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organisation (1)

I Monday 7/02 - morning

I Wednesday 9/02 - morning

I Monday 14/02 - morning

I Wednesday 16/02 - morning

I Monday 21/02 - morning

I Wednesday 23/02 - morning

I Monday 28/03 - morning

I Wednesday 2/03 - morning

Exam : Monday 7/03



organisation (2)

I Computer practicals (python !)

I 6-7 lectures + 4 computer sessions

I 50% credits on exam, 50% lab report

I guest lecture(s) at the end
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Fieldstone

What is it ?

I am not sure anymore :)

I A single source of information for Geophysics and Computational
Geodynamics

I Consistent notations throughout

I Used for GEO3-1313 (Geodynamics), GEO4-1416 (Mantle Dynamics) and
GEO4-1427 (Computational Geophysics)

I Enormous bibliography (> 4200 refs) organised by topics

I Python codes illustrating many features found in state-of-the-art codes

I Dynamic document, continuously updated

I Open source https://cedrict.github.io/

I Chapt 9 = syllabus for GEO3-1313

Please give me feedback ! typos ? structure ? grammar ? figures ? etc ...

https://cedrict.github.io/
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https://www.youtube.com/watch?v=VNqNnUJVcVs

https://www.youtube.com/watch?v=VNqNnUJVcVs




Lecture 1

Fielstone Chapter 9.

I Early models of the Earth density

I Moment of inertia

I Density, gravity and pressure

I Gravity field



Geodynamics





Original research papers, including ’letters’, as well as topical reviews are
invited on :
Earth rotation Rheology and mineral properties of the deep earth, physical properties

of rocks and their dependence on pressure, temperature and chemical composition

Upper mantle - lower mantle ; lithosphere - asthenosphere Mantle convection, hot

spots and plumes, heat flow and the thermo-mechanical evolution of the earth Plate

kinematics, plate tectonics and plate dynamics, driving mechanisms Stress field ;

horizontal and vertical crustal movements Evolution of continents and oceans,

including the formation and destruction of oceanic lithosphere, orogenic processes and

basin evolution Crust-mantle interaction, chemical recycling Sea surface and ocean

bottom topography, including variations of sea level Dynamic interpretation and

modelling of potential fields, including isostasy, glacial isostasy Magma formation,

differentiation, transport and emplacement, including modelling of volcanic eruptions

Dynamic consequences of natural events, including source dynamics, seismic

modelling, seismo-tectonics, modelling of earthquakes, impacts Integrated models and

non-linear processes.



Geodynamics numerical modelling 101



a bit of history (1)

I The concept of a spherical Earth dates back to around the 6th century BC,
when it was mentioned in ancient Greek philosophy, but remained a matter
of philosophical speculation until the 3rd century BC, when Hellenistic
astronomy established the spherical shape of the earth as a physical given.

I The paradigm was gradually adopted throughout the Old World during
Late Antiquity and the Middle Ages.

I A practical demonstration of Earth’s sphericity was achieved by Magellan
and Elcano’s expedition’s circumnavigation (1519-1522).

→ What about the interior ?
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a bit of history (2)

In approximately 230 BC, the Greek mathematian, Eratosthenes calulated the
radius of the Earth. He compared the shadows in the wells during the summer
solstice and obtained the value R ∼ 6.38× 106m.

https://youtu.be/AWtfJ2D10NM

https://youtu.be/AWtfJ2D10NM


a bit of history (3)

In the 16th century, Galileo determined the acceleration due to the force of
gravity near the surface of the Earth and obtained 9.8 m/s2.

In his famous experiment dropping balls from the Tower of Pisa, and later with
careful measurements of balls rolling down inclines, Galileo showed that gravity
accelerates all objects at the same rate. This was a major departure from
Aristotle’s belief that heavier objects accelerate faster.

https://youtu.be/03SPBXALJZI

Galileo postulated air resistance as the reason that lighter objects may fall more
slowly in an atmosphere. Galileo’s work set the stage for the formulation of
Newton’s theory of gravity.

https://youtu.be/03SPBXALJZI


a bit of history (4)

Sir Isaac Newton (1642-1726) greatly contributed to the study of physics and
therefore, his efforts determined the mass of the Earth. His law of gravity and
second law of motion are used together to obtain a value for the mass of our
planet.

