04531
https://doi.org/10.21105/joss.04531
https://doi.org/10.1002/fld.1650010104
https://doi.org/10.1002/fld.1650010206
https://doi.org/10.1002/fld.1650010206
https://doi.org/10.1016/j.jnnfm.2016.05.007
https://doi.org/10.1016/j.jnnfm.2016.05.007
https://doi.org/10.1016/j.jnnfm.2008.12.001
https://doi.org/10.1007/s00397-016-0985-9
https://doi.org/10.1016/0021-9991(76)90077-2
https://doi.org/10.1016/0021-9991(76)90077-2
https://doi.org/10.1007/978-3-322-89849-4_39
https://doi.org/10.1016/j.epsl.2011.01.011
https://doi.org/10.1046/j.0956-540x.2000.01371.x
https://doi.org/10.1029/94GL00049
https://doi.org/10.1063/1.868614
https://doi.org/10.1063/1.868614


[1123] H. Schmeling and W.R. Jacoby. “On modelling the lithosphere in mantle convection with
non-linear rheology”. In: Journal of Geophysics 50 (1981), pp. 89–100.

[1124] H. Schmeling et al. “A benchmark comparison of spontaneous subduction models - Towards
a free surface”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 198–223. doi: 10.1016/j.
pepi.2008.06.028.

[1125] Harro Schmeling. “Compressible convection with constant and variable viscosity: The effect
on slab formation, geoid, and topography”. In: Journal of Geophysical Research: Solid Earth
94.B9 (1989), pp. 12463–12481.

[1126] Harro Schmeling. “On the relation between initial conditions and late stages of Rayleigh-
Taylor instabilities”. In: Tectonophysics 133.1-2 (1987), pp. 65–80. doi: 10.1016/0040-
1951(87)90281-2.

[1127] Harro Schmeling, Alexander R Cruden, and Gabriele Marquart. “Finite deformation in and
around a fluid sphere moving through a viscous medium: implications for diapiric ascent”.
In: Tectonophysics 149.1-2 (1988), pp. 17–34.

[1128] D.W. Schmid and Y.Y. Podlachikov. “Analytical solutions for deformable elliptical inclusions
in general shear”. In: Geophy. J. Int. 155 (2003), pp. 269–288. doi: 10.1046/j.1365-
246X.2003.02042.x.

[1129] Max W Schmidt and Stefano Poli. “Experimentally based water budgets for dehydrating
slabs and consequences for arc magma generation”. In: Earth and Planetary Science Letters
163.1-4 (1998), pp. 361–379. doi: 10.1016/S0012-821X(98)00142-3.

[1130] G.E. Schneider, G.D. Raithby, and M.M. Yovanovich. “Finite-element solution procedures for
solving the incompressible Navier-Stokes equations using equal order variable interpolation”.
In: Numerical Heat Transfer 1 (1978), pp. 433–451.

[1131] Robert Schneiders. “A grid-based algorithm for the generation of hexahedral element meshes”.
In: Engineering with computers 12.3-4 (1996), pp. 168–177.

[1132] Robert Schneiders. “Algorithms for quadrilateral and hexahedral mesh generation”. In: Pro-
ceedings of the VKI Lecture Series on Computational Fluid Dynamic, VKI-LS 4 (2000).

[1133] Robert Schneiders. “Quadrilateral and Hexahedral Element Meshes”. In: chapter 21? (1999).

[1134] Robert Schneiders. “Refining quadrilateral and hexahedral element meshes”. In: transition
2 (1996), p. 1.

[1135] Robert Schneiders and Jürgen Debye. “Refining quadrilateral and brick element meshes”.
In: Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential
Equations. 1995, pp. 53–65.

[1136] Martin PJ Schöpfer, Conrad Childs, and Tom Manzocchi. “Three-dimensional failure en-
velopes and the brittle-ductile transition”. In: Journal of Geophysical Research: Solid Earth
118.4 (2013), pp. 1378–1392. doi: 10.1002/jgrb.50081.

[1137] B Schott and H Schmeling. “Delamination and detachment of a lithospheric root”. In:
Tectonophysics 296.3-4 (1998), pp. 225–247. doi: 10.1016/S0040-1951(98)00154-1.