Newton’s law of gravity formulates the gravitational force that two masses
exert on each other and is given by

F =
GmM

r 2

M an m are the two masses, r is the separation between them, and G is the
universal gravitational constant.



a bit of history (4)

The value of G which was calculated by Henry Cavendish in 1798 :
G = 6.67× 10−11 m3/(kg.s2).

https://youtu.be/2PdiUoKa9Nw

https://youtu.be/2PdiUoKa9Nw


a bit of history (5)

If we assumed that M is the mass of the Earth, and m is the mass of an object
on the surface of the Earth, we can solve for M by equating Newton’s Law of
Gravity with his second law of motion

F = m · a

We have :
F = GmM/r 2 = m · a→ GM/r 2 = a

Solving for M, the mass of the Earth, and using

a = 9.8m/s2

R = 6.38× 106m

G = 6.67× 10−11m3/(kg · s2) (1)

we obtain :
M = aR2/G = 5.98× 1024kg .



A little problem

What is ’density’ ?

The (volumetric mass) density of a substance is its mass per
unit volume.
Units ? kg/m3

Ballpark figure of crustal rocks density ? around 2500-3000 kg/m3.
Volume of the Earth ? V = 4

3
πR3

〈ρ〉 =
M

V
⇒ M = 〈ρ〉 4

3
πR3 ∼ 3× 1024kg

We have just established that

M = 5.98× 1024kg .

Large discrepancy !
→ Earth materials must have higher density at depth !
→ Start simple : radial density distribution ? ρ = ρ(r) ?
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Moment of inertia (1)

https://youtu.be/uyU25DdONjo

https://www.youtube.com/watch?v=fDJeVR0o__w (first 10 min)

https://youtu.be/uyU25DdONjo
https://www.youtube.com/watch?v=fDJeVR0o__w


Moment of inertia (2)

The polar moment of inertia is traditionally determined by combining
measurements of spin quantities (spin precession rate or obliquity) and gravity
quantities (coefficients in a spherical harmonics representation of the gravity
field).

https://en.wikipedia.org/wiki/Moment_of_inertia_factor

Double problem : internal structure ρ(r) unknown, and I not well measured.

https://en.wikipedia.org/wiki/Moment_of_inertia_factor
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Total volume :

V =

∫
dV =

∫∫∫
r 2 sin θ drdθdφ

with r ∈ [0,R], θ ∈ [0, π] and φ ∈ [0, 2π]
(φ= longitude, θ=co-latitude)
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V =

∫∫∫
r 2 sin θ drdθdφ

=

(∫
r 2dr

)(∫
sin θdθ

)(∫
dφ

)

=

(∫ R

0

r 2dr

)(∫ π

0

sin θdθ

)(∫ 2π

0

dφ

)
=

1

3
R3 · 2 · 2π

=
4

3
πR3

https://www.khanacademy.org/math/multivariable-calculus/

integrating-multivariable-functions/x786f2022:

polar-spherical-cylindrical-coordinates/a/

triple-integrals-in-spherical-coordinates

https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/x786f2022:polar-spherical-cylindrical-coordinates/a/triple-integrals-in-spherical-coordinates
https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/x786f2022:polar-spherical-cylindrical-coordinates/a/triple-integrals-in-spherical-coordinates
https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/x786f2022:polar-spherical-cylindrical-coordinates/a/triple-integrals-in-spherical-coordinates
https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/x786f2022:polar-spherical-cylindrical-coordinates/a/triple-integrals-in-spherical-coordinates
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Density

Mass density is expressed in kg/m3.
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Pressure

Pressure is expressed in Pa.
It represents a force (N) per unit area (m2).