[1138] P. Schroeder and G. Lube. “Stabilised dG-FEM for incompressible natural convection flows
with boundary and moving interior layers on non-adapted meshes”. In: J. Comp. Phys. 335
(2017), pp. 760–779.

[1139] G Schubert, DL Turcotte, and ER Oxburgh. “Stability of planetary interiors”. In:Geophysical
Journal International 18.5 (1969), pp. 441–460. doi: 10.1111/j.1365-246X.1969.tb03370.
x.

1282

https://doi.org/10.1016/j.pepi.2008.06.028
https://doi.org/10.1016/j.pepi.2008.06.028
https://doi.org/10.1016/0040-1951(87)90281-2
https://doi.org/10.1016/0040-1951(87)90281-2
https://doi.org/10.1046/j.1365-246X.2003.02042.x
https://doi.org/10.1046/j.1365-246X.2003.02042.x
https://doi.org/10.1016/S0012-821X(98)00142-3
https://doi.org/10.1002/jgrb.50081
https://doi.org/10.1016/S0040-1951(98)00154-1
https://doi.org/10.1111/j.1365-246X.1969.tb03370.x
https://doi.org/10.1111/j.1365-246X.1969.tb03370.x


[1140] G. Schubert, D.L. Turcotte, and P. Olson. Mantle Convection in the Earth and Planets.
Cambridge University Press, 2001. isbn: 0-521-70000-0. doi: 10.1017/CBO9780511612879.

[1141] Gerald Schubert and Charles A Anderson. “Finite element calculations of very high Rayleigh
number thermal convection”. In: Geophysical Journal International 80.3 (1985), pp. 575–601.
doi: 10.1111/j.1365-246X.1985.tb05112.x.

[1142] Gerald Schubert and David A Yuen. “Shear heating instability in the Earth’s upper mantle”.
In: Tectonophysics 50.2-3 (1978), pp. 197–205. doi: 10.1016/0040-1951(78)90135-X.

[1143] Gerald Schubert, David A Yuen, and Donald L Turcotte. “Role of phase transitions in a
dynamic mantle”. In: Geophysical Journal International 42.2 (1975), pp. 705–735. doi: 10.
1111/j.1365-246X.1975.tb05888.x.

[1144] Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon. “Towards
the application of Stokes flow equations to structural restoration simulations”. In: Solid Earth
11 (2020), pp. 1909–1930. doi: 10.5194/se-11-1909-2020.

[1145] P.R. Schunk, M.A. Heroux, R.R. Rao, T.A. Baer, S.R. Subia, and A.C. Sun. Iterative solvers
and preconditioners for fully-coupled finite element formulations of incompressible fluid me-
chanics and related transport problems. Tech. rep. SAND2001-3512J. Sandia National Labo-
ratories, 2001.

[1146] Larkin Ridgway Scott and Michael Vogelius. “Conforming finite element methods for in-
compressible and nearly incompressible continua”. In: Lectures in Applied Mathematics 22.2
(1985). doi: xxxx.

[1147] A. Segal. Finite element methods for the incompressible Navier-Stokes equations. Delft Uni-
versity of Technology, 2012.

[1148] A. Segal, M. ur Rehman, and C. Vuik. “Preconditioners for Incompressible Navier-Stokes
Solvers”. In: Numer. Math. Theor. Meth. Appl. 3.3 (2010), pp. 245–275. doi: 10.4208/
nmtma.2010.33.1.

[1149] C. Echevarria Serur. “Fast iterative methods for solving the incompressible Navier-Stokes
equations”. PhD thesis. TU Delft, 2013.

[1150] Ruben Sevilla and Thibault Duretz. “A face-centered finite volume method for high-contrast
Stokes interface problems”. In: International Journal for Numerical Methods in Engineering
124 (2023), pp. 3709–3732. doi: 10.1002/nme.7294.

[1151] MH Shahnas and WR Peltier. “The impacts of mantle phase transitions and the iron spin
crossover in ferropericlase on convective mixing - is the evidence for compositional convec-
tion definitive? New results from a Yin-Yang overset grid-based control volume model”. In:
Journal of Geophysical Research: Solid Earth 120.8 (2015), pp. 5884–5910. doi: 10.1002/
2015JB012064.

[1152] Farzin Shakib, Thomas JR Hughes, and Zdeněk Johan. “A new finite element formulation
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