Pressure (2)

Lithostatic/hydrostatic pressure in a container :

I Height of container is H

I mass density of fluid ρ0

I Steady state, no flow → ~v = ~0.

I The strainrate tensor is then nul → ε̇ = 0.

I The stress tensor then writes

σ = −p1 + 2µε̇ = −p1

I the gravity vector is given by ~g = (0,−g)
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Pressure (3)

Momentum conservation equation :

~∇ · σ + ρ~g = ~0

The equation writes then

−∂p
∂x

+ ρ0gx = 0

−∂p
∂y

+ ρ0gy = 0

The first equation yields that the pressure is independent of x .
The second equation yields that the pressure is a linear function of the vertical
coordinate y , i.e.

p(y) = −ρgy + Constant

We request p(y = H) = 0 so that in the end

p(y) = ρg(H − y)



Pressure (4)

→ board



Gravity .... but why ?



Driving force in geodynamics



The geodynamics equations

−∇ ·
[

2η

(
ε(u)− 1

3
(∇ · u)1

)]
+∇p = ρg in Ω,

(2)

∇ · (ρu) = 0 in Ω,
(3)

ρCp

(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T = ρH

+ 2η

(
ε(u)− 1

3
(∇ · u)1

)
:

(
ε(u)− 1

3
(∇ · u)1

)
(4)

+ αT (u · ∇p)

+ ρT∆S

(
∂X

∂t
+ u · ∇X

)
in Ω,

∂ci
∂t

+ u · ∇ci = qi in Ω, i = 1 . . .C

(5)

”buoyancy-driven flow”



Gravity (1)



Gravity (2)

https://youtu.be/MTY1Kje0yLg

https://youtu.be/MTY1Kje0yLg


Gravity (2) - bis

”Why Gravity is NOT a Force” by Veritasium (17min)

https://www.youtube.com/watch?v=XRr1kaXKBsU

https://www.youtube.com/watch?v=XRr1kaXKBsU
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Gravity (3)

Gravity measurements are an important part of geophysics :



Gravity (4)

GRACE & GOCE satellites data : gravity and gravity gradient for the whole
Earth with a 1◦ × 1◦ resolution.

https://youtu.be/qu-o75pe5GY

https://youtu.be/qu-o75pe5GY
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Let’s talk units

I The SI units for (gravity) acceleration are m s−2. However in the context
of gravity, we will rarely encounter these.

I The Gal is the commonly used unit in gravimetry :

0.01m s−2 = 1Gal

and often measurements are given in mGal or µGal.

I As such, the acceleration due to Earth’s gravity at its surface is 976 to 983
Gal, the variation being due mainly to differences in latitude and elevation.



Gravity model for Earth

https://en.wikipedia.org/wiki/Gravitational_acceleration

https://en.wikipedia.org/wiki/Gravitational_acceleration


IUGG document
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Using GRACE (2002-2017) satellite data



Using GRACE satellite data



Using GOCE (2009-2013)

Gravity Field and Steady-State Ocean Circulation Explorer

Mission objectives

I To determine gravity-field anomalies with an accuracy of 10−5 m/s2 (1
mGal). To increase resolution, the satellite flew in an unusually low orbit.

I To determine the geoid with an accuracy of 1-2 cm.

I To achieve the above at a spatial resolution better than 100 km.

Panet et al., 2014
The circled blue region reflects remnants of the old Tethys Ocean
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Using GOCE data : Crustal studies (Ebbing et al., 2013)



Using GOCE data : lithospheric modeling (Bouman et al., 2015)



Gravitational Potential Energy

I Gravitational potential energy (GPE) is the energy stored in an object as
the result of its vertical position or height.

I The energy is stored as the result of the gravitational attraction of the
Earth for the object.

PEgrav = mass · g · height
I To determine the gravitational potential energy of an object, a zero height

position must first be arbitrarily assigned. Typically, the ground is
considered to be a position of zero height.



GPE and global stress field (Ghosh et al, 2009)